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Abstract. In this paper we present a different framework for the study of fuzzy finite machines and
their fuzzy languages. Unlike the previous work on fuzzy languages, characterized by fuzzifica-
tion at the level of their acceptors/generators, here we follow a top-down approach by starting our
fuzzification with more abstract entities: monoids and particular families in monoids. Moreover, we
replace the unit interval (in fact, a finite subset of the unitinterval) as support for fuzzy values with
the more general structure of a lattice. We have found that completely distributive complete lattices
allow the fuzzification at the highest level, that of recognizable and rational sets. Quite surprisingly,
the fuzzification process has not followed thoroughly the classical (crisp) theory. Unlike the case of
rational sets, the fuzzification of recognizable sets has revealed a few remarkable exceptions from
the crisp theory: for example the difficulty of proving closure properties with respect to complement,
meet and inverse morphisms. Nevertheless, we succeeded to prove the McKnight and Kleene theo-
rems for fuzzy sets by making the link between fuzzy rational/recognizable sets on the one hand and
fuzzy regular languages and FT-NFA languages (languages defined by NFA with fuzzy transitions)
on the other. Finally, we have drawn the attention to fuzzy rational transductions, which have not
been studied extensively and which bring in a strong note of applicability.
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1. Introduction

In the mid 60’s, L. A. Zadeh ([39]) established the basis of fuzzy set theory, a field which has not ceased
to intrigue mathematicians and computer scientists ever since. Soon after its foundation, the theory was
extended to formal languages; first indirectly, by the work of J. A. Goguen ([10]) who introduced a
general “Principle of Fuzzification”, and later explicitly, by Zadeh and E.T. Lee, in [14]. Since then,
there have been many attempts to define devices which either accept or generate elements/words of fuzzy
languages. Some of them were “machine oriented”, in the sense that they were aiming at simply adding
fuzzy values to either transitions or states of classical automata (see for example FT-NFA as defined
in [17] or Moore fuzzy automata as in [34]). Some others used heavier algebraic concepts, such as
sigma algebras, steady or complete semirings, semimodules, etc. (see, for example, [23]). These two
trends follow two major approaches in automata theory: a machine oriented andan algebraic approach.
However, there exist other formalisms worth considering. Arguably the most remarkable one is the
formalism proposed in mid 60’s by S. Eilenberg ([8]), aiming at the study of two particular families of
subsets in arbitrary monoids: sets defined by rational operations and setsdefined by monoid actions. To
our knowledge, there has been no attempt to study the fuzzification of rational and recognizable sets in
arbitrary monoids. To some extent, our approach follows a line similar to the development of the general
theory of formal power series on noncommutative variables with coefficients in a semiring. We believe
that this method leads, in a natural way, to the concept of fuzzy machine and, in particular, to fuzzy finite
automata and transducers. This paper addresses the need for a “fuzzy” theory which follows the classical
theory of rational and recognizable sets in arbitrary monoids, using fuzzy set theoretic concepts. In this
paper we are proving that this endeavor is possible, and that it leads to a formalism which does not always
follow the “crisp” counterpart (i.e., it is not a trivial rewriting of what hasalready been done). Moreover,
we prove (or ensure) that restricting our new formalism to special casesleads to existing results on fuzzy
machines.

