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Abstract. Recognizable transductions constitute a well known, proper subclass
of rational transductions. To our knowledge, there has been no characterization
of recognizable transductions by a well-defined subclass of transducers. In this
work we observe that there is a connection between recognizable transductions
and languages consisting of edit strings. More specifically, we define a saturated
transducer to be a transducer with the property that, when viewed as an automa-
ton over the edit alphabet, accepts all possible edit strings corresponding to each
accepted pair of words. Our main result gives a constructive proof that the class
of recognizable transductions coincides with the class of saturated transductions.
We also revisit closure properties of recognizable transductions using saturated
transducers and discuss the natural role of these objects in edit distance problems.
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1 Introduction

Recognizable transductions constitute a well known, proper subclass of rational trans-
ductions, the latter being the class of all binary relations of words realized by finite
transducers. A well known characterization of recognizable transductions is given by
Mezei's theorem [Eilenberg, 1974, note at p. 75]. Until now, however, there has been
no characterization of recognizable transductions by a well-defined, special subclass of
transducers. In this work we observe that there is an intimate connection between recog-
nizable transductions and edit languages, that is, languages consisting of edit strings. An
edit string (or string alignment) is a special word consisting of edit operations, and de-
scribes the sequence of changes (substitutions, insertions and deletions of symbols) that
can transform a word into another word. Edit strings can be used to define formally con-
cepts related to distances between words [Sankoff, Kruskal, 1999] and, in fact, recently
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( [Kari, Konstantinidis, 2002], [Mohri, 2003],[Kari et al., 2003] ) there have been sys-
tematic treatments of edit languages (also called e-systems) in the sense of language
theory. In the context of word and language distances, the main difference between a
transduction and an edit language is that the latter describes the exact changes that are
permitted in transforming words to words, whereas the former describes the result of
these transformations.

This paper introduces the concept of saturated transducer and observes that this
concept constitutes a natural point of connection between recognizable transductions
and edit languages. More specifically, a saturated transducer is a transducer with the
property that, for every pair of words it realizes, the transducer, when viewed as an
automaton over the edit alphabet, accepts all possible edit strings transforming the first
word of the pair into the second one. The main result of the paper is that the class of rec-
ognizable transductions coincides with the class of transductions realized by saturated
transducers. We also provide other basic results on saturated transducers and discuss
their use in edit distance problems. In the next paragraph we give a short overview of
our paper.

The paper is organized as follows. In the next section, we provide the formal defi-
nitions about rational transducers, recognizable transductions and edit languages. Sec-
tion 3 introduces saturated transducers and discusses several basic operations on these
objects. These operations can be used to praxatstructiveproofs (by means of satu-
rated transducers) of closure properties of recognizable transductions, such as intersec-
tion, composition and concatenation. Moreover, the descriptional complexity of these
operations can be used to evaluate the time complexity of algorithms utilizing them.
Section 4 contains the main result of the paper about the equivalence of saturated and
recognizable transductions. The proof is constructive in the following sense. Given a
tuple consisting of an even number of finite automata — according to Mezei's theorem
such a tuple specifies a recognizable transduction — there is an effective construction of
a saturated transducer realizing the transduction specified by the tuple. Moreover, there
is a constructive proof for the converse problem. In Section 5 we elaborate on the use of
saturated transducers in problems related to the edit distance of words and languages.
The method here is not new, in the sense that certain examples of saturated transduc-
ers have already been used for such problems, but we believe that the method is better
understood with our systematic study of saturated transducers. Our observations in this
context lead us to the question of whether the transduction consisting of all pairs of
distinct words of some regular language is recognizable. We show that it is not recog-
nizable in the case of infinite languages. Finally, Section 6 contains a few concluding
remarks.

2 Preliminary Notions and Notations

We assume known basic notions of finite automata: DFA (deterministic finite
automaton), NFA (nondeterministic finite automaton) agsxNFA (NFA with &-

transitions) — a review of these terms can be found in [Hopcroft and Ullman, 1979],
[Yu, 1997]. We also assume known the basic notions of semigroup (monoid) the-
ory [Howie, 1976] and of rational and recognizable sets in arbitrary monoids (



[Berstel, 1979], [Eilenberg, 1974] ). We recall that the class of monoids is closed under
cartesian product.

Let (M,-,1m) be a monoid which consists of a carrier Beequipped with a binary
associative operation™and an unit “Ly”. By Rat(M) we denote the family of rational
subsets oM and byRedM) we denote the family of recognizable subsets.

If X andY are finite alphabets (nonempty sets of symbols), we denod*lgnd
Y* their freely generated monoids. Any elementdfor Y* is called aword , i.e., a
finite string of symbols. We denote lgythe word with no symbols, i.ethe empty
word . By X* x Y* we understand the direct product of the monoidsandY*, i.e.,
the monoid of word relations. We will use the terms “word relation” and “transduction”
interchangeably. Notice that this monoid is finitely generated, in the sense that there
exists a finite subsé&s, called a set of generators, such t@at= X* x Y* (indeed, take
G=(Xx{A}HU({A} xY)). Notice also thaK* x Y* is not necessarily a free monoid,
in the sense that it may not exist a set of generators which generate each element of the
monoid in a unique way (for exampl& — above — may generate an element in more
than one way(x,y) = (x,A) - (A,y) = (A,y) - (x,A). As a consequence of McKnight's
theorem ([McKnight, 1964]) we have that

RedX* x Y*) C Rat(X* x Y*) |,

inclusion which is strict in general. For example, the transducti@h b')/i > 0} can
be proven to be rational without being recognizable.

