
Deterministic Simulation of a NFA
with k–Symbol Lookahead

Bala Ravikumar1 and Nicolae Santean2

1 Department of Computer Science, Sonoma State University
Rohnert Park, CA 94928, USA

2 School of Computer Science, University of Waterloo
Waterloo, ON, Canada N2L 3G1

Abstract. We investigate deterministically simulating (i.e., solving the
membership problem for) nondeterministic finite automata (NFA), re-
lying solely on the NFA’s resources (states and transitions). Unlike the
standard NFA simulation, involving an algorithm which stores at each
step all the states reached nondeterministically while reading the input,
we consider deterministic finite automata (DFA) with lookahead, which
choose the“right”NFA transitions based on a fixed number of input sym-
bols read ahead. This concept, known as lookahead delegation, arose in
a formal study of web services composition and its subsequent practical
applications. Here we answer several related questions, such as “when is
lookahead delegation possible?” and “how hard is it to find a delegator
with a given lookahead buffer size?”. In particular, we show that only fi-
nite languages have the property that all of their NFA’s have delegators.
This implies, among others, that delegation is a machine property, rather
than a language property. We also prove that the existence of lookahead
delegators for unambiguous NFA is decidable, thus partially solving an
open problem. Finally, we show that finding delegators (even for a given
buffer size) is hard in general, and is efficient for unambiguous NFA, and
we give an algorithm and a compact characterization for NFA delegation
in general.

1 Introduction

Finite automata models are ubiquitous in a wide range of applications. The
well–known classical applications of automata involve parsing, string matching
and sequential circuits. Recently, formal models based on finite automata have
been applied in service–oriented computing, a newly emerging framework to har-
ness the power of the World Wide Web [1]. This paradigm is based on so–called
e–services composition, concept introduced by [1] and recently studied exten-
sively by a number of scientists: [7], [6], [8], [3], [4], etc.

k–Delegators were first introduced informally in [2] in the study of e–services
composability, which involves automatically combining the services of individual
agents to accomplish a larger task. In the same paper it was established that the
existence of k–delegators is decidable for a given k. However, the complexity of
this problem was not addressed. Moreover, the problem of deciding the existence

Jan van Leeuwen et al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 488–497, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Deterministic Simulation of a NFA with k–Symbol Lookahead 489

of a k–delegator for some k was left as an open problem. In this work, we address
these and some related questions, without addressing the implications of our
results in e–service applications. Only a sketch of the proof of some results appear
in the main text of the paper. Detailed proofs and further explanations on the
matters in discussion can be found in the technical report [9], available on the
web.

2 The Delegation Problem

In the following we assume known basic notions of automata theory (see, for
example, [5] and [12]). Notation–wise, an NFA is a tuple M = (Q, Σ, δ, q0, F)
with Q a finite set of states, Σ an alphabet, δ ⊆ Q×Σ ×Q a transition relation,
q0 an initial state, and F ⊆ Q a set of final states. M is trim if each of its states
is useful: i.e., it is accessible (there exists a computation from the initial
state and ending with it) and co-accessible (there exists a computation
starting from it and ending with some final state). If δ is a function (as opposed
to a relation), then M becomes a DFA (deterministic finite automaton). We say
that two automata are equivalent if they recognize the same language. In the
following we denote by ε the empty word, by Σk the set of all words of length k
over Σ (and by Σ≤k the set of all words of length at most k), by pref(L) the set
of all prefixes of words in a language L, and by prefk(L) the set pref(L) ∩ Σk.

By a DFA with a k–lookahead buffer we understand a DFA A=(Q, Σ, f, q0, F)
with f : Q × Σ≤k → Q, which operates as follows. A has a buffer with k cells
which initially contains the first k symbols of the input word (or, if the word
has fewer symbols, the entire word). At each computation step, A consumes one
input symbol and stores the following k symbols of the input tape in its buffer.
The function f decides the next state based on the current state of A and its
buffer content. It is easy to see that DFA with k–lookahead buffer are equivalent
with standard DFA: the buffer content can be viewed as part of automaton’s
internal state.