Why fuzzy machines? It is well known that both stochastic and fuzzy automata can be viewed as par-
ticular types of weighted automata, i.e., automata with transitions taking values in a semiring. From this
point of view, all results and algorithms concerning weighted automata can readily be employed when
dealing with stochastic and fuzzy automata. However, it is in our perception that the general theory of
automata over semirings has a very broad spectrum and it sometimes misses particularities which would
make it extremely applicable. For example, in the context of semirings, the notionof partial order is a
second class citizen. In contrast, a lattice is built upon this very notion, and consequently, fuzzy automata
are versatile tools for classification of words according to their associatedvalue. In addition, arbitrary
semirings can seldom be used for weighted automata. Indeed, one must always ensure that the semiring
allows infinite sums (hence the use of complete semirings), or that the associated automata trigger sums
involving locally finite sets (see, for example, [9, p. 127]). In contrast, since a complete lattice is a com-
plete semiring, this difficulty is avoided for fuzzy automata in a natural manner.When comparing fuzzy
and stochastic (probabilistic) automata, one observes that they have different interpretations and serve
different purposes. Moreover, it has been noticed that the probabilities computed by stochastic automata
decrease predictably, as a function of the length of the input (this consequence is more pronounced in
the deterministic case, where there is at most one successful computation for any give input). If the input
is long enough (inevitable for infinite languages), the computed probabilities become too small for any
practical purpose (they go beyond the precision of any particular machine). In contrast, fuzzy automata
do not have this drawback. It is our belief that particularizing the general theory of automata over semi-
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rings to automata over lattices (i.e., fuzzy automata) brings in specific and applicable results which make
fuzzy machines rather interesting, from an algebraic, as well as a practical, point of view.

The need of defining fuzzy automata at a more abstract level and in a more general framework has
been felt before, and a prolific research activity in this direction has preceded our work. Recent studies
worth mentioning are: [21] concerned with the connection between the category of fuzzy automata and
that of chains of nondeterministic automata, [22] which introduces generalized fuzzy automata over
complete residuated lattices, [12] in which are studied fuzzy recognizers and recognizable sets (notions
having little in common with the concept of recognizability defined in this paper), [1] where types of
fuzzy languages and deterministic fuzzy automata are defined, [15] dealing with fuzzy machines over
lattice-ordered monoids (in contrast with the present paper where the latticeand monoid structures are
separated), or [16, 11, 13] where operations with fuzzy machines (such as coverings, cascades and wreath
products) were studied, to mention just a few sources. These efforts have been fuelled and inspired
by early developments of the late 60’s and the 70’s when fuzzy systems, fuzzy automata, and their
applications reached a peak of their popularity. Examples of pioneering work in the field are: [37] and
later [38, 28] where was first discussed the notion of fuzzy automaton witha nonfuzzy initial state and
nonfuzzy inputs, in rigorous mathematical terms, [19] where a fuzzy automaton with a fuzzy initial state
was introduced for the first time in a formal languages context, [32, 28, 29] where various types of valued
sequential machines, including fuzzy automata over the unit interval, were defined and analyzed, [30]
where one can find initial attempts to reduce fuzzy automata by means of a max-minalgebra of real
numbers, and where various criteria of reducibility and minimality are provided(see also the newer [24],
in a broader context), etc.. In the past, there have been many attempts to find an ideal algebraic structure
as a support for fuzzy automata, such as: ordered semigroups ([36], [31]), or ordered (or not) semirings
([35], and the newer [23]), boolean lattices ([20]), normalized convex fuzzy sets in the unit interval
([18]), and the list goes on. The legacy is indeed impressive, coming from many research fields and
following different approaches; and consequently, a certain degreeof decentralization has occurred. For
example, one can find in the present literature several ways of defining asame type of fuzzy automaton,
definitions which are not equivalent despite their identical terminology. More alarmingly, there exist
results in different sources which are valid within their own context, however they become contradictory
when placed side-by-side in an effort to consolidate the theory. The present paper does not claim to
have solved this unification problems, which may very well be insurmountable;however it is a step
toward its resolution by exposing a rigorous framework built incrementally from very basic concepts
and gradually covering aspects most relevant to the topic, from a formal language point of view. It aims
at a compromise formula balancing the complexity of the framework and its formalism power. There
are several fundamental differences between our work and the previously-mentioned endeavors, many
originating in our novel approach of combining basic concepts of fuzzy set theory with the abstract
notion of computable set in arbitrary monoids as reflected in the well-known duality “rational set –
recognizable set”. In doing this, we took a special care to preserve the nature of both worlds, hoping
to combine (by fuzzification) the notions without diluting them into each other. Consequently, we hope
to have accomplished a fuzzification as easily accessible as possible to a formal language theorist (for a
more set-theoretic treatment of the topic, which goes beyond the formal language context consult [7]).

