Recognizable Transductions, Saturated Transducers and Edit Languages *

Stavros Konstantinidis ${ }^{1}$, Nicolae Sântean ${ }^{2, \star \star}$, and Sheng Yu^{2}
${ }^{1}$ Saint Mary's University, Halifax B3H 3C3, NS, Canada
Department of Mathematics and Computing Science, email: stavros@cs.smu.ca
${ }^{2}$ University of Western Ontario, London N6A 5B8, ON, Canada
Department of Computer Science,
email: nic@csd.uwo.ca, syu@csd.uwo.ca

Abstract

Recognizable transductions constitute a well known, proper subclass of rational transductions. To our knowledge, there has been no characterization of recognizable transductions by a well-defined subclass of transducers. In this work we observe that there is a connection between recognizable transductions and languages consisting of edit strings. More specifically, we define a saturated transducer to be a transducer with the property that, when viewed as an automaton over the edit alphabet, accepts all possible edit strings corresponding to each accepted pair of words. Our main result gives a constructive proof that the class of recognizable transductions coincides with the class of saturated transductions. We also revisit closure properties of recognizable transductions using saturated transducers and discuss the natural role of these objects in edit distance problems.

Keywords: Transducer; Recognizable transduction; Saturated transducer; Edit string; Edit language; Edit distance

1 Introduction

Recognizable transductions constitute a well known, proper subclass of rational transductions, the latter being the class of all binary relations of words realized by finite transducers. A well known characterization of recognizable transductions is given by Mezei's theorem [Eilenberg, 1974, note at p. 75]. Until now, however, there has been no characterization of recognizable transductions by a well-defined, special subclass of transducers. In this work we observe that there is an intimate connection between recognizable transductions and edit languages, that is, languages consisting of edit strings. An edit string (or string alignment) is a special word consisting of edit operations, and describes the sequence of changes (substitutions, insertions and deletions of symbols) that can transform a word into another word. Edit strings can be used to define formally concepts related to distances between words [Sankoff, Kruskal, 1999] and, in fact, recently

[^0]([Kari, Konstantinidis, 2002], [Mohri, 2003],[Kari et al., 2003]) there have been systematic treatments of edit languages (also called e-systems) in the sense of language theory. In the context of word and language distances, the main difference between a transduction and an edit language is that the latter describes the exact changes that are permitted in transforming words to words, whereas the former describes the result of these transformations.

This paper introduces the concept of saturated transducer and observes that this concept constitutes a natural point of connection between recognizable transductions and edit languages. More specifically, a saturated transducer is a transducer with the property that, for every pair of words it realizes, the transducer, when viewed as an automaton over the edit alphabet, accepts all possible edit strings transforming the first word of the pair into the second one. The main result of the paper is that the class of recognizable transductions coincides with the class of transductions realized by saturated transducers. We also provide other basic results on saturated transducers and discuss their use in edit distance problems. In the next paragraph we give a short overview of our paper.

The paper is organized as follows. In the next section, we provide the formal definitions about rational transducers, recognizable transductions and edit languages. Section 3 introduces saturated transducers and discusses several basic operations on these objects. These operations can be used to provide constructive proofs (by means of saturated transducers) of closure properties of recognizable transductions, such as intersection, composition and concatenation. Moreover, the descriptional complexity of these operations can be used to evaluate the time complexity of algorithms utilizing them. Section 4 contains the main result of the paper about the equivalence of saturated and recognizable transductions. The proof is constructive in the following sense. Given a tuple consisting of an even number of finite automata - according to Mezei's theorem such a tuple specifies a recognizable transduction - there is an effective construction of a saturated transducer realizing the transduction specified by the tuple. Moreover, there is a constructive proof for the converse problem. In Section 5 we elaborate on the use of saturated transducers in problems related to the edit distance of words and languages. The method here is not new, in the sense that certain examples of saturated transducers have already been used for such problems, but we believe that the method is better understood with our systematic study of saturated transducers. Our observations in this context lead us to the question of whether the transduction consisting of all pairs of distinct words of some regular language is recognizable. We show that it is not recognizable in the case of infinite languages. Finally, Section 6 contains a few concluding remarks.

2 Preliminary Notions and Notations

We assume known basic notions of finite automata: DFA (deterministic finite automaton), NFA (nondeterministic finite automaton) and ε-NFA (NFA with ε transitions) - a review of these terms can be found in [Hopcroft and Ullman, 1979], [Yu, 1997]. We also assume known the basic notions of semigroup (monoid) theory [Howie, 1976] and of rational and recognizable sets in arbitrary monoids (
[Berstel, 1979], [Eilenberg, 1974]). We recall that the class of monoids is closed under cartesian product.

Let $\left(M, \cdot, 1_{M}\right)$ be a monoid which consists of a carrier set M equipped with a binary associative operation "." and an unit " 1_{M} ". By $\operatorname{Rat}(M)$ we denote the family of rational subsets of M and by $\operatorname{Rec}(M)$ we denote the family of recognizable subsets.

If X and Y are finite alphabets (nonempty sets of symbols), we denote by X^{*} and Y^{*} their freely generated monoids. Any element of X^{*} or Y^{*} is called a word, i.e., a finite string of symbols. We denote by ε the word with no symbols, i.e., the empty word. By $X^{*} \times Y^{*}$ we understand the direct product of the monoids X^{*} and Y^{*}, i.e., the monoid of word relations. We will use the terms "word relation" and "transduction" interchangeably. Notice that this monoid is finitely generated, in the sense that there exists a finite subset G, called a set of generators, such that $G^{*}=X^{*} \times Y^{*}$ (indeed, take $G=(X \times\{\lambda\}) \cup(\{\lambda\} \times Y))$. Notice also that $X^{*} \times Y^{*}$ is not necessarily a free monoid, in the sense that it may not exist a set of generators which generate each element of the monoid in a unique way (for example, G - above - may generate an element in more than one way: $(x, y)=(x, \lambda) \cdot(\lambda, y)=(\lambda, y) \cdot(x, \lambda)$. As a consequence of McKnight's theorem ([McKnight, 1964]) we have that

$$
\operatorname{Rec}\left(X^{*} \times Y^{*}\right) \subseteq \operatorname{Rat}\left(X^{*} \times Y^{*}\right)
$$

inclusion which is strict in general. For example, the transduction $\left\{\left(a^{i}, b^{i}\right) / i \geq 0\right\}$ can be proven to be rational without being recognizable.

In $X^{*} \times Y^{*}$, recognizable and rational sets may be specified by finite state machines. For example, each rational transduction τ is represented by some finite transducer $T=$ $\left(Q, X, Y, \Delta, q_{0}, F\right)$, where

1. Q is a finite set of states;
2. $\Delta \subseteq Q \times X^{*} \times Y^{*} \times Q$ is a finite set of transitions;
3. q_{0} is an initial state, $F \subseteq Q$ is a set of final states;
4. a successful computation of T is a sequence

$$
c=\left(q_{0}, x_{1}, y_{1}, q_{1}\right), \ldots,\left(q_{n-1}, x_{n}, y_{n}, q_{n}\right)
$$

where $\left(q_{i-1}, x_{i}, y_{i}, q_{i}\right) \in \Delta$ for all $i \in\{1, \ldots, n\}$, and $q_{n} \in F$. The label of c, denoted by $|c|$ is the pair of words $\left(x_{1} \ldots x_{n}, y_{1} \ldots y_{n}\right)$;
5. $\tau=|T|=\{(u, v) /(u, v)=|c|$, for some successful computation $c\}$.

The alphabet X is sometime called the input alphabet and Y the output alphabet. It has been shown (for example in [Berstel, 1979, §III.6, p. 79]) that a transducer with labels in $X^{*} \times Y^{*}$ is equivalent with a transducer having labels only in $(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\})$. We bring this observation further, by noticing that one can eliminate all "null" transitions, i.e., transitions of the form $(\varepsilon, \varepsilon)$. However, for the sake of formalism, it is useful to consider all states having null loops, i.e., we have a $\operatorname{transition~}(p, \varepsilon, \varepsilon, p)$ for each state p of the transducer. Then we give the following definition:

Definition 1. A transducer is in standard form if it has transitions with labels in $(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\})$ and each state has an $(\varepsilon, \varepsilon)$-loop to itself.

