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1. Introduction

Let L ⊆ �∗ be a fixed language, and letM be a deterministic finite automaton (DFA) or non-deterministic finite automaton

(NFA) with input alphabet �. In this paper, we are interested in three questions:

1. Can we efficiently decide (in terms of the size of M) if L(M) contains at least one element of L, that is, if L(M) ∩ L �= ∅?
2. Can we efficiently decide if L(M) contains infinitely many elements of L, that is, if L(M) ∩ L is infinite?

3. Given that L(M) contains at least one element of L, what is a good upper bound on a shortest element of L(M) ∩ L?

We can also ask the same questions about L, the complement of L.

As an example, consider the case where � = {a}, L is the set of primes written in unary, that is, {ai : i is prime }, andM

is a NFA with n states.

To answer questions (1) and (2), we first rewriteM in Chrobak normal form [5]. Chrobak normal form consists of an NFA

M′ with a “tail” of O(n2) states, followed by a single non-deterministic choice to a set of disjoint cycles containing at most n

states. Computing this normal form can be achieved in O(n5) steps by a result of Martinez [23].

Nowwe examine each of the cycles produced by this transformation. Each cycle accepts a finite union of sets of the form

(at)∗ac , where t is the size of the cycle and c � n2 + n; both t and c are given explicitly fromM′. Now, by Dirichlet’s theorem

on primes in arithmetic progressions, gcd(t, c) = 1 for at least one pair (t, c) induced byM′ if and only ifM accepts infinitely

many elements of L. This can be checked in O(n2) steps, and so we get a solution to question (2) in polynomial time.

Question (1) requires a little more work. From our answer to question (2), we may assume that gcd(t, c) > 1 for all pairs

(t, c), for otherwise M accepts infinitely many elements of L and hence at least one element. Each element in such a set
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is of length kt + c for some k � 0. Let d = gcd(t, c) � 2. Then kt + c = (kt/d + c/d)d. If k > 1, this quantity is at least 2d

and hence composite. Thus it suffices to check the primality of c and t + c, both of which are at most n2 + 2n. We can

precompute the primes <n2 + 2n in O(n2) time using a modification of the sieve of Eratosthenes [25], and check if any of

them are accepted. This gives a solution to question (1) in polynomial time.

On the other hand, answering question (3) essentially amounts to estimating the size of the least prime in an arithmetic

progression, an extremely difficult question that is still not fully resolved [13], although it is known that there is a polynomial

upper bound.

Even the case where L is regular can be difficult. Suppose L is represented as the complement of a language accepted by

an NFA M′ with n states. Then if L(M) = �∗, question (1) amounts to asking if L(M′) �= �∗, which is PSPACE-complete [2,

Section 10.6]. Question (2) amounts to asking if L(M′) is infinite, which is also PSPACE-complete [18]. Question (3) amounts

to asking for good bounds on the smallest string not accepted by an NFA. There is an evident upper bound of 2n, and there

are examples known that achieve 2cn for some constant c > 0, but more detailed analysis is still lacking [9].

Thus we see that asking these questions, even for relatively simple languages L, can quickly take us to the limits of what

is known in formal language theory and number theory.

In this paper, we examine questions (1)–(3) in the case whereM is an NFA and L is either the set of palindromes, the set of

k-powers, the set of powers, the set of words matching a general pattern, the set of bordered words, or their complements.

In some of these cases, there is previouswork. For example, Ito et al. [17] studied several circumstances inwhich primitive

words (non-powers) may appear in regular languages. As a typical result in [17], we mention: “A DFA over an alphabet of

two or more letters accepts a primitive word iff it accepts one of length � 3n − 3, where n is the number of states of the

DFA”. Horváth et al. [15] addressed the decidability problem of whether a language accepted by an NFA is palindromic (i.e.,

every element is a palindrome). They showed that the language accepted by an NFA with n states is palindromic if and only

if all its words of length shorter than 3n are palindromes.

Here is a summary of the rest of the paper. In Section 2, we define the objects of study and our notation.

In Section 3, we begin our study of palindromes. We give efficient algorithms to test if an NFA accepts at least one

palindrome, or infinitelymany.We also show that a shortest palindrome accepted is of length at most quadratic, and further,

that quadratic examples exist. In Section 4, we give efficient algorithms to test if an NFA accepts at least one non-palindrome,

or infinitely many. Further, we give a tight bound on the length of a shortest non-palindrome accepted.

In Section 5, we begin our study of patterns. We show that it is PSPACE-complete to test if a given NFA accepts a word

matching a given pattern. As a special case of this problem we consider testing if an NFA accepts a k-power. We give a

algorithm to test if a k-power is accepted that is polynomial in k. If k is not fixed, the problem is PSPACE-complete. We also

study the problem of accepting a power of exponent � k, and of accepting infinitely many k-powers.

In Section 6, we give a polynomial-time algorithm to decide if a non-k-power is accepted. We also give upper and lower

bounds on the length of a shortest k-power accepted. In Section 7, we give an efficient algorithm for determining if an NFA

accepts at least one non-power. In Section 8, we bound the length of the smallest power. Section 9 gives some additional

results on powers.

In Section 10,we showhow to test if anNFA accepts a borderedword, or infinitelymany, and show that a shortest bordered

word accepted can be of quadratic length. In Section 11 we give an algorithm to test if an NFA accepts an unbordered word,

or infinitely many, and we establish a linear upper bound on the length of a shortest unbordered word.

2. Notions and notation

Let� be an alphabet, i.e., a non-empty, finite set of symbols (letters). By�∗ we denote the set of all finitewords (strings of

symbols) over �, and by ε, the empty word (the word having zero symbols). The operation of concatenation (juxtaposition)

of two words u and v is denoted by u · v, or simply uv. If w ∈ �∗ is written in the form w = xy for some x, y ∈ �∗, then the

word yx is said to be a conjugate of w.

For w ∈ �∗, we denote by wR the word obtained by reversing the order of symbols in w. A palindrome is a word w such

that w = wR. If L is a language over �, i.e., L ⊆ �∗, we say that L is palindromic if every word w ∈ L is a palindrome.

Let k � 2 be an integer. A word y is a k-power if y can be written as y = xk for some non-empty word x. If y cannot be so

written for any k � 2, then y is primitive. A 2-power is typically referred to as a square, and a 3-power as a cube.

Patterns are a generalization of powers. A pattern is a non-empty word p over a pattern alphabet �. The letters of � are

called variables. A pattern pmatches awordw ∈ �∗ if there exists a non-erasingmorphism h : �∗ → �∗ such that h(p) = w.

Thus, a word w is a k-power if it matches the pattern ak .

Bordered words are generalizations of powers. We say a word x is bordered if there exist words u ∈ �+, w ∈ �∗ such

that x = uwu. In this case, the word u is said to be a border for x. Otherwise, x is unbordered.

A non-deterministic finite automaton (NFA) over � is a 5-tuple M = (Q ,�, δ, q0, F) where Q is a finite set of states, δ :
Q × � → 2Q is a next-state function, q0 is an initial state and F ⊆ Q is a set of final states. We sometimes view δ as a

transition table, i.e., as a set consisting of tuples (p, a, q) with p, q ∈ Q and a ∈ �. The machine M is deterministic (DFA) if

δ is a function mapping Q × � → Q . We consider only complete DFAs, that is, those whose transition function is a total

function. Sometimes we use NFA-ε, which are NFAs that also allow transitions on the empty word.



Author's personal copy

1098 T. Anderson et al. / Information and Computation 207 (2009) 1096–1118

The size of M is the total number N of its states and transitions. When we want to emphasize the components of M, we

say M has n states and t transitions, and define N := n + t. The language of M, denoted by L(M), belongs to the family of

regular languages and consists of those words accepted by M in the usual sense. A successful path, or successful computation

of M is any computation starting in the initial state and ending in a final state. The label of a computation is the input word

that triggered it; thus, the language of M is the set of labels of all successful computations of M.

A state ofM is accessible if there exists a path in the associated transition graph, starting from q0 and ending in that state.

By convention, there exists a path from each state to itself labeled with ε. A state q is coaccessible if there exists a path from

q to some final state. A state which is both accessible and coaccessible is called useful, and if it is not coaccessible it is called

dead.

We note that if M is an NFA or NFA-ε, we can remove all states that are not useful in linear time (in the number of states

and transitions) using depth-first search.We observe that L(M) �= ∅ if and only if any states remain after this process, which

can be tested in linear time. Similarly, if M is a NFA, then L(M) is infinite if and only if the corresponding digraph has a

directed cycle. This can also be tested in linear time.

If M is an NFA-ε, then to check if L(M) is infinite we need to know not only that the corresponding digraph has a cycle,

but that it has a cycle labeled by a non-empty word. This can also be checked in linear time as follows. Let us suppose that

all non-useful states ofM have been removed. We wish to test whether there is some edge of the digraph ofM that is part of

some cycle and is not labeled by the emptyword.We now observe that an edge of a digraph belongs to a directed cycle if and

only if both of its endpoints lie within the same strongly connected component. It is well known that the strongly connected

components of a graph can be computed in linear time (see [6, Section 22.5]). Once the strongly connected components of

the NFA-ε are known, we simply check the edges not labeled by ε to determine if there is such an edge with both endpoints

in the same strongly connected component. Thus we can determine if L(M) is infinite in linear time.

Although the results of this paper are generally stated as applying to NFA’s, by virtue of the preceding algorithm, one sees

that the results apply equally well to NFA-ε’s.
We will also need the following well-known results [14]:

Theorem 1. Let M be an NFA with n states. Then

(a) L(M) �= ∅ if and only if M accepts a word of length < n.

(b) L(M) is infinite if and only if M accepts a word of length �, n� � < 2n.

If L ⊆ �∗ is a language, the Myhill–Nerode equivalence relation ≡L is the equivalence relation defined as follows: for

x, y ∈ �∗, x ≡L y if for all z ∈ �∗, xz ∈ L if and only if yz ∈ L. The classical Myhill–Nerode theorem asserts that if L is regular,

the equivalence relation ≡L has only finitely many equivalence classes.

For a background on finite automata and regular languages we refer the reader to Yu [33].

3. Testing if an NFA accepts at least one palindrome

Over a unary alphabet, every string is a palindrome, so problems (1)–(3) become trivial. Let us assume, then, that the

alphabet � contains at least two letters. Although the palindromes over such an alphabet are not regular, the language{
x ∈ �∗ : xxR ∈ L(M) or there exists a ∈ � such that xaxR ∈ L(M)

}
is, in fact, regular, as is often shown in a beginning course in formal languages [14, p. 72, Exercise 3.4 (h)]. We can take

advantage of this as follows:

Lemma 2. LetM be an NFAwith n states and t transitions. Then there exists an NFA-ε M′ with n2 + 1 states and� 2t2 transitions

such that

L(M′) =
{
x ∈ �∗ : xxR ∈ L(M) or there exists a ∈ � such that xaxR ∈ L(M)

}
.

Proof. Let M = (Q ,�, δ, q0, F) be an NFA with n states. We construct an NFA-ε M′ = (Q ′,�, δ′, q′
0, F

′) as follows: we let

Q ′ = Q × Q ∪ {q′
0}, where q′

0 is the new initial state, and we define the set of final states by

F ′ = {[p, p] : p ∈ Q} ∪ {[p, q] : there exists a ∈ � such that q ∈ δ(p, a)}.
The transition function δ′ is defined as follows:

δ′(q′
0, ε) = {[q0, q] : q ∈ F}

and

δ′([p, q], a) = {[r, s] : r ∈ δ(p, a) and q ∈ δ(s, a)}.
It is clear thatM′ accepts the desired language and consists of at most n2 + 1 states and 2t2 transitions. �
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Corollary 3. Given an NFA M with n states and t transitions, we can determine if M accepts a palindrome in O(n2 + t2) time.