It has become apparent by now that one of the goals of this paper is to revive the topic of fuzzy
machines, and bring to attention a fresh point of view. Some of the results presented here can arguably
be viewed as derived from the theory of formal power series over arbitrary semirings with noncommuting
variables, in as much as fuzzy automata can be viewed as weighted automata. Some other results, with



4 S. Konstantinidis et al. / Fuzzification of Rational and Recognizable Sets

a fuzzy set theoretic specific, or those concerning arbitrary monoids, have no match in the context of
formal power series (formal power series were first studied in [33, 9]and further developed in [27] and
[4], to mention just a few). Whether a fuzzy subset of a monoid can be considered a formal power series
is a matter of debate, since formal power series require noncommuting variables most of the time and
in most cases the variables are elements of finitely generated free monoids. Their differences, subtle or
not, lead to the state of having two fully developed and independent theories: a fuzzy set theory and a
formal power series theory. Moreover, unlike most of the work on formal power series, focussed mainly
on either free monoids or direct products of free monoids, in this paper wefocus on arbitrary monoids.
We also rebuild some classical definitions; for example, our notion of fuzzyrecognizable set is not in
line with the notion of recognizableK-subset (as in [9]) or recognizable series (as in [27]). Furthermore,
using completely distributive complete lattices as proper algebraic structure for monoid fuzzification, we
bring forward properties of fuzzy sets specifically derived from these structures. Finally, our formalism
appears to be more friendly than that used in formal power series, the onlyalgebraic structures used here
being that of a lattice and a monoid.

The paper is structured as follows. In Section 2 we introduce basic concepts of lattice theory, with
a focus on completely distributive complete lattices. We have found that these lattices are the proper
algebraic objects for monoid fuzzification. It is important to note that indeed,this is a generalization
of the previously used unit interval, since in fact, only a finite chain of the unit interval was used in
past work. In Section 3 we proceed with the fuzzification of monoids, as support for fuzzy rational
and recognizable sets. It is in this section where we define operations with fuzzy sets and study their
properties. We continue in Section 4 and 5 with our main goal, that of fuzzifying the families of rational
and recognizable sets. In these sections we address their closure properties, we define their corresponding
abstract machines and we give links to their “crisp” counterpart. In Section 6 we make the connection
between fuzzy rational and recognizable sets, using particular types ofmonoids and lattices. As proof
of soundness, in Section 7 we apply the results developed in the previous sections to fuzzy relations
in general and transductions in particular, with potential applications. A simpleexample of a fuzzy
finite transducer can also be found here. Finally, in Section 8 we concludeour work and outline further
directions.

2. Notions of Lattice Theory

In this section we present a few notions of lattice theory, with a focus on theirtransfinite properties. Our
main purpose is to reach the concept of completely distributive complete lattice, used throughout this
paper.

Definition 2.1. By a partial ordering of a setL we understand a relation (viewed as a subset of a
Cartesian product) “≤ ” ⊆ L × L which isreflexive ( ∀x : x ≤ x ), antisymmetric (∀x, y :
x ≤ y, y ≤ x ⇒ x = y ), andtransitive ( ∀x, y, z : x ≤ y, y ≤ z ⇒ x ≤ z ). The order is called
“partial” since there may exist incomparable elements inL.

Definition 2.2. Let L be a set and≤ a partial ordering ofL.

1. L is alattice if all nonempty, finite subsets ofL have aleast upper bound and agreatest
lower bound with respect to≤.
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2. L is acomplete lattice if the previous property holds for arbitrary nonempty subsets ofL.