Definition 1. An NFA M = (Q, Σ, δ, q0, F) has a k-delegator if there ex-
ists an equivalent DFA with k–lookahead buffer A = (Q, Σ, f, q0, F) such that
f(q, a1 . . . ak) ∈ δ(q, a1) for all (q, a1 . . . ak) in the domain of f .

We say that A is a k–delegator for M or, when the context makes it clear,
we denote f in the above definition to be a k–delegator for M (implying that
there exists a DFA with k–lookahead as in the definition, with f its transition
function). Indeed, M and A share the same resources (states and transitions)
and the pair (M , f) uniquely identify the k–delegator A for M .

It is clear that any DFA M has a 1–delegator: simply choose f in the above
definition as being the transition function of M . There are also NFA’s that can
have a 1–delegator. On the other hand, for any given k it is not hard to construct
an example of a NFA that has a k–delegator, but not a (k − 1)–delegator. The
next example shows that there are NFA’s that do not have k–delegators for
any k.

490 B. Ravikumar and N. Santean

0, 10, 1

11

0

0

q3q2q1q0

Fig. 1. An NFA which has no k–delegator for any k

q4q3

1

1

0

0

q2q1

0

0

q0

Fig. 2. An unambiguous NFA which has no k–delegator for any k

Example 1. Consider the NFA M in Figure 1, for the language L of all words
w ∈ {0, 1}∗ in which some pair of successive occurrences of 1 has an odd number
of 0’s in between them. M does not have a k–delegator for any positive integer k.
The NFA in Figure 2 is an unambiguous NFA (i.e., any word is the label of at
most one successful computation), and yet, it has no delegator.

Every regular language L is accepted by a NFA that has a 1–delegator, namely a
DFA for L. Nevertheless, there may be the case that for some regular languages,
every associated NFA may have a k–delegator for some k. The next definition is
intended to characterize such regular languages.

Definition 2. Let L be a regular langauge.

(i) L is said to be weakly delegable if for any NFA M for L, there exists
a k such that M has a k–delegator.

(ii) L is said to be strongly delegable if there exists a k such that for
every NFA M for L, M has a k–delegator.

The next result shows that these two classes of regular languages coincide.

Theorem 1. The following statements are equivalent:

1. L is finite.
2. L has a strong delegator.
3. L has a weak delegator.

Let M = (Q, Σ, δ, q0, F) be a trim NFA and q ∈ Q, a1 . . . ak ∈ Σk such that
δ(q, a1) = {q1, . . . , qt} with t > 1 (q has nondeterministic transitions on in-
put a1). Notation–wise, by Lq we denote the language accepted by M if q is
chosen as the start state of M (with no other change to its definition).

Deterministic Simulation of a NFA with k–Symbol Lookahead 491

Definition 3. With the above notations, we say that q is a1 . . . ak-blind if
δ(q, a1) = {q1, . . . , qt}, t > 1, and for all i ∈ {1, . . . , t} the following inequality
holds: ⎛

⎝ ⋃
j∈{1,...,t},j �=i

(a2 . . . ak)−1Lqj

⎞
⎠ \ (a2 . . . ak)−1Lqi �= ∅ .

A state q is k–blind if there exists a word w ∈ Σk such that q is w–blind.

This definition has the following delegation–related interpretation: if M has
reached a w–blind state, then reading ahead w from the input tape does not suf-
fice for deterministically choosing a certain next transition: each transition can
potentially lead to non–acceptance for a word that should be accepted by M .

Definition 4. We denote the blindness of q (or, the language of blind words
for q) as being the language Bq = {w ∈ Σ∗/q is w–blind} .

Theorem 2. State blindness is regular and effectively computable. If Bq is finite
for some q ∈ Q, then for every w ∈ Bq, |w| ≤ (4|Q|

2
+ 1)|Σ| .

