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Abstract. Recognizable transductions constitute a well known, proper subclass
of rational transductions. To our knowledge, there has been no characterization
of recognizable transductions by a well-defined subclass of transducers. In this
work we observe that there is a connection between recognizable transductions
and languages consisting of edit strings. More specifically, we define a saturated
transducer to be a transducer with the property that, when viewed as an automa-
ton over the edit alphabet, accepts all possible edit strings corresponding to each
accepted pair of words. Our main result gives a constructive proof that the class
of recognizable transductions coincides with the class of saturated transductions.
We also revisit closure properties of recognizable transductions using saturated
transducers and discuss the natural role of these objects in edit distance problems.
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1 Introduction

Recognizable transductions constitute a well known, proper subclass of rational trans-
ductions, the latter being the class of all binary relations of words realized by finite
transducers. A well known characterization of recognizable transductions is given by
Mezei’s theorem [Eilenberg, 1974, note at p. 75]. Until now, however, there has been
no characterization of recognizable transductions by a well-defined, special subclass of
transducers. In this work we observe that there is an intimate connection between recog-
nizable transductions and edit languages, that is, languages consisting of edit strings. An
edit string (or string alignment) is a special word consisting of edit operations, and de-
scribes the sequence of changes (substitutions, insertions and deletions of symbols) that
can transform a word into another word. Edit strings can be used to define formally con-
cepts related to distances between words [Sankoff, Kruskal, 1999] and, in fact, recently
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( [Kari, Konstantinidis, 2002], [Mohri, 2003],[Kari et al., 2003] ) there have been sys-
tematic treatments of edit languages (also called e-systems) in the sense of language
theory. In the context of word and language distances, the main difference between a
transduction and an edit language is that the latter describes the exact changes that are
permitted in transforming words to words, whereas the former describes the result of
these transformations.

This paper introduces the concept of saturated transducer and observes that this
concept constitutes a natural point of connection between recognizable transductions
and edit languages. More specifically, a saturated transducer is a transducer with the
property that, for every pair of words it realizes, the transducer, when viewed as an
automaton over the edit alphabet, accepts all possible edit strings transforming the first
word of the pair into the second one. The main result of the paper is that the class of rec-
ognizable transductions coincides with the class of transductions realized by saturated
transducers. We also provide other basic results on saturated transducers and discuss
their use in edit distance problems. In the next paragraph we give a short overview of
our paper.

The paper is organized as follows. In the next section, we provide the formal defi-
nitions about rational transducers, recognizable transductions and edit languages. Sec-
tion 3 introduces saturated transducers and discusses several basic operations on these
objects. These operations can be used to provideconstructiveproofs (by means of satu-
rated transducers) of closure properties of recognizable transductions, such as intersec-
tion, composition and concatenation. Moreover, the descriptional complexity of these
operations can be used to evaluate the time complexity of algorithms utilizing them.
Section 4 contains the main result of the paper about the equivalence of saturated and
recognizable transductions. The proof is constructive in the following sense. Given a
tuple consisting of an even number of finite automata – according to Mezei’s theorem
such a tuple specifies a recognizable transduction – there is an effective construction of
a saturated transducer realizing the transduction specified by the tuple. Moreover, there
is a constructive proof for the converse problem. In Section 5 we elaborate on the use of
saturated transducers in problems related to the edit distance of words and languages.
The method here is not new, in the sense that certain examples of saturated transduc-
ers have already been used for such problems, but we believe that the method is better
understood with our systematic study of saturated transducers. Our observations in this
context lead us to the question of whether the transduction consisting of all pairs of
distinct words of some regular language is recognizable. We show that it is not recog-
nizable in the case of infinite languages. Finally, Section 6 contains a few concluding
remarks.

2 Preliminary Notions and Notations

We assume known basic notions of finite automata: DFA (deterministic finite
automaton), NFA (nondeterministic finite automaton) andε-NFA (NFA with ε-
transitions) – a review of these terms can be found in [Hopcroft and Ullman, 1979],
[Yu, 1997]. We also assume known the basic notions of semigroup (monoid) the-
ory [Howie, 1976] and of rational and recognizable sets in arbitrary monoids (
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[Berstel, 1979], [Eilenberg, 1974] ). We recall that the class of monoids is closed under
cartesian product.

Let (M, ·,1M) be a monoid which consists of a carrier setM equipped with a binary
associative operation “·” and an unit “1M”. By Rat(M) we denote the family of rational
subsets ofM and byRec(M) we denote the family of recognizable subsets.

If X andY are finite alphabets (nonempty sets of symbols), we denote byX∗ and
Y∗ their freely generated monoids. Any element ofX∗ or Y∗ is called aword , i.e., a
finite string of symbols. We denote byε the word with no symbols, i.e.,the empty
word . By X∗×Y∗ we understand the direct product of the monoidsX∗ andY∗, i.e.,
the monoid of word relations. We will use the terms “word relation” and “transduction”
interchangeably. Notice that this monoid is finitely generated, in the sense that there
exists a finite subsetG, called a set of generators, such thatG∗ = X∗×Y∗ (indeed, take
G= (X×{λ})∪ ({λ}×Y)). Notice also thatX∗×Y∗ is not necessarily a free monoid,
in the sense that it may not exist a set of generators which generate each element of the
monoid in a unique way (for example,G – above – may generate an element in more
than one way:(x,y) = (x,λ ) · (λ ,y) = (λ ,y) · (x,λ ). As a consequence of McKnight’s
theorem ([McKnight, 1964]) we have that

Rec(X∗×Y∗)⊆ Rat(X∗×Y∗) ,

inclusion which is strict in general. For example, the transduction{(ai ,bi)/i ≥ 0} can
be proven to be rational without being recognizable.