We denote by∨ (join) and∧ (meet) the operators which give the least upper bound and the greatest lower
bound of a set (since≤ is a partial order, the upper and lower bounds of a subset ofL may not belong
to the subset). IfL is a complete lattice, we denote0 =

∧

L and1 =
∨

L; and is useful to define (by
convention) “empty meets and joins”, as

∨

∅ =
∧

∅ =
∧

L. Observe that any finite lattice is complete.
For a latticeL we use the notation(L,≤,∨,∧, 0, 1), where some of the operators may be omitted if

they are given by the context or they are undefined. The following is an important property of complete
lattices:

Birkhoff ’s law. ([5, p. 53]) In a complete lattice(L,≤,∨,∧) the following self-dual law holds:

∨

ψ∈Ψ

(

∨

ϕ∈φψ

aϕ

)

=
∨

ϕ∈Φ

aϕ ,

whereΨ is an index set,{φψ}ψ∈Ψ is a family of index sets (indexed byΨ), Φ =
⋃

ψ∈Ψ φψ andaϕ are
elements ofL.

Consequently, all complete lattices obey to the following generalized (transfinite) laws:

1. (generalized commutativity) Any nonempty subsetS of L has a meet∨S and a join∧S
depending only onS.

2. (generalized associativity) If {Sφ}φ∈Φ is a family of nonempty subsets ofL indexed byΦ
and if we denoteS =

⋃

φ∈Φ Sφ then

∨

φ∈Φ

(

∨

Sφ
)

=
∨

S,
∧

φ∈Φ

(

∧

Sφ
)

=
∧

S .

We say that a latticeL is distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), for all a, b, c ∈ L.
The property is self-dual, in the sense that if we interchange∨ and∧, the equality remains true. It is
easy to check that any totally ordered lattice (orchain) is distributive. In this paper we are interested in
a stronger form of distributivity, namely thegeneralized (transfinite) distributivity: arbi-
trary meets distribute over arbitrary joins and vice versa. The property is formalized as following.

Let (L,≤) be a complete lattice and{Sφ}φ∈Φ be a family of nonempty subsets ofL indexed byΦ.
DenoteF = {f : Φ →

⋃

φ∈Φ Sφ
/

f(φ) ∈ Sφ} the set of allchoice functions which map each index
φ into an element ofSφ.

Definition 2.3. ([25]) (L,≤) is completely distributive if

∧

φ∈Φ

(

∨

Sφ
)

=
∨

f∈F

(

∧

f(Φ)
)

Remark 2.1. The property of complete distributivity is self-dual.
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Definition 2.4. We say that a latticeL has no0-divisors if and only if

∀l1, l2 ∈ L :
(

l1 ∧ l2 = 0
)

⇒
(

l1 = 0 or l2 = 0
)

.

Remark 2.2. Notice that if the order inL is total, thenL has no0-divisors.

In what will follow we consider onlycompletely distributive complete lattices, abbre-
viated “c.d.c. lattices”. Notice that a finite lattice is a c.d.c. lattice if and only if it is distributive
(in the finite sense).

3. Monoid Fuzzification

Let M be an arbitrary set (for now) and(L,≤,∨,∧, 0, 1) be a lattice.

Definition 3.1. An L-fuzzy set (orfuzzy set, whenL is understood) onM is a functionµ : M → L
(see, for example, the definition in [10]).

If we denote byLM the family of allL-fuzzy sets onM then(LM ,≤,∨,∧, µ∅, µM ) has a lattice struc-
ture, where:

– ∀µ, ν ∈ LM : µ ≤ ν ⇔ ∀m ∈ M : µ(m) ≤ ν(m) in L;

– ∀µ, ν ∈ LM ,∀m ∈ M : µ ∨ ν ∈ LM , (µ ∨ ν)(m) = ∨{µ(m), ν(m)};

– ∀µ, ν ∈ LM ,∀m ∈ M : µ ∧ ν ∈ LM , (µ ∧ ν)(m) = ∧{µ(m), ν(m)};

– µ∅ = {(m, 0)/m ∈ M} andµM = {(m, 1)/m ∈ M} .

(in this definition we used the extensional representation of a function)

The meets and joins of fuzzy sets can be extended over arbitrary families. Following the convention,
in LM we have

∨

∅ =
∧

∅ = µ∅. Furthermore, the laws ofL are ported toLM , thusLM becomes a
c.d.c. lattice ifL is c.d.c., a fact which will be assumed from now on.