Then each rational transduction is realized by a transducer in standard form.
We define the size of a finite state machine M in general (hence of a transducer, in particular), as being the number of all its states together with all its transitions, and we denote it by $\operatorname{size}(M)$.

In the case of recognizable transductions, one can use Mezei's characterization (as in [Eilenberg, 1974, §3.12, Prop. 12.2 \& note at p. 75]) to represent a transduction $\tau \in \operatorname{Rec}\left(X^{*} \times Y^{*}\right)$ by a tuple of finite automata $\left(A_{1}, B_{1}, \ldots, A_{n}, B_{n}\right)$ such that

$$
\tau=\bigcup_{i=1}^{n} \mathscr{L}\left(A_{i}\right) \times \mathscr{L}\left(B_{i}\right)
$$

where by $\mathscr{L}(A)$ we understand the language accepted by the automaton A (automata A_{i} are over X and automata B_{i} are over Y). We say that any recognizable transduction is a finite union of blocks (a block is a direct product of two regular languages) - see for example [Sakarovitch, 2003, §II.2, p.272, Corollary 2.20].

As a general observation, not much effort has been spent on the study of finite machines designed to precisely accept recognizable sets. Our paper addresses this issue and reveals the close connection between recognizable sets and edit languages - defined in the following.

Let E be the set consisting of all elements of the form $(a / \varepsilon),(\varepsilon / b)$ and (a / b), where $a \in X$ and $b \in Y$. We treat the elements of E as symbols which denote the so-called edit operations: deletion, insertion and substitution (for example, the meaning of operation " (a / ε) " is "deletion of a"). Then, by E^{*} we denote the language of edit strings, i.e., the language of words over the alphabet E. The empty edit string over E will be denoted by $(\varepsilon / \varepsilon)$.

Edit strings can implement transductions as the following example shows: if $X=Y=\{a, b\}$ then each of the following edit strings define the transduction $\{(a b a, b a b)\}:$

$$
\begin{aligned}
& e=(a / b)(b / a)(a / b) \\
& f=(a / \varepsilon)(b / b)(a / a)(\lambda / b) \\
& g=(a / \varepsilon)(b / \varepsilon)(a / \varepsilon)(\varepsilon / b)(\varepsilon / a)(\varepsilon / b)
\end{aligned}
$$

We say that each of the edit strings e, f and g "transforms the word $a b a$ into the word $b a b "$ ". Notation wise, we use the lowercase letters e, f, g to denote edit strings.

In this paper we are interested in sets of edit strings, i.e., in edit languages. Such languages are simply subsets of E^{*}.

3 Saturated Transducers: Definition and Basic Results

The notion of saturated transducer originates in the simple idea that a computation of a finite transducer in standard form defines both a pair of words and an unique edit string which transforms a word into another one.

Let X and Y be input and output alphabets and E be the alphabet of edit operations over X and Y. Across this paper we will frequently refer to the following monoid homomorphism:

$$
h: E^{*} \rightarrow X^{*} \times Y^{*}
$$

given by: $h(\varepsilon / \varepsilon)=(\varepsilon, \varepsilon), h(a / \varepsilon)=(a, \varepsilon), h(\varepsilon / b)=(\varepsilon, b), h(a / b)=(a, b)$, for all $a \in X$ and $b \in Y$. Due to its importance to our matter, we name this morphism the edit morphism over X and Y. It should be clear that for any pair of words (u, v), $h^{-1}(\{(u, v)\})$ consists of all edit strings that transform u into v.

Let T be a transducer over X and Y, in standard form. By $h^{-1}(T)$ we denote the finite automaton over E, obtained from T by replacing each transition label (x, y) with the symbol $(x / y) \in E \cup\{(\varepsilon / \varepsilon)\}$. Then $h^{-1}(T)$ will be an ε-NFA over E.

Conversely, given a finite automaton A over E, by $h(A)$ we understand the transducer over X and Y obtained from A by replacing each transition label (x / y) with the pair $(x, y) \in X^{*} \times Y^{*}$. Then $h(A)$ is in standard form, up to the missing $(\varepsilon, \varepsilon)$-loops for each state. For easing the formalism we assume that these loops are present and that $h(A)$ is readily in standard form.

In the previous section we have defined what is meant by a successful computation (and its label) of a transducer $T=\left(Q, X, Y, \Delta, q_{0}, F\right)$. Let

$$
c=\left(q_{0}, x_{1}, y_{1}, q_{1}\right), \ldots,\left(q_{n-1}, x_{n}, y_{n}, q_{n}\right)
$$

be a successful computation in T. If the transducer T is in standard form, then all pairs $\left(x_{i}, y_{i}\right)$ can be viewed as edit operations, or null operations, and we can define the edit string corresponding to c as $\|c\|:=\left(x_{1} / y_{1}\right) \ldots\left(x_{n} / y_{n}\right)$.

Notice that we have $h(\|c\|)=|c|$, where h is the edit morphism from X to Y. Then the transducer T defines a transduction

$$
|T|=\{(u, v) /(u, v)=|c|, \text { where } c \text { is a successful computation in } T\}
$$

and an edit language

$$
\|T\|=\left\{e \in E^{*} / e=\|c\|, \text { where } c \text { is a successful computation in } \mathrm{T}\right\}
$$

in other words $\|T\|=\mathscr{L}\left(h^{-1}(T)\right)$. In the next definition we use the meaning of h as a monoid morphism.

Definition 2. A transducer T in standard form is saturated if and only if

$$
h^{-1}(|T|)=\|T\|
$$

In other words, T is saturated if and only if for any accepted pair of words $(u, v) \in$ $X^{*} \times Y^{*}$, and for any edit string $e \in E^{*}$ which transforms u into v there exists a successful computation c in T such that $\|c\|=e$.

Notice that the property of saturation can be generalized to arbitrary transducers. Indeed, let T be an arbitrary transducer. A successful computation of T is said to be
admissible if and only if its transitions have labels in $(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\})$. Then we can define the edit language of T as being
$\|T\|=\left\{e \in E^{*} / e=\|c\|\right.$, where c is an admissible computation in T$\}$.
From here the definition of a saturated transducer is extended naturally to arbitrary transducers. Remark that any saturated transducer is equivalent to a saturated transducer in standard form. Indeed, let T be an arbitrary saturated transducer. It suffices to observe that one can discard all transitions with labels not in $(X \cup\{\varepsilon\}) \times(Y \cup\{\varepsilon\})$ without changing the transduction realized by T.

Remark 1. The saturation of a transducer is not a trivial property, since there may exist a non-saturated transducer in standard form equivalent to a non-saturated transducer, as the following example shows.

Example 1. Consider the transduction τ, over $\{0,1\}$ and $\{a\}$, which contains all pairs (u, v) with the value of u, as a binary word, being odd and v an arbitrary word over $\{a\}^{*}$. Both transducers in Fig. 1 are in standard form and realize τ; however, only the transducer in Fig. 1 (b) is saturated.

(a)

(b)

Fig. 1. Equivalent non-saturated and saturated transducers.

We say that a transduction over X and Y is saturated if and only if there exists a saturated transducer T such that $\tau=|T|$. We denote by

$$
\operatorname{Sat}\left(X^{*} \times Y^{*}\right)
$$

the family of saturated transductions. Then clearly $\operatorname{Sat}\left(X^{*} \times Y^{*}\right) \subseteq \operatorname{Rat}\left(X^{*} \times Y^{*}\right)$.
In this section we are interested in basic operations on saturated transducers with the aim of providing constructive proofs for the closure properties of saturated transductions. As it turns out, many known operations on ordinary automata and transducers result in saturated transducers with no extra effort when applied on saturated transducers. For example, the standard product constructions on finite automata, possibly with
ε transitions, for union and intersection would result in saturated transducers when applied on saturated transducers. The same happens in the case of the product construction for the composition of transducers.