In X∗×Y∗, recognizable and rational sets may be specified by finite state machines.
For example, each rational transductionτ is represented by some finite transducerT =
(Q,X,Y,∆ ,q0,F), where

1. Q is a finite set of states;
2. ∆ ⊆Q×X∗×Y∗×Q is a finite set of transitions;
3. q0 is an initial state,F ⊆Q is a set of final states;
4. asuccessful computation of T is a sequence

c = (q0,x1,y1,q1), ....,(qn−1,xn,yn,qn) ,

where(qi−1,xi ,yi ,qi)∈∆ for all i ∈{1, ...,n}, andqn∈F . Thelabel of c, denoted
by | c | is the pair of words(x1...xn,y1...yn);

5. τ =| T |= {(u,v)/(u,v) =| c |, for some successful computationc}.
The alphabetX is sometime called the input alphabet andY the output alphabet. It has
been shown (for example in [Berstel, 1979, §III.6, p. 79]) that a transducer with labels in
X∗×Y∗ is equivalent with a transducer having labels only in(X∪{ε})×(Y∪{ε}). We
bring this observation further, by noticing that one can eliminate all “null” transitions,
i.e., transitions of the form(ε,ε). However, for the sake of formalism, it is useful to
consider all states having null loops, i.e., we have a transition(p,ε,ε, p) for each state
p of the transducer. Then we give the following definition:

Definition 1. A transducer is instandard form if it has transitions with labels in
(X∪{ε})× (Y∪{ε}) and each state has an(ε,ε)-loop to itself.
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Then each rational transduction is realized by a transducer in standard form.
We define thesize of a finite state machineM in general (hence of a transducer,

in particular), as being the number of all its states together with all its transitions, and
we denote it bysize(M).

In the case of recognizable transductions, one can use Mezei’s characterization (as
in [Eilenberg, 1974, §3.12, Prop. 12.2 & note at p. 75]) to represent a transduction
τ ∈ Rec(X∗×Y∗) by a tuple of finite automata(A1,B1, ...,An,Bn) such that

τ =
n⋃

i=1

L (Ai)×L (Bi) ,

where byL (A) we understand the language accepted by the automatonA (automataAi

are overX and automataBi are overY). We say that any recognizable transduction is
a finite union of blocks (a block is a direct product of two regular languages) - see for
example [Sakarovitch, 2003, §II.2, p.272, Corollary 2.20].

As a general observation, not much effort has been spent on the study of finite
machines designed to precisely accept recognizable sets. Our paper addresses this issue
and reveals the close connection between recognizable sets and edit languages – defined
in the following.

Let E be the set consisting of all elements of the form(a/ε), (ε/b) and(a/b), where
a ∈ X andb ∈ Y. We treat the elements ofE as symbols which denote the so-called
edit operations : deletion, insertion and substitution (for example, the meaning
of operation “(a/ε)” is “deletion of a”). Then, byE∗ we denote the language ofedit
strings , i.e., the language of words over the alphabetE. The empty edit string over
E will be denoted by(ε/ε).

Edit strings can implement transductions as the following example shows: if
X = Y = {a,b} then each of the following edit strings define the transduction
{(aba,bab)}:

e= (a/b)(b/a)(a/b)

f = (a/ε)(b/b)(a/a)(λ/b)

g = (a/ε)(b/ε)(a/ε)(ε/b)(ε/a)(ε/b)

We say that each of the edit stringse, f and g “transforms the wordaba into the
wordbab”. Notation wise, we use the lowercase letterse, f ,g to denote edit strings.

In this paper we are interested in sets of edit strings, i.e., inedit languages .
Such languages are simply subsets ofE∗.

3 Saturated Transducers: Definition and Basic Results

The notion of saturated transducer originates in the simple idea that a computation of a
finite transducer in standard form defines both a pair of words and an unique edit string
which transforms a word into another one.
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Let X andY be input and output alphabets andE be the alphabet of edit opera-
tions overX andY. Across this paper we will frequently refer to the following monoid
homomorphism:

h : E∗→ X∗×Y∗ ,

given by: h(ε/ε) = (ε,ε), h(a/ε) = (a,ε), h(ε/b) = (ε,b), h(a/b) = (a,b), for all
a ∈ X and b ∈ Y. Due to its importance to our matter, we name this morphism the
edit morphism over X andY. It should be clear that for any pair of words(u,v),
h−1({(u,v)}) consists of all edit strings that transformu into v.

Let T be a transducer overX andY, in standard form. Byh−1(T) we denote the
finite automaton overE, obtained fromT by replacing each transition label(x,y) with
the symbol(x/y) ∈ E∪{(ε/ε)}. Thenh−1(T) will be anε-NFA overE.

Conversely, given a finite automatonAoverE, byh(A) we understand the transducer
over X andY obtained fromA by replacing each transition label(x/y) with the pair
(x,y) ∈ X∗×Y∗. Thenh(A) is in standard form, up to the missing(ε,ε)-loops for each
state. For easing the formalism we assume that these loops are present and thath(A) is
readily in standard form.

In the previous section we have defined what is meant by a successful computation
(and its label) of a transducerT = (Q,X,Y,∆ ,q0,F). Let

c = (q0,x1,y1,q1), ....,(qn−1,xn,yn,qn)

be a successful computation inT. If the transducerT is in standard form, then all pairs
(xi ,yi) can be viewed as edit operations, or null operations, and we can define the edit
string corresponding toc as||c|| := (x1/y1)...(xn/yn).

Notice that we haveh(||c||) = |c|, whereh is the edit morphism fromX to Y. Then
the transducerT defines a transduction

| T |= {(u,v)/(u,v) = |c|, wherec is a successful computation inT} ,

and an edit language

||T||= {e∈ E∗/e= ||c||, wherec is a successful computation in T} ,

in other words||T||= L (h−1(T)). In the next definition we use the meaning ofh as a
monoid morphism.

Definition 2. A transducerT in standard form issaturated if and only if

h−1(| T |) = ||T|| .

In other words,T is saturated if and only if for any accepted pair of words(u,v) ∈
X∗×Y∗, and for any edit stringe∈E∗ which transformsu intov there exists a successful
computationc in T such that||c||= e.