Proof. We create M′ as in the proof of Lemma 2, and remove all states that are not useful, and their associated transitions.

NowM accepts at least onepalindrome if andonly if L(M′) �= ∅,which canbe tested in time linear in thenumberof transitions

and states ofM′. �

From Lemma 2, we obtain two other interesting corollaries.

Corollary 4. Given an NFA M, we can determine if L(M) contains infinitely many palindromes in quadratic time.

Proof. We create M′ as in the proof of Lemma 2, and remove all states that are not useful, and their associated transitions.

M accepts infinitely many palindromes if and only if L(M′) is infinite, which can be tested in linear time, as described in

Section 2. �

Corollary 5. If an NFA M accepts at least one palindrome, it accepts a palindrome of length � 2n2 − 1.

Proof. Suppose M accepts at least one palindrome. Then M′, as defined in Lemma 2, accepts at least one word. Although

M′ has n2 + 1 states, the only transition from the initial state q′
0 is an ε-transition to one of the other n2 states. Thus if M′

accepts a word, it must accept a word of length � n2 − 1. ThenM accepts eitherwwR orwawR, and both are palindromes, so

M accepts a palindrome of length at most 2(n2 − 1) + 1 = 2n2 − 1. �
For a different proof of this corollary, see Rosaz [28].

We observe that the quadratic bound is tight, up to a multiplicative constant, in the case of alphabets with at least two

letters, and even for DFAs.

Proposition 6. For infinitely many n there exists a DFA M with n states over a 2-letter alphabet such that

(a) M has n states.

(b) The shortest palindrome accepted by Mn is of length � n2/2 − 3n + 5.

Proof. For t � 2, consider the language Lt = (at)+b(at−1)+. This language evidently can be accepted by a DFA with n =
2t + 2 states. For a word w ∈ Lt to be a palindrome, we must have w = ac1tbac2(t−1), for some integers c1, c2 � 1, with

c1t = c2(t − 1). Since t and t − 1 are relatively prime, we must have t − 1|c1 and t|c2. Thus the shortest palindrome in Ln
is at(t−1)bat(t−1), which is of length 2t2 − 2t + 1 = n2/2 − 3n + 5. �

4. Testing if an NFA accepts at least one non-palindrome

In this section, we consider the problem of deciding if an NFA accepts at least one non-palindrome. Evidently, if an NFA

fails to accept a non-palindrome, it must accept nothing but palindromes, and so we discuss the opposite decision problem,

Given an NFAM, is L(M) palindromic?

Again, the problem is trivial for a unary alphabet, so we assume |�| � 2.

Horváth et al. [15] proved that the question is recursively solvable. In particular, they proved the following theorem.

Theorem 7. L(M) is palindromic if and only if {x ∈ L(M) : |x| < 3n} is palindromic, where n is the number of states of M.

While a naive implementation of Theorem 7 would take exponential time, in this section we show how to test palin-

dromicity in polynomial time. We also show the bound of 3n in Theorem 7 is tight for NFAs, and we improve the bound for

DFAs.

First, we show how to construct a “small” NFA M′
s, for some integer s > 1, that has the following properties:

(a) no word in L(M′
s) is a palindrome;

(b) M′
s accepts all non-palindromes of length < s (in addition to some other non-palindromes).

The idea in this construction is the following: on input w of length r < s, we “guess” an index i, 1� i � r/2, such that

w[i] �= w[r + 1 − i]. We then “verify” that there is indeed a mismatch i characters from each end. We can re-use states, as

illustrated in Fig. 1 for the case � = {a, b, c} and s = 10.

The resulting NFA M′
s has O(|�|s) states and O(|�|2s) transitions. A similar construction appears in [31].

Given an NFA M with n states, we now construct the cross-product with M′
3n, and obtain an NFA A that accepts L(M) ∩

L(M′
3n). We claim that L(A) = ∅ if and only if L(M) is palindromic. For if L(A) = ∅, then M accepts no non-palindrome of
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Fig. 1. Accepting non-palindromes over {a, b, c} for s = 10.

length < 3n, and so by Theorem 7, L(M) is palindromic. If L(A) �= ∅, then since L(M′
3n) contains only non-palindromes, we

see that L(M) is not palindromic.

We can determine if L(A) = ∅ efficiently by adding a new final state qf and ε-transitions from all the final states of A to

qf , then performing a depth-first search to detect whether there are any paths from q0 to qf . This can be done in time linear

in the number of states and transitions of A. IfM has n states and t transitions, then A has O(n2) states and O(tn) transitions.
Hence we have proved the following theorem.

Theorem 8. Let M be an NFA with n states and t transitions. The algorithm sketched above determines whether M accepts a

palindromic language in O(n2 + tn) time.

A different method runs slightly slower, but allows us to do a little more. We canmimic the construction for palindromes

in Section 3, but adapt it for non-palindromes. Given an NFA M, we construct an NFA-ε M′ that accepts the language

{x ∈ �∗ : there exists x′ ∈ �∗, a ∈ � such that |x| = |x′|, x �= x′R, and xx′ ∈ L(M) or xax′ ∈ L(M)
}
.

The construction is similar to that in Lemma 2. On input x, we simulateM on xx′ and xax′ symbol-by-symbol, moving forward

from the start state and backward from a final state. We need an additional boolean “flag” for each state to record whether

or not we have processed a character in x′ that would mismatch the corresponding character in x. If M has n states and t

transitions, this construction produces an NFA-ε M′ with� 1 + 2n2 states andO(t2) transitions. From this we get, in analogy

with Corollary 4, the following proposition.

Proposition 9. Given an NFAM with n states and t transitions,we can determine in O(n2 + t2) time if M accepts infinitely many

non-palindromes.

We now turn to the question of the optimality of the 3n bound given in Theorem 7. For an NFA over an alphabet of at least

2 symbols, the bound is indeed optimal, as the following example shows.

Proposition 10. Let� be an alphabet of at least two symbols, containing the letters a and b. For n� 1 define Ln = (an−1�)∗an−1.
Then Ln can be accepted by an NFA with n states and a shortest non-palindrome in Ln is an−1aan−1ban−1.

Proof. The details are straightforward. �

For DFAs, however, the bound of 3n can be improved to 3n − 3. To show this, we first prove the following lemma. A

language L is called slender if there is a constant C such that, for all n� 0, the number of words of length n in L is less than C.

The following characterization of slender regular languages has been independently rediscovered several times [20,30,26].

Theorem 11. Let L ⊆ �∗ be a regular language. Then L is slender if and only if it can be written as a finite union of languages of

the form uv∗w, where u, v,w ∈ �∗.

Next we prove the following useful lemma concerning DFAs accepting slender languages.

Lemma 12. Let L be a slender language accepted by a DFA M with n states, over an alphabet of two or more symbols. Then M

must have a dead state.
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Proof. Without loss of generality, assume that every state ofM = (Q ,�, δ, q0, F) is reachable from q0, and that � contains

the symbols a and b. We distinguish two cases:

1. M accepts a finite language. Consider the states reached from q0 on a, a2, a3, . . . . Eventually some state q must be

repeated. This state qmust be a dead state, for if not, M would accept an infinite language.

2. M accepts an infinite language. ThenM has at least one fruitful cycle, that is, a cycle that produces infinitely many words

in L(M) as labels of paths starting at q0, entering the cycle, going around the cycle some number of times, then exiting

and eventually reaching a final state. Let C1 be one fruitful cycle, and consider the following successful path involving C1:

q0
α−→q

u−→q
β−→f , where f ∈ F and the repetition of q denotes the cycle C1, labeled with u. Without loss of generality

assume the first letter of u is a. Since M is complete, denote p = δ(q, b).
We claim that from p one cannot reach a fruitful cycle C2. Indeed, let us assume the contrary; this means that there exists

a successful path q0
α−→q

u−→q
γ−→r

v−→r
μ−→ f ′, with f ′ ∈ F and the repetition of r denotes the cycle C2 labeled with

v. Let n be an arbitrary integer, and 0� i � n. There exist two integers k, l such that k|u| = l|v| = m. With this notation,

observe that the words αuk(n−i)γ vl(n+i)μ are all accepted byM and have the same length 2mn + |αγμ|. Since there are

n + 1 such words, this proves that L(M) has Ω(n) words of length n for large n—a contradiction.

Thus, there exist a finite number of successful paths starting from p. However, considering the states reached from p by

the words a, a2, a3, . . . , one such state must repeat. This state is dead, for the alternative would contradict the finiteness

of successful paths from p. �

Corollary 13. If M is a DFA over an alphabet of at least two letters and L(M) is palindromic, then M has a dead state.

Proof. If L(M) is palindromic, then by [15, Theorem 8] it can be written as a finite union of languages of the form uv(tv)∗uR,
where u, v, t ∈ �∗ and v, t are palindromes. By Theorem 11, this means L(M) is slender. By Lemma 12, M has a dead

state. �

We are now ready to prove the improved bound of 3n − 3 for DFAs.

Theorem 14. Let M be a DFA with n states. Then L(M) is palindromic if and only if {x ∈ L(M) : |x| < 3n − 3} is palindromic.

Proof. One direction is clear.

If M = (Q ,�, δ, q0, F) is over a unary alphabet, then L(M) is always palindromic, so the criterion is trivially true.

Otherwise M is over an alphabet of at least two letters. Assume {x ∈ L(M) : |x| < 3n − 3} is palindromic. From Corol-

lary 13, we see thatM must have a dead state. But then we can delete such a dead state and all associated transitions, and all

states reachable from the deleted dead state, to get a new NFAM′ with at most n − 1 states that accepts the same language.

We know from Theorem 7 that the palindromicity of {x ∈ L(M′) : |x| < 3n − 3} implies that M′ is palindromic. �

Finally, we observe that 3n − 3 is the best possible bound in the case of DFAs. To do so, we simply use the language Ln
from Proposition 10 and observe it can be accepted by a DFA with n + 1 states; yet the shortest non-palindrome is of size

3n − 1.

We end this section by noting that the related, but fundamentally different, problem of testing if L = LR was shown by

Hunt [16] to be PSPACE-complete.

5. Testing if an NFA accepts a word matching a pattern

In this section, we consider the computational complexity of testing if an NFA accepts a word matching a given pattern.

Specifically, we consider the following decision problem.

NFA PATTERN ACCEPTANCE

INSTANCE: An NFAM over the alphabet � and a pattern p over some alphabet �.

QUESTION: Does there exist x ∈ �+ such that x ∈ L(M) and x matches p?

Since the pattern p is given as part of the input, this problem is actually somewhat more general than the sort of problem

formulated as question 1 of the introduction, where the language L was fixed.

We first consider the following result of Restivo and Salemi [27] (a more detailed proof appears in [4]). We give here a

boolean matrix based proof (see Zhang [34] for a study of this boolean matrix approach to automata theory) that illustrates

our general approach to the other problems treated in this section.