If ν ∈ LM , we denotesupp(ν) = {m ∈ M/ν(m) 6= 0} to be thesupport of ν. A singleton in
LM is an element whose support has cardinality1 (it has exactly one element), and we use the notation

µlm = {(m, l)} ∪ {(n, 0)/n ∈ M, n 6= m}

for the singletons ofLM . We adopt the following nomenclature:µ∅ is thenull fuzzy set andµM is
theuniform fuzzy set, i.e., the fuzzy set which associates value1 to all the elements ofM .

Let us define the following two important subfamilies ofLM :

1. thefamily of singletons in LM , denoted by

S(LM ) = {µ ∈ LM/µ is a singleton} , and

2. thefamily of L-fuzzy sets with finite support, denoted by:

FS(LM ) = {ν ∈ LM/ | supp(ν) |< ℵ0} .
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Notice thatsupp(µ∅) = ∅, henceµ∅ ∈ FS(LM ). However,µ∅ 6∈ S(LM ).

Remark 3.1. FS(LM ) is closed under meets (possibly transfinite) and finite joins. Any element of
FS(LM ) is the result of finite (possibly empty) joins of elements ofS(LM ).

If we considerM to have the algebraic structure of a monoid, we can enrich the structure ofLM with
an operation derived from the monoid operation, as follows.

Let (M, ·, 1M ) be a monoid,(L,≤,∨,∧, 0, 1) be a c.d.c lattice and considerLM , the lattice of L-
fuzzy sets onM . We callµ1

1M
theunit fuzzy set. Let us define an operation “·”(multiplication) over

LM as following:

∀µ, ν ∈ LM : (µ · ν)(m) =
∨

m=u·v

{

µ(u) ∧ ν(v)
}

. (1)

Notice that this operation does not involve empty joins and meets, since any element m ∈ M accepts
at least two decompositions:m = m · 1M = 1M · m. Furthermore, sinceL is complete, we have that
∨ is defined over arbitrary subsets ofL, hence the operation “·” is well-defined (despite the fact thatm
can have an infinite number of decompositions: for example, takingM to be the monoid(R, ·, 1), a real
numberm 6= 1 has an infinite number of non-trivial decompositions,m = (m

1

k )k, k ∈ N). Operation
(1) is a reflection of what is known in fuzzy set theory as theextension principle, introduced in [39]
and elaborated upon in [7, p. 36].

Notation.Where there is no source of confusion, the multiplication of either elements ofM or fuzzy
sets will be represented by juxtaposition (by omitting the dot).

Lemma 3.1. Multiplication is associative and distributes over∨ in LM .

Proof:
Let µ, ν, ξ ∈ LM . For associativity, we verify that for everym ∈ M we have

(

(

µ · ν
)

· ξ
)

(m) =
(

µ ·
(

ν · ξ
)

)

(m) =
∨

m=u·v·w

{

µ(u) ∧ ν(v) ∧ ξ(w)
}

.

Indeed, we have

(µ(νξ))(m) =
∨

m=uw′

{

µ(u) ∧ (νξ)(w′)
}

=

=
∨

m=uw′

{

∧
{

µ(u),
∨

w′=vw{ν(v) ∧ ξ(w)}
}

}

=

(here we invoke the generalized distributivity inL)

=
∨

m=uw′

{

∨

w′=vw{µ(u) ∧ ν(v) ∧ ξ(w)}
}

=

(we invoke generalized associativity)

=
∨

m=uvw

{

µ(u) ∧ ν(v) ∧ ξ(w)
}

.
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On the other hand, we have

((µν)ξ)(m) =
∨

m=u′w

{

(µν)(u′) ∧ ξ(w)
}

=

=
∨

m=u′v

{(

∨

u′=uv

{

µ(u) ∧ ν(v)
}

)

∧ ξ(w)
}

=

(we invoke yet again the generalized distributivity)

=
∨

m=u′v

{

∨

u′=uv

{

µ(u) ∧ ν(v) ∧ ξ(w)
}

}

=

(we invoke generalized associativity)

=
∨

m=uvw

{

µ(u) ∧ ν(v) ∧ ξ(w)
}

.