Notice that the property of saturation can be generalized to arbitrary transducers.
Indeed, letT be an arbitrary transducer. A successful computation ofT is said to be
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admissible if and only if its transitions have labels in(X∪{ε})× (Y∪{ε}). Then
we can define the edit language ofT as being

||T||= {e∈ E∗/e= ||c||, wherec is an admissible computation in T} .

From here the definition of a saturated transducer is extended naturally to arbitrary
transducers. Remark that any saturated transducer is equivalent to a saturated transducer
in standard form. Indeed, letT be an arbitrary saturated transducer. It suffices to observe
that one can discard all transitions with labels not in(X ∪ {ε})× (Y∪ {ε}) without
changing the transduction realized byT.

Remark 1.The saturation of a transducer is not a trivial property, since there may exist
a non-saturated transducer in standard form equivalent to a non-saturated transducer, as
the following example shows.

Example 1.Consider the transductionτ, over{0,1} and{a}, which contains all pairs
(u,v) with the value ofu, as a binary word, being odd andv an arbitrary word over
{a}∗. Both transducers in Fig.1 are in standard form and realizeτ; however, only the
transducer in Fig.1 (b) is saturated.

(1,ε)

(0,ε)

(1,ε)

(0,ε)

(0,ε)

(1,ε)

(ε,a)

(b)(a)

(1,a),(1,ε),(ε.a)(0,ε),(0,a),(ε.a)

(0,a),(0,ε)

(1,a),(1,ε)

Fig. 1. Equivalent non-saturated and saturated transducers.

We say that a transduction overX andY is saturated if and only if there exists a saturated
transducerT such thatτ =| T |. We denote by

Sat(X∗×Y∗)

the family of saturated transductions. Then clearlySat(X∗×Y∗)⊆ Rat(X∗×Y∗).
In this section we are interested in basic operations on saturated transducers with

the aim of providingconstructiveproofs for the closure properties of saturated trans-
ductions. As it turns out, many known operations on ordinary automata and transducers
result in saturated transducers with no extra effort when applied on saturated transduc-
ers. For example, the standard product constructions on finite automata, possibly with
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ε transitions, for union and intersection would result in saturated transducers when ap-
plied on saturated transducers. The same happens in the case of the product construction
for the composition of transducers.

In the following operations, the operandsA1 andA2 are arbitrary finite automata,
possibly withε transitions (unless specified otherwise), and the operandsT1 andT2 are
arbitrary finite transducers in standard form.

det(A1): is the automaton obtained by determinization and completion ofA1.
A1 , whereA1 is a DFA: the DFA that results when we completeA1 and change its non-

final states to final, and viceversa. It is well known thatA1 accepts the complement
of the language accepted byA1 and thatsize(A1) = O(size(A1)).

A1×A2: is a saturated transducer of sizeO(size(A1) ·size(A2)) such that

|A1×A2|= L (A1)×L (A2).

The transducerA1×A2 consists of the transitions((p1, p2),x1,x2,(q1,q2)) for all
transitions(p1,x1,q1) of A1 and(p2,x2,q2) of A2, where we assume that there is
always anε transition from each state to itself – see [Kari et al., 2003] for more
details, where the notation “A1∩E A2” is used instead ofA1×A2.

T1∩T2: is the transducer in standard form that is obtained when we apply the stan-
dard product construction on automata for language intersection on the automata
h−1(T1) andh−1(T2) over the edit alphabetE. The size ofT1∩T2 is O(size(T1) ·
size(T2)). Obviously,|T1∩T2|= |T1|∩ |T2|.

T1∪ε T2: is the transducer in standard form that is obtained when we use a new start
statesand two(ε,ε)-transitions forms to the start states ofT1 andT2. Then

|T1∪ε T2|= |T1|∪ |T2|

andsize(T1∪ε T2) = O(size(T1)+size(T2)).
T1∪T2: is the transducer in standard form that is obtained when we apply the standard

product construction on automata for language union on the automatah−1(T1) and
h−1(T2) over the edit alphabetE. The size ofT1∪T2 is O(size(T1) ·size(T2)). Obvi-
ously,|T1∪T2|= |T1|∪ |T2|. The advantage of this construction overT1∪ε T2 is that
the automatonh−1(T1∪T2) is a DFA when both ofh−1(T1) andh−1(T2) are DFAs.

T2◦T1: is the transducer in standard form that is obtained when we apply the
standard product construction on transducers for transduction composition (see
[Mohri, 2003]), hence,

|T2◦T1|= |T2| ◦ |T1| .

Again, the size ofT2◦T1 is O(size(T1) ·size(T2)). The transducerT2◦T1 consists of
the transitions((p1, p2),x,z,(q1,q2)), for all pairs of transitions(p1,x,y,q1) in T1

and(p2,y,z,q2) in T2 andy in Y∪{ε}.
T1: is the transducerh(det(h−1(T1))) such that

|T1|= |T1| .

If h−1(T1) is an NFA then the size ofT1 could be exponential with respect to the
size ofT1. On the other hand, ifh−1(T1) is a DFA then the size ofT1 is O(size(T1)).
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Example 2.In Fig.2 we are given two automataA1 and A2, A1 accepting all words
which in binary have an odd value andA2 accepting all words which have an even
length. Following the above construction we obtain a saturated transducer forA1×A2.

1,11,0

A1×A2

0

x1

A2A1

x
1010

10

(0,x),(ε,x)

(1,ε)

(0,x)

(0,x)

(1,x)

(0,x),(ε,x)
(0,ε)

0,0 0,1

(1,x)

(0,ε) (0,ε)(1,ε)(1,ε)

(0,ε)

(1,ε)

(1,x),(ε,x)

(1,x),(ε,x)

Fig. 2. The saturated transducerA1×A2.

Lemma 1. If T1 andT2 are saturated transducers thenT1∩T2, T1∪T2, T1∪ε T2, T2◦T1

andT1 are saturated.