Theorem 15 (Restivo and Salemi). Let L be a regular language and let � be an alphabet. The set P� of all non-empty patterns

p ∈ �∗ such that p matches a word in L is effectively regular.
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Proof. LetM = (Q ,�, δ, q0, F) be an NFA such that L(M) = L. Suppose that Q = {0, 1, . . . , n − 1}. For a ∈ �, let Ba be the

n × n boolean matrix whose (i, j) entry is 1 if j ∈ δ(i, a) and 0 otherwise. Let B denote the semigroup generated by the

Ba’s along with the identity matrix. For w = w0w1 · · ·ws, where wi ∈ � for i = 0, . . . , s, we write Bw to denote the matrix

product Bw0
Bw1

· · · Bws
.

Without loss of generality, let � = {1, 2, . . . , k}. Observe that there exists a non-empty pattern p = p0p1 · · · pr , where

pi ∈ � for i = 0, . . . , r, and a non-erasing morphism h : �∗ → �∗ such that h(p) ∈ L if and only if there exist k boolean

matrices B1, . . . , Bk ∈ B such that Bi = Bh(i) for i ∈ � and B = Bp0Bp1 · · · Bpr describes an accepting computation of M.

We construct an NFAM′ = (Q ′,�, δ′, P, F ′) for P� as follows. For simplicity, we permitM′ to have multiple initial states,

as specified by the set P. We define Q ′ = Bk+1. The set P of initial states is given by P = Bk × I, where I denotes the

identity matrix. In other words, the NFA M′ uses the first k components of its state to record an initial guess of k boolean

matrices B1, . . . , Bk ∈ B. Let [B1, . . . , Bk , A] denote some arbitrary state of M′. For i = 1, . . . , k, the transition function δ′
maps [B1, . . . , Bk , A] to [B1, . . . , Bk , ABi]. In other words, on input p = p0p1 · · · pr ∈ �∗, M′ uses the last component of its

state to compute the product B = Bp0Bp1 · · · Bpr . The set F ′ of final states ofM′ consists of all states of the form [B1, . . . , Bk , B],
where the matrix B contains a 1 in some entry (0, j), where j ∈ F . In other words, M′ accepts if and only if B describes an

accepting computation ofM. �

By consider unary patterns of the form ak , we obtain the following corollary of Theorem 15.

Corollary 16. Let L ⊆ �∗ be a regular language. The set of exponents k such that L contains a k-power is the union of a finite set

with a finite union of arithmetic progressions. Further, this set of exponents is effectively computable.

Observe that Theorem 15 implies the decidability of the NFA PATTERN ACCEPTANCE problem. We prove the following

stronger result.

Theorem 17. The NFA PATTERN ACCEPTANCE problem is PSPACE-complete.

Proof. We first show that the problem is in PSPACE. By Savitch’s theorem [29] it suffices to give an NPSPACE algorithm.

Let M = (Q ,�, δ, q0, F), where Q = {0, 1, . . . , n − 1}. For a ∈ �, let Ba be the n × n boolean matrix whose (i, j) entry

is 1 if j ∈ δ(i, a) and 0 otherwise. Let B denote the semigroup generated by the Ba’s along with the identity matrix. For

w = w0w1 · · ·ws ∈ �∗, we write Bw to denote the matrix product Bw0
Bw1

· · · Bws
.

Let � be the set of letters occuring in p. We may suppose that � = {1, 2, . . . , k}. First, we non-deterministically guess

k boolean matrices B1, . . . , Bk . Next, for each i, we verify that Bi is in the semigroup B by non-deterministically guessing a

wordw = w0w1 · · ·ws such that Bi = Bw . Since there are at most 2n
2

possible n × n booleanmatrices, wemay assume that

s� 2n
2

. We thus guess w symbol-by-symbol and compute a sequence of matrices

Bw1
, Bw1w2

, . . ., Bw1w2···ws
,

reusing space after perfoming each matrix multiplication. We maintain an O(n2) bit counter to keep track of the length s of

our guessed word w. If s exceeds 2n
2

, we reject on this branch of the non-deterministic computation.

Finally, if p = p0p1 · · · pr , we compute the matrix product B = Bp0Bp1 · · · Bpr and accept if and only if B describes an

accepting computation ofM.

To show hardness we reduce from the following PSPACE-complete problem [10, Problem AL6].

DFA INTERSECTION

INSTANCE: An integer k � 1 and k DFAs A1, A2, . . . , Ak , each over the alphabet �.

QUESTION: Does there exist x ∈ �∗ such that x is accepted by each Ai, 1� i � k?

Let # be a symbol not in �. We construct, in linear time, a DFAM to accept the language

L(A1)# L(A2)# · · · L(Ak)#.

Any word in L(M) matching the pattern ak is of the form (x#)k . It follows that M accepts a word matching ak if and only if

there exists x such that x ∈ L(Ai) for 1� i � k. This completes the reduction. �

We may define various variations or special cases of the NFA PATTERN ACCEPTANCE problem, such as: NFA ACCEPTS

A k-POWER, NFA ACCEPTS A � k-POWER, NFA ACCEPTS INFINITELY MANY k-POWERS, NFA ACCEPTS INFINITELY MANY
� k-POWERS, etc. We define and consider the computational complexity of these variations below.

NFA ACCEPTS A k-POWER.

INSTANCE: An NFAM over the alphabet � and an integer k � 2.

QUESTION: Does there exist x ∈ �+ such thatM accepts xk?
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NFA ACCEPTS A � k-POWER.

INSTANCE: An NFAM over the alphabet �.

QUESTION: Does there exist x ∈ �+ and an integer � � k such thatM accepts x�?

The NFA ACCEPTS A � k-POWER problem is actually an infinite family of problems, each indexed by an integer k � 2. If k

is fixed, the NFA ACCEPTS A k-POWER problem can be solved in polynomial time, as we now demonstrate.

Proposition 18. Let M be an NFA with n states and t transitions, and set N = n + t, the size of M. For any fixed integer k � 2,

there is an algorithm running in O(n2k−1tk) = O(N2k−1) time to determine if M accepts a k-power.

Proof. For a language L ⊆ �∗, we define

L1/k =
{
x ∈ �∗ : xk ∈ L

}
.

LetM = (Q ,�, δ, q0, F) be an NFAwith n states. Wewill construct an NFA-ε M′ such that L(M′) = L(M)1/k . To determine

whether or notM accepts a k-power, it suffices to check whether or not M′ accepts a non-empty word.

The idea behind the construction of M′ is as follows. On input x, M′ first guesses k − 1 states g1, g2, . . . , gk−1 ∈ Q and

then checks that

• g1 ∈ δ(q0, x),• gi+1 ∈ δ(gi, x) for i = 1, 2, . . . , k − 2, and

• δ(gk−1, x) ∩ F /= ∅.
It is clear that such states g1, g2, . . . , gk−1 exist if and only if xk ∈ L(M).

Formally, the construction ofM′ is as follows. We define the NFA M′ = (Q ′,�, δ′, q′
0, F

′) such that:

• Q ′ ={q′
0} ∪ Q2k−1. That is, except forq′

0, eachstateofM
′ is a (2k − 1)-tupleof the form [g1, g2, . . . , gk−1, p0, p1, . . . , pk−1].

The state gi represents the i-th state guessed from M. The NFA M′ will simulate in parallel the computations of M on

input x starting from states q0, g1, g2, . . . , gk−1, respectively. The state p0 represents the current state of the simulation

beginning from state q0, and the states p1, p2, . . . , pk−1 represent the current states of the simulations beginning from

states g1, g2, . . . , gk−1, respectively.

• q′
0 is an additional state not inQ2k−1. This statewill have outgoing ε-transitions for each different combination of guesses

gi. The transition function on the start state is defined as

δ′(q′
0, ε) = {[g1, g2, . . ., gk−1, q0, g1, g2, . . ., gk−1] : ∀ i ∈ {1, 2, . . ., k − 1}, gi ∈ Q}.

• We define the transition function δ′ on all other states as:

δ′([g1, g2, . . ., gk−1, p0, p1, . . ., pk−1], a) =
{
[g1, g2, . . ., gk−1, p

′
0, p

′
1, . . ., p

′
k−1] : ∀ i ∈ {0, 1, . . ., k − 1}, p′

i ∈ δ(pi , a)
}

for all a ∈ �.

• F ′ = {[g1, g2, . . . , gk−1, g1, g2, . . . , gk−1, t] : t ∈ F}. That is, we reach a state in F ′ on input x exactly when the guessed

states gi verify the conditions described above.

It should be clear from the construction that M′ accepts L(M)1/k . The number of states in M′ is n2k−1 + 1, as, except for

q′
0, each state is a (2k − 1)-tuple in which each coordinate can take on |Q | = n possible values. For each state there are at

most tk distinct transitions. Testing whether or not L(M′) accepts a non-empty word can be done in linear time (since the

only ε-transitions are transitions outgoing from q′
0), so the running time of our algorithm is O(n2k−1tk). �

As before, we can use the same automaton to test if infinitely many k-powers are accepted.

Corollary 19. We can decide if an NFA M with n states and t transitions accepts infinitely many k-powers in O(n2k−1tk) time.

If k is not fixed, we have the following result, which is an immediate consequence of Theorem 17 if k is given in unary.

However, the problem remains in PSPACE even if k is given in binary, as we now demonstrate.

Theorem 20. The problem NFA ACCEPTS A k-POWER is PSPACE-complete.

Proof. We first show that the problem is in PSPACE. By Savitch’s theorem [29] it suffices to give an NPSPACE algorithm. Let

M = (Q ,�, δ, q0, F), where Q = {0, 1, . . . , n − 1}. For a ∈ �, let Ba be the n × n boolean matrix whose (i, j) entry is 1 if

j ∈ δ(i, a) and 0 otherwise. Let B denote the semigroup generated by the Ba’s.



Author's personal copy

1104 T. Anderson et al. / Information and Computation 207 (2009) 1096–1118

We non-deterministically guess a boolean matrix B and verify that B ∈ B (i.e., B = Bx for some x ∈ �∗), as illustrated in

the proof of Theorem 17. Finally, we compute Bkx efficiently by repeated squaring and verify that Bkx contains a 1 in position

(q0, f ) for some f ∈ F .

The proof for PSPACE-hardness is precisely that given in the proof of Theorem 17. �

Theorem 21. For each integer k � 2, the problem NFA ACCEPTS A � k-POWER is PSPACE-complete.

Proof. To show that the problem is in PSPACE, we use the same algorithm as in the proof of Theorem 20, with the following

modification. In order to verify that M accepts an �-power for some � � k, we first observe that by the same argument as in

the proof of Proposition 45 below, if M accepts such an �-power, then M accepts an �-power for k � � < k + n. Thus, after

non-deterministically computing Bx , we must compute B�
x for all k � � < k + n, and verify that at least one B�

x contains a 1

in position (q0, f ) for some f ∈ F .

To show PSPACE-hardness, we again reduce from the DFA INTERSECTION problem. Suppose that we are given r DFAs

A1, A2, . . . , Ar and we wish to determine if the Ai’s accept a common word x. We may suppose that r � k, since for any fixed

k such a restriction does not affect the PSPACE-completeness of the DFA INTERSECTION problem. Let j be the smallest non-

negative integer such that r + j is prime. By Bertrand’s Postulate [12, Theorem 418], we may take j � r. We now construct, in

linear time, a DFAM to accept the language L(A1)# L(A2)# · · · L(Ar)#(�∗ #)j . The DFAM accepts a � k-power if and only if

it accepts an (r + j)-power. Moreover,M accepts an (r + j)-power if and only if there exists x such that x ∈ L(Ai) for 1� i � r.

This completes the reduction. �

In a similar fashion, we now show that the following decision problems are PSPACE-complete:

NFA ACCEPTS INFINITELY MANY k-POWERS.