In X* x Y*, recognizable and rational sets may be specified by finite state machines.
For example, each rational transductiois represented by some finite transdutet
(Q,X,Y,A,qo,F), where

1. Qis afinite set of states;

2. A CQx X*xY*xQis afinite set of transitions;

3. gois an initial stateF C Q is a set of final states;

4. asuccessful computation of T is a sequence

C= (quXlaylaql); sevey (Qn—lyxnayna Qn) 9

where(gi—1,%;,VYi,q) € Aforalli € {1,...,n}, andqg, € F. Thelabel of c, denoted
by | c| is the pair of word$x;...Xn,Y1...Yn);
5. 7=|T |={(u,v)/(u,v) =| c|, for some successful computatioh

The alphabekK is sometime called the input alphabet anthe output alphabet. It has
been shown (for example in [Berstel, 1979, 8llI.6, p. 79]) that a transducer with labels in
X* x Y* is equivalent with a transducer having labels onlyXru{e}) x (YU {€e}). We

bring this observation further, by noticing that one can eliminate all “null” transitions,
i.e., transitions of the fornfe, €). However, for the sake of formalism, it is useful to
consider all states having null loops, i.e., we have a transiioa, €, p) for each state

p of the transducer. Then we give the following definition:

Definition 1. A transducer is irstandard form if it has transitions with labels in
(Xu{e}) x (YU{e}) and each state has &g, £)-loop to itself.



Then each rational transduction is realized by a transducer in standard form.

We define thesize of a finite state machin®! in general (hence of a transducer,
in particular), as being the number of all its states together with all its transitions, and
we denote it bysizg M).

In the case of recognizable transductions, one can use Mezei's characterization (as
in [Eilenberg, 1974, 83.12, Prop. 12.2 & note at p. 75]) to represent a transduction
T € RedX* x Y*) by a tuple of finite automat@?;, By, ..., Ay, By) such that

T= Og(m % Z(Bi) |
i=1

where by.Z(A) we understand the language accepted by the automaautomatad;

are overX and automatd; are overY). We say that any recognizable transduction is
a finite union of blocks (a block is a direct product of two regular languages) - see for
example [Sakarovitch, 2003, §11.2, p.272, Corollary 2.20].

As a general observation, not much effort has been spent on the study of finite
machines designed to precisely accept recognizable sets. Our paper addresses this issue
and reveals the close connection between recognizable sets and edit languages — defined
in the following.

LetE be the set consisting of all elements of the fdayie), (¢/b) and(a/b), where
ae€ X andb € Y. We treat the elements & as symbols which denote the so-called
edit operations . deletion, insertion and substitution (for example, the meaning
of operation {a/¢)” is “deletion of a”). Then, byE* we denote the language eflit
strings , i.e., the language of words over the alphabeThe empty edit string over
E will be denoted by(¢/¢).

Edit strings can implement transductions as the following example shows: if
X =Y = {a,b} then each of the following edit strings define the transduction
{(ababab)}:

e= (a/b)(b/a)(a/b)

f = (a/e)(b/b)(a/a)(A/b)

g=(a/e)(b/e)(a/e)(e/b)(e/a)(e/b)
We say that each of the edit strings f and g “transforms the wordaba into the
word bab’. Notation wise, we use the lowercase letter§, g to denote edit strings.

In this paper we are interested in sets of edit strings, i.eedih languages
Such languages are simply subset&bf

3 Saturated Transducers: Definition and Basic Results

The notion of saturated transducer originates in the simple idea that a computation of a
finite transducer in standard form defines both a pair of words and an unique edit string
which transforms a word into another one.



Let X andY be input and output alphabets aBdbe the alphabet of edit opera-
tions overX andY. Across this paper we will frequently refer to the following monoid
homomorphism:

h:E* — X* xY* |

given by:h(e/€) = (g,¢), h(a/e) = (a,€), h(e/b) = (g,b), h(a/b) = (a,b), for all

a€ X andb €Y. Due to its importance to our matter, we name this morphism the
edit morphism  overX andY. It should be clear that for any pair of words, v),
h=1({(u,v)}) consists of all edit strings that transfomninto v.

Let T be a transducer ovet andY, in standard form. By»~%(T) we denote the
finite automaton oveE, obtained fromT by replacing each transition labg{,y) with
the symbol(x/y) € EU{(g/€)}. Thenh~1(T) will be an&-NFA overE.

Conversely, given a finite automatéroverE, by h(A) we understand the transducer
over X andY obtained fromA by replacing each transition labét/y) with the pair
(x,y) € X* xY*, Thenh(A) is in standard form, up to the missiiig, €)-loops for each
state. For easing the formalism we assume that these loops are present afd)tisat
readily in standard form.

In the previous section we have defined what is meant by a successful computation
(and its label) of a transduc@&r= (Q, X,Y,A,qo,F). Let

C= (QO7X17yl7CI1)a ceney (anlv)(mYmQH)

be a successful computationn If the transduceT is in standard form, then all pairs
(%,Yi) can be viewed as edit operations, or null operations, and we can define the edit
string corresponding toas||c|| := (X1/Y1)-.-(Xn/Yn)-

Notice that we havé(||c||) = |c|, whereh is the edit morphism fronX to Y. Then
the transducef defines a transduction

| T |={(u,v)/(u,v) = |c|, wherecis a successful computation T} ,
and an edit language
||T|| = {e€ E"/e=||c||, wherecis a successful computation ir} T,

in other wordg|T|| = . (h~1(T)). In the next definition we use the meaninghads a
monoid morphism.