We have used the fact that(m = uvw) ⇔ (m = u′w andu′ = uv), given by the associativity inM ,
and we also used the fact that meets distribute over arbitrary(transfinite) joins in L. The last equality is
given by general associativity - as mentioned in-line.

We now prove that multiplication distributes over joins:
(

µ · (ν ∨ ξ))(m) =
∨

m=u·v

{

µ(u) ∧ (ν ∨ ξ)(v)
}

= (by distributivity)

=
∨

m=u·v

{(

µ(u) ∧ ν(v)
)

∨
(

µ(u) ∧ ξ(v)
)}

= (by gen. commutativity)

=
(

∨

m=u·v

{

µ(u) ∧ ν(v)
}

)

∨
(

∨

m=u·v

{

µ(u) ∧ ξ(v)
}

)

=
(

(µν) ∨ (µξ)
)

(m) .

We have used the law of generalized commutativity inL. Distributivity “to the right” is proven in a
similar way. ut

By the previous lemma (by distributivity over joins, in particular),LM becomes a multiplicative
lattice. Distributivity over meets does not hold in general. However, we are able to prove the following
property.

Lemma 3.2. For anyµ, ν, ξ ∈ LM the following inequality holds:

µ(ν ∧ ξ) ≤ (µν) ∧ (µξ) .

Proof:
(

µ · (ν ∧ ξ))(m) =
∨

m=u·v

{

µ(u) ∧ (ν ∧ ξ)(v)
}

= (by definition)

=
∨

m=u·v

{

µ(u) ∧ ν(v) ∧ ξ(v)
}

= (by idempotence)

=
∨

m=u·v

{

µ(u) ∧ µ(u) ∧ ν(v) ∧ ξ(v)
}

= (by commutativity)

=
∨

m=u·v

{(

µ(u) ∧ ν(v)
)

∧
(

µ(u) ∧ ξ(v)
)}

≤ (from transfinite distributivity)

≤
(

∨

m=u·v

{

µ(u) ∧ ν(v)
}

)

∧
(

∨

m=u·v

{

µ(u) ∧ ξ(v)
}

)

=
(

(µν) ∧ (µξ)
)

(m) . ut

The inequality derived from transfinite distributivity is similar to the following relations: (A1∧B1)∨
(A2 ∧B2) = (A1 ∨A2)∧ (A1 ∨B2)∧ (B1 ∨A2)∧ (B1 ∨B2) ≤ (A1 ∨A2)∧ (B1 ∨B2) . Notice that
the inequality of the lemma holds also when we multiply “to the right”:(ν ∧ ξ)µ ≤ (νµ) ∧ (ξµ) .
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Corollary 3.1.
(

S(LM )∪ {µ∅}, ·, µ
1
1M

)

is a submonoid of
(

FS(LM ), ·, µ1
1M

)

which is a submonoid of
(LM , ·, µ1

1M
).

Proof:
Here we prove only thatFS(LM ) is closed under “·”, the rest being straightforward. Ifν, ξ ∈ FS(LM ),
then

ν = µl1m1
∨ · · · ∨ µlkmk ,

ξ = µt1n1
∨ · · · ∨ µtrnr ,

for some singletonsµl1m1
, . . . , µlkmk , µ

t1
n1

, . . . , µtrnr , and is easy to see that

(ν · ξ)(m) =
∨

m=minj ,

{

ν(mi) ∧ ξ(nj)
}

,

where the join is for all1 ≤ i ≤ k and all1 ≤ j ≤ r.
Then, there will be at mostk × r arguments which are mapped byν · ξ into non-null values (all

possible combination{(mi, nj)}i,j). This proves thatν · ξ belongs toFS(LM ), hence thatFS(LM ) is
closed under “·”. Notice that in the above proof we can also expressν · ξ as

(ν · ξ)(m) =
∨

m=minj

(li ∧ tj) .

ut

Remark 3.2. If L has no0-divisors then(S(LM ), ·, µ1
1M

) becomes a monoid, more precisely a sub-
monoid of(S(LM ) ∪ {µ∅}, ·, µ

1
1M

).