INSTANCE: An NFAM over the alphabet � and an integer k � 2.

QUESTION: DoesM accept xk for infinitely many words x?

NFA ACCEPTS INFINITELY MANY � k-POWERS.

INSTANCE: An NFAM over the alphabet �.

QUESTION: Are there infinitely many pairs (x, i) such that i � k andM accepts xi?

Again, the NFA ACCEPTS INFINITELY MANY � k-POWERS problem is actually an infinite family of problems, each

indexed by an integer k � 2.Wewill prove that these decision problems are PSPACE-complete by reducing from the following

problem.

INFINITE CARDINALITY DFA INTERSECTION.

INSTANCE: An integer k � 1 and k DFAs A1, A2, . . . , Ak , each over the alphabet �.

QUESTION: Do there exist infinitely many x ∈ �∗ such that x is accepted by each Ai, 1� i � k?

Lemma 22. The decision problem INFINITE CARDINALITY DFA INTERSECTION is PSPACE-complete.

Proof. First, let us see that the problem is in PSPACE. If the largest DFA has n states, then there is a DFA with at most nk

states that accepts
⋂

1� i � k L(Ai). Now from Theorem 1(b), we know that there exist infinitely many x accepted by each Ai if

and only if there is a word x of length �, nk � � < 2nk , accepted by all the Ai. We can simply guess the symbols of x, ensuring

with a counter that nk � |x| < 2nk , and checking by simulation that x is accepted by all the Ai. The counter uses at most

k log n + log 2 bits, which is polynomial in the size of the input. This shows the problem is in non-deterministic polynomial

space, and hence, by Savitch’s theorem [29], in PSPACE.

Now,to see that INFINITE CARDINALITY DFA INTERSECTION is PSPACE-hard, we reduce from DFA INTERSECTION. For

each DFA Ai = (Qi,�, δi, q0,i, Fi), we modify it to Bi as follows: we add a new initial state q′
0,i, and add the same transitions

from it as from q0,i. We then change all final states to non-final, and we make q′
0,i final. We add a transition from all states

that were previously final on a new letter (the same letter is used for each Ai), and a transition from all other states on

to a new dead state d. Finally, we add transitions on all letters from d to itself. We claim Bi is a DFA and L(Bi) = (L(Ai) )∗.
Furthermore,

⋂
1� i � k L(Ai) �= ∅ if and only if

⋂
1� i � k L(Bi) is infinite.

Suppose
⋂

1� i � k L(Ai) �= ∅. Then there exists x accepted by each of the Ai. Then (x )∗ is accepted by each of the Bi, so⋂
1� i � k L(Bi) is infinite.

Now suppose
⋂

1� i � k L(Bi) is infinite. Choose any non-empty x ∈ ⋂
1� i � k L(Bi) = ⋂

1� i � k(L(Ai) )∗. Thus xmust be of

the form y1 y2 · · · yj for some j � 1, where each yi is accepted by all the Ai. Hence, in particular, y1 is accepted by all the

Ai, and so
⋂

1� i � k L(Ai) �= ∅. �
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We are now ready to prove

Theorem 23. The decision problem NFA ACCEPTS INFINITELY MANY k-POWERS is PSPACE-complete.

Proof. First, let us see that the problem is in PSPACE.We claim that an NFAM with n states accepts infinitelymany k-powers

if and only if it accepts a k-power xk with 2n
2 � |x| < 2n

2+1.

One direction is clear. For the other direction, we use booleanmatrices, as in the proof of Theorem 20.We can construct a

DFAM′ = (Q ′,�, δ′, q′
0, F

′) of 2n2 states that accepts L1/k = {x ∈ �∗ : xk ∈ L(M)}, as follows: the states are n × n boolean

matrices. The initial state q′
0 is the identity matrix. If Ba is the boolean matrix with a 1 in entry (i, j) if j ∈ δ(qi, a) and 0

otherwise, then δ′(B, a) = BBa. The set of final states is F ′ = {B : the (0, j) entry of Bk is 1 for some qj ∈ F}.
The idea of this construction is that if x = a1a2 · · · ai, then δ(q′

0, x) = Ba1 · · · Bai . Now we use Theorem 1(b) to conclude

thatM′ accepts infinitely many words if and only if it accepts a word x with 2n
2 � |x| < 2n

2+1. But L(M′) = L(M)1/k .

Thus, to check ifM accepts infinitelymany k-powers, we simply guess the symbols of x, stoppingwhen 2n
2 � |x| < 2n

2+1,

and verify that M accepts xk . We can do this by accumulating Ba1 · · · Bak and raising the result to the k-th power, as before.

We need n2 + 1 bits to keep track of the counter, so the result is in NPSPACE, and hence in PSPACE.

Now we argue that NFA ACCEPTS INFINITELY MANY k-POWERS is PSPACE-hard. To do so, we reduce from INFINITE

CARDINALITY DFA INTERSECTION. Given DFAs A1, A2, . . . , Ak , we can easily construct a DFA A to accept L(A1)# · · · L(Ak)#.
Clearly A accepts infinitely many k-powers if and only if

⋂
1� i � k L(Ai) is infinite. �

Theorem 24. For each integer k � 2, the problem NFA ACCEPTS INFINITELY MANY � k-POWERS is PSPACE-complete.

Proof. Left to the reader. �

We conclude by observing that all of the problems that we have shown in this section to be PSPACE-complete remain

PSPACE-complete even when the input automaton is a DFA rather than an NFA; this is evident from the proofs given above.

6. Testing if an NFA accepts a non-k-power

In the previous section, we showed that it is computationally hard to test if an NFA accepts a k-power (when k is not

fixed). In this section, we show how to test if an NFA accepts a non-k-power. Again, we find it more congenial to discuss the

opposite problem, which is whether an NFA accepts nothing but k-powers.

First, we need several classical results from the theory of combinatorics onwords. The following theorem is due to Lyndon

and Schützenberger [21].

Theorem 25. If x, y, and z are words satisfying an equation xiyj = zk , where i, j, k � 2, then they are all powers of a common

word.

The next result is also due to Lyndon and Schützenberger.

Theorem 26. Let u and v be non-empty words. If uv = vu, then there exists a word x and integers i, j � 1, such that u = xi and

v = xj. In other words, u and v are powers of a common word.

The following result can be derived from Theorem 26.

Corollary 27. Let u and v be non-empty words. If ur = vs for some r, s� 1, then u and v are powers of a common word.

Ito et al. [17] gave a proof of the next proposition.

Proposition 28. Let u and v be non-empty words. If u and v are not powers of a common word, then for any integers r, s� 1,

r /= s, at least one of urv or usv is primitive.

The next result is due to Shyr and Yu [32].

Theorem 29. Let p and q be primitive words, p /= q. The set p+q+ contains at most one non-primitive word.

Next we prove the following analogue of Theorem 7, fromwhichwewill derive an efficient algorithm for testing if a finite

automaton accepts only k-powers.
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Theorem 30. Let L be accepted by an n-state NFA M and let k � 2 be an integer.

1. Every word in L is a k-power if and only if every word in the set {x ∈ L : |x| � 3n} is a k-power.
2. All but finitely many words in L are k-powers if and only if every word in the set {x ∈ L : n� |x| � 3n} is a k-power.

Further, if M is a DFA over an alphabet of size � 2, then the bound 3n may be replaced by 3n − 3.

Ito et al. [17] proved a similar result for primitivewords: namely, that if L is accepted by an n-state DFA over an alphabet of

two ormore letters and contains a primitiveword, then it contains a primitiveword of length� 3n − 3. In otherwords, every

word in L is a power if and only if every word in the set {x ∈ L : |x| � 3n − 3} is a power. However, this result does not imply

Theorem 30, as one can easily construct a regular language L where every word in L that is not a k-power is nevertheless

non-primitive: for example, L = {ak+1}.
We shall use the next result to characterize those regular languages consisting only of k-powers.

Proposition 31. Let u, v, andw bewords, v /= ε, uw /= ε, and let f , g � 1 be integers, f /= g. If uvf w and uvgw are non-primitive,

then uvnw is non-primitive for all integers n� 1. Further, if uvw and uv2w are k-powers for some integer k � 2, then v and uvnw

are k-powers for all integers n� 1.

Proof. Suppose uvf w and uvgw are non-primitive. Then vf wu and vgwu are non-primitive. Let x and y be the primitive roots

of v andwu, respectively, so that v = xi andwu = yj for some integers i, j � 1. If x /= y, then by Proposition 28, one concludes

that at least one of vf wu or vgwu is primitive, a contradiction.

If x = y, then for all integers n� 1, vnwu = xni+j is clearly non-primitive, and consequently, uvnw is non-primitive, as

required. Let us now suppose that uvw and uv2w are k-powers for some k � 2. Then vwu = xi+j and v2wu = x2i+j are both

k-powers as well. We claim that the following must hold:

i + j ≡ 0 (mod k)

2i + j ≡ 0 (mod k).

To see this, write vwu = zk for some word z. Then zk = xi+j , so by Corollary 27 z and x are powers of a common word. Since

x is primitive it follows that z is a power of x. In particular, |x| divides |z| and i + j is a multiple of k, as claimed. A similar

argument applies to v2wu.

We conclude that i ≡ j ≡ 0 (mod k), and hence, v = xi is a k-power. Moreover, vnwu = xni+j is also a k-power for all

integers n� 1, and consequently, uvnw is a k-power, as required. �

The characterization due to Ito et al. [17, Proposition 10] (see also Dömösi et al. [7, Theorem 3]) of the regular languages

consisting only of powers, along with Theorem 11, implies that any such language is slender. A simple application of the

Myhill–Nerode theorem gives the following weaker result.

Proposition 32. Let L be a regular language and let k � 2 be an integer. If all but finitely many words of L are k-powers, then L is

slender. In particular, if L is accepted by an n-state DFA and all words in L of length � � are k-powers, then for all r � �, the number

of words in L of length r is at most n.

Proof. Let xk and yk be distinct words in L of length r � �. Then x and y are inequivalent with respect to the Myhill–Nerode

equivalence relation, since yk ∈ L but xyk−1 �∈ L. TheMyhill–Nerode equivalence relation on L thus has index at least as large

as the number of distinct words of length r in L. Since the index of the Myhill–Nerode relation is at most n, it follows that

there is a bounded number of words of length r in L, so that L is slender, as required. �

The following characterization is analogous to the characterization of palindromic regular languages given in [15, Theo-

rem 8].

Theorem 33. Let L ⊆ �∗ be a regular language and let k � 2 be an integer. The language L consists only of k-powers if and only if

it can be written as a finite union of languages of the form uv∗w,where u, v,w ∈ �∗ satisfy the following: there exists a primitive

word x ∈ �∗ and integers i, j � 0 such that v = xik and wu = xjk.

Proof. The “if” direction is clear; we prove the “only if” direction. Let L consist only of k-powers. Then by Proposition 32,

L is slender. By Theorem 11, L can be written as a finite union of languages of the form uv∗w. By examining the proof of

Proposition 31, one concludes that u, v, and w have the desired properties. �

We shall need the following lemma for the proof of Theorem 30.
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Lemma 34. Let L be a regular language accepted by an n-state NFA M and let k � 2 be an integer. If L contains a non-k-power of

length � n, then L contains infinitely many non-k-powers.

Proof. Let s ∈ L be a non-k-power such that |s| � n. Consider an accepting computation ofM on s. Such a computationmust

contain at least one repeated state. It follows that there exists a decomposition s = uvw, v /= ε, such that uv∗w ⊆ L. Let x be

the primitive root of v, so that v = xi for some positive integer i.