Definition 2. A transducefT in standard form isaturated  if and only if
h( T =T -

In other words,T is saturated if and only if for any accepted pair of wordsv) €
X*xY*, and for any edit string@ € E* which transformsl into v there exists a successful
computatiorcin T such that|c|| = e.

Notice that the property of saturation can be generalized to arbitrary transducers.
Indeed, lefT be an arbitrary transducer. A successful computatiom &f said to be



admissible if and only if its transitions have labels XU {€}) x (YU {€}). Then
we can define the edit languageTofs being

||T|| = {e€ E"/e=||c||, wherecis an admissible computation ir} T.

From here the definition of a saturated transducer is extended naturally to arbitrary
transducers. Remark that any saturated transducer is equivalent to a saturated transducer
in standard form. Indeed, |&tbe an arbitrary saturated transducer. It suffices to observe
that one can discard all transitions with labels no{XuU {€}) x (Y U {€}) without
changing the transduction realized By

Remark 1.The saturation of a transducer is not a trivial property, since there may exist
a non-saturated transducer in standard form equivalent to a non-saturated transducer, as
the following example shows.

Example 1.Consider the transduction over{0,1} and{a}, which contains all pairs
(u,v) with the value ofu, as a binary word, being odd awdan arbitrary word over
{a}*. Both transducers in Fig.1 are in standard form and reatizewever, only the
transducer in Fig.1 (b) is saturated.

(1¢)
(&) @) (0,¢),(0,a),(c.a) (1,a),(1,¢),(c.a)

(0.¢)

Fig. 1. Equivalent non-saturated and saturated transducers.

We say that a transduction ovérandy is saturated if and only if there exists a saturated
transducefl such thatr =| T |. We denote by

Sa(X* x Y*)

the family of saturated transductions. Then cle&a( X* x Y*) C Rat(X* x Y*).

In this section we are interested in basic operations on saturated transducers with
the aim of providingconstructiveproofs for the closure properties of saturated trans-
ductions. As it turns out, many known operations on ordinary automata and transducers
result in saturated transducers with no extra effort when applied on saturated transduc-
ers. For example, the standard product constructions on finite automata, possibly with



¢ transitions, for union and intersection would result in saturated transducers when ap-
plied on saturated transducers. The same happens in the case of the product construction
for the composition of transducers.

In the following operations, the operands and A, are arbitrary finite automata,
possibly withe transitions (unless specified otherwise), and the opergndsdT, are
arbitrary finite transducers in standard form.

det(A1): is the automaton obtained by determinization and completidq of

A1 , whereA, is a DFA: the DFA that results when we compléteand change its non-
final states to final, and viceversa. It is well known tAataccepts the complement
of the language accepted By and thaisizg/A;) = O(sizgA1)).

A1 x Ap: is a saturated transducer of si2ésizg(Aq) - sizg/Ay)) such that

AL X Ag| = (A1) x L (Po).

The transduceA; x A, consists of the transitiong p1, p2), X1, X2, (41, 02)) for all
transitions(pz,Xs,q1) of A; and(py,x2,qp) of Ay, where we assume that there is
always ane transition from each state to itself — see [Kari et al., 2003] for more
details, where the notatiord] Ng A" is used instead of\; x Ao.

T1NT,: is the transducer in standard form that is obtained when we apply the stan-
dard product construction on automata for language intersection on the automata
h=1(T;) andh~1(T,) over the edit alphabe&. The size ofT; N T, is O(sizgTy) -
sizgT,)). Obviously,|T1 N Tz| = |T1| N T2|.

T, U, T2: is the transducer in standard form that is obtained when we use a new start
states and two(e, €)-transitions fornms to the start states @k andT,. Then

|T1 Ug T2| = |T1| U ‘Tz‘

andsize(Tl Ug T2) = O(SiZdTl) + SiZde)).

T1UTs: is the transducer in standard form that is obtained when we apply the standard
product construction on automata for language union on the autdm&(@ ) and
h=1(T,) over the edit alphabd. The size off; UT, is O(siz&(T1) - sizgT2)). Obvi-
ously,|T1UT,| = |T1|U|T2|. The advantage of this construction oWetJ, T, is that
the automatom~(T; UT,) is a DFA when both oh~1(T;) andh~%(T;) are DFAs.

T,0Ty: is the transducer in standard form that is obtained when we apply the
standard product construction on transducers for transduction composition (see
[Mohri, 2003]), hence,

[TooTi| = T2l o|Ta| -

Again, the size o, 0 Ty is O(sizgTy) - sizgTy)). The transducer, o T; consists of
the transitiong(p1, P2), %,z (q1,02)), for all pairs of transitiongps, x,y, 1) in Ty
and(pz,y,z,gz) in T andyin Y U{e}.

Ty: is the transducdn(deth—1(Ty))) such that

Tal=Ta| .

If h=1(Ty) is an NFA then the size dF; could be exponential with respect to the
size ofT;. On the other hand, Hi~%(Ty) is a DFA then the size dF; is O(sizgTy)).



Example 2.In Fig.2 we are given two automaty and Ay, A; accepting all words
which in binary have an odd value a®Wg accepting all words which have an even
length. Following the above construction we obtain a saturated transdudgrfoh,.