Corollary 3.2. In LM , “·” satisfies the following transfinite distributivity laws:

µ ·
∨

φ∈Φ

νφ =
∨

φ∈Φ

(µ · νφ) ,
(

∨

φ∈Φ

νφ

)

· µ =
∨

φ∈Φ

(νφ · µ)

for an arbitrary index setΦ, and these laws are self-dual. Furthermore,

- µ1
1M

· ν = ν · µ1
1M

= ν, ∀ν ∈ LM ;

- µ∅ ∧ ν = µ∅ · ν = ν · µ∅ = µ∅, ∀ν ∈ LM .

Proof:
We have, for example,

[

µ ·
(
∨

φ∈Φ νφ
)

]

(m) =
∨

m=uv

[

µ(u) ∧
(
∨

φ∈Φ νφ(v)
)

]

=

(here we use transfinite distributivity inL)

=
∨

m=uv

∨

φ∈Φ

[

µ(u) ∧ νφ(v)
]

= (generalized commutativity)

=
∨

φ∈Φ

∨

m=uv

[

µ(u) ∧ νφ(v)
]

=
[

∨

φ∈Φ(µ · νφ)
]

(m) .
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For the other claims, we can check, for example, that

(ν · µ1
1M

)(m) =
∨

m=uv

{

ν(u) ∧ µ1
1M

(v)
}

= ν(m) ∧ µ1
1M

(1M ) = ν(m) .

The other claims are straightforward. ut

Remark 3.3. With these properties,LM becomes acomplete lattice ordered semigroup, ab-
breviatedclosg - notion defined for example in [10, p. 155]. By the fact thatLM is also a distributive
lattice, we affirm that it is adistributive closg.

Since multiplication is associative inLM we can define the unary operator “∗”(or “star”, or iteration)
as following:

∀ν ∈ LM : ν∗ =
∞
∨

i=0

νi ,

with ν0 = µ1
1M

(by convention) andνi = νi−1 · ν, for all i ≥ 1. As usual, we denote

ν+ =
∞
∨

j=1

νj .

It is worth noticing the following facts:

- if µlm, µtn ∈ S(LM ), we haveµlm · µtn = µl∧tm·n , hence(µlm)i = µl
mi

, ∀i ≥ 1 ;

- (µ∅)
∗ = (µ∅)

0 = µ1
1M

;

- (µ∅)
+ = µ∅ .

If ν ∈ FS(LM ), we can writeν as a finite (eventually empty) meet of singletons:ν = µl1m1
∨ · · · ∨µlkmk ,

for somek ≥ 0, and ifν 6= µ∅ one can express any positive power ofν as

∀p ≥ 1 : νp =
∨

1≤i1,...,ip≤k

µ
li1∧···∧lip
mi1 ...mip

.

Observation.Notice thatν ∈ FS(LM ) does not necessarily mean thatν∗ ∈ FS(LM ). Indeed,
the finite support ofν may generate an infinite submonoid ofM which in turn may become exactly the
support ofν∗, as the following example shows.

Example 3.1. Let M = {a, b}∗, the monoid of words over the alphabet{a, b}, andL = {0, 1}, with
0 < 1. Take the following fuzzy set:

ν = {(a, 1), (b, 1)} ∪
{

(w, 0)/w ∈ {a, b}∗ \ {a, b}
}

.