Suppose that wu = ε. Since s = v = xi is not a k-power, it follows that i �≡ 0 (mod k). Moreover, there exist infinitely

many positive integers � such that �i �≡ 0 (mod k), and so by Corollary 27, there exist infinitely many words of the form

v� = x�i that are non-k-powers in L, as required.

Suppose then that wu /= ε. Let y be the primitive root of wu, so that wu = yj for some positive integer j. We have two

cases.

Case 1: x = y. Since uvw is a not a k-power, vwu is also not a k-power, and thus we have i + j �≡ 0 (mod k). Moreover,

there are infinitely many positive integers � such that �i + j �≡ 0 (mod k). For all such �, the word v�wu = x�i+j is not a

k-power, and hence the word uv�w is a non-k-power in L. We thus have infinitely many non-k-powers in L, as required.

Case 2: x /= y. By Theorem 29, v∗wu contains infinitely many primitive words. Thus, uv∗w contains infinitely many

non-k-powers, as required. �

We are now ready to prove Theorem 30.

Proof (of Theorem 30). The proof is similar to that of [17, Proposition 7]. It suffices to prove statement (2) of the theorem,

since statement (1) follows immediately from (2) and Lemma 34.

Suppose that L contains infinitely many non-k-powers. Then L contains a non-k-power s with |s| � n. Suppose, contrary

to statement (2), that a shortest such s has |s| > 3n. Then any computation of M on s must repeat some state at least four

times. It follows that there exists a decomposition s = uv1v2v3w, v1, v2, v3 /= ε, such that uv∗
1v

∗
2v

∗
3w ⊆ L. We may assume

further that |v1v2v3| � 3n, so that wu /= ε.

Let p1, p2, p3, and q be the primitive roots of v1, v2, v3, andwu, respectively. Let v1 = p
i1
1 , v2 = p

i2
2 , v3 = p

i3
3 , andwu = qj ,

for some integers i1, i2, i3, j > 0. We consider three cases.

Case 1: p1 = p2 = p3 = q. Without loss of generality, suppose that |v1| � |v2| � |v3|. Since |s| > 3n, we must have

|uv3w| � n, and thus |uv1v3w| � nand |uv2v3w| � n. Byassumption, thewordsv3wu = qi3+j ,v1v3wu = qi1+i3+j , andv2v3wu =
qi2+i3+j are k-powers, whereas the word v1v2v3wu = qi1+i2+i3+j is not. Applying Corollary 27, we deduce that the following

system of equations

i1 + i2 + i3 + j �≡ 0 (mod k)

i3 + j ≡ 0 (mod k)

i1 + i3 + j ≡ 0 (mod k)

i2 + i3 + j ≡ 0 (mod k)

must be satisfied. However, it is easy to see that this is impossible.

Case 2: p1 /= q and p2 = p3 = q. If |v1wu| � n, then let � be the smallest positive integer such that n� |v�
1wu| <

|v�+1
1 wu| � |s|. Then by Proposition 28, one of the words v�

1wu or v
�+1
1 wu is primitive. Hence, at least one of the words

uv�
1w or uv

�+1
1 w is a primitive word in L, contradicting the minimality of s.

If, instead, |v1wu| > n, then we have n < |v1wu| < |v1v2wu| � |s|. Again, by Proposition 28, one of the words v1wu or

v1v2wu is primitive. Hence, at least one of the words uv1w or uv1v2w is a primitive word in L, contradicting the minimality

of s.

Case 3: p1 /= q and p2 /= q. In this casewe choose the smaller of v1 and v2 to “pump”, sowithout loss of generality, suppose

|v1| � |v2|. Let � be the smallest positive integer such that n� |v�
1wu| < |v�+1

1 wu| � |s|. Note that |v21wu| � |v1v2wu| < |s|,
so such an � must exist. Then by Proposition 28, one of the words v�

1wu or v
�+1
1 wu is primitive. Hence, at least one of the

words uv�
1w or uv

�+1
1 w is a primitive word in L, contradicting the minimality of s.

All remaining possibilities are symmetric to the cases considered above. Since in all cases we derive a contradiction, it

follows that if L contains infinitely many non-k-powers, it contains a non-k-power s, where n� |s| � 3n.

It remains to consider the situationwhereM is a DFA over an alphabet of size� 2. Let a /= b be alphabet symbols ofM. IfM

does not have a dead state, then for every integer i � n − 1, there exists a word x, |x| � n − 1, such that aibx ∈ L. Thesewords

aibx are all distinct and primitive. Thus, wheneverM has no dead state,M always accepts infinitelymany non-k-powers, and,

in particular,M accepts a non-k-power s, where n� |s| � 2n − 1.

If, on the other hand, M does have a dead state, then we may delete this dead state and apply the earlier argument with

the bound 3n − 3 in place of 3n.

Finally, the converse of statement (2) follows immediately from Lemma 34. �
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Fig. 2. One lobe of the NFA for k = 3, r = 12 and 0, 1 conflicting symbols.

We can now deduce the following algorithmic result.

Theorem 35. Let k � 2 be an integer. Given an NFA M with n states and t transitions, it is possible to determine if every word in

L(M) is a k-power in O(n3 + tn2) time.

Proof. The proof is exactly analogous to that of Theorem 8, andwe only indicate what needs to be changed. SupposeM has t

states. We create an NFA,M′
r , for r = 3t, such that no word in L(M′

r) is a k-power, andM′
r accepts all non-k-powers of length

� r (and perhaps some other non-k-powers).

Note that we may assume that k � r. If k > r, then no word of length � r is a k-power. In this case, to obtain the desired

answer it suffices to test if the set {x ∈ L(M) : |x| � r} is empty. However, this set is empty if and only if L(M) is empty, and

this is easily verified in linear time.

We now form a new NFA A as the cross-product of M′
r with M. From Theorem 30, it follows that L(A) = ∅ iff every word

in L(M) is a k-power. We can determine if L(A) = ∅ by checking (using depth-first search) whether any final states of A are

reachable from the start state.

It remains to see how M′
r is constructed. If the length of a word x accepted by M′

r is a multiple of k, x can be partitioned

into k sections of equal length. In order for M′
r to accept x, the NFA must ‘verify’ a symbol mismatch between two symbols

found in different sections but in the same position.

If x is a non-k-power, then a symbol mismatch will occur between two sections of x, call them si and sj . This means that si
and sj differ in at least one position. Comparing si and sj to s1, the first section of x, we notice that at least one of si or sj must

have a symbol mismatch with s1 (otherwise s1 = si = sj , which would give a contradiction). Therefore, when checking x for

a symbol mismatch, it is sufficient to only check s1 against each of the remaining k − 1 sections, as opposed to checking all(
k

2

)
possibilities.

In order to constructM′
r , we create a series of ‘lobes’, each of which is connected to the start state by an ε-transition. Each

lobe represents three simultaneous ‘guesses’ made by the NFA, which are:

• Which alphabet symbols will conflict and in which order. The number of possible conflict pairs is |�| (|�| − 1).
• The section in which there will be a symbol mismatch with the first section. There are k − 1 possible sections.

• The position in which the conflict will occur. In the worst case when the length of the input is r, there will be at most r/k
possible positions.

This gives a total of at most |�| (|�| − 1) · (k − 1) · r/k lobes. The construction of each lobe is illustrated in Fig. 2.

Each lobe contains at most r + 1 states. In addition to these lobes, we also require a k-state submachine to accept all

words whose lengths are not a multiple of k.

In total,M′
r has at most

|�| (|�| − 1) · (k − 1) · r

k
· (r + 1) + k + 1 ∈ O(r2)

states (since k � r), and similarly, O(r2) transitions. After constructing the cross-product, this gives a O(n3 + tn2) bound on

the time required to determine if every word in L(M) is a k-power. �

Theorem 30 suggests the following question: if M is an NFA with n states that accepts at least one non-k-power, how

long can a shortest non-k-power be? Theorem 30 proves an upper bound of 3n. A lower bound of 2n − 1 for infinitely many

n follows easily from the obvious (n + 1)-state NFA accepting an(an+1)∗, where n is divisible by k. However, Ito et al. [17]

gave a very interesting example that improves this lower bound: if x = ((ab)na)2 and y = baxab, then x and xyx are squares,
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but xyxyx is not a power. Hence, the obvious (8n + 8)-state NFA that accepts x(yx)∗ has the property that the shortest

non-k-power accepted is of length 20n + 18. This improves the lower bound for infinitely many n.

We now generalize their lower bound.

Proposition 36. Let k � 2 be fixed. There exist infinitely many NFAs M with the property that if M has r states, then the shortest

non-k-power accepted is of length
(
2 + 1

2k−2

)
r − O(1).

Proof. Let u = (ab)na, x = uk , and y = x−1(xbau−1x)kx−1. Thus xyx = (xbau−1x)k . Hence x and xyx are both k-powers.

However, xyxyx is not a k-power. To see this, assume it is, and write xyxyx = g1g2 · · · gk . Look at the character in position

2kn − 2n + k (indexing beginning with 1) in g1 and gk . In g1 it is a, and in gk it is b, so xyxyx is not a k-power.

We can accept x(yx)∗ with an NFA using |xy| states. The shortest non-k-power is xyxyx, which is of lengthm.

Wehave |u| = 2n + 1, |x| = k(2n + 1), |y| = k(4kn − 6n + 2k − 1), r = |xy| = 2k(2kn − 2n + k), andm = |xyxyx| =
k(8kn − 6n + 4k + 1). Thusm = 4k−3

2k−2
r − k

k−1
=
(
2 + 1

2k−2

)
r − O(1). �

Next, we apply part (2) of Theorem 30 to obtain an algorithm to check if an NFA accepts infinitely many non-k-powers.

Theorem 37. Let k � 2 be an integer. Given an NFA M with n states and t transitions, it is possible to determine if all but finitely

many words in L(M) are k-powers in O(n3 + tn2) time.

Proof. The proof is similar to that of Theorem 35. The only difference is that in view of part (2) of Theorem 30 we instead

constructM′
r to accept all non-k-powers s, where n� |s| � 3n. We leave the details to the reader. �

7. Automata accepting only powers

In this section, we move from the problem of testing if an automaton accepts only k-powers to the problem of testing if

it accepts only powers (of any kind). Just as Theorem 30 was the starting point for our algorithmic results in Section 6, the

following theorem of Ito et al. [17] is the starting point for our algorithmic results in this section. We state the theorem in a

stronger form than was originally presented by Ito et al.

Theorem 38. Let L be accepted by an n-state NFA M.

1. Every word in L is a power if and only if every word in the set {x ∈ L : |x| � 3n} is a power.
2. All but finitely many words in L are powers if and only if every word in the set {x ∈ L : n� |x| � 3n} is a power.

Further, if M is a DFA over an alphabet of size � 2, then the bound 3n may be replaced by 3n − 3.

We next prove an analogue of Proposition 32. We need the following result, first proved by Birget [3], and later, indepen-

dently, in a weaker form, by Glaister and Shallit [11].

Theorem 39. Let L ⊆ �∗ be a regular language. Suppose there exists a set of pairs

S = {(xi, yi) ∈ �∗ × �∗ : 1� i � n}
such that

• xiyi ∈ L for 1� i � n and

• either xiyj /∈ L or xjyi /∈ L for 1� i, j � n, i /= j.

Then any NFA accepting L has at least n states.

Proposition 40. Let M be an n-state NFA and let � be a non-negative integer such that every word in L(M) of length � � is a

power. For all r � �, the number of words in L(M) of length r is at most 7n.