In the following operations, the operands A_{1} and A_{2} are arbitrary finite automata, possibly with ε transitions (unless specified otherwise), and the operands T_{1} and T_{2} are arbitrary finite transducers in standard form.
$\operatorname{det}\left(A_{1}\right)$: is the automaton obtained by determinization and completion of A_{1}.
$\overline{A_{1}}$, where A_{1} is a DFA: the DFA that results when we complete A_{1} and change its nonfinal states to final, and viceversa. It is well known that $\overline{A_{1}}$ accepts the complement of the language accepted by A_{1} and that $\operatorname{size}\left(\overline{A_{1}}\right)=O\left(\operatorname{size}\left(A_{1}\right)\right)$.
$A_{1} \times A_{2}$: is a saturated transducer of size $O\left(\operatorname{size}\left(A_{1}\right) \cdot \operatorname{size}\left(A_{2}\right)\right)$ such that

$$
\left|A_{1} \times A_{2}\right|=\mathscr{L}\left(A_{1}\right) \times \mathscr{L}\left(A_{2}\right) .
$$

The transducer $A_{1} \times A_{2}$ consists of the transitions $\left(\left(p_{1}, p_{2}\right), x_{1}, x_{2},\left(q_{1}, q_{2}\right)\right)$ for all transitions $\left(p_{1}, x_{1}, q_{1}\right)$ of A_{1} and $\left(p_{2}, x_{2}, q_{2}\right)$ of A_{2}, where we assume that there is always an ε transition from each state to itself - see [Kari et al., 2003] for more details, where the notation " $A_{1} \cap_{E} A_{2}$ " is used instead of $A_{1} \times A_{2}$.
$T_{1} \cap T_{2}$: is the transducer in standard form that is obtained when we apply the standard product construction on automata for language intersection on the automata $h^{-1}\left(T_{1}\right)$ and $h^{-1}\left(T_{2}\right)$ over the edit alphabet E. The size of $T_{1} \cap T_{2}$ is $O\left(\operatorname{size}\left(T_{1}\right)\right.$. size $\left(T_{2}\right)$). Obviously, $\left|T_{1} \cap T_{2}\right|=\left|T_{1}\right| \cap\left|T_{2}\right|$.
$T_{1} \cup_{\varepsilon} T_{2}$: is the transducer in standard form that is obtained when we use a new start state s and two $(\varepsilon, \varepsilon)$-transitions form s to the start states of T_{1} and T_{2}. Then

$$
\left|T_{1} \cup_{\varepsilon} T_{2}\right|=\left|T_{1}\right| \cup\left|T_{2}\right|
$$

and $\operatorname{size}\left(T_{1} \cup_{\varepsilon} T_{2}\right)=O\left(\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)\right)$.
$T_{1} \cup T_{2}$: is the transducer in standard form that is obtained when we apply the standard product construction on automata for language union on the automata $h^{-1}\left(T_{1}\right)$ and $h^{-1}\left(T_{2}\right)$ over the edit alphabet E. The size of $T_{1} \cup T_{2}$ is $O\left(\operatorname{size}\left(T_{1}\right) \cdot \operatorname{size}\left(T_{2}\right)\right)$. Obviously, $\left|T_{1} \cup T_{2}\right|=\left|T_{1}\right| \cup\left|T_{2}\right|$. The advantage of this construction over $T_{1} \cup_{\varepsilon} T_{2}$ is that the automaton $h^{-1}\left(T_{1} \cup T_{2}\right)$ is a DFA when both of $h^{-1}\left(T_{1}\right)$ and $h^{-1}\left(T_{2}\right)$ are DFAs.
$T_{2} \circ T_{1}$: is the transducer in standard form that is obtained when we apply the standard product construction on transducers for transduction composition (see [Mohri, 2003]), hence,

$$
\left|T_{2} \circ T_{1}\right|=\left|T_{2}\right| \circ\left|T_{1}\right| .
$$

Again, the size of $T_{2} \circ T_{1}$ is $O\left(\operatorname{size}\left(T_{1}\right) \cdot \operatorname{size}\left(T_{2}\right)\right)$. The transducer $T_{2} \circ T_{1}$ consists of the transitions $\left(\left(p_{1}, p_{2}\right), x, z,\left(q_{1}, q_{2}\right)\right)$, for all pairs of transitions $\left(p_{1}, x, y, q_{1}\right)$ in T_{1} and $\left(p_{2}, y, z, q_{2}\right)$ in T_{2} and y in $Y \cup\{\varepsilon\}$.
$\bar{T}_{1}:$ is the transducer $h\left(\overline{\operatorname{det}\left(h^{-1}\left(T_{1}\right)\right)}\right)$ such that

$$
\left|\bar{T}_{1}\right|=\overline{\left|T_{1}\right|} .
$$

If $h^{-1}\left(T_{1}\right)$ is an NFA then the size of $\overline{T_{1}}$ could be exponential with respect to the size of T_{1}. On the other hand, if $h^{-1}\left(T_{1}\right)$ is a DFA then the size of $\overline{T_{1}}$ is $O\left(\operatorname{size}\left(T_{1}\right)\right)$.

Example 2. In Fig. 2 we are given two automata A_{1} and A_{2}, A_{1} accepting all words which in binary have an odd value and A_{2} accepting all words which have an even length. Following the above construction we obtain a saturated transducer for $A_{1} \times A_{2}$.

Fig. 2. The saturated transducer $A_{1} \times A_{2}$.

Lemma 1. If T_{1} and T_{2} are saturated transducers then $T_{1} \cap T_{2}, T_{1} \cup T_{2}, T_{1} \cup_{\varepsilon} T_{2}, T_{2} \circ T_{1}$ and \bar{T}_{1} are saturated.

Proof. We prove only that $T_{2} \circ T_{1}$ is saturated. The rest is left to the reader.
We need to show that for any pair (x, z) in $\left|T_{2} \circ T_{1}\right|$ and for any edit string e with $h(e)=(x, z)$, it is the case that e is in $\left\|T_{2} \circ T_{1}\right\|$. Suppose that

$$
e=\left(x_{1} / z_{1}\right) \cdots\left(x_{n} / z_{n}\right),
$$

where each $\left(x_{i} / z_{i}\right)$ is an edit operation. There is a computation c^{\prime} of $T_{2} \circ T_{1}$ such that $\left\|c^{\prime}\right\|$ is some edit string $\left(x_{1}^{\prime} / z_{1}^{\prime}\right) \cdots\left(x_{m}^{\prime} / z_{m}^{\prime}\right)$ and $h\left(\left\|c^{\prime}\right\|\right)=(x, z)$. By the definition of $T_{2} \circ T_{1}$, there are successful computations c_{1}^{\prime} and c_{2}^{\prime} of T_{1} and T_{2}, respectively, such that the edit strings $\left\|c_{1}^{\prime}\right\|$ and $\left\|c_{2}^{\prime}\right\|$ are of the form $\left(x_{1}^{\prime} / y_{1}^{\prime}\right) \cdots\left(x_{m}^{\prime} / y_{m}^{\prime}\right)$ and $\left(y_{1}^{\prime} / z_{1}^{\prime}\right) \cdots\left(y_{m}^{\prime} / z_{m}^{\prime}\right)$, respectively. Let y be the word $y_{1}^{\prime} \cdots y_{n}^{\prime}$. We continue by distinguishing two cases.

Firstly, suppose that $m \leq n$. Let $y_{j}=y_{j}^{\prime}$ for $j \leq m$, and $y_{j}=\varepsilon$ for $j=m+1, \ldots, n$. Consider the edit strings

$$
e_{1}=\left(x_{1} / y_{1}\right) \cdots\left(x_{n} / y_{n}\right) \text { and } e_{2}=\left(y_{1} / z_{1}\right) \cdots\left(y_{n} / z_{n}\right)
$$

As T_{1} and T_{2} are saturated, and $h\left(e_{1}\right)=(x, y)$ and $h\left(e_{2}\right)=(y, z)$, there are successful computations c_{1} and c_{2} of T_{1} and T_{2}, respectively, such that $\left\|c_{1}\right\|=e_{1}$ and $\left\|c_{2}\right\|=e_{2}$. Then, by definition of the transducer $T_{2} \circ T_{1}$, there is a computation c of this transducer such that $\|c\|=e$, as required.

Secondly, suppose that $m>n$. The proof of this case is similar to the first one and is left to the reader.

Example 3. Let τ_{1}, τ_{2} be transductions given by

$$
\begin{aligned}
& \tau_{1}=\left\{(u, v) / \sharp_{2} u \text { is odd }, v \in\{a\}^{*}\right\}, \\
& \tau_{2}=\left\{(u, v) / u \in\{a\}^{*}, \sharp_{2} v \text { is even }\right\}
\end{aligned}
$$

where by $\sharp_{2} u$ we understand the value of u as a binary number. The first two saturated transducers in Fig. 3 realize them. Then, using the above construction we obtain a saturated transducer(shown also in Figure 3) which realizes the transduction

$$
\left\{(u, v) / \sharp_{2} u \text { is odd, and } \sharp_{2} v \text { is even }\right\} \text {, }
$$

which is their composition.