If the blindness of a state q of M is finite, then q may potentially be used in some
k–lookahead delegator for M , with k sufficiently large. Indeed, denoting k − 1
to be the length of a longest word in Bq, one can observe that a buffer content
of size k allows a delegator to make deterministic decisions on which transition
from q should be followed. Consequently, the “interesting” states are those with
infinite blindness.

Proposition 1. The following properties hold:
1. For any state q, Bq is prefix–closed, except for the empty word.
2. If a NFA M has all states finitely blind, then it accepts a lookahead delegator.
3. If a state q of a NFA M is k–blind, k ≥ 2, then it is l–blind for all l ∈

{1, . . . , k − 1}.
4. If the initial state of a NFA M is infinitely blind then M has no k–lookahead

delegator for any integer k.

3 Complexity of Determining if a k–Delegator Exists

We consider the following computational problems:

Problem 1. Let k be a fixed integer (not part of the input).
Input: An NFA M .
Output: “YES” if and only if M has a k–delegator, “NO” otherwise.

Problem 2.
Input: An NFA M and an integer k (in unary).
Output: “YES” if and only if M has a k–delegator, “NO” otherwise.

Problem 3.
Input: An NFA M .
Output: “YES” if and only if M has a delegator, “NO” otherwise.

492 B. Ravikumar and N. Santean

In the following we first tackle the special case when the input NFA is unambigu-
ous, after which we deal with the general case of NFA’s that may be ambiguous.

Definition 5. Let M = (Q, Σ, δ, q0, F) be a NFA, and let q ∈ Q and w ∈ Σ∗.
A pair (q, w) is said to be crucial for M if the following holds: there exist
strings x and y such that

1. xwy is in L(M), and
2. every accepting computation of xwy reaches state q after reading x.

Proposition 2. The following results hold for unambiguous NFA:

1. If M is unambiguous, then for every state q and for every string w ∈
pref(Lq), the pair (q, w) is crucial.

2. Let M be an unambiguous NFA, q be a state of M and w ∈ Σk for some
k ≥ 1. If (q, w) is crucial for M and q is w–blind, then M cannot have
a k–delegator.

3. An unambiguous NFA M has a k–delegator iff for every state q of M there
exists no string w of length greater than or equal to k such that q is w–blind.
Then, M has a delegator if and only if Bq is finite for every state q of M .

4. Let M = (Q, Σ, δ, q0, F) be an unambiguous NFA, k be an arbitrary integer,
and let Q1, Q2 ⊆ Q with Q1 ∩Q2 = ∅ and Q1 ∪Q2 ⊆ δ(q0, w) for some word
w ∈ Σ∗. Then testing whether

⎛
⎝ ⋃

q ∈ Q1

Lq

⎞
⎠ \

⎛
⎝ ⋃

q ∈ Q2

Lq

⎞
⎠ �= ∅

can be done in polynomial time.

Remark 1. In the following we use the fact that is decidable in polynomial time
whether a given NFA is ambiguous or not. The following nondeterministic algo-
rithm which uses LOGSPACE tests if an NFA is ambiguous. The input tape of
the Turing machine (which implements the nondeterministic algorithm) contains
the encoding of a NFA M . The machine guesses a string w (over the alphabet
of M) one symbol at a time, and executes two different computations of M on
the string w. If both computations reach accepting states, then M is ambiguous.
Since NLOGSPACE is contained in P, the conclusion follows shortly.

Theorem 3. When the input NFA is unambiguous, Problem 1 is in P, Prob-
lem 2 is in co–NP, and Problem 3 is in PSPACE.

Proof. (sketch) The input to the problem 1 is a (trim) unambiguous NFA M =
(Q, Σ, δ, q0, F), and k is a fixed constant that is not part of the input. By Propo-
sition 2, it is clear that M has a k–delegator if and only if, for every state
q ∈ Q, all strings in Bq have a length smaller than k. To check this condition,
we proceed as follows: For a symbol a ∈ Σ, let δ(q, a) = {q1, q2, ..., qt}. Recall
that w = av2...vk is in Bq if and only if for each i, the following condition holds:

Deterministic Simulation of a NFA with k–Symbol Lookahead 493

⎛
⎝ ⋃

j∈{1,2,...,t}, j �=i

(v2v3...vk)−1Lqj

⎞
⎠ \ (v2v3...vk)−1Lqi �= ∅ .