Proof. Let r � � be an arbitrary integer. The proof consists of three steps:

Step 1. We consider the set A of words w in L(M) such that |w| = r and w is a k-power for some k � 4. For each such w,

writew = xi, where x is a primitive word, and define a pair (x2, xi−2). Let SA denote the set of such pairs. Consider two pairs

in SA: (x
2, xi−2) and (y2, yj−2). The word x2yj−2 is primitive by Theorem 25 and hence is not in L(M). The set SA thus satifies

the conditions of Theorem 39. Since L(M) is accepted by an n-state NFA, we must have |SA| � n and thus |A| � n.

Step 2. Next we consider the set B of cubes of length r in L(M). For each such cube w = x3, we define a pair (x, x2). Let
SB denote the set of such pairs. Consider two pairs in SB: (x, x2) and (y, y2). Suppose that xy2 and yx2 are both in L(M).
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Theword xy2 is certainly not a cube; we claim that it cannot be a square. Suppose it were. Then |x| and |y| are even, sowe can

write x = x1x2 and y = y1y2 where |x1| = |x2| = |y1| = |y2|. Now if xy2 = x1x2y1y2y1y2 is a square, then x1x2y1 = y2y1y2,

and so y1 = y2. Thus y is a square; write y = z2. By Theorem 25, yx2 = z2x2 is primitive, contradicting our assumption that

yx2 ∈ L(M). It must be the case then that xy2 is a k-power for some k � 4. Thus, xy2 = uk for some primitive u uniquely

determined by x and y. With each pair of cubes x3 and y3 such that both xy2 and yx2 are in L(M) wemay therefore associate

a k-power uk ∈ L(M) of length r, where k � 4. We have already established in Step 1 that the number of such k-powers is

at most n. It follows that by deleting at most n pairs from the set SB we obtain a set of pairs satisfying the conditions of

Theorem 39. We must therefore have |SB| � 2n and thus |B| � 2n.

Step 3. Finally we consider the set C of squares of length r in L(M). For each such square w = x2, we define a pair (x, x).
Let SC denote the set of such pairs. Consider two pairs in SC : (x, x) and (y, y). Suppose that xy and yx are both in L(M). The
word xy is not a square and must therefore be a k-power for some k � 3. We write xy = uk for some primitive u uniquely

determined by x and y. In Steps 1 and 2 we established that the number of k-powers of length r, k � 3, is |A| + |B| � 3n. It

follows that by deleting at most 3n pairs from the set SC we obtain a set of pairs satisfying the conditions of Theorem 39. We

must therefore have |SC | � 4n and thus |C| � 4n.

Putting everything together, we see that there are |A| + |B| + |C| � 7nwords of length r in L(M), as required. �

The bound of 7n in Proposition 40 is almost certainly not optimal.

We now prove the following algorithmic result.

Theorem 41. Given an NFA M with n states, it is possible to determine if every word in L(M) is a power in O(n5) time.

Proof. First, we observe that we can test whether a word w of length n is a power in O(n) time, using a linear-time string

matchingalgorithm, suchasKnuth–Morris–Pratt [19]. Todoso, search forw = a1a2 · · · an in thewordx = a2 · · · ana1 · · · an−1.

Then w appears in x iff w is a power. Furthermore, if the leftmost occurrence of w in x appears beginning at ai, then w is a

n/(i − 1) power, and this is the largest exponent of a power that w is.

Now, using Theorem 38, it suffices to test all words in L(M) of length � 3n; every word in L(M) is a power iff all of these

words are powers. On the other hand, by Proposition 40, if all words are powers, then the number of words of each length

is bounded by 7n. Thus, it suffices to enumerate the words in L(M) of lengths 1, 2, . . . , 3n, stopping if the number of such

words in any length exceeds 7n. If all these words are powers, then everyword is a power. Otherwise, if we find a non-power,

or if the number of words in any length exceeds 7n, then not every word is a power.

By the work of Mäkinen [22] or Ackerman and Shallit [1], we can enumerate these words in O(n5) time. �

Using part (2) of Theorem 38 along with Proposition 40, we can prove the following.

Theorem 42. Given an NFA M with n states,we can decide if all but finitely many words in L(M) are non-powers in O(n5) time.

Proof. The proof is analogous to that of Theorem 41. The only difference is that here we need only enumerate the words in

L(M) of lengths n, n + 1, . . . , 3n. �

8. Bounding the length of a smallest power

In Section 6 we gave an upper bound on the length of a smallest non-k-power accepted by an n state NFA. In this section,

we study the complementary problem of bounding the length of the smallest k-power accepted by an n-state NFA.

Proposition 43. Let M be an NFA with n states and let k � 2 be an integer. If L(M) contains a k-power, then L(M) contains a

k-power of length � knk.

Proof. Consider the NFA-ε M′ accepting L(M)1/k defined in the proof of Proposition 18. The only transitions from the start

state ofM′ are ε-transitions to submachineswhose states are (2k − 1)-tuples of the form [g1, g2, . . . , gk−1, p0, p1, . . . , pk−1],
where the first (k − 1)-elements of the tuple are fixed. Thus we may consider L(M′) as a finite union of languages, each

accepted by an NFA of size nk . It follows that ifM′ accepts a non-empty wordw, it accepts such aw of length � nk . However,

M′ accepts w if and only if M accepts wk . We conclude that if L(M) contains a k-power, it contains one of length � knk . �

We now give a lower bound on the size of the smallest k-power accepted by an n-state DFA.

Proposition 44. Let k � 2 be an integer. There exist infinitely many DFAs Mn such that

(a) Mn has O(kn) states.

(b) The shortest k-power accepted by Mn is of length k · Ω
((

n

k

))
.
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Proof. For n� k, let

Ln = (an)+b(an−1)+b · · · (an−k+1)+b.

Then Ln is accepted by a DFA with O(kn) states, and the shortest k-power in Ln is (a�b)k , where

� = lcm(n, n − 1, . . . , n − k + 1) � n(n − 1) · · · (n − k + 1)/k! =
(
n

k

)
,

as required. �

Next we consider the length of a smallest power (rather than k-power).

Proposition 45. Let M be an NFA with n states. If L(M) contains a power, it contains a k-power for some k, 2� k � n + 1.

Proof. Suppose to the contrary that the smallest k for which L(M) contains a k-power wk satisfies k > n + 1. For some

accepting computation ofM onwk let q1, q2, . . . , qk−1 be the states reachedbyM after readingw,w2, . . . ,wk−1, respectively.

Since k > n + 1, there exist i and j where 1� i < j � k − 1 and qi = qj . It follows that M accepts w� for some �, 2� � < k,

contradicting the minimality of k. We conclude that if L(M) contains a k-power, we may take k � n + 1. �

Proposition 46. Let M be an NFA with n states. If L(M) contains a power, then L(M) contains a power of length �(n + 1)nn+1.

Proof. Apply Propositions 45 and 43. �

We now give a lower bound.

Proposition 47. There exist infinitely many DFAs Mn such that

• Mn has O(n) states.

• The shortest power accepted by Mn is of length eΩ(
√

n log n).

Proof. Let pi denote the i-th prime number. For any integer n� 2, let P(n) = pk be the largest prime number such that

p1 + p2 + · · · + pk � n. We define

Ln = (ap1)+b(ap2)+b · · · (apk)+b.

Then Ln is accepted by a DFA with O(n) states.
If k is itself prime, the shortest power in Ln is w = (a�b)k , where � = p1p2 · · · pk . For n� 2, let

F(n) = ∏
p� P(n)

p,

where the product is over primes p. We have F(n) ∈ eΩ(
√

n log n) [24, Theorem 1]. This lower bound is valid for all sufficiently

large n; in particular, it holds for infinitelymany n such that n = p1 + p2 + · · · + pk , where k is prime. This gives the desired

result. �

9. Additional results on powers

Dömösi et al. [8, Theorem 10] proved that if L is a slender regular language over �, and Q� is the set of primitive words

over�, then L ∩ Q� is regular. This result is somewhat surprising, since it is widely believed that Q� is not even context-free

for |�| � 2. In this section, we apply a variation of their argument to show that Q� may be replaced by the language of

squares, (cubes, etc.) over �.

For any integer k � 2 and alphabet �, let P(k,�) denote the set of k-powers over �. Clearly, for |�| � 2, P(k,�) is not

context-free.

Proposition 48. If L ⊆ �∗ is a slender regular language, then for all integers k � 2, L ∩ P(k,�) is regular.

Proof. If L is slender, then by Theorem 11 it suffices to consider L = uv∗w. The result is clearly true if v is empty, so we

suppose v is non-empty. Let x and y be the primitive roots of v and wu, respectively. If x = y, then the set of k-powers in

v∗wu is given by v∗wu ∩ (xk)∗, so the set of k-powers in uv∗w is regular. If x /= y, then by Theorem 29, the set v∗wu contains

only finitely many k-powers. The set of k-powers in uv∗w is therefore finite, and, a fortiori, regular. �
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10. Testing if an NFA accepts a bordered word

In this section, we give an efficient algorithm to test if an NFA accepts a bordered word. We also give upper and lower

bounds on the length of a shortest bordered word accepted by an NFA.

Proposition 49. Given an NFAM with n states and t transitions,we can decide if M accepts at least one bordered word in O(n3t2)
time.

Proof. Given an NFAM = (Q ,�, δ, q0, F), we can easily create an NFA-ε M′ that accepts

{u ∈ �∗ : there exists w ∈ �∗ such that uwu ∈ L}
by “guessing” the state we would be in after reading uw, and then verifying it. More formally, we let M′ = (Q ′,�, δ′, q′

0, F
′)

where

• Q ′ = {q′
0} ∪ {[p, q, r] : p, q, r ∈ Q} and

• F ′ = {[p, q, r] : r ∈ F and there exists w ∈ �∗ such that q ∈ δ(p,w)}.
The transitions are defined as follows: δ(q′

0, ε) = {[q0, p, p] : p ∈ Q} and
δ([p, q, r], a) =

{
[p′, q, r′] : p′ ∈ δ(p, a), r′ ∈ δ(r, a)

}
.

IfM has n states and t transitions, thenM′ has n3 + 1 states and atmost n + n3t2 transitions. Now get rid of all useless states

and their associated transitions. We can compute the final states by doing n depth-first searches, starting at each node, at a

cost of O(n(n + t)) time. Now we just test to see if L(M′) accepts a non-empty string, which can be done in linear time in

the size ofM′. �

Corollary 50. If M is an NFA with n states, and it accepts at least one bordered word, it must accept a bordered word of length

< 2n2 + n.

Proof. Consider the DFA M′ constructed in the proof of the previous theorem, which accepts

L′ = {u ∈ �∗ : there exists w ∈ �∗ such that uwu ∈ L}.
If M accepts a bordered string, then M′ accepts a non-empty string. Although M′ has n3 + 1 states, once a computation

leaves q′
0 and enters a triple of the form [p, q, r], it never enters a state [p′, q′, r′] with q �= q′. Thus we may view the NFA

M′ as implicitly defining a union of n disjoint languages, each accepted by an NFA with n2 states. Therefore, if M′ accepts
a non-empty string u, it accepts one of length at most n2. Now the corresponding bordered string is uwu. The string w is

implicitly defined in the previous proof as a path from a state p to a state q. If such a path exists, it is of length at most n − 1.