Proof. We prove only thatT2◦T1 is saturated. The rest is left to the reader.
We need to show that for any pair(x,z) in |T2 ◦T1| and for any edit stringe with

h(e) = (x,z), it is the case thate is in ‖T2◦T1‖. Suppose that

e= (x1/z1) · · ·(xn/zn),

where each(xi/zi) is an edit operation. There is a computationc′ of T2◦T1 such that||c′||
is some edit string(x′1/z′1) · · ·(x′m/z′m) andh(||c′||) = (x,z). By the definition ofT2◦T1,
there are successful computationsc′1 andc′2 of T1 andT2, respectively, such that the
edit strings||c′1|| and||c′2|| are of the form(x′1/y′1) · · ·(x′m/y′m) and(y′1/z′1) · · ·(y′m/z′m),
respectively. Lety be the wordy′1 · · ·y′n. We continue by distinguishing two cases.

Firstly, suppose thatm≤ n. Let y j = y′j for j ≤m, andy j = ε for j = m+1, . . . ,n.
Consider the edit strings

e1 = (x1/y1) · · ·(xn/yn) ande2 = (y1/z1) · · ·(yn/zn).
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As T1 andT2 are saturated, andh(e1) = (x,y) andh(e2) = (y,z), there are successful
computationsc1 andc2 of T1 andT2, respectively, such that||c1|| = e1 and||c2|| = e2.
Then, by definition of the transducerT2◦T1, there is a computationc of this transducer
such that||c||= e, as required.

Secondly, suppose thatm> n. The proof of this case is similar to the first one and
is left to the reader. ut
Example 3.Let τ1, τ2 be transductions given by

τ1 = {(u,v)/]2u is odd,v∈ {a}∗},
τ2 = {(u,v)/u∈ {a}∗, ]2v is even}

where by]2u we understand the value ofu as a binary number. The first two saturated
transducers in Fig.3 realize them. Then, using the above construction we obtain a satu-
rated transducer(shown also in Figure 3) which realizes the transduction

{(u,v)/]2u is odd, and]2v is even} ,

which is their composition.

(0,ε),

(0,1),(ε,1)

(0,0),(ε,0)

(a,0),(ε,0),(a,ε)(0,a),(0,ε),(ε,a) (1,a),(1,ε),(ε,a)

(1,a),(1,ε)

(0,a),(0,ε)

10

(a,0),(ε,0)

(a,1),(ε,1)

(a,1),(ε,1),(a,ε)

10

0,0 0,1

1,11,0

(0,0)

τ2◦ τ1:

τ2 :τ1 :

(ε,0)
(1,ε),
(1,0),

(1,ε),
(1,1),

(ε,1)

(0,0)

(1,1) (0,1)

(1,0)

(1,1),(ε,1)

(1,0),(ε,0)

(0,1)
(0,ε),

(1,1)
(1,ε),(1,ε),

(1,0)

(ε,1),
(1,ε)

(0,1),

(ε,0)
(0,0)
(0,ε),

Fig. 3. Composition of saturated transducers.

A natural question that arises here is whether saturated transductions are closed
under the Kleene-star operation and concatenation. The first operation is discussed in
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the next section. For the second one consider two transducersT1 andT2 and the stan-
dard construction that connects each final state ofT1 with the start state ofT2 using an
(ε,ε)-transition, such that the new transducer realizes|T1| · |T2|. Unfortunately, how-
ever, this transducer is not necessarily saturated when bothT1 andT2 are saturated. For
example, if we connect a saturated transducer for{(a,ab)} with a saturated transducer
for {(ab,b)}, we obtain a transducerT such thath(T) does not accept the edit string
(a/a)(a/b)(b/b) – henceT is not saturated. A new construction for saturated transduc-
ers for the concatenation operation is presented in the following.

For any two edit stringsf andg of the form

f = (x1/ε) · · ·(xn/ε) andg = (ε/y1) · · ·(ε/yn),

where eachxi is in X∪{ε} and eachyi is in Y∪{ε}, we define theleft andright
merge operations ‘/’ and ‘.’ such that

f /g = g. f = (x1/y1) · · ·(xn/yn).

Lemma 2. 1. For any edit stringsf and g of the form shown above, we have that
h( f /g) = h(g. f ) = h( f g). Also,(ε/ε) = (ε/ε)/ (ε/ε) = (ε/ε). (ε/ε).

2. If τ1 andτ2 are transductions ande is any edit string withh(e) ∈ τ1 · τ2, thene
can be written ase1e2e3 such thate2 is of the formf2 /g2, or f2 .g2, andh(e1 f2) ∈ τ1

andh(g2e3) ∈ τ2.

Proof. The first statement follows easily from the definition of the operations/ and..
For the second statement, first note that there are(x1,y1) in τ1 and(x2,y2) in τ2 such
thath(e) = (x1x2,y1y2). Notation wise, ifα = (u,v) is a pair of words, then we denote
π1(α) = u andπ2(α) = v. We distinguish the following factors ofe:

- Let e1 be the shortest prefix ofesuch that eitherx1 = π1(h(e1)), or y1 = π2(h(e1)).
- Let e2 be the edit string such thate1e2 is the shortest prefix ofe such that either

y1 = π2(h(e1e2)), or x1 = π1(h(e1)), respectively.
- Finally, lete3 be such thate= e1e2e3.

By looking in detail at the edit operations comprisinge, one can verify that there are edit
strings f2 andg2 such thate2 = f2 . g2, or e2 = f2 / g2, respectively, andh(e1 f2) ∈ τ1

andh(g2e3) ∈ τ2, as required. ut
Construction of T1 ·T2:

input: Two saturated transducersT1 = (Q1,X1,Y1,∆1,s1,F1) and T2 =
(Q2,X2,Y2,∆2,s2,F2) in standard form. We shall assume thatT1 is already trim,
that is, each state can be reached froms1 and can reach a final state inF1.

step 1: Let U10 be the set of statesp1 in Q1 such that there is a successful compu-
tation ofT1, from p1, with label(ε,v), for somev in Y∗1 . LetU01 be the set of statesq1

in Q1 such that there is a successful computation ofT1, from q1, with label(u,ε), for
someu in X∗1 .