Fig. 3. Composition of saturated transducers.

A natural question that arises here is whether saturated transductions are closed under the Kleene-star operation and concatenation. The first operation is discussed in
the next section. For the second one consider two transducers T_{1} and T_{2} and the standard construction that connects each final state of T_{1} with the start state of T_{2} using an $(\varepsilon, \varepsilon)$-transition, such that the new transducer realizes $\left|T_{1}\right| \cdot\left|T_{2}\right|$. Unfortunately, however, this transducer is not necessarily saturated when both T_{1} and T_{2} are saturated. For example, if we connect a saturated transducer for $\{(a, a b)\}$ with a saturated transducer for $\{(a b, b)\}$, we obtain a transducer T such that $h(T)$ does not accept the edit string $(a / a)(a / b)(b / b)$ - hence T is not saturated. A new construction for saturated transducers for the concatenation operation is presented in the following.

For any two edit strings f and g of the form

$$
f=\left(x_{1} / \varepsilon\right) \cdots\left(x_{n} / \varepsilon\right) \text { and } g=\left(\varepsilon / y_{1}\right) \cdots\left(\varepsilon / y_{n}\right)
$$

where each x_{i} is in $X \cup\{\varepsilon\}$ and each y_{i} is in $Y \cup\{\varepsilon\}$, we define the left and right merge operations ' \triangleleft ' and ' \triangleright ' such that

$$
f \triangleleft g=g \triangleright f=\left(x_{1} / y_{1}\right) \cdots\left(x_{n} / y_{n}\right) .
$$

Lemma 2. 1. For any edit strings f and g of the form shown above, we have that $h(f \triangleleft g)=h(g \triangleright f)=h(f g)$. Also, $(\varepsilon / \varepsilon)=(\varepsilon / \varepsilon) \triangleleft(\varepsilon / \varepsilon)=(\varepsilon / \varepsilon) \triangleright(\varepsilon / \varepsilon)$.
2. If τ_{1} and τ_{2} are transductions and e is any edit string with $h(e) \in \tau_{1} \cdot \tau_{2}$, then e can be written as $e_{1} e_{2} e_{3}$ such that e_{2} is of the form $f_{2} \triangleleft g_{2}$, or $f_{2} \triangleright g_{2}$, and $h\left(e_{1} f_{2}\right) \in \tau_{1}$ and $h\left(g_{2} e_{3}\right) \in \tau_{2}$.

Proof. The first statement follows easily from the definition of the operations \triangleleft and \triangleright. For the second statement, first note that there are $\left(x_{1}, y_{1}\right)$ in τ_{1} and $\left(x_{2}, y_{2}\right)$ in τ_{2} such that $h(e)=\left(x_{1} x_{2}, y_{1} y_{2}\right)$. Notation wise, if $\alpha=(u, v)$ is a pair of words, then we denote $\pi_{1}(\alpha)=u$ and $\pi_{2}(\alpha)=v$. We distinguish the following factors of e :

- Let e_{1} be the shortest prefix of e such that either $x_{1}=\pi_{1}\left(h\left(e_{1}\right)\right)$, or $y_{1}=\pi_{2}\left(h\left(e_{1}\right)\right)$.
- Let e_{2} be the edit string such that $e_{1} e_{2}$ is the shortest prefix of e such that either $y_{1}=\pi_{2}\left(h\left(e_{1} e_{2}\right)\right)$, or $x_{1}=\pi_{1}\left(h\left(e_{1}\right)\right)$, respectively.
- Finally, let e_{3} be such that $e=e_{1} e_{2} e_{3}$.

By looking in detail at the edit operations comprising e, one can verify that there are edit strings f_{2} and g_{2} such that $e_{2}=f_{2} \triangleright g_{2}$, or $e_{2}=f_{2} \triangleleft g_{2}$, respectively, and $h\left(e_{1} f_{2}\right) \in \tau_{1}$ and $h\left(g_{2} e_{3}\right) \in \tau_{2}$, as required.

Construction of $T_{1} \cdot T_{2}$:
input: Two saturated transducers $T_{1}=\left(Q_{1}, X_{1}, Y_{1}, \Delta_{1}, s_{1}, F_{1}\right)$ and $T_{2}=$ $\left(Q_{2}, X_{2}, Y_{2}, \Delta_{2}, s_{2}, F_{2}\right)$ in standard form. We shall assume that T_{1} is already trim, that is, each state can be reached from s_{1} and can reach a final state in F_{1}.
step 1: Let U_{10} be the set of states p_{1} in Q_{1} such that there is a successful computation of T_{1}, from p_{1}, with label (ε, v), for some v in Y_{1}^{*}. Let U_{01} be the set of states q_{1} in Q_{1} such that there is a successful computation of T_{1}, from q_{1}, with label (u, ε), for some u in X_{1}^{*}.
step 2: Define the set Q consisting of the following states.