0 1
() _¢® () .
20 )
\_/
0
At (0%, (£,%) A
08 () (0.¢)
(0,€) (0,¢)
(Le)

(1,x), (g,x)

Al XA2

Fig. 2. The saturated transduchy x As.

Lemma 1. If T andT, are saturated transducers th8aN Ty, TIU Ty, TiUg Tp, Too Ty
and T are saturated.

Proof. We prove only thafl; o Ty is saturated. The rest is left to the reader.
We need to show that for any pdi,z) in | T, o T1| and for any edit string with
h(e) = (x,2), itis the case thatis in || T o T1||. Suppose that

e=(x1/z1) - (Xn/zn),

where eaclix /z) is an edit operation. There is a computatibof T,o T; such that|c/||

is some edit stringx; /) - - - (Xn/Zy) andh(||c'||) = (x,2). By the definition ofT; 0 Ty,

there are successful computatiarjsand ¢, of T; and T, respectively, such that the

edit strings||c;|| and||c} | are of the form(x,/y,) -~ (Xn/Yi) ANA(Y/Z4) -~ (Yin/Zu).

respectively. Ley be the wordy, - - -y,. We continue by distinguishing two cases.
Firstly, suppose thah < n. Lety; = yj for j <m,andy; =¢forj=m+1,....n

Consider the edit strings

&1 = (X1/y1) - (Xn/¥Yn) @andez = (y1/z1) - (Yn/Zn).



As T; and T, are saturated, arlle;) = (x,y) andh(ey) = (y,z), there are successful
computations; andc; of T; andT,, respectively, such thélc, || = e and||c;|| = e.
Then, by definition of the transduc&so Ty, there is a computationof this transducer
such that|c|| = e, as required.

Secondly, suppose that > n. The proof of this case is similar to the first one and
is left to the reader. a

Example 3.Let 11, T2 be transductions given by

11 = {(u,v)/f2uis odd,v € {a}*},
72 = {(u,v)/u e {a}* fovis evert

where byfou we understand the value ofas a binary number. The first two saturated
transducers in Fig.3 realize them. Then, using the above construction we obtain a satu-
rated transducer(shown also in Figure 3) which realizes the transduction

{(u,v)/f2uis odd, andipv is ever} ,

which is their composition.

T2 .

(81),(8,2):(a,¢)

Fig. 3. Composition of saturated transducers.

A natural question that arises here is whether saturated transductions are closed
under the Kleene-star operation and concatenation. The first operation is discussed in



the next section. For the second one consider two transdilicersd T, and the stan-
dard construction that connects each final staf§ afith the start state of, using an
(g,€)-transition, such that the new transducer realides- |T2|. Unfortunately, how-
ever, this transducer is not necessarily saturated whenTha@hdT, are saturated. For
example, if we connect a saturated transducef farab)} with a saturated transducer
for {(ab,b)}, we obtain a transducér such thath(T) does not accept the edit string
(a/a)(a/b)(b/b) — henceT is not saturated. A new construction for saturated transduc-
ers for the concatenation operation is presented in the following.

For any two edit string$ andg of the form

f=(xi/€)---(xn/€) andg = (/y1) --- (&/¥n),

where eachx; is in XU {e} and eacly; is in Y U{¢}, we define thdeft andright
merge operations<’ and ‘>’ such that

fag=g>f=(x1/y1) - (Xn/Yn)-

Lemma 2. 1. For any edit stringsf and g of the form shown above, we have that
h(f<g) =h(gef) =h(fg). Also,(e/e) = (¢/€)<(g/e) = (¢/€)>(g/€).

2. If 11 and 1, are transductions ane is any edit string withh(e) € 11 - 1, thene
can be written ag;e,e3 such thate; is of the formfy < gy, or f2>0p, andh(e; fz) € 11
andh(gzes) € 12.

Proof. The first statement follows easily from the definition of the operatioasd>.
For the second statement, first note that there(arg/1) in 71 and(Xg,y2) in 72 such
thath(e) = (x1x2,y1y2). Notation wise, ifa = (u,v) is a pair of words, then we denote
m(a) =uandrp(a) = v. We distinguish the following factors &f

- Lete be the shortest prefix @such that eithex; = r(h(ey)), ory:s = e(h(ey)).

- Let & be the edit string such thate, is the shortest prefix o such that either
y1 = 1e(h(e1&2)), orx; = ra(h(ey)), respectively.

- Finally, letes be such thae = e;e€3.

By looking in detail at the edit operations comprisg@ne can verify that there are edit
strings f, andgy such thak, = f,1> gy, or e, = f, a0y, respectively, anth(e; f) € 11
andh(gye3) € 1o, as required. O

Construction of Ty To:

input: Two saturated transducerdy = (Q1,X1,Y1,41,5,F) and T, =
(Q2,X2,Y2,42,%,F) in standard form. We shall assume that is already trim,
that is, each state can be reached fgrand can reach a final stateFq.

step 1: LetUqg be the set of stateg; in Q; such that there is a successful compu-
tation of Ty, from py, with label(¢,v), for somevin Y;". LetUg; be the set of stateg

in Qp such that there is a successful computatio:offrom g, with label(u, ), for
someu in X;.

step 2: Define the se@ consisting of the following states.