step 2: Define the setQ consisting of the following states.
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• All statesr1 in Q1. Such anr1 means that the automatonh−1(T1 ·T2) corresponding
to the intended transducerT1 ·T2 has read an edit stringe which is also the label
of some computation ofh−1(T1) from s1 to r1. This implies that, at stater1, the
machineT1 ·T2 has read some label(x′1,y

′
1) for which there is(x1,y1) in |T1| with

x′1 andy′1 being prefixes ofx1 andy1, respectively.
• All states(q1,q2,01) with q1 ∈U01 andq2 ∈ Q2. Such a state means thath−1(T1 ·

T2) has read an edit stringe1e2 such thate2 is of the form f2 / g2 and there is a
computation ofh−1(T1) from s1 to q1 with labele1 f2, and a computation ofh−1(T2)
from s2 to q2 with labelg2. This implies that, at state(q1,q2,01), T1 ·T2 has read
some label of the form(x′1,y1y′2) for whichx′1 is a prefix of somex1 with (x1,y1) ∈
|T1| andy′2 is a prefix of somey2, with (x2,y2) in |T2| for somex2. The “flag” 01
above reminds us thatT1 ·T2 has completed reading only the second component of
(x1,y1) and that no part ofx2 can be read before completingx1.

• All states(p1, p2,10) with p1 ∈U10 andp2 ∈Q2. Such a state means thath−1(T1 ·
T2) has read an edit stringe1e2 such thate2 is of the form f2 . g2 and there is a
computation ofh−1(T1) from s1 to p1 with labele1 f2, and a computation ofh−1(T2)
from s2 to p2 with labelg2. This implies that, at state(p1, p2,10), T1 ·T2 has read
some label of the form(x1x′2,y

′
1) for whichy′1 is a prefix of somey1 with (x1,y1) ∈

|T1| andx′2 is a prefix of somex2, with (x2,y2) in |T2| for somey2.
• All statesr2 in Q2. Such anr2 means thath−1(T1 ·T2) has read an edit stringe1e2e3

such thate2 is of the form f2 .g2, or f2 /g2, and there is a computation ofh−1(T1)
from s1 to F1 with label e1 f2, and a computation ofh−1(T2) from s2 to r2 with
label g2e3. This implies that, at stater2, T1 ·T2 has read some label of the form
(x1x′2,y1y′2) for which (x1,y1) is in |T1| and there is(x2,y2) in |T2| such thatx′2 and
y′2 are prefixes ofx2 andy2, respectively.

step 3: Define the set∆ consisting of the transitions ofT1 ·T2 in such a way that the
meaning of the states inQ is preserved. More specifically we have that∆ consists of
the following transitions.

• All transitions in∆1.
• All transitions of the forms 〈p1,ε,ε,(p1,s2,10)〉, with p1 in U10, and
〈q1,ε,ε,(q1,s2,01)〉, with q1 in U01

• All transitions of the form 〈(p1, p2,10),a,b,(p′1, p′2,10)〉, with p1, p′1 ∈ U10,
p2, p′2 ∈Q2, and(p1,ε,b, p′1) in ∆1, and(p2,a,ε, p′2) ∈ ∆2.

• All transitions of the form〈(q1,q2,01),a,b,(q′1,q
′
2,01)〉, with q1,q′1 ∈U01, q2,q′2 ∈

Q2, and(q1,a,ε,q′1) in ∆1, and(q2,ε,b,q′2) ∈ ∆2.
• All transitions of the forms〈(p1, p2,10),ε,ε, p2〉, with p1 in F1 and p2 ∈ Q2, and
〈(q1,q2,01),ε,ε,q2〉, with q1 in F1 andq2 in Q2.

• All transitions in∆2.

output: The transducerT1 ·T2 = (Q,X1∪X2,Y1∪Y2,∆ ,s1,F2).

Theorem 1. For any saturated transducersT1 andT2, the transducerT1 ·T2 is saturated
and realizes the transduction|T1| · |T2|. Moreover,size(T1 ·T2) = O(size(T1) ·size(T2)).
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Proof. The statement about the size ofT1 ·T2 follows easily from its construction. For
the first statement, it is sufficient to prove that|T1 ·T2| ⊆ |T1| · |T2| and that, for any edit
stringe with h(e) ∈ |T1| · |T2|, we have thate∈ h−1(T1 ·T2). Let (x,y) be any element
in |T1 ·T2|. There is a computation ofT1 ·T2 with label(x,y) and a corresponding com-
putation ofh−1(T1 ·T2) with some labele, with h(e) = (x,y). By the definition of the
final states ofT1 ·T2, e is of the forme1e2e3 with e2 = f2 /g2 – the casee2 = f2 .g2 is
symmetric – andh−1(T1) acceptse1 f2, andh−1(T2) acceptsg2e3. This implies that

(x,y) = h(e1)h( f2g2)h(e3) = h(e1 f2)h(g2e3) ∈ |T1| · |T2|.

Now consider any edit stringe such thath(e) ∈ |T1| · |T2|. We shall use the notation
in the preceding construction. The stringe can be written ase1e2e3 such thate2 is of
the form f2 /g2 – the casef2 .g2 is symmetric – andh(e1 f2) ∈ |T1| andh(g2e3) ∈ |T2|.
This implies that there is a computation ofh−1(T1) from s1 to someq1 ∈ U01 with
label e1, and a computation ofh−1(T1) from q1 to some stateq′1 ∈U01 with label f2.
Moreover there is a computation ofh−1(T2) from s2 to someq2 ∈ Q2 with label g2,
and a computation ofh−1(T2) from q2 to some stateq′2 ∈ F2 with label e3. Using the
transitions ofT1 ·T2 one can verify that there is a successful computation ofh−1(T1 ·T2)
with labele1e2e3, as required. ut

We close this section by noting that the construction ofT1 ·T2 can be carried out in
time O(size(T1) ·size(T2)). This is clear in steps 2 and 3. In Step 3, the computation of
U10 can be done in timeO(size(T1)) as follows. LetG1 be the (directed) graph obtained
by adding in the graph ofT1 a new stateN and(ε,ε)-transitions from all final states of
T1 to N. Consider the graphG2 obtained if we keep only the transitions ofG1 of the
form (ε,a) and reverse the direction of these transitions. Then the setU01 consists of all
the states inG2, other thanN, that can be reached from the stateN. This traversal can
be performed in time linear with respect to the size ofG2. The computation ofU01 is
analogous.