We have thatν ∈ FS(LM ), since onlya andb have associated non-null values, andν∗ 6∈ FS(LM )
since one can easily check thatν∗ = {(w, 1)/w ∈ {a, b}∗}.
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In general, ifν ∈ LM andm 6= 1M , then

ν∗(m) =
∨

m=m1...mp

p
∧

j=1

ν(mj) , (2)

andν∗(1M ) = 1 (sinceν0 = ν1
1M

). It is worth putting in words thatthe iteration of any fuzzy

set has always value 1 assigned to the unity.

Remark 3.4. According to relation (2), ifm ∈ M has a factorizationm = m1 · m2 · ... · mk such that
µ(mi) = 1 for all i ∈ {1, ..., k}, thenµ∗(m) = 1.

Corollary 3.3. Let ν, ξ ∈ LM be fuzzy sets such that| ν(M) | + | ξ(M) |< ℵ0. Then| (ν · ξ)(M) |<
ℵ0 and| ν∗(M) |< ℵ0.

Proof:
Let S = ν(M) ∪ ξ(M), with S being a finite subset ofL. Consider the following two subsets ofL,
derived fromS:

S∧ = {l ∈ L/∃T ⊆ S : l = ∧T} , and

(S∧)∨ = {l ∈ L/∃T ⊆ S∧ : l = ∨T} .

It is clear that(S∧)∨ is finite and includesS (by commutativity and idempotence inL). Sinceν(M) ⊆ S
and by equation (2), we infer thatν∗(M) ⊆ (S∧)∨. Indeed, although (2) may involve transfinite joins,
by idempotence inL the value ofν∗(m) must be included in(S∧)∨ for anym ∈ M . Similarly, since
bothν(M) ⊆ S andξ(M) ⊆ S and by the equation (1), we infer that(ν · ξ)(M) ⊆ (S∧)∨. This proves
thatν∗(M) and(ν · ξ)(M) are finite. ut

Notation wise, let us denote byµlM theconstant fuzzy set which associates to all elements of
M the valuel.

Corollary 3.4. Any fuzzy setν ∈ LM verifies the following inequality:

ν∗ ≥ ν ∧ µ
ν(1M )
M .

Proof:
Let ν be an arbitrary fuzzy set inLM andp be an integer greater than1. Any elementm ∈ M can be
factorized asm = m · (1M )p−1 and then

νp(m) =
∨

m=m1...mp

{

p
∧

i=1

ν(mi)
}

≥ ν(m) ∧ ν(1M ) ,

which leads to the inequalityν∗(m) ≥ ν(m) ∧ ν(1M ) . From here the conclusion follows shortly. ut

An elementm is prime inM if and only if it can not be written as a product of non-unit elements of
M . In other words,m ∈ M is prime if and only ifm = m1 · m2 ⇒ m1 = 1M or m2 = 1M .
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Corollary 3.5. If m is prime inM andν is a fuzzy set inLM such thatν(1M ) = 0 thenν∗(m) = 0.

Proof:
It suffices to observe that ifm is prime, then any fuzzy setξ ∈ LM verifies the equality

ξ∗(m) = ξ(m) ∧ ξ(1M ) .
ut

Definition 3.2. Let M1, M2 be monoids andL1, L2 be c.d.c. lattices. An applicatioñh : LM1

1 → LM2

2

is amorphism of fuzzy sets (or fuzzy morphism) if it preserves arbitrary meets, and joins.

Remark 3.5. It is important to notice that any fuzzy set can be written as a meet of singletons, and
any product of fuzzy sets can be written as a combination of meets and joins of singletons (this equally
applies to the star and plus of a fuzzy set).

Proof:
If ν ∈ LM is an arbitrary fuzzy set, then

ν =
∨

m∈M

µν(m)
m ,

and ifν, ξ ∈ LM , we can express their product as

ν · ξ =
∨

m∈M

(

∨

m=m1m2

µν(m1)∧ξ(m2)
m

)

ut

Corollary 3.6. A fuzzy morphism preserves finite products, star and plus.

Consequently, the definition of fuzzy morphisms is in line with the definition ofclosg

homomorphisms as found in [10, p. 155] (recall thatLM1

1 andLM2

2 can be viewed as