- All states r_{1} in Q_{1}. Such an r_{1} means that the automaton $h^{-1}\left(T_{1} \cdot T_{2}\right)$ corresponding to the intended transducer $T_{1} \cdot T_{2}$ has read an edit string e which is also the label of some computation of $h^{-1}\left(T_{1}\right)$ from s_{1} to r_{1}. This implies that, at state r_{1}, the machine $T_{1} \cdot T_{2}$ has read some label $\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$ for which there is $\left(x_{1}, y_{1}\right)$ in $\left|T_{1}\right|$ with x_{1}^{\prime} and y_{1}^{\prime} being prefixes of x_{1} and y_{1}, respectively.
- All states $\left(q_{1}, q_{2}, 01\right)$ with $q_{1} \in U_{01}$ and $q_{2} \in Q_{2}$. Such a state means that $h^{-1}\left(T_{1}\right.$. T_{2}) has read an edit string $e_{1} e_{2}$ such that e_{2} is of the form $f_{2} \triangleleft g_{2}$ and there is a computation of $h^{-1}\left(T_{1}\right)$ from s_{1} to q_{1} with label $e_{1} f_{2}$, and a computation of $h^{-1}\left(T_{2}\right)$ from s_{2} to q_{2} with label g_{2}. This implies that, at state $\left(q_{1}, q_{2}, 01\right), T_{1} \cdot T_{2}$ has read some label of the form $\left(x_{1}^{\prime}, y_{1} y_{2}^{\prime}\right)$ for which x_{1}^{\prime} is a prefix of some x_{1} with $\left(x_{1}, y_{1}\right) \in$ $\left|T_{1}\right|$ and y_{2}^{\prime} is a prefix of some y_{2}, with $\left(x_{2}, y_{2}\right)$ in $\left|T_{2}\right|$ for some x_{2}. The "flag" 01 above reminds us that $T_{1} \cdot T_{2}$ has completed reading only the second component of $\left(x_{1}, y_{1}\right)$ and that no part of x_{2} can be read before completing x_{1}.
- All states $\left(p_{1}, p_{2}, 10\right)$ with $p_{1} \in U_{10}$ and $p_{2} \in Q_{2}$. Such a state means that $h^{-1}\left(T_{1}\right.$. T_{2}) has read an edit string $e_{1} e_{2}$ such that e_{2} is of the form $f_{2} \triangleright g_{2}$ and there is a computation of $h^{-1}\left(T_{1}\right)$ from s_{1} to p_{1} with label $e_{1} f_{2}$, and a computation of $h^{-1}\left(T_{2}\right)$ from s_{2} to p_{2} with label g_{2}. This implies that, at state $\left(p_{1}, p_{2}, 10\right), T_{1} \cdot T_{2}$ has read some label of the form $\left(x_{1} x_{2}^{\prime}, y_{1}^{\prime}\right)$ for which y_{1}^{\prime} is a prefix of some y_{1} with $\left(x_{1}, y_{1}\right) \in$ $\left|T_{1}\right|$ and x_{2}^{\prime} is a prefix of some x_{2}, with $\left(x_{2}, y_{2}\right)$ in $\left|T_{2}\right|$ for some y_{2}.
- All states r_{2} in Q_{2}. Such an r_{2} means that $h^{-1}\left(T_{1} \cdot T_{2}\right)$ has read an edit string $e_{1} e_{2} e_{3}$ such that e_{2} is of the form $f_{2} \triangleright g_{2}$, or $f_{2} \triangleleft g_{2}$, and there is a computation of $h^{-1}\left(T_{1}\right)$ from s_{1} to F_{1} with label $e_{1} f_{2}$, and a computation of $h^{-1}\left(T_{2}\right)$ from s_{2} to r_{2} with label $g_{2} e_{3}$. This implies that, at state $r_{2}, T_{1} \cdot T_{2}$ has read some label of the form $\left(x_{1} x_{2}^{\prime}, y_{1} y_{2}^{\prime}\right)$ for which $\left(x_{1}, y_{1}\right)$ is in $\left|T_{1}\right|$ and there is $\left(x_{2}, y_{2}\right)$ in $\left|T_{2}\right|$ such that x_{2}^{\prime} and y_{2}^{\prime} are prefixes of x_{2} and y_{2}, respectively.
step 3: Define the set Δ consisting of the transitions of $T_{1} \cdot T_{2}$ in such a way that the meaning of the states in Q is preserved. More specifically we have that Δ consists of the following transitions.
- All transitions in Δ_{1}.
- All transitions of the forms $\left\langle p_{1}, \varepsilon, \varepsilon,\left(p_{1}, s_{2}, 10\right)\right\rangle$, with p_{1} in U_{10}, and $\left\langle q_{1}, \varepsilon, \varepsilon,\left(q_{1}, s_{2}, 01\right)\right\rangle$, with q_{1} in U_{01}
- All transitions of the form $\left\langle\left(p_{1}, p_{2}, 10\right), a, b,\left(p_{1}^{\prime}, p_{2}^{\prime}, 10\right)\right\rangle$, with $p_{1}, p_{1}^{\prime} \in U_{10}$, $p_{2}, p_{2}^{\prime} \in Q_{2}$, and $\left(p_{1}, \varepsilon, b, p_{1}^{\prime}\right)$ in Δ_{1}, and $\left(p_{2}, a, \varepsilon, p_{2}^{\prime}\right) \in \Delta_{2}$.
- All transitions of the form $\left\langle\left(q_{1}, q_{2}, 01\right), a, b,\left(q_{1}^{\prime}, q_{2}^{\prime}, 01\right)\right\rangle$, with $q_{1}, q_{1}^{\prime} \in U_{01}, q_{2}, q_{2}^{\prime} \in$ Q_{2}, and $\left(q_{1}, a, \varepsilon, q_{1}^{\prime}\right)$ in Δ_{1}, and $\left(q_{2}, \varepsilon, b, q_{2}^{\prime}\right) \in \Delta_{2}$.
- All transitions of the forms $\left\langle\left(p_{1}, p_{2}, 10\right), \varepsilon, \varepsilon, p_{2}\right\rangle$, with p_{1} in F_{1} and $p_{2} \in Q_{2}$, and $\left\langle\left(q_{1}, q_{2}, 01\right), \varepsilon, \varepsilon, q_{2}\right\rangle$, with q_{1} in F_{1} and q_{2} in Q_{2}.
- All transitions in Δ_{2}.
output: The transducer $T_{1} \cdot T_{2}=\left(Q, X_{1} \cup X_{2}, Y_{1} \cup Y_{2}, \Delta, s_{1}, F_{2}\right)$.
Theorem 1. For any saturated transducers T_{1} and T_{2}, the transducer $T_{1} \cdot T_{2}$ is saturated and realizes the transduction $\left|T_{1}\right| \cdot\left|T_{2}\right|$. Moreover, $\operatorname{size}\left(T_{1} \cdot T_{2}\right)=O\left(\operatorname{size}\left(T_{1}\right) \cdot \operatorname{size}\left(T_{2}\right)\right)$.

Proof. The statement about the size of $T_{1} \cdot T_{2}$ follows easily from its construction. For the first statement, it is sufficient to prove that $\left|T_{1} \cdot T_{2}\right| \subseteq\left|T_{1}\right| \cdot\left|T_{2}\right|$ and that, for any edit string e with $h(e) \in\left|T_{1}\right| \cdot\left|T_{2}\right|$, we have that $e \in h^{-1}\left(T_{1} \cdot T_{2}\right)$. Let (x, y) be any element in $\left|T_{1} \cdot T_{2}\right|$. There is a computation of $T_{1} \cdot T_{2}$ with label (x, y) and a corresponding computation of $h^{-1}\left(T_{1} \cdot T_{2}\right)$ with some label e, with $h(e)=(x, y)$. By the definition of the final states of $T_{1} \cdot T_{2}, e$ is of the form $e_{1} e_{2} e_{3}$ with $e_{2}=f_{2} \triangleleft g_{2}$ - the case $e_{2}=f_{2} \triangleright g_{2}$ is symmetric - and $h^{-1}\left(T_{1}\right)$ accepts $e_{1} f_{2}$, and $h^{-1}\left(T_{2}\right)$ accepts $g_{2} e_{3}$. This implies that

$$
(x, y)=h\left(e_{1}\right) h\left(f_{2} g_{2}\right) h\left(e_{3}\right)=h\left(e_{1} f_{2}\right) h\left(g_{2} e_{3}\right) \in\left|T_{1}\right| \cdot\left|T_{2}\right| .
$$

Now consider any edit string e such that $h(e) \in\left|T_{1}\right| \cdot\left|T_{2}\right|$. We shall use the notation in the preceding construction. The string e can be written as $e_{1} e_{2} e_{3}$ such that e_{2} is of the form $f_{2} \triangleleft g_{2}$ - the case $f_{2} \triangleright g_{2}$ is symmetric - and $h\left(e_{1} f_{2}\right) \in\left|T_{1}\right|$ and $h\left(g_{2} e_{3}\right) \in\left|T_{2}\right|$. This implies that there is a computation of $h^{-1}\left(T_{1}\right)$ from s_{1} to some $q_{1} \in U_{01}$ with label e_{1}, and a computation of $h^{-1}\left(T_{1}\right)$ from q_{1} to some state $q_{1}^{\prime} \in U_{01}$ with label f_{2}. Moreover there is a computation of $h^{-1}\left(T_{2}\right)$ from s_{2} to some $q_{2} \in Q_{2}$ with label g_{2}, and a computation of $h^{-1}\left(T_{2}\right)$ from q_{2} to some state $q_{2}^{\prime} \in F_{2}$ with label e_{3}. Using the transitions of $T_{1} \cdot T_{2}$ one can verify that there is a successful computation of $h^{-1}\left(T_{1} \cdot T_{2}\right)$ with label $e_{1} e_{2} e_{3}$, as required.

We close this section by noting that the construction of $T_{1} \cdot T_{2}$ can be carried out in time $O\left(\operatorname{size}\left(T_{1}\right) \cdot \operatorname{size}\left(T_{2}\right)\right)$. This is clear in steps 2 and 3. In Step 3, the computation of U_{10} can be done in time $O\left(\operatorname{size}\left(T_{1}\right)\right)$ as follows. Let G_{1} be the (directed) graph obtained by adding in the graph of T_{1} a new state N and $(\varepsilon, \varepsilon)$-transitions from all final states of T_{1} to N. Consider the graph G_{2} obtained if we keep only the transitions of G_{1} of the form (ε, a) and reverse the direction of these transitions. Then the set U_{01} consists of all the states in G_{2}, other than N, that can be reached from the state N. This traversal can be performed in time linear with respect to the size of G_{2}. The computation of U_{01} is analogous.

4 Saturation and Recognizability

Let us recall a few facts mentioned in the preliminaries of this paper. We know that a recognizable subset of $X^{*} \times Y^{*}$ is rational, therefore there exists a finite transducer which realizes it. The opposite does not hold: there exist quite simple rational transductions which are not recognizable, for example the identity over X^{*}. We also know a characterization of recognizable transductions as finite unions of blocks. There exist another two definitions of recognizable sets in arbitrary monoids: a morphism based definition (see for example [Pin, 1997]) and a definition based on monoid actions on finite sets(for an extensive discussion on the topic, consult [Sakarovitch, 2003, §II.2]). We recall here the later one.