4 Saturation and Recognizability

Let us recall a few facts mentioned in the preliminaries of this paper. We know that
a recognizable subset ofX∗×Y∗ is rational, therefore there exists a finite transducer
which realizes it. The opposite does not hold: there exist quite simple rational trans-
ductions which are not recognizable, for example the identity overX∗. We also know
a characterization of recognizable transductions as finite unions of blocks. There exist
another two definitions of recognizable sets in arbitrary monoids: a morphism based
definition (see for example [Pin, 1997]) and a definition based on monoid actions on
finite sets(for an extensive discussion on the topic, consult [Sakarovitch, 2003, §II.2]).
We recall here the later one.

Let Q be a finite set and(M, ·,1M) an arbitrary monoid. Anaction of M on
Q is a function f : M×Q→ Q which satisfy the following two properties:f (q,1M) =
q and f ( f (q,m),m′) = f (q,mm′), for all q ∈ Q andm,m′ ∈ M. A subsetD of M is
recognizable if there exists such finite setQ and actionf , and there existsF ⊆ Q and
q∈Q such thatD = {m∈M/ f (q,m) ∈ F}.
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In this section we give a fourth characterization of recognizable transductions by
proving that the appropriate machines which realize them are saturated transducers.
We start by giving two useful constructions.

Construction #1

input: We are given a saturated transducerT, which we put in standard form, if
it is not already.

step 1: We construct the finite automatonh−1(T) by interpreting the labels
of transitions ofT as edit operation symbols. The automatonh−1(T) is over the
alphabetE (and has been described in details at the beginning of Section 3).

step 2: We determinize and minimize the automatonh−1(T), obtaining a
minimal, complete DFAB. DenoteB = (Q,E,δ ,q0,F).

step 3: For each stateq of B we construct a corresponding automatonCq as
following:
(a) Cq has the same set of states asB, the same initial state, and it has{q} as the

set of final states;
(b) for each transition inB of type(p,(a/ε), p′) with a∈ X we assign a transition

(p,a, p′) in Cq.

step 4: For each stateq of B we construct a corresponding automatonDq as
following:
(a) Dq has the same set of states asB, the same set of final states, and it hasq as

initial state;
(b) for each transition inB of type(p,(ε/b), p′) with b∈Y we assign a transition

(p,b, p′) in Dq.

output: Let Q′ := {q∈Q/L (Cq) 6= /0 andL (Dq) 6= /0}. The algorithm ends by
delivering{Cq,Dq}q∈Q′ .

Lemma 3. The above construction ensures the following properties:

(i) | T |= ⋃
q∈Q′ L (Cq)×L (Dq) .

(ii) The languages{L (Cq)}q∈Q′ are disjoint. The languages{L (Dq)}q∈Q′ are dis-
tinct.

(iii) The transition function of the automatonh(B) can be extended to a monoid action
of X∗×Y∗ onQ.

(iv) If h−1(T) is deterministic then

∑
q∈Q′

(size(Cq)+size(Dq)) = O(size(T)2) .

Proof. We analyze each step of the above construction. The automatonh−1(T) found
in step 1 has the following property:
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∀e∈L (h−1(T)), ∀e′ ∈ E∗ : h(e′) = h(e)⇒ e′ ∈L (h−1(T)) , (1)

given by the saturation ofT. In other words, ifh−1(T) accepts some edit stringe, it will
necessarily accept all edit strings which express the same word transformation ase. In
algebraic terms, we say that the congruence induced byh – let us call it≡h – saturates
L (h−1(T)) .

SinceB found atstep 2 is the minimization ofh−1(T), it will preserve the above
property. The automatonB has the following additional property:

∀e,e′ ∈ E∗ : h(e) = h(e′)⇒ δ (q0,e) = δ (q0,e
′) ,

in other words:
≡h ⊆ ≡L (B) , (2)

where by≡L (B) we denoted the Myhill-Nerode equivalence ofL (B). We justify this
property as following:
Let h(e) = h(e′) and denotep = δ (q0,e) andq = δ (q0,e′). Assume by contradiction
that p 6= q. Then, sinceB is minimal, it follows that there existse′′ ∈ E∗ such that
δ (p,e′′) is a final state inB andδ (q,e′′) is not. But then,ee′′ ∈ L and is easy to see that
h(ee′′) = h(e′e′′). By the property expressed in relation (1) we infer thate′e′′ must be
accepted - a contradiction.

Let a pair of words(u,v)∈X∗×Y∗ be accepted by the given transducerT. Consider
that u = u1u2...um, v = v1v2...vn, with u1, ...,um ∈ X andv1, ...,vn ∈ Y. An edit string
which transformsu into v is

e= (u1/ε)...(um/ε)(ε/v1)...(ε/vn) ,

and denotee= e1e2, with e1 = (u1/ε)...(um/ε). Since(u,v) ∈| T |, we have thate∈
L (B), henceδ (q0,e1e2) ∈ F in B. Denoteq = δ (q0,e1) and observe thatu∈L (Cq)
andv∈L (Dq). Since the reciprocal also holds, we have that

(u,v) ∈| T |⇔ u∈Cq andv∈ Dq for someq∈Q ,

which proves Property(i) of the lemma.
By the fact thatB is deterministic, it follows that{Cq}q∈Q are disjoint. For the

second part of Property(ii), we use yet another property of the automatonB, that is,

∀q∈Q,∀e,e′ ∈ E∗ such thath(e) = h(e′) : δ (q,e) ∈ F ⇒ δ (q,e′) ∈ F , (3)

which can easily be verified (invoking the saturation ofT). SinceB is minimal, and
by the above property, we conclude thatL (Dp) 6= L (Dq) for any two distinct states
p,q∈Q, as long as eitherL (Dp) or L (Dq) is not empty. This completes the proof of
Property(ii).