10



e All statesr; in Q1. Such arr; means that the automatbnl(Tl'Tz) corresponding
to the intended transducéi - T, has read an edit stringwhich is also the label
of some computation d1’r1(T1) from s; to rp. This implies that, at state, the
machineT; - T, has read some labék],y;) for which there is(x1,y1) in |Ty| with
x; andy; being prefixes ok; andyi, respectively.

e All states(qy,gp,01) with g; € Upy andgp € Q. Such a state means that?(T; -
T,) has read an edit stringie; such thate, is of the form f, < g and there is a
computation ofrl(Tl) from s; to g1 with labele; f2, and a computation Wl(Tz)
from s, to g with labelgy. This implies that, at stat@;, g»,01), T - T» has read
some label of the fornix},y1y,) for whichx is a prefix of some with (x1,y1) €
|T1| andy, is a prefix of somey,, with (x2,y2) in |To| for somex,. The “flag” 01
above reminds us thdi - T, has completed reading only the second component of
(x1,y1) and that no part aof, can be read before completing

e All states(py, p2,10) with p; € Ujg andp; € Q.. Such a state means that*(T; -
T,) has read an edit stringie, such thate, is of the form f,> g, and there is a
computation oh‘l(Tl) from s; to p; with labele; f2, and a computation dff‘l(Tz)
from s, to pp with labelgy. This implies that, at statéps, p2, 10), T1 - To has read
some label of the fornix;x,,y, ) for whichy, is a prefix of some; with (xq,y1) €
|T1] andx;, is a prefix of somexy, with (x2,y2) in |T2| for someys.

e All statesr, in Q. Such arr, means thaln‘l(Tl -T) has read an edit strirg eyes
such that; is of the formf, 1> gy, or fo<gp, and there is a computation bfl(Tl)
from s; to F1 with label e; f>, and a computation dfrl(Tz) from s, to ro with
label goe3. This implies that, at statey, T1 - T, has read some label of the form
(X1%5, y1Y5) for which (x1,y1) is in [Ti| and there igxo,y») in | T2| such thai, and
Y, are prefixes ok, andy,, respectively.

step 3: Define the sefA consisting of the transitions @t - T» in such a way that the
meaning of the states i@ is preserved. More specifically we have tiatonsists of
the following transitions.

e All transitions inA;.

e All transitions of the forms (ps,¢,¢,(p1,5,10)), with p; in U, and
(01, €, €,(q1,52,01)), with gz in Upy

e All transitions of the form((py, p2,10),a,b, (p}, p5,10)), with p1,p; € Ui,
P2, Pb € Q2, and(py, €,b, p}) in A1, and(p2,a, €, p) € As.

e Alltransitions of the form((q1,92,01),a,b, (¢;,05,01)), with g1, € Ug1, G2, €
Q2, and(qu,a,€,q;) in Ay, and(0p, €,b, ) € A».

e All transitions of the forms(p1, p2,10), €, €, p2), with p1 in F1 andpz € Qz, and
((01,02,01), ¢, €,02), with g1 in F; andgp in Qo.

e All transitions inA,.

output:  The transducefy - T, = (Q, X1 U X2, Y1 U Y2, A 51, ).

Theorem 1. For any saturated transducefig and T, the transduceT; - T, is saturated
and realizes the transductidiiy | - | T2|. MoreoversizgT; - To) = O(sizgTy) - Sizeg(T2)).

11



Proof. The statement about the sizeTaf- T, follows easily from its construction. For
the first statement, it is sufficient to prove thi&t- To| C |T1|- |T2| and that, for any edit
stringe with h(e) € |Ty|-|T2|, we have thae € h=(T; - T,). Let (x,y) be any element
in |T1 - T2|. There is a computation &% - T, with label (x,y) and a corresponding com-
putation ofh~1(T; - T,) with some labek, with h(e) = (x,y). By the definition of the
final states off; - T, e is of the forme;e,e3 with e, = fo <@y — the case, = far- gy is
symmetric — andh—1(Ty) acceptse; f, andh~1(T,) acceptsyes. This implies that

(x,y) = h(e1)h(f202)h(es) = h(e1 f2)h(gz63) € [Ta| - [ T2|.

Now consider any edit stringsuch that(e) € |T1| - |T2|. We shall use the notation
in the preceding construction. The striagan be written ag;exes such thate, is of
the form f, < g, — the casez > gy is symmetric — andh(e; f2) € |T1| andh(gzes) € |To|.
This implies that there is a computation Icm‘l(Tl) from s, to someq; € Upz with
labele;, and a computation di~1(Ty) from ¢, to some state]; € Upy with label f5.
Moreover there is a computation bf1(T,) from s, to someq, € Q, with label gy,
and a computation di~1(T,) from g to some state), € F, with label e3. Using the
transitions ofT; - T, one can verify that there is a successful computatidm‘éle -To)
with labele;ee3, as required. a

We close this section by noting that the constructioiofT, can be carried out in
time O(sizgT1) - sizg(T»)). This is clear in steps 2 and 3. In Step 3, the computation of
Uio can be done in tim®(sizgT;)) as follows. LetG; be the (directed) graph obtained
by adding in the graph oF; a new statd\ and (¢, €)-transitions from all final states of
Ti1 to N. Consider the grapls, obtained if we keep only the transitions Gf of the
form (€,a) and reverse the direction of these transitions. Then tHéggetonsists of all
the states irG,, other thanN, that can be reached from the stdteThis traversal can
be performed in time linear with respect to the sizeSef The computation o)y, is
analogous.