Let Q be a finite set and $\left(M, \cdot, 1_{M}\right)$ an arbitrary monoid. An action of M on Q is a function $f: M \times Q \rightarrow Q$ which satisfy the following two properties: $f\left(q, 1_{M}\right)=$ q and $f\left(f(q, m), m^{\prime}\right)=f\left(q, m m^{\prime}\right)$, for all $q \in Q$ and $m, m^{\prime} \in M$. A subset D of M is recognizable if there exists such finite set Q and action f, and there exists $F \subseteq Q$ and $q \in Q$ such that $D=\{m \in M / f(q, m) \in F\}$.

In this section we give a fourth characterization of recognizable transductions by proving that the appropriate machines which realize them are saturated transducers. We start by giving two useful constructions.

Construction \#1
input: We are given a saturated transducer T, which we put in standard form, if it is not already.
step 1: We construct the finite automaton $h^{-1}(T)$ by interpreting the labels of transitions of T as edit operation symbols. The automaton $h^{-1}(T)$ is over the alphabet E (and has been described in details at the beginning of Section 3).
step 2: We determinize and minimize the automaton $h^{-1}(T)$, obtaining a minimal, complete DFA B. Denote $B=\left(Q, E, \delta, q_{0}, F\right)$.
step 3: For each state q of B we construct a corresponding automaton C_{q} as following:
(a) C_{q} has the same set of states as B, the same initial state, and it has $\{q\}$ as the set of final states;
(b) for each transition in B of type ($\left.p,(a / \varepsilon), p^{\prime}\right)$ with $a \in X$ we assign a transition $\left(p, a, p^{\prime}\right)$ in C_{q}.
step 4: For each state q of B we construct a corresponding automaton D_{q} as following:
(a) D_{q} has the same set of states as B, the same set of final states, and it has q as initial state;
(b) for each transition in B of type ($p,(\varepsilon / b), p^{\prime}$) with $b \in Y$ we assign a transition $\left(p, b, p^{\prime}\right)$ in D_{q}.
output: Let $Q^{\prime}:=\left\{q \in Q / \mathscr{L}\left(C_{q}\right) \neq \emptyset\right.$ and $\left.\mathscr{L}\left(D_{q}\right) \neq \emptyset\right\}$. The algorithm ends by delivering $\left\{C_{q}, D_{q}\right\}_{q \in Q^{\prime}}$.

Lemma 3. The above construction ensures the following properties:
(i) $|T|=\bigcup_{q \in Q^{\prime}} \mathscr{L}\left(C_{q}\right) \times \mathscr{L}\left(D_{q}\right)$.
(ii) The languages $\left\{\mathscr{L}\left(C_{q}\right)\right\}_{q \in Q^{\prime}}$ are disjoint. The languages $\left\{\mathscr{L}\left(D_{q}\right)\right\}_{q \in Q^{\prime}}$ are distinct.
(iii) The transition function of the automaton $h(B)$ can be extended to a monoid action of $X^{*} \times Y^{*}$ on Q.
(iv) If $h^{-1}(T)$ is deterministic then

$$
\sum_{q \in Q^{\prime}}\left(\operatorname{size}\left(C_{q}\right)+\operatorname{size}\left(D_{q}\right)\right)=O\left(\operatorname{size}(T)^{2}\right)
$$

Proof. We analyze each step of the above construction. The automaton $h^{-1}(T)$ found in step 1 has the following property:

$$
\begin{equation*}
\forall e \in \mathscr{L}\left(h^{-1}(T)\right), \forall e^{\prime} \in E^{*}: \quad h\left(e^{\prime}\right)=h(e) \Rightarrow e^{\prime} \in \mathscr{L}\left(h^{-1}(T)\right) \tag{1}
\end{equation*}
$$

given by the saturation of T. In other words, if $h^{-1}(T)$ accepts some edit string e, it will necessarily accept all edit strings which express the same word transformation as e. In algebraic terms, we say that the congruence induced by $h-$ let us call it \equiv_{h} - saturates $\mathscr{L}\left(h^{-1}(T)\right)$.

Since B found at step 2 is the minimization of $h^{-1}(T)$, it will preserve the above property. The automaton B has the following additional property:

$$
\forall e, e^{\prime} \in E^{*}: h(e)=h\left(e^{\prime}\right) \Rightarrow \delta\left(q_{0}, e\right)=\delta\left(q_{0}, e^{\prime}\right)
$$

in other words:

$$
\begin{equation*}
\equiv_{h} \subseteq \equiv \equiv_{\mathscr{L}(B)} \tag{2}
\end{equation*}
$$

where by $\equiv \mathscr{L}(B)$ we denoted the Myhill-Nerode equivalence of $\mathscr{L}(B)$. We justify this property as following:
Let $h(e)=h\left(e^{\prime}\right)$ and denote $p=\delta\left(q_{0}, e\right)$ and $q=\delta\left(q_{0}, e^{\prime}\right)$. Assume by contradiction that $p \neq q$. Then, since B is minimal, it follows that there exists $e^{\prime \prime} \in E^{*}$ such that $\delta\left(p, e^{\prime \prime}\right)$ is a final state in B and $\delta\left(q, e^{\prime \prime}\right)$ is not. But then, $e e^{\prime \prime} \in L$ and is easy to see that $h\left(e e^{\prime \prime}\right)=h\left(e^{\prime} e^{\prime \prime}\right)$. By the property expressed in relation (1) we infer that $e^{\prime} e^{\prime \prime}$ must be accepted - a contradiction.

Let a pair of words $(u, v) \in X^{*} \times Y^{*}$ be accepted by the given transducer T. Consider that $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n}$, with $u_{1}, \ldots, u_{m} \in X$ and $v_{1}, \ldots, v_{n} \in Y$. An edit string which transforms u into v is

$$
e=\left(u_{1} / \varepsilon\right) \ldots\left(u_{m} / \varepsilon\right)\left(\varepsilon / v_{1}\right) \ldots\left(\varepsilon / v_{n}\right)
$$

and denote $e=e_{1} e_{2}$, with $e_{1}=\left(u_{1} / \varepsilon\right) \ldots\left(u_{m} / \varepsilon\right)$. Since $(u, v) \in|T|$, we have that $e \in$ $\mathscr{L}(B)$, hence $\delta\left(q_{0}, e_{1} e_{2}\right) \in F$ in B. Denote $q=\delta\left(q_{0}, e_{1}\right)$ and observe that $u \in \mathscr{L}\left(C_{q}\right)$ and $v \in \mathscr{L}\left(D_{q}\right)$. Since the reciprocal also holds, we have that

$$
(u, v) \in|T| \Leftrightarrow u \in C_{q} \text { and } v \in D_{q} \text { for some } q \in Q,
$$

which proves Property (i) of the lemma.
By the fact that B is deterministic, it follows that $\left\{C_{q}\right\}_{q \in Q}$ are disjoint. For the second part of Property (ii), we use yet another property of the automaton B, that is,

$$
\begin{equation*}
\forall q \in Q, \forall e, e^{\prime} \in E^{*} \text { such that } h(e)=h\left(e^{\prime}\right): \delta(q, e) \in F \Rightarrow \delta\left(q, e^{\prime}\right) \in F \tag{3}
\end{equation*}
$$

which can easily be verified (invoking the saturation of T). Since B is minimal, and by the above property, we conclude that $\mathscr{L}\left(D_{p}\right) \neq \mathscr{L}\left(D_{q}\right)$ for any two distinct states $p, q \in Q$, as long as either $\mathscr{L}\left(D_{p}\right)$ or $\mathscr{L}\left(D_{q}\right)$ is not empty. This completes the proof of Property (ii).

Let us consider the transducer $h(B)$, which is obtained from B by replacing the transition labels(symbols) of the form x / y with the corresponding pairs (x, y). Clearly, $|T|=|h(B)|$. If we denote f to be the transition function of $h(B)$ (it is a partial function due to the determinism of B) it is enough to show that we can extend f to $X^{*} \times Y^{*}$ such
that it verifies the properties of an action. For any $(u, v) \in X^{*} \times Y^{*}$, let $e_{u, v}$ be a chosen edit string such that $h\left(e_{u, v}\right)=(u, v)$. We set $f(p,(u, v)):=\delta\left(p, e_{u, v}\right)$ and $f(p,(\varepsilon, \varepsilon)):=$ p, for all states in Q. It can readily be checked that the definition is independent of the choice of $e_{u, v}$, that is, f is a function

$$
f:\left(X^{*} \times Y^{*}\right) \times Q \rightarrow Q,
$$

and that

1. $f(p,(\varepsilon, \varepsilon))=p, \forall p \in Q$,
2. $f\left(f\left(p_{1},\left(u_{1}, v_{1}\right)\right),\left(u_{2}, v_{2}\right)\right)=f\left(p,\left(u_{1} u_{2}, v_{1} v_{2}\right)\right)$.