Let us consider the transducerh(B), which is obtained fromB by replacing the
transition labels(symbols) of the formx/y with the corresponding pairs(x,y). Clearly,
| T |=| h(B) |. If we denotef to be the transition function ofh(B) (it is a partial function
due to the determinism ofB) it is enough to show that we can extendf to X∗×Y∗ such
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that it verifies the properties of an action. For any(u,v) ∈ X∗×Y∗, let eu,v be a chosen
edit string such thath(eu,v) = (u,v). We setf (p,(u,v)) := δ (p,eu,v) and f (p,(ε,ε)) :=
p, for all states inQ. It can readily be checked that the definition is independent of the
choice ofeu,v, that is, f is a function

f : (X∗×Y∗)×Q→Q ,

and that

1. f (p,(ε,ε)) = p,∀p∈Q ,
2. f ( f (p1,(u1,v1)),(u2,v2)) = f (p,(u1u2,v1v2)) .

Finally we have that(u,v) ∈| T |⇔ f (p0,(u,v)) is a final state inh(B) (wherep0 is the
initial state ofh(B)). ut

Remark 2.Notice that Property (i) of the above lemma does not depend on the minimal-
ity and completeness ofB. Indeed, if we eliminatestep 2 of the above construction,
and we considerh−1(T) instead ofB in the subsequent steps, we would still obtain
Property (i) of the lemma.

Corollary 1.
Sat(X∗×Y∗)⊆ Rec(X∗×Y∗) .

Proof. By Mezei’s characterization of recognizable transductions, we observe that the
transduction realized by a saturated transducer is a finite union of blocks, hence it is
recognizable. ut

We now turn our attention to a possible reciprocal of the above corollary, and we
are aiming, as usual, at a constructive proof.

Construction #2

input: We have a transductionτ ∈ Rec(X∗ ×Y∗) effectively given as a tuple
(A1,B1, ...,An,Bn) of finite automata. That is, we know that

τ =
n⋃

i=1

L (Ai)×L (Bi) .

step 1: For eachi ∈ {1, ...,n} we construct a saturated transducerTi such that
| Ti |= L (Ai)×L (Bi) (the construction has been presented in
Section 3).

step2: Since allTi are saturated, we construct inn−1 iterations the transducer
T∪ = T1∪ε ...∪ε Tn which realizes the transduction| T1 | ∪...∪ | Tn | (this construc-
tion has also been presented in Section 3).

output: The algorithm deliversT∪.

15



Lemma 4. The above construction ensures that

| T∪ |= τ .

Moreover,T∪ is saturated andsize(T∪) = ∑n
i=1(size(Ai) ·size(Bi)).

Proof. The correctness and finiteness of each step has been proven in Lemma 1.ut
Corollary 2.

Rec(X∗×Y∗)⊆ Sat(X∗×Y∗) .

Remark 3.This corollary can also be proven, non-constructively, by using the closure
properties of recognizable sets, as following.

Proof. Let τ be a recognizable transduction and consider the edit morphism overX and
Y,

h : E∗→ X∗×Y∗ .

Sinceh is a morphism andτ is recognizable inX∗×Y∗ we have thath−1(τ) is rec-
ognizable inE∗ (by the fact that recognizable sets are closed under inverse morphism).
Then, by Kleene’s theorem we have thath−1(τ) is a regular language, hence there exists
a finite automatonA overE which acceptsh−1(τ). Assume thatA is a complete DFA.
It now suffices to observe that the transducerh(A) is saturated, in standard form, and it
realizesτ. ut

Summing up, we have the following characterization of recognizable transductions.

Theorem 2. A transduction is recognizable if and only if it is realized by a saturated
transducer.

Proof. It is a direct consequence of Corollary 1 and Corollary 2. Notice that the previ-
ous two constructions give a constructive proof of this theorem. ut
Notice carefully a consequence of this result : there exist saturated transducers whose
transition table can not be extended to a monoid action; however, the theorem implies
that even these transducers realize recognizable transductions.

Remark 4.There is an elegant proof for Lemma 3 using Mezei’s theorem. Indeed, ifT1

andT2 are saturated transducers, then by the theorem we have that| T1 | and| T2 | are
recognizable, hence by Mezei’s theorem we have that

| T1 |=
m⋃

i=1

Ai ×Bi and | T2 |=
n⋃

j=1

Cj ×D j ,

where we expressed the transductions as union of blocks. Then it suffices to observe
that

| T1 | ◦ | T2 |=
⋃

1≤i≤m, 1≤ j≤n

Gi, j ,with Gi, j =

{
/0, i f Bi ∩Cj = /0;

Ai ×D j , otherwise.

Consequently,|T1 | ◦ |T2 | is recognizable, therefore realizable by a saturated transducer
T1 ¦T2, which can effectively be constructed. Notice thatT1 ¦T2 may have a structure
different than that ofT2◦T1 which was proposed in Lemma 1.
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Remark 5.We have seen in Theorem 1 that given two saturated transducersT1 andT2,
one can construct a sizeO(size(T1) ·size(T2)) transducerT1 ·T2 which realizes| T1 | · |
T2 |. That construction can stand as an alternative proof that recognizable transductions
are closed under concatenation (the other proof makes use of Mezei’s theorem).

Remark 6.We can now explain why in Section 3 we have not mentioned anything about
the “star” operation on a saturated transducer. The reason is that saturated transductions
are not closed under iteration, as the following classical example shows:{(a,b)} is a
saturated transduction, being finite; however,{(a,b)}∗ is not recognizable, hence can
not be realized by a saturated transducer.

Remark 7.It is worth noticing that, given a finite transducerT over alphabets with at
least two letters, it is undecidable whether there exists a saturated transducer equivalent
with T. Indeed, this follows from the known fact that is undecidable whether a finite
transducer over alphabets with at least two letters realizes a recognizable transduction.