4 Saturation and Recognizability

Let us recall a few facts mentioned in the preliminaries of this paper. We know that
a recognizable subset &f x Y* is rational, therefore there exists a finite transducer
which realizes it. The opposite does not hold: there exist quite simple rational trans-
ductions which are not recognizable, for example the identity ¥/eWe also know
a characterization of recognizable transductions as finite unions of blocks. There exist
another two definitions of recognizable sets in arbitrary monoids: a morphism based
definition (see for example [Pin, 1997]) and a definition based on monoid actions on
finite sets(for an extensive discussion on the topic, consult [Sakarovitch, 2003, §l11.2]).
We recall here the later one.

Let Q be a finite set andM, -, 1) an arbitrary monoid. Araction of M on
Qs a functionf : M x Q — Q which satisfy the following two properties:(q,1u) =
g and f(f(g,m),m’) = f(g,mni), for all g € Q andm,m € M. A subsetD of M is
recognizable if there exists such finite §tind actionf, and there exists C Q and
ge QsuchthaD = {meM/f(q,m) € F}.

12



In this section we give a fourth characterization of recognizable transductions by
proving that the appropriate machines which realize them are saturated transducers.
We start by giving two useful constructions.

Construction #1

input:  We are given a saturated transdu€emvhich we put in standard form, if
it is not already.

step 1. We construct the finite automatdm(T) by interpreting the labels
of transitions ofT as edit operation symbols. The automatort(T) is over the
alphabe€ (and has been described in details at the beginning of Section 3).

step 2: We determinize and minimize the automatbn!(T), obtaining a
minimal, complete DFAB. DenoteB = (Q,E, d,qp, F).

step 3: For each statg of B we construct a corresponding automa@as

following:

(a) Cq has the same set of statesBaghe same initial state, and it hgg} as the
set of final states;

(b) for each transition ifB of type (p, (a/€), p’) with a € X we assign a transition

(p,a,p')inCq.

step 4. For each statg of B we construct a corresponding automafg as

following:

(a) Dq has the same set of statesBaghe same set of final states, and it loees
initial state;

(b) for each transition ifB of type (p, (¢/b), p’) with b € Y we assign a transition
(p,b,p') in Dy.

output:  LetQ :={ge Q/.Z(Cq) # 0 and.Z(Dgq) # 0}. The algorithm ends by
delivering{Cq,Dq}geqy -

Lemma 3. The above construction ensures the following properties:

() | T[=Ugeq Z(Cq) x Z(Dg) -
(i) The languageq.Z(Cq) }qeqy are disjoint. The languagef?’ (Dq)}qeq are dis-
tinct.
(iii) The transition function of the automatt(B) can be extended to a monoid action
of X* xY* onQ.
(iv) If h=1(T) is deterministic then

ZQ (siz€(Cq) +sizeDq)) = O(sizgT)?) .
ge

Proof. We analyze each step of the above construction. The autorhatgfi) found
instep 1 has the following property:

13



vee Z(h{(T)), V€ €cE*: h(€)=h(e)=¢€ c Z(h{T)) , (1)

given by the saturation df. In other words, ih~1(T) accepts some edit strirggyit will
necessarily accept all edit strings which express the same word transformagidn as
algebraic terms, we say that the congruence inducdd-blet us call it=,, — saturates
Zh (1)) .

SinceB found atstep 2 is the minimization oh~1(T), it will preserve the above
property. The automatdd has the following additional property:

Ve, € €E*: h(e) =h(¢) = 5(qo,€) = 5(qo,€) ,

in other words:
=h C =¢@) , 2)

where by= 4 g we denoted the Myhill-Nerode equivalence#f(B). We justify this
property as following:
Let h(e) = h(€¢/) and denotep = d(qp,e) andq = (o, € ). Assume by contradiction
that p # g. Then, sinceB is minimal, it follows that there existg’ € E* such that
d(p,€") is afinal state iB andd(q,€”) is not. But thengé’ € L and is easy to see that
h(e€') = h(€€’). By the property expressed in relation (1) we infer tda must be
accepted - a contradiction.

Let a pair of wordgu,v) € X* x Y* be accepted by the given transduteConsider
thatu = uplp...Um, V = V1V2...Vp, With ug,...,un € X andvy,...,vy € Y. An edit string
which transformaiintovis

e=(U1/€)...(um/€)(/V1)...(€/Vn) ,

and denotee = ejey, with €1 = (uz/¢)...(um/€). Since(u,v) €| T |, we have thae €
Z(B), henced(qo,e1e2) € F in B. Denoteq = 5(do, e1) and observe that € .2 (Cq)
andv € .Z(Dq). Since the reciprocal also holds, we have that

(u,v) €| T | ueCqandv e Dq for somege Q

which proves Propertgi) of the lemma.
By the fact thatB is deterministic, it follows tha{Cq}qcq are disjoint. For the
second part of Properti), we use yet another property of the automaBpthat is,

Vg e Q,Ve € € E* such thah(e) =h(€¢): d(q,e) e F=d(q,€)eF , (3)

which can easily be verified (invoking the saturationTgf SinceB is minimal, and
by the above property, we conclude th&{Dy) # .2 (Dgq) for any two distinct states
p.g € Q, as long as eithe’(Dp) or £ (Dg) is not empty. This completes the proof of
Property(ii ).