Let the language on the left–side of the above expression be denoted Bq,a,i. For
each pair (q, w) where w = v1v2...vk, we check whether w �∈ Bq,v1,i as follows.
We compute the sets of states R1 = {p/ p is reachable from qi on v2v3...vk},
and R2 = {p/ p is reachable from qj for some j �= i on v2...vk}. Note that for
a given pair (q, w), all these sets can be constructed in time polynomial in |M |,
and use (4) of Proposition 2 to test if

⎛
⎝ ⋃

q ∈ R2

Lq

⎞
⎠ \

⎛
⎝ ⋃

q ∈ R1

Lq

⎞
⎠ �= ∅ .

If this is true, then we try the next i from the set δ(q, a). If no i works for a par-
ticular w, then we return “NO”. Otherwise, we continue with the next string w of
length k in Lq. If we find a successful simulating move for every pair (q, w) where
q ∈ Q and w ∈ Lq, then the algorithm returns “YES”. It is not hard to check
that the total time complexity of this algorithm is O(2kP (|M |)) for some poly-
nomial P and hence for a fixed k, the algorithm runs in polynomial time. Next,
we consider Problem 2. Now, k is part of the input (in unary). The algorithm
guesses a pair (q, v1 . . . vk) for some q ∈ Q and some string w = v1 . . . vk ∈ Σk

and will check that w ∈ Bq,v1,i for every i. Note that the sets R1 and R2 can
be computed in time O(k|M |). The rest of the details are the same as for Prob-
lem 1. To show that the Problem 3 can be solved in PSPACE, we use the ideas
described above together with the upper–bound established in Theorem 2. ��

In the following we deal with the general case, namely the case where M can be
ambiguous.

Theorem 4. Problem 1 for the general case is PSPACE–complete (the hard-
ness holds for every fixed k = 1, 2, 3, . . .). Consequently, Problems 2 and 3 are
PSPACE–hard.

Next, we describe an algorithm for Problem 1 in the general case, significantly
better than“brute force”approach (i.e., exhaustive search by generating all imag-
inable k–lookahead delegators for a NFA M , and for each checking the equiva-
lence with M) mentioned in [2] . To improve algorithm’s formalism, we give the
following definition.

Definition 6. Let q be a state in M,w=a1. . .ak and δ(q, a1, . . . ak)={q1, . . . qt},
t ≥ 1. A state qi is potential for (q, w) if it verifies:

(a2 . . . ak)−1Lqi ⊇
⋃

l∈{1,...,t},l �=i

(a2 . . . ak)−1Lql
.

Denote P (q, w) the set of all potential states for (q, w).

494 B. Ravikumar and N. Santean

The above condition is related to “state blindness”, in the sense that a state q is
w–blind if and only if P (q, w) = ∅. Notice that P (q, w) is obviously computable
for any q and w.

Algorithm 1, detailed at page 495, computes a k–delegator for a given trim
NFA M and an integer k > 0. It uses a vector V which stores, for every state p
of M , a set of words w ∈ prefk(Lp) for which a hypothetical delegator must not
reach p with w in its buffer (w is called a “forbidden” word for p). The first part
of the algorithm decides whether a k–delegator for M exists, by constructing V
and testing whether V [q0] = ∅, where q0 is the initial state of M . If V [q0]= ∅,
the second part of the algorithm constructs a k–delegator stored in a table
T [Q, Σ≤k]. It does so in two phases: first, it computes the values in T [Q, Σ=k],
which are filled recursively by procedure “construct”, after which it completes
the table with the values in T [Q, Σ<k] – done by function “extend”.