5 Edit Distance and the non-Recognizability of(L×L)6=

Edit strings and edit languages constitute natural tools for dealing with problems related
to the edit distance between words and languages. In this context, the weightweight(e)
of an edit string

e= (x1/y1) · · ·(xn/yn)

is the number of edit operations(xi/yi) in ewith xi 6= yi . For example, the weight of the
edit string f in Section 2 is 2. Then the edit distance between two wordsu andv is the
minimum of the weights of the edit strings transformingu into v, that is,

dist(u,v) = min{weight(e)/e∈ h−1({(u,v)})}.

If we construct automataAu andAv accepting{u} and{v}, respectively, then the sat-
urated transducerAu×Av accepts all edit stringse with e∈ h−1({(u,v)}). Hence, the
quantitydist(u,v) is the weight of the smallest-weight path (computation) in the graph
corresponding toAu×Av – here the weights on the transitions are in{0,1} such that
the weight of a transition(p,(x/y),q) is 1 if and only ifx 6= y. This simple idea can be
generalized for any pair of automataA1 andA2 and for more general types of distances
– see [Mohri, 2003] and [Kari et al., 2003] for details.

The problem of computing the (inner) edit distance of a languageL is more difficult,
however. This quantity is the minimum edit distance between any pair ofdistinctwords
of L. Suppose thatA is an automaton acceptingL. The difficulty here lies in the fact
that the saturated transducerA×A accepts edit stringsecorresponding to pairs of equal
words. Therefore, one would like to have a saturated transducer for the transduction

(L×L)6= = {(u,v)/u,v∈ L andu 6= v}.

Although one can construct an ordinary transducer for this transduction, we show next
that there is no saturated transducer for this transduction, that is,(L×L)6= is not recog-
nizable whenL is infinite. For the sake of completeness we mention that the problem of
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computing the inner edit distance is solved in [Konstantinidis, 2005] by observing that
(i) this quantity is always realized by two words differing at some position bounded by
jA, for some index that depends on the automatonA acceptingL; and (ii) for any index
j, there is a transducerTj (which turns to be saturated, in our terminology) realizing all
pairs of words that differ at positionj.

Given an arbitrary setP, by (P×P)6= we understand the set of all pairs of different
elements ofP. In other words,(P×P)6= = (P×P)\ id(P).

Proposition 1. LetP be an arbitrary, infinite set. The set equation

(P×P)6= =
n⋃

i=1

Xi ×Yi

has no solution(n,{Xi,Yi}n
i=1).

Proof. Assume, by contradiction, that there exists(n,{Xi,Yi}n
i=1) – a solution of the

above equation. Notice first that necessarilyXi ∩Yi = /0 for all i ∈ {1, ...,n}. SinceP is
infinite, there exist2n+1 different elements inP. Denote byU1 := {u1, ...,u2n+1} a set
of such elements.

Consider the tripletU1,X1 andY1. We we can write

U1 = (U1∩X1)∪ (U1∩Y1)∪
(
U1\ (X1∪Y1)

)
,

sinceX1 andY1 are disjoint. Let us assume, without loss of generality that|U1∩X1 |≥|
U1∩Y1 |, and let us denoteU2 := U1\Y1.

We first prove thatU2 has at least2n elements. We have that|U1∩X1 |+ |U1∩Y1 |≤
2n+1 and that|U1∩X1 |≥|U1∩Y1 |. This implies that|U1∩Y1 |≤ 2n, by the fact that
U1∩X1 andU1∩Y1 are disjoint. Then clearly|U1\Y1 |≥ 2n, hence|U2 |≥ 2n. We may
also observe that the pairs of different elements inU2 can not appear inX1×Y1. Indeed,
we can not have(u,v) ∈ X1×Y1 andu,v∈U2, sinceU2 = U1\Y1.

We repeat the above argument for the tripletU2,X2 andY2. We obtain a setU3⊆U1

with |U3 |≥ 2n−1 and no pair of elements inU3 can be found inX2×Y2.
Then, we repeat this argument till we obtainUn+1⊆U2 with |Un+1 |≥ 2 and no pair

of elements inUn+1 can be found inXn×Yn.
Take two different elementsu,v∈Un+1. Since we haveUn+1 ⊆Un ⊆ ... ⊆U1, we

conclude that the pair(u,v) does not belong to anyXi ×Yi , for 1≤ i ≤ n.
But this contradicts the fact thatU1 ⊆ P. ut

Corollary 3. Let L ∈ X∗ be an infinite regular language. The transduction(L× L)6=
can not be realized by a saturated transducer overX.

Proof. In order to have a saturated transducer for(L×L)6=, this set must be recogniz-
able, by Theorem 2. However, Proposition 1 shows that it can not be written as a finite
union of blocks, hence it is not recognizable, by Mezei’s characterization. ut
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6 Final Comments and Future Work

In this paper we have achieved the following. We have revealed the relation between edit
languages, recognizable transductions and saturated transducers. We have shown that
operations with saturated transducers can efficiently be implemented, and we outlined
methods to construct and manipulate saturated transducers. We have shown how one can
use saturated transducers for computing the edit distance between words and languages.
Finally, we have studied situations when our framework can not be used, due to the non-
recognizability of various rational relations.

It is worth noticing that our entire framework still holds when is restricted to the use
of only two edit operations: insertion and deletion (for this case, one defines “restricted
saturated transducers”). This restriction may be of importance in applications where
only these two edit operations are of interest ([Levenshtein, 1966]).

Left for further analysis are a few matters which have not been tackled yet. For ex-
ample, it is worth investigating algorithms to efficiently compute saturated transducers
for given finite transductions; in particular, for finite identities.

It is interesting to notice that the notion of minimal saturated transducer for a recog-
nizable transduction makes sense, since it is given by the minimal corresponding DFA
over the edit alphabet. Size-complexity matters may be investigated in this aspect.

Finally, we have left for study the comparison of two representa-
tions(characterizations) of recognizable transductions: one using saturated transducers
the other using tuples of automata.
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