Let us consider the transduck(B), which is obtained fronB by replacing the
transition labels(symbols) of the forryy with the corresponding pair,y). Clearly,
| T |=[h(B) |. If we denotef to be the transition function &f(B) (it is a partial function
due to the determinism dg) it is enough to show that we can extefith X* x Y* such
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that it verifies the properties of an action. For doyv) € X* x Y*, lete,, be a chosen
edit string such that(e,y) = (u,v). We setf (p, (u,v)) ;= d(p,euy) andf(p,(€,€)) ==

p, for all states iM. It can readily be checked that the definition is independent of the
choice ofe,, that is, f is a function

f:(X"'xY)xQ—Q ,
and that

1. f(p,(¢,€)) =p,YPEQ,
2. f(f(p1,(ug,v1)), (Uz,v2)) = f(p, (Uruz,v1v2)) .

Finally we have thatu,v) €| T |< f(po, (u,v)) is a final state i(B) (wherepp is the
initial state ofh(B)). O

Remark 2.Notice that Property (i) of the above lemma does not depend on the minimal-
ity and completeness &. Indeed, if we eliminatstep 2 of the above construction,
and we consideh(T) instead ofB in the subsequent steps, we would still obtain
Property (i) of the lemma.

Corollary 1.
SafX* xY*) C RegX* xY*) .

Proof. By Mezei’'s characterization of recognizable transductions, we observe that the
transduction realized by a saturated transducer is a finite union of blocks, hence it is
recognizable. a0

We now turn our attention to a possible reciprocal of the above corollary, and we
are aiming, as usual, at a constructive proof.

Construction #2

input:  We have a transduction € Reg¢X* x Y*) effectively given as a tuple
(A1,B1,...,An, Bn) of finite automata. That is, we know that

=) .2(A) < 2(B)

i=1

step 1. For each € {1,...,n} we construct a saturated transdu@esuch that
| Ti |= -Z(A) x Z(Bi) (the construction has been presented in
Section 3).

step2: Since allT; are saturated, we constructrnn- 1 iterations the transducer
TY =T Ug ... Ug Ty which realizes the transducti¢iiy | U...U | Ty | (this construc-
tion has also been presented in Section 3).

output:  The algorithm deliver§ ".
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Lemma 4. The above construction ensures that
|ITY|=1 .
Moreover,T" is saturated andizg T"”) = 31! ;(sizeA)) - sizgB;)).
Proof. The correctness and finiteness of each step has been proven in Lemmal.

Corollary 2.
RedX* x Y*) C SatX* x Y*) .

Remark 3.This corollary can also be proven, non-constructively, by using the closure
properties of recognizable sets, as following.

Proof. Let 1 be a recognizable transduction and consider the edit morphisnxXaued
Yy

h:E* — X" xY* .
Sinceh is a morphism and is recognizable iX* x Y* we have thah(7) is rec-
ognizable inE* (by the fact that recognizable sets are closed under inverse morphism).
Then, by Kleene’s theorem we have that (1) is a regular language, hence there exists
a finite automator® over E which accept$i—1(1). Assume thaf\ is a complete DFA.
It now suffices to observe that the transduogk) is saturated, in standard form, and it
realizest. O

Summing up, we have the following characterization of recognizable transductions.

Theorem 2. A transduction is recognizable if and only if it is realized by a saturated
transducer.

Proof. It is a direct consequence of Corollary 1 and Corollary 2. Notice that the previ-
ous two constructions give a constructive proof of this theorem. ad

Notice carefully a consequence of this result : there exist saturated transducers whose
transition table can not be extended to a monoid action; however, the theorem implies
that even these transducers realize recognizable transductions.

Remark 4.There is an elegant proof for Lemma 3 using Mezei’'s theorem. Inde&d, if
andT, are saturated transducers, then by the theorem we haveTthpand| T» | are
recognizable, hence by Mezei’s theorem we have that

m n
|T1\:UA;><Biand|T2|:UCj><Dj ,
i=1 j=1

where we expressed the transductions as union of blocks. Then it suffices to observe
that

0, if BiﬂCj:q);

T T |= Gij ,with G ; = .
[Tilo|T2| U L ) {AiXDj7 otherwise

1<i<m, 1<j<n

Consequently,T; | o | T2 | is recognizable, therefore realizable by a saturated transducer
T1 0 Tp, which can effectively be constructed. Notice tiiab T, may have a structure
different than that of; o T; which was proposed in Lemma 1.
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Remark 5.We have seen in Theorem 1 that given two saturated transdtcars T,

one can construct a siZe(sizgTy) - sizgT,)) transduceil; - T, which realize§ Ty | - |

T, |. That construction can stand as an alternative proof that recognizable transductions
are closed under concatenation (the other proof makes use of Mezei's theorem).

Remark 6.We can now explain why in Section 3 we have not mentioned anything about
the “star” operation on a saturated transducer. The reason is that saturated transductions
are not closed under iteration, as the following classical example sHdad)} is a
saturated transduction, being finite; howevgn, b)}* is not recognizable, hence can

not be realized by a saturated transducer.

Remark 7.1t is worth noticing that, given a finite transducBrover alphabets with at

least two letters, it is undecidable whether there exists a saturated transducer equivalent
with T. Indeed, this follows from the known fact that is undecidable whether a finite
transducer over alphabets with at least two letters realizes a recognizable transduction.