Definition 7. For w ∈ pref(Lq), we say that (q, w) is forbidden, or that
w = a1 . . . ak is a forbidden word for q, if one of the following two conditions is
satisfied, recursively:

1. q is w–blind;
2. for every state p ∈ P (q, w) there exists bp ∈ Σ such that a2 . . . akbp ∈

pref(Lp) and (p, a2 . . . akbp) is known to be forbidden.

We denote by Fq the set of all forbidden words for q.

Proposition 3. The following results hold and support the correctness of Algo-
rithm 1:

1. At the end of the “while–loop” of Algorithm 1 we have V [q] = Fq ∩ Σk, for
all states q of M .

2. The start state q0 of M verifies Fq0 ∩ prefk(L) = ∅ iff M has a k–delegator.
Under these conditions, Algorithm 1 terminates with a “YES” answer.

3. If M has no k–delegator then Algorithm 1 terminates with a “NO” answer.
4. If the algorithm responds “YES”, then it returns a trim k–delegator, that

is, a delegator whose all “predictions” (or, “delegations”) are used in some
successful computations.

Consequently, we give the following compact characterization of delegation:

Theorem 5. There exists a delegator for M if and only if Fq0 is finite.

Remark 2. It is not hard to see that there is an exponential space algorithm to
determine the membership in Fq (for any q). Indeed, from the foregoing discus-
sion, it is clear that there exists a PSPACE algorithm to determine if a string w
is q–blind. It is also clear that it can be determined in PSPACE the set of states
in P (q, w). Now, we will describe an algorithm to determine membership of
a string w1w2...wk in Fq. w1w2...wk is in Fq if and only if condition (1) or (2) of
Definition 7 is true. (1) can be checked in PSPACE. To check (2), we can cre-
ate a table (as in memorized version of dynamic programming algorithm) that

Deterministic Simulation of a NFA with k–Symbol Lookahead 495

Algorithm 1. Computing a k–delegator.

Input: a trim NFA M = (Q, Σ, δ, q0, F) and an integer k > 0
Output: “YES” and a k–delegator (T) if it exists, “NO” otherwise

for all q ∈ Q do
V [q]← ∅, compute prefk(Lq), and compute P (q, w) for all w ∈ prefk(Lq)

while
(
V is updated

)
do

for all q ∈ Q and a1 . . . ak ∈ prefk(Lq) \ V [q] do

if P (q, a1 . . . ak) = ∅ then
append a1 . . . ak to V [q] // (*)

else
if

(∀p ∈ P (q, a1 . . . ak) : a2 . . . akΣ ∩ V [p] ∩ prefk(Lp) �= ∅) then
append a1 . . . ak to V [q]

if V [q0] �= ∅ then
print “NO”

else
print “YES”

for all q ∈ Q and w ∈ Σ≤k do
T [q, w] = NIL

construct
(
q0, prefk(Lq0)

)
extend(T)

return T
��

definition of construct(q, W)

for all a1 . . . ak ∈ W do

if T [q, a1 . . . ak] = NIL then

choose p ∈ P (q, a1 . . . ak) s.t. a2 . . . akΣ ∩ prefk(Lp) ∩ V [p] = ∅

T [q, a1 . . . ak]← p, W ′ ← {a2 . . . akb/a2 . . . akb ∈ prefk(Lp)} // (**)

construct(p, W ′)
��

definition of extend(T)

if k > 1 then
for all states q ∈ Q reachable in T do

for all w ∈ Lq ∩Σ<k do

find a successful path c in M starting with q and labeled with w

assign to T values such that the k–delegator will follow the path c, once being
in state q and having w in its buffer.

��

corresponds to various instances of the form (p, x1x2...xk). When the decision
about an instance is reached, the table entry is filled (with “YES”or“NO”). When
a new instance needs to be solved, the table is checked to see if the decision is
already reached. It is clear that the total space of this algorithm is dominated
by the table required to maintain the solutions of various instances and hence
the resulting algorithm is an exponential space algorithm. Thus, Fq is recursive.