Thus there exists uwu ∈ L(M) with |uwu| � 2n2 + n − 1. �

Proposition 51. For infinitely many n there is an DFA of n states such that the shortest bordered word accepted is of length

n2/2 − 6n + 43/2.

Proof. Consider a(bt)+ca(bt−1)+c. An obvious DFA can accept this using 2t + 5 states. However, the shortest bordered

word accepted is abt(t−1)cabt(t−1)c, which is of length 2t(t − 1) + 4 = n2/2 − 6n + 43/2. �

We now consider testing if an NFA accepts infinitely many bordered words.

Corollary 52. If an NFAM has n states and t transitions,we can test whetherM accepts infinitelymany borderedwords in O(n6t2)
time.

Proof. If an NFA M accepts infinitely many words of the form uwu, there are two possibilities, at least one of which must

hold:

(a) there is a single word u such that there are infinitely many w with uwu ∈ L(M) or
(b) there are infinitely many u, with possibly different w depending on u, such that uwu ∈ L(M).

To check these possibilities, we return to the NFA-ε M′ constructed in the proof of Theorem 49. First, for each pair of states

qi to qj , we determine whether there exists a non-empty path from qi to qj . This can be done with n different depth-first
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searches, starting at each vertex, at a cost of O(n3(n3 + t2)) time. In particular, for each vertex, we learn whether there is a

non-empty cycle beginning and ending at that vertex.

Now let us checkwhether (a) holds. After removing all useless states and their associated transitions, look at the remaining

final states [p, q, r] ofM′ and determine if there is a path from p to q that goes through a vertex with a cycle. This can be done

by testing, for each vertex s that has a cycle, whether there is a non-empty path from p to s and then s to q. If such a vertex

exists, then there are infinitely many w in some uwu.

To check whether (b) holds, we just need to knowwhetherM′ accepts infinitely many strings, which we can easily check

by looking for a directed cycle.

The total cost is therefore O(n3(n3t2)). �

We now prove the following decomposition theorem for regular languages consisting only of bordered words.

Theorem 53. If every word in a regular language L is bordered, then there is a decomposition of L as a finite union of regular

languages of the form JKJ, where each J and K are regular and ε �∈ J.

Proof. Let L be accepted by an NFA M = (Q ,�, δ, q0, F). For each x ∈ �+, define an automaton Mx = (Q ,�, δ, I′, F ′) (for

Mx we permit multiple initial states), where the set of initial states is I′ = δ(q0, x), and the set of final states is F ′ = {q ∈
Q : δ(q, x) ∈ F}. Then Mx has the property that for every w ∈ L(Mx), we have xwx ∈ L(M). Note that there are only finitely

many distinct automata Mx .

For each automatonMx , define the regular language

Lx =
{
y : δ(q, y) = I′ and {q ∈ Q : δ(q, y) ∈ F} = F ′}.

Note that again there are only finitely many distinct languages Lx .

For every x ∈ �+, every word in LxL(Mx)Lx is in L. Furthermore, ifw ∈ L is bordered, then there exists x ∈ �+ such that

w ∈ LxL(Mx)Lx . Thus, if every word of L is bordered, then L = ∪x∈�+LxL(Mx)Lx . Since there are only finitely many languages

Lx and L(Mx), this union is finite, as required. �

11. Testing if an NFA accepts an unbordered word

We present a simple test to determine if all words in a regular language are bordered, and to determine if a regular

language contains infinitely many unbordered words. We first need the following well-known result about words, which is

due to Lyndon and Schützenberger [21].

Lemma 54. Suppose x, y and z are non-empty words, and that xy = yz. Then there is a non-empty word p, a word q and a

non-negative integer k1 for which we can write x = pq, z = qp, and y = (pq)k1p.

We also need the following result, which is just a variation of the pumping lemma.

Lemma 55. Let M = (Q ,�, δ, q0, F) be an n-state NFA. Let L be the language accepted by M. Let d be a positive integer. Let
(X , y, Z) be a 3-tuple of words for which |y| is a multiple of d, |y| ≥ nd and XyZ ∈ L. Then there are words r, s and t,whose lengths

are multiples of d, with |s| ≥ d, for which we can write y = rst, and, for all z ≥ 0, XrsztY ∈ L.

Proof. Set l := |X| andm := |y|/d, γ := XyZ , and k := |γ |. First, write γ as a sequence of letters, that is, γ := γ1γ2 · · · γk

with each γi a letter. By γ [i, j] for 1 ≤ i, j ≤ |γ | we mean the subsequence that consists of the i − j + 1 consecutive letters

of γ starting at position i and ending at position j, that is, γiγi+1 · · · γj . If i > jwe take γ [i, j] to be the empty word. Nowwe

have the following sequence of k states

q1 ∈ δ(q0, γ1), q2 ∈ δ(q1, γ2), . . . , qk ∈ δ(qk−1, γk).

We will choose qk to be a final state.

Note that y = γ [l + 1, l + md], and consider the following sequence of m + 1 states ofM:

ql , ql+d, ql+2d, . . . , ql+md.

There are integers i and j, with 0 ≤ i < j ≤ m forwhich ql+id = ql+jd. Set r := γ [l + 1, l + id], s := γ [l + id + 1, l + jd],
and t := γ [l + jd + 1, l + md], so y = rst. Note that |s| ≥ d, and the desired conclusion follows immediately. �

Lemma 56. Let M be an n-state NFA. Let L be the language accepted by M. Let (X , Y , Z) be a 3-tuple of words for which XYZ ∈ L.
Then there is a word y for which |y| < n and XyZ ∈ L.
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Proof. Let S := {u ∈ �∗ : XuZ ∈ L}. Let y be an element of S of minimal length. We proceed by contradiction, and suppose

|y| ≥ n. We apply Lemma 55 to (X , y, Z), with d = 1, and write y = rst with s non-empty. Then XrtZ ∈ L, which violates the

minimality of |y|. �

Lemma 57. Suppose there are words ΨL ,ΨR, e, f , g and h with |ΨL| = |ΨR|, |e| < |ΨL|, |g| < |ΨL|, and for which

bζ := ΨLe = fΨR (1)

and

bη := ΨLg = hΨR. (2)

Suppose further that |bη| < |bζ |. Then we can write ΨL = h(pq)kp and ΨR = (pq)kpg for p a non-empty word, q a word for

which |g| + |pq| = |f |, and k a positive integer.

Proof. Since |bη| < |bζ |, we must have |g| < |e| < |ΨR|. This last observation, together with (1) and (2) above allows us to

assert that there are non-empty words s1 and s2, with |s2| > |s1|, such that ΨR = s1e = s2g. This last fact combined again

with (1) and (2) yields that

ΨL = fs1 = hs2 (3)

and

ΨR = s1e = s2g. (4)

Now we can apply (3) and (4) to assert that there are non-empty words r1 and r2 for which s1r1 = s2 = r2s1; that is,

s1r1 = r2s1. (5)

Nowapply Lemma54 to (5) to get that there is a non-emptyword p, aword q and an integer k1 ≥ 0 forwhich s1 = (pq)k1p,
r1 = qp, and r2 = pq. Set k := k1 + 1. Then s2 = (pq)kp, and (3) gives ΨL = h(pq)kp, and (4) gives ΨR = (pq)kpg. Also
s2 = r2s1 combined with (3) above gives that f = hr2, so |g| + |pq| = |h| + |pq| = |h| + |r2| = |f |. �

Theorems 58 and 67 below are the main results.

Theorem 58. Let M be an n-state NFA. Let L be the language accepted by M. Let N be a non-negative integer. Suppose all words

in L of length in the interval [N, 2N + 6n + 1] are bordered. Then all words in L of length greater than 2N + 6n + 1 are bordered.
Hence, if all words in L of length at most 6n + 1 are bordered, then all the words in L must be bordered.

Proof. Wewill prove Theorem58 bymaking the following series of observations. Throughout, wewill assume that all words

in L of length in the interval [N, 2N + 6n + 1] are bordered, and we will assume w is an unbordered word in L for which

|w| > 2N + 6n + 1, with |w| minimal. We write w as uθv with θ a word for which |θ | ≤ 1 and u and v words for which

|u| = |v| > 3n + N.

Claim 59. Write u as ΨLXL and v as XRΨR, for words ΨL , XL ,ΨR, XR for which |XL| = |XR| = n. (So that w is ΨLXLθXRΨR.) Then
there are words xL and xR, both of length less than n, for which:
(i) ζ := ΨLxLθXRΨR ∈ L and

(ii) η := ΨLXLθxRΨR ∈ L.

Further, N ≤ |ζ | < |w|, and N ≤ |η| < |w|.

To justify (i), apply Lemma 56 to the 3-tuple (ΨL , XL , θXRΨR). Similarly, to arrive at (ii), apply Lemma 56 again to the

3-tuple (ΨLXLθ , XR,ΨR).

Claim 60. We can write ΨL = h(pq)kp and ΨR = (pq)kpg for p a non-empty word, g, h and q words for which |g| = |h|,
|pq| + |g| ≤ n, and k a positive integer. Hence w can be written as h(pq)kpXLθXR(pq)

kpg.

To justify Claim 60, first recall w = ΨLXLθXRΨR and |ΨL| = |ΨR| > 2n. From Claim 59 above we get that ζ and η are

bordered words, so we can assert that there exist non-empty words bζ and bη , and words pζ and pη , for which:
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(I) ζ = ΨLxLθXRΨR = bζ pζ bζ and

(II) η = ΨLXLθxRΨR = bηpηbη .

Note that, if |bζ | ≤ |ΨL| then by (I) bζ would be a border for w. So we must have |bζ | > |ΨL|. Similarly, (II) gives that

|bη| > |ΨL|. These latter facts together with (I) and (II) give that there exists non-empty words e, f , g, h, for which |e| = |f |,
|g| = |h|, and for which

bζ = ΨLe = fΨR (6)

and

bη = ΨLg = hΨR. (7)

Further, |ζ | < |w| implies that |f | ≤ n, and similarly |η| < |w| implies that |h| ≤ n.

Suppose |bη| = |bζ |. Then from (6) and (7) above, |e| = |g|. But e and g are suffixes of ΨR, so we get that e = g. Hence

bζ = ΨLe = ΨLg = bη . Set b := bζ = bη . Then from (II) above, as |b| ≤ |ΨL| + n, b is a prefix of ΨLXL . And from (I) above,

b is a suffix of XRΨR. So b is a non-empty prefix of w, and a suffix of w. Hence, as |b| ≤ |w|
2
, b is a border for w.

So wemust have |bη| /= |bζ |. Suppose first that |bη| < |bζ |. Now apply Lemma 57 to get that there is a positive integer k,

a non-empty word p and a word q for whichΨL = h(pq)kp andΨR = (pq)kpg. And finally observe that |pq| + |g| = |f | ≤ n.

If |bη| > |bζ |, the argument is similar, so Claim 60 is established.

Claim 61. Let x := pq in the statement of Claim 60. There is a conjugate cL of x which is a prefix of ΨL , and there is a conjugate

cR of x which is a suffix of ΨR.

To justify Claim 61, let SL be the prefix of length n of ΨL . So there is a word TL for which we can write ΨLXLθXR = SLTL .