Finally we have that $(u, v) \in|T| \Leftrightarrow f\left(p_{0},(u, v)\right)$ is a final state in $h(B)$ (where p_{0} is the initial state of $h(B)$).

Remark 2. Notice that Property (i) of the above lemma does not depend on the minimality and completeness of B. Indeed, if we eliminate step 2 of the above construction, and we consider $h^{-1}(T)$ instead of B in the subsequent steps, we would still obtain Property (i) of the lemma.

Corollary 1.

$$
\operatorname{Sat}\left(X^{*} \times Y^{*}\right) \subseteq \operatorname{Rec}\left(X^{*} \times Y^{*}\right)
$$

Proof. By Mezei's characterization of recognizable transductions, we observe that the transduction realized by a saturated transducer is a finite union of blocks, hence it is recognizable.

We now turn our attention to a possible reciprocal of the above corollary, and we are aiming, as usual, at a constructive proof.

Construction \#2
input: We have a transduction $\tau \in \operatorname{Rec}\left(X^{*} \times Y^{*}\right)$ effectively given as a tuple $\left(A_{1}, B_{1}, \ldots, A_{n}, B_{n}\right)$ of finite automata. That is, we know that

$$
\tau=\bigcup_{i=1}^{n} \mathscr{L}\left(A_{i}\right) \times \mathscr{L}\left(B_{i}\right)
$$

step 1: For each $i \in\{1, \ldots, n\}$ we construct a saturated transducer T_{i} such that $\left|T_{i}\right|=\mathscr{L}\left(A_{i}\right) \times \mathscr{L}\left(B_{i}\right)$ (the construction has been presented in Section 3).
step2 : Since all T_{i} are saturated, we construct in $n-1$ iterations the transducer $T^{\cup}=T_{1} \cup_{\varepsilon} \ldots \cup_{\varepsilon} T_{n}$ which realizes the transduction $\left|T_{1}\right| \cup \ldots \cup\left|T_{n}\right|$ (this construction has also been presented in Section 3).
output: The algorithm delivers T^{\cup}.

Lemma 4. The above construction ensures that

$$
\left|T^{\cup}\right|=\tau
$$

Moreover, T^{\cup} is saturated and $\operatorname{size}\left(T^{\cup}\right)=\sum_{i=1}^{n}\left(\operatorname{size}\left(A_{i}\right) \cdot \operatorname{size}\left(B_{i}\right)\right)$.
Proof. The correctness and finiteness of each step has been proven in Lemma 1.
Corollary 2.

$$
\operatorname{Rec}\left(X^{*} \times Y^{*}\right) \subseteq \operatorname{Sat}\left(X^{*} \times Y^{*}\right)
$$

Remark 3. This corollary can also be proven, non-constructively, by using the closure properties of recognizable sets, as following.

Proof. Let τ be a recognizable transduction and consider the edit morphism over X and Y,

$$
h: E^{*} \rightarrow X^{*} \times Y^{*} .
$$

Since h is a morphism and τ is recognizable in $X^{*} \times Y^{*}$ we have that $h^{-1}(\tau)$ is recognizable in E^{*} (by the fact that recognizable sets are closed under inverse morphism). Then, by Kleene's theorem we have that $h^{-1}(\tau)$ is a regular language, hence there exists a finite automaton A over E which accepts $h^{-1}(\tau)$. Assume that A is a complete DFA. It now suffices to observe that the transducer $h(A)$ is saturated, in standard form, and it realizes τ.

Summing up, we have the following characterization of recognizable transductions.
Theorem 2. A transduction is recognizable if and only if it is realized by a saturated transducer.

Proof. It is a direct consequence of Corollary 1 and Corollary 2. Notice that the previous two constructions give a constructive proof of this theorem.

Notice carefully a consequence of this result : there exist saturated transducers whose transition table can not be extended to a monoid action; however, the theorem implies that even these transducers realize recognizable transductions.

Remark 4. There is an elegant proof for Lemma 3 using Mezei's theorem. Indeed, if T_{1} and T_{2} are saturated transducers, then by the theorem we have that $\left|T_{1}\right|$ and $\left|T_{2}\right|$ are recognizable, hence by Mezei's theorem we have that

$$
\left|T_{1}\right|=\bigcup_{i=1}^{m} A_{i} \times B_{i} \text { and }\left|T_{2}\right|=\bigcup_{j=1}^{n} C_{j} \times D_{j},
$$

where we expressed the transductions as union of blocks. Then it suffices to observe that

$$
\left|T_{1}\right| \circ\left|T_{2}\right|=\bigcup_{1 \leq i \leq m, 1 \leq j \leq n} G_{i, j}, \text { with } G_{i, j}= \begin{cases}\emptyset, & \text { if } B_{i} \cap C_{j}=\emptyset \\ A_{i} \times D_{j}, & \text { otherwise } .\end{cases}
$$

Consequently, $\left|T_{1}\right| \circ\left|T_{2}\right|$ is recognizable, therefore realizable by a saturated transducer $T_{1} \diamond T_{2}$, which can effectively be constructed. Notice that $T_{1} \diamond T_{2}$ may have a structure different than that of $T_{2} \circ T_{1}$ which was proposed in Lemma 1.

Remark 5. We have seen in Theorem 1 that given two saturated transducers T_{1} and T_{2}, one can construct a size $O\left(\operatorname{size}\left(T_{1}\right) \cdot \operatorname{size}\left(T_{2}\right)\right)$ transducer $T_{1} \cdot T_{2}$ which realizes $\left|T_{1}\right| \cdot \mid$ $T_{2} \mid$. That construction can stand as an alternative proof that recognizable transductions are closed under concatenation (the other proof makes use of Mezei's theorem).

Remark 6. We can now explain why in Section 3 we have not mentioned anything about the "star" operation on a saturated transducer. The reason is that saturated transductions are not closed under iteration, as the following classical example shows: $\{(a, b)\}$ is a saturated transduction, being finite; however, $\{(a, b)\}^{*}$ is not recognizable, hence can not be realized by a saturated transducer.

Remark 7. It is worth noticing that, given a finite transducer T over alphabets with at least two letters, it is undecidable whether there exists a saturated transducer equivalent with T. Indeed, this follows from the known fact that is undecidable whether a finite transducer over alphabets with at least two letters realizes a recognizable transduction.

5 Edit Distance and the non-Recognizability of $(L \times L)_{\neq}$

Edit strings and edit languages constitute natural tools for dealing with problems related to the edit distance between words and languages. In this context, the weight weight (e) of an edit string

$$
e=\left(x_{1} / y_{1}\right) \cdots\left(x_{n} / y_{n}\right)
$$

is the number of edit operations $\left(x_{i} / y_{i}\right)$ in e with $x_{i} \neq y_{i}$. For example, the weight of the edit string f in Section 2 is 2. Then the edit distance between two words u and v is the minimum of the weights of the edit strings transforming u into v, that is,

$$
\operatorname{dist}(u, v)=\min \left\{\operatorname{weight}(e) / e \in h^{-1}(\{(u, v)\})\right\} .
$$

If we construct automata A_{u} and A_{v} accepting $\{u\}$ and $\{v\}$, respectively, then the saturated transducer $A_{u} \times A_{v}$ accepts all edit strings e with $e \in h^{-1}(\{(u, v)\})$. Hence, the quantity $\operatorname{dist}(u, v)$ is the weight of the smallest-weight path (computation) in the graph corresponding to $A_{u} \times A_{v}$ - here the weights on the transitions are in $\{0,1\}$ such that the weight of a transition $(p,(x / y), q)$ is 1 if and only if $x \neq y$. This simple idea can be generalized for any pair of automata A_{1} and A_{2} and for more general types of distances - see [Mohri, 2003] and [Kari et al., 2003] for details.