496 B. Ravikumar and N. Santean

4 Conclusion and Future Work

In this paper we have addressed the question of whether a NFA can be simu-
lated deterministically using only its states and transitions, by taking advantage
of reading ahead a fixed number of input symbols. This problem complements the
extensive prior work on methods of simulating nondeterminism by using expo-
nentially augmented state sets. We have provided a characterization of when this
is possible, and have presented algorithms to determine when such a simulation
is possible in restricted cases.

The problem that remains unsolved is the decidability of Problem 3 for general
NFA’s. We believe that this problem is decidable, and Theorem 5 may provide a
direction to establish such a result. Indeed, if we can show that Fq0 is regular or
context–free, then clearly, the decidability of Problem 3 will follow since finiteness
problem is decidable for both these classes. We do not know if the former is true;
however, presently there are promising efforts to solve the general problem, and
we believe that a solution will be given sooner rather than later.

The complexity of Problems 2 and 3 (in the case of unambiguous NFA’s) have
not been completely resolved. Specifically, are the problems complete for co–NP
and PSPACE respectively?

References

1. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., and Mecella, M.: Au-
tomatic Composition of e-Services that Export their Behavior. In E. Orlowska,
M. Papzoglou, S. Weerawarana, and J. Yang (eds), ICSOC 2003,Springer, Lecture
Notes in Computer Science 2910 (2003) 43–58.

2. Dang, Z., Ibarra, O.H., and Su, J.:. Composability of Infinite-State Activity Au-
tomata. In Rudolf Fleischer and Gerhard Trippen (eds), ISAAC 2004, Springer,
Lecture Notes in Computer Science 3341 (2004) 377–388

3. Gerede, C.E., Hull, R., Ibarra, O.H., and Su, J.: Automated Composition of
e-Services: Lookaheads. In Traverso and Weerawarana [11], 252–262

4. Gerede, C.E., Ibarra, O.H., Ravikumar, B., and Su, J.: On-Line and Ad-Hoc Min-
imum Cost Delegation in e-Service Composition. In C. K. Chang and L.–J. Zhang
(eds), IEEE SCC, IEEE Computer Society (2005) 103–112

5. Hopcroft, J.E., Motwani, R., and Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation - 3rd edition. Addison-Wesley Longman Publishing
Co. Inc., Boston, MA (2006)

6. Hull, R. and Su, J.: Tools for Design of Composite Web Services. In Gerhard
Weikum, Arnd Christian König, and Stefan Deßloch (eds), SIGMOD 2004, ACM
Press (2004) 958–961

7. Ibarra, O.H., Ravikumar, B., and Gerede, C.E.: Quality-Aware Service Delegation
in Automated Web Service Composition. To appear in Journal of Automata,
Languages and Combinatorics (2006)

8. Mecella, M. and Giacomo, G.D.: Service Composition: Technologies, Methods
and Tools for Synthesis and Orchestration of Composite Services and Processes
(tutorial). In Traverso and Weerawarana [11].

Deterministic Simulation of a NFA with k–Symbol Lookahead 497

9. Ravikumar, B. and Santean, N.: Deterministic Simulation of a NFA with k-Symbol
Lookahead. Technical Report CS-2006-28, University of Waterloo (August 2006)
Also available as
http://www.cs.uwaterloo.ca/research/tr/2006/CS-2006-28.pdf

10. Rozenberg, G. and Salomaa A.: Handbook of Formal Languages. Springer-Verlag,
Berlin Heidelberg New York (1997)

11. Traverso, P. and Weerawarana, S. (eds): Service Oriented Computing. 2nd Inter-
national Conference, Proceedings, ICSOC 2004, ACM Press, New York City, NY,
USA, (November 15-18, 2004)

12. Yu, S.: Regular Languages. In [10], 1 (1997) 41–110

http://www.cs.uwaterloo.ca/research/tr/2006/CS-2006-28.pdf

	Introduction
	The Delegation Problem
	Complexity of Determining if a k--Delegator Exists
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