(So w is SLTLΨR.) Now apply Lemma 56 to (SL , TL ,ΨR), obtaining a word tL , with |tL| < n for which w1 := SLtLΨR ∈ L. By

supposition, since N ≤ |w1| < |w|,w1 has a border, say b1. Further, if |b1| ≤ n then b1 would be a border forw. So we must

have |b1| > n. And |b1| ≤ |w1|
2

implies |b1| ≤ |ΨR|.
So b1 is a suffix of ΨR of length greater than n; hence by Claim 60 above we can write b1 = sxx

k2pg for some integer

k2 ≥ 0, with sx a suffix of x. Write x = pxsx , and recall that p is a prefix of x. Then |sxxk2pg| > n and |x| + |g| ≤ n (from

Claim 60) yields that sxpx is a prefix of sxx
k2pg, that is, sxpx is a prefix of b1. So set cL := sxpx . Since b1 is a prefix of w1, cL

must be a prefix of w1, and |cL| ≤ n = |SL| gives that cL is a prefix of SL , and the first statement of Claim 61 follows.

To get the second statement of Claim 61, similarly let SR be the suffix of length n of ΨR. So there is a word TR for which

we can write XLθXRΨR = TRSR. (So w is ΨLTRSR.) Now apply Lemma 56 to (ΨL , TR, SR), obtaining a word tR, with |tR| < n for

which w2 := ΨLtRSR ∈ L. By supposition, since N ≤ |w2| < |w|, w2 has a border, say b2. Further, if |b2| ≤ n then b2 would

be a border for w. So we can assert that n < |b2| ≤ |ΨL|.
So b2 is a prefix ofΨL of length greater than n; hence by Claim 60we canwrite b2 = hxk3ρx for some integer k3 ≥ 0, with

ρx a prefix of x. Write x = ρxσx . Then |hxk3ρx| > n and |x| + |h| ≤ n (from Claim 60) yields that σxρx is a suffix of hxk3ρx ,

that is, σxρx is a suffix of b2. So set cR := σxρx . Since b2 is a suffix of w2, cR must be a suffix of w2, and also |cR| ≤ n = |SR|
yields that cR is a suffix of SR, and the second statement of Claim 61 follows.

To complete the proof of Theorem 58, note that, since cL and cR are both conjugates of x, cL and cR are non-empty words

which are conjugates. So there is a non-empty word α and a word β for which we can write cL = αβ and cR = βα. Then α
is a prefix of ΨL , and α is a suffix of ΨR, which gives that α is a border for w, and gives a contradiction. �

Corollary 62. The problem of determining if an NFA accepts an unbordered word is decidable.

Proof. Let M be an NFA with n states. To determine if M accepts an unbordered word, it suffices to test whether M accepts

an unbordered word of length at most 6n + 1. �

We do not know if there is a polynomial-time algorithm to test if an NFA accepts an unbordered word or if the problem

is computationally intractable.

Theorem 58 gives an upper bound of 6n + 1 on the length of a shortest unborderedword accepted by an n-state NFA. The

best lower bound we are able to come up with is 2n − 3, as illustrated by the following example: an NFA of n states accepts

abn−3ab∗, and the shortest unbordered word accepted is abn−3abn−2, which is of length 2n − 3 (Fig. 3).

Theorem 63. Let M be an n-state NFA, and let L be the language accepted by M. Suppose there is an unbordered word in L of

length greater than 4n2 + 6n + 1. Then L contains infinitely many unbordered words.

Proof. Suppose L contains only finitely many unbordered words. Let w be an unbordered word in L of length greater than

4n2 + 6n + 1,with |w|maximal.Writew asΨLXLθXRΨR forwordsΨL ,XL , θ ,ΨR,XR forwhich |XL| = |XR| = n, |ΨL| = |ΨR| >
2n2 + 2n, and |θ | ≤ 1. We proceed by making the following series of observations.
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Fig. 3. Summary of main results.

Claim 64. There are words xL , uL , yL and xR, uR, yR, with uL and uR both non-empty, XL = xLuLyL , XR = xRuRyR, and for which:
(i) ζ := ΨLxLuLuLyLθXRΨR ∈ L and

(ii) η := ΨLXLθxRuRuRyRΨR ∈ L.

Further, |ζ | > |w| and |η| > |w|.
To justify (i), apply Lemma 55 (with d = 1) to the 3-tuple (ΨL , XL , θXRΨR). Similarly, to arrive at (ii), apply Lemma 55

again (also with d = 1) to the 3-tuple (ΨLXLθ , XR,ΨR).

Claim 65. We can write ΨL = h(pq)kp and ΨR = (pq)kpg for p a non-empty word, g, h and q words for which |g| = |h|,
|pq| + |g| ≤ 2n, and k an integer ≥ n. Hence w can be written as h(pq)kpXLθXR(pq)

kpg.

To justify Claim 65, first recall that w = ΨLxLuLyLθxRuRyRΨR, and XL = xLuLyL , XR = xRuRyR. From Claim 64 above and

the maximality of |w| we get that ζ and η are bordered words, so we can assert that there exist non-empty words bζ and

bη , and words pζ and pη , for which:

(I) ζ = ΨLxLuLuLyLθXRΨR = bζ pζ bζ and

(II) η = ΨLXLθxRuRuRyRΨR = bηpηbη .

Note that, if |bζ | ≤ |ΨL| then by (I) bζ would be a border for w. So we must have |bζ | > |ΨL|. Similarly, (II) gives that

|bη| > |ΨL|. These latter facts together with (I) and (II) give that there exists non-empty words e, f , g, h, for which |e| = |f |,
|g| = |h|, and for which

bζ = ΨLe = fΨR (8)

and

bη = ΨLg = hΨR. (9)

Further, the reader can verify that |e| ≤ 2n < |ΨR|, and |g| ≤ 2n < |ΨR|.
Suppose |bη| = |bζ |. Then from (8) and (9) above, |e| = |g|. But e and g are suffixes of ΨR, so we get that e = g. Hence

bζ = ΨLe = ΨLg = bη . Set b := bζ = bη . Now |uLyLθXR| > |xLuL|, so from (I) above, wemust have |b| ≤ |uLyLθXRΨR|, that
is, b is a suffix of uLyLθXRΨR. Similarly, |XLθxRuR| > |uRyR|, so from (II) above we get that |b| ≤ |ΨLXLθxRuR|, that is, b is a

prefix of ΨLXLθxRuR. So b is a non-empty prefix of w, and a suffix of w. Hence w must be bordered, which is a contradiction.

So we must have |bη| /= |bζ |. First, suppose |bη| < |bζ |. Now apply Lemma 57 to get that there is a positive integer k, a

non-empty word p and a word q for which ΨL = h(pq)kp and ΨR = (pq)kpg. And finally observe that |pq| + |g| = |f | ≤ 2n,

and since |ΨL| > 2n2 + 2n and |pq| ≤ 2n, we get that k ≥ n. The case |bη| > |bζ | is symmetric, so Claim 65 is established.

Claim 66. Let x := pq in the statement of Claim 65. There is a conjugate cL of x which is a prefix of ΨL , and there is a conjugate

cR of x which is a suffix of ΨR.
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To justify Claim 66, recall from Claim 65 thatw isΨLXLθXRx
kpg. And since k ≥ n, we can apply Lemma 55 to the 3-tuple of

words (ΨLXLθXR, x
k , pg), with d := |x|, obtaining a positive integer J1 for which, for all z ≥ 0, we have ΨLXLθXRx

k+J1zpg ∈ L.

So choose z1 := |ΨLXLθXR|, and define w1 := ΨLXLθXRx
k+J1z1pg. By supposition w1 is a bordered word, say with border

b1. Further, if |b1| ≤ |ΨR| then b1 would be a border for w. So we must have |b1| > |ΨR|. And |b1| ≤ |w1|
2

implies |b1| ≤
|xk+J1z1pg|.

So b1 is a suffix of xk+J1z1pg of length greater than |ΨR| > 2n, hence by Claim 65 above we can write b1 = sxx
k2pg

for some integer k2 ≥ 0, with sx a suffix of x. Write x = pxsx , and recall that p is a prefix of x. Then |sxxk2pg| > 2n and

|x| + |g| ≤ 2n (from Claim 65) yields that sxpx is a prefix of sxx
k2pg, that is, sxpx is a prefix of b1. So set cL := sxpx . Since b1

is a prefix of w1, cL must be a prefix of w1, and |cL| ≤ 2n gives that cL is a prefix of ΨL , and the first statement of Claim 66

follows.

To justify the second statement of Claim 66, we proceed similarly; that is, we recall that w is hxkpXLθXRΨR, and apply

Lemma 55 to the 3-tuple of words (h, xk , pXLθXRΨR), with d := |x|, allowing us to assert that there is a positive integer J2 for

which, for all z ≥ 0, we have hxk+J2zpXLθXRΨR ∈ L. So choose z2 := |pXLθXRΨR|, and define w2 := hxk+J2z2pXLθXRΨR. By

supposition w2 is a bordered word, say with border b2. Further, if |b2| ≤ |ΨL| then b2 would be a border for w. So we must

have |b2| > |ΨL|. And |b2| ≤ |w2|
2

implies |b2| ≤ |hxk+J2z2p|.
So b2 is a prefix of hxk+J2z2p of length greater than |ΨL| > 2n; hence by Claim 65 we can write b2 = hxk3ρx for some

integer k3 ≥ 0, with ρx a prefix of x. Write x = ρxσx . Then |hxk3ρx| > 2n and |x| + |h| ≤ 2n (from Claim 65) yields that

σxρx is a suffix of hxk3ρx , that is, σxρx is a suffix of b2. So set cR := σxρx . Since b2 is a suffix of w2, cR must be a suffix of w2,

and also |cR| ≤ 2n yields that cR is a suffix of ΨR, and the second statement of Claim 66 follows.

To complete the proof of Theorem 63, note that, since cL and cR are both conjugates of x, cL and cR are non-empty words

which are conjugates. So there is a non-empty word α and a word β for which we can write cL = αβ and cR = βα. Then α
is a prefix of ΨL , and α is a suffix of ΨR, which gives that α is a border for w, which is a contradiction. So we are forced to

conclude that L contains infinitely many unbordered words. �

Theorem 67. Let M be an n-state NFA, and let L be the language accepted by M. Then the following are equivalent:
1. L contains infinitely many unbordered words.
2. There is an unbordered word w in L, with 4n2 + 6n + 2 ≤ |w| ≤ 8n2 + 18n + 5.

Proof. (1) → (2). Suppose all words w ∈ L whose lengths are in [4n2 + 6n + 2, 8n2 + 18n + 5] are bordered words. Then

by Theorem 58 (with N = 4n2 + 6n + 2) we have that any word in L whose length is at least 4n2 + 6n + 2 is bordered, i.e.,

L contains at most finitely many unbordered words.

(2) → (1). This follows immediately from Theorem 63. �

Corollary 68. The problem of determining if an NFA accepts infinitely many unbordered words is decidable.

Proof. LetM be anNFAwith n states. To determine ifM accepts infinitelymany unborderedwords, it suffices to test whether

M accepts an unbordered word w, where 4n2 + 6n + 2 ≤ |w| ≤ 8n2 + 18n + 5. �

We do not know if there is a polynomial-time algorithm to test if an NFA accepts infinitely many unbordered words or if

the problem is computationally intractable.

12. Final remarks

In this paper, we examined the complexity of checking various properties of regular languages, such as consisting only

of palindromes, containing at least one palindrome, consisting only of powers, or containing at least one power. In each

case (except for the unbordered words), we were able to provide an efficient algorithm or show that the problem is likely

to be hard. Our results are summarized in Fig. 3. Here M is an NFA with n states and t transitions. When L is the language

of unbordered words, it is an open problem to either find polynomial-time algorithms to test if (a) L(M) ∩ L = ∅, and (b)

L(M) ∩ L is infinite, or to show the intractability of these problems.
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