The problem of computing the (inner) edit distance of a language L is more difficult, however. This quantity is the minimum edit distance between any pair of distinct words of L. Suppose that A is an automaton accepting L. The difficulty here lies in the fact that the saturated transducer $A \times A$ accepts edit strings e corresponding to pairs of equal words. Therefore, one would like to have a saturated transducer for the transduction

$$
(L \times L)_{\neq}=\{(u, v) / u, v \in L \text { and } u \neq v\} .
$$

Although one can construct an ordinary transducer for this transduction, we show next that there is no saturated transducer for this transduction, that is, $(L \times L)_{\neq}$is not recognizable when L is infinite. For the sake of completeness we mention that the problem of
computing the inner edit distance is solved in [Konstantinidis, 2005] by observing that (i) this quantity is always realized by two words differing at some position bounded by j_{A}, for some index that depends on the automaton A accepting L; and (ii) for any index j, there is a transducer T_{j} (which turns to be saturated, in our terminology) realizing all pairs of words that differ at position j.

Given an arbitrary set P, by $(P \times P)_{\neq}$we understand the set of all pairs of different elements of P. In other words, $(P \times P)_{\neq}=(P \times P) \backslash i d(P)$.

Proposition 1. Let P be an arbitrary, infinite set. The set equation

$$
(P \times P)_{\neq}=\bigcup_{i=1}^{n} X_{i} \times Y_{i}
$$

has no solution ($\left.n,\left\{X i, Y_{i}\right\}_{i=1}^{n}\right)$.
Proof. Assume, by contradiction, that there exists $\left(n,\left\{X i, Y_{i}\right\}_{i=1}^{n}\right)$ - a solution of the above equation. Notice first that necessarily $X_{i} \cap Y_{i}=\emptyset$ for all $i \in\{1, \ldots, n\}$. Since P is infinite, there exist 2^{n+1} different elements in P. Denote by $U_{1}:=\left\{u_{1}, \ldots, u_{2^{n+1}}\right\}$ a set of such elements.

Consider the triplet U_{1}, X_{1} and Y_{1}. We we can write

$$
U_{1}=\left(U_{1} \cap X_{1}\right) \cup\left(U_{1} \cap Y_{1}\right) \cup\left(U_{1} \backslash\left(X_{1} \cup Y_{1}\right)\right)
$$

since X_{1} and Y_{1} are disjoint. Let us assume, without loss of generality that $\left|U_{1} \cap X_{1}\right| \geq 1$ $U_{1} \cap Y_{1} \mid$, and let us denote $U_{2}:=U_{1} \backslash Y_{1}$.

We first prove that U_{2} has at least 2^{n} elements. We have that $\left|U_{1} \cap X_{1}\right|+\left|U_{1} \cap Y_{1}\right| \leq$ 2^{n+1} and that $\left|U_{1} \cap X_{1}\right| \geq\left|U_{1} \cap Y_{1}\right|$. This implies that $\left|U_{1} \cap Y_{1}\right| \leq 2^{n}$, by the fact that $U_{1} \cap X_{1}$ and $U_{1} \cap Y_{1}$ are disjoint. Then clearly $\left|U_{1} \backslash Y_{1}\right| \geq 2^{n}$, hence $\left|U_{2}\right| \geq 2^{n}$. We may also observe that the pairs of different elements in U_{2} can not appear in $X_{1} \times Y_{1}$. Indeed, we can not have $(u, v) \in X_{1} \times Y_{1}$ and $u, v \in U_{2}$, since $U_{2}=U_{1} \backslash Y_{1}$.

We repeat the above argument for the triplet U_{2}, X_{2} and Y_{2}. We obtain a set $U_{3} \subseteq U_{1}$ with $\left|U_{3}\right| \geq 2^{n-1}$ and no pair of elements in U_{3} can be found in $X_{2} \times Y_{2}$.

Then, we repeat this argument till we obtain $U_{n+1} \subseteq U_{2}$ with $\left|U_{n+1}\right| \geq 2$ and no pair of elements in U_{n+1} can be found in $X_{n} \times Y_{n}$.

Take two different elements $u, v \in U_{n+1}$. Since we have $U_{n+1} \subseteq U_{n} \subseteq \ldots \subseteq U_{1}$, we conclude that the pair (u, v) does not belong to any $X_{i} \times Y_{i}$, for $1 \leq i \leq n$.

But this contradicts the fact that $U_{1} \subseteq P$.
Corollary 3. Let $L \in X^{*}$ be an infinite regular language. The transduction $(L \times L)_{\neq}$ can not be realized by a saturated transducer over X.

Proof. In order to have a saturated transducer for $(L \times L)_{\neq}$, this set must be recognizable, by Theorem 2. However, Proposition 1 shows that it can not be written as a finite union of blocks, hence it is not recognizable, by Mezei's characterization.

6 Final Comments and Future Work

In this paper we have achieved the following. We have revealed the relation between edit languages, recognizable transductions and saturated transducers. We have shown that operations with saturated transducers can efficiently be implemented, and we outlined methods to construct and manipulate saturated transducers. We have shown how one can use saturated transducers for computing the edit distance between words and languages. Finally, we have studied situations when our framework can not be used, due to the nonrecognizability of various rational relations.

It is worth noticing that our entire framework still holds when is restricted to the use of only two edit operations: insertion and deletion (for this case, one defines "restricted saturated transducers"). This restriction may be of importance in applications where only these two edit operations are of interest ([Levenshtein, 1966]).

Left for further analysis are a few matters which have not been tackled yet. For example, it is worth investigating algorithms to efficiently compute saturated transducers for given finite transductions; in particular, for finite identities.

It is interesting to notice that the notion of minimal saturated transducer for a recognizable transduction makes sense, since it is given by the minimal corresponding DFA over the edit alphabet. Size-complexity matters may be investigated in this aspect.

Finally, we have left for study the comparison of two representations(characterizations) of recognizable transductions: one using saturated transducers the other using tuples of automata.

References

[Berstel, 1979] J. Berstel: Transductions and Context-Free Languages. B. G. Teubner Stuttgart. (1979)
[Eilenberg, 1974] S. Eilenberg: Automata, Languages and Machines. Volume A. Academic Press, New York and London. (1974)
[Hopcroft and Ullman, 1979] J. E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages and Computation. First Edition. Addison-Wesley Publishing Company, Inc. (1979)
[Howie, 1976] J. M. Howie: An introduction to semigroup theory. Academic Press, New York and London. (1976)
[Kari, Konstantinidis, 2002] L. Kari, S. Konstantinidis: Descriptional complexity of error/edit systems. In J. Dassow, M. Hoeberechts, H. Jürgensen, D. Wotschke (eds), Pre-Proceedings of Descriptional Complexity of Formal Systems 2002, London, Canada, 133-147. To appear in J. Automata, Languages and Combinatorics 9 (2004).
[Kari et al., 2003] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu: Finite-state errorledit-systems and difference-measures for languages and words. Technical Report Series of the Dept. Math. and Computing Sci., Saint Mary's University, Canada, TR 2003-01, pp 10. Available electronically at http://www.stmarys.ca/academic/science/compsci/.
[Konstantinidis, 2005] S. Konstantinidis: Computing the edit distance of a regular language. Technical Report Series of the Dept. Math. and Computing Sci., Saint Mary's University, Canada, TR 2005-01, pp 11. Available electronically at http://www.stmarys.ca/academic/science/compsci/.
[Levenshtein, 1966] V. I. Levenshtein: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Dokl., pp. 707-710. (1966)
[McKnight, 1964] J. D. McKnight Jr.: Kleene Quotient Theorems. Pacific Journal of Mathematics, v.14, pp. 1343-1352. (1964)
[Mohri, 2003] M. Mohri: Edit-distance of weighted automata: general definitions and algorithms. International Journal of Foundations of Computer Science 14(6) (2003), pp. 957-982.
[Pin, 1997] J.-E. Pin: Syntactic Semigroups. in A. Salomat and G. Rozenberg (eds.), Handbook of Formal Languages, v. 1, Ch. 10, pp. 679-746. Springer Verlag. (1997)
[Sakarovitch, 2003] J. Sakarovitch: Éléments de Théorie des Automates. Vuibert Informatique, Paris. (2003)
[Sankoff, Kruskal, 1999] D. Sankoff, J. Kruskal (eds): Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. CSLI Publications, 1999.
[Yu, 1997] S. Yu: Regular Languages. in A. Salomaa and G. Rozenberg (eds.), Handbook of Formal Languages, v. 1, Ch. 2, pp. 41-110. Springer Verlag. (1997)

[^0]: * This work was supported by the Natural Science and Engineering Research Council of Canada grants R220259 and OGP0041630 .
 ** corresponding author