5 Edit Distance and the non-Recognizability of L x L),

Edit strings and edit languages constitute natural tools for dealing with problems related
to the edit distance between words and languages. In this context, the weight(e)
of an edit string

e= (X1/y1) - (Xa/¥n)

is the number of edit operatioifs /y;) in ewith x; = y;. For example, the weight of the
edit stringf in Section 2 is 2. Then the edit distance between two warasdv is the
minimum of the weights of the edit strings transforminmnto v, that is,

dist(u,v) = min{weightle) /e c h~1({(u,v)})}.

If we construct automatd, andA, accepting{u} and{v}, respectively, then the sat-
urated transducek, x A, accepts all edit stringswith e € h=({(u,v)}). Hence, the
quantitydist(u,v) is the weight of the smallest-weight path (computation) in the graph
corresponding td\, x A, — here the weights on the transitions areg{®1} such that
the weight of a transitiofip, (x/y),q) is 1 if and only ifx # y. This simple idea can be
generalized for any pair of automata andA,; and for more general types of distances
— see [Mohri, 2003] and [Kari et al., 2003] for details.

The problem of computing the (inner) edit distance of a langlidgenore difficult,
however. This quantity is the minimum edit distance between any pdistifictwords
of L. Suppose thah is an automaton acceptiri)g The difficulty here lies in the fact
that the saturated transdudex A accepts edit stringscorresponding to pairs of equal
words. Therefore, one would like to have a saturated transducer for the transduction

(LxL)x={(u,v)/u,ve Landu# v}.

Although one can construct an ordinary transducer for this transduction, we show next
that there is no saturated transducer for this transduction, thatisl.).. is not recog-
nizable wherlL is infinite. For the sake of completeness we mention that the problem of
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computing the inner edit distance is solved in [Konstantinidis, 2005] by observing that
(i) this quantity is always realized by two words differing at some position bounded by
ia, for some index that depends on the autom&@ecepting-; and (ii) for any index
j, there is a transducdj (which turns to be saturated, in our terminology) realizing all
pairs of words that differ at position

Given an arbitrary sel, by (P x P). we understand the set of all pairs of different
elements oP. In other words(P x P). = (P x P) \id(P).

Proposition 1. LetP be an arbitrary, infinite set. The set equation

n

(PxP).=JX xY,

i=1

has no solutior(n, {Xi,Y; }{,).

Proof. Assume, by contradiction, that there exiéts{Xi,Y;}’ ;) — a solution of the
above equation. Notice first that necessaxilyY; = 0 for all i € {1,...,n}. SinceP is

infinite, there exis2™! different elements ifP. Denote byU; 1= {u1,...,Un:1} a set
of such elements.

Consider the triplet)1, X; andY;. We we can write
Up = (UinX)uUiNY) U (U1 \ (Xg UYl)) ,

sinceX; andY; are disjoint. Let us assume, without loss of generality thatn X; |>|
U1NY: |, and let us denotd; := U1 \ V1.

We first prove that), has at leas2" elements. We have thetli N Xy |+ |U1NYy <
21 and that) Uy N X; |>| U1 Ny |. This implies that Uy NY; [< 2", by the fact that
U1 N Xy andU; NY; are disjoint. Then clearlyU; \ Y1 [> 2", hencd U, |> 2". We may
also observe that the pairs of different elementdziman not appear iX; x Y;. Indeed,
we can not havéu,v) € X; x Yy andu,v € Uy, sinceU; = Uz \ Ys.

We repeat the above argument for the trifdetX, andY,. We obtain a sdt)3 C U;
with | Uz |> 2"~ and no pair of elements ldz can be found iz x Yz.

Then, we repeat this argument till we obthig. 1 C U, with | Up;1 |> 2 and no pair
of elements iJ, 1 can be found irX, x Y.

Take two different elements, v € U, 1. Since we havé, 1 C Uy C ... CUq, we
conclude that the pafu,v) does not belong to an¥ x Y, for 1 <i <n.

But this contradicts the fact thak C P. a

Corollary 3. LetL € X* be an infinite regular language. The transductidnx L)
can not be realized by a saturated transducer oxer

Proof. In order to have a saturated transducer(tox L), this set must be recogniz-
able, by Theorem 2. However, Proposition 1 shows that it can not be written as a finite
union of blocks, hence it is not recognizable, by Mezei's characterization. a0
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6 Final Comments and Future Work

In this paper we have achieved the following. We have revealed the relation between edit
languages, recognizable transductions and saturated transducers. We have shown that
operations with saturated transducers can efficiently be implemented, and we outlined
methods to construct and manipulate saturated transducers. We have shown how one can
use saturated transducers for computing the edit distance between words and languages.
Finally, we have studied situations when our framework can not be used, due to the non-
recognizability of various rational relations.

It is worth noticing that our entire framework still holds when is restricted to the use
of only two edit operations: insertion and deletion (for this case, one defines “restricted
saturated transducers”). This restriction may be of importance in applications where
only these two edit operations are of interest ([Levenshtein, 1966]).

Left for further analysis are a few matters which have not been tackled yet. For ex-
ample, it is worth investigating algorithms to efficiently compute saturated transducers
for given finite transductions; in particular, for finite identities.

It is interesting to notice that the notion of minimal saturated transducer for a recog-
nizable transduction makes sense, since it is given by the minimal corresponding DFA
over the edit alphabet. Size-complexity matters may be investigated in this aspect.

Finally, we have left for study the comparison of two representa-
tions(characterizations) of recognizable transductions: one using saturated transducers
the other using tuples of automata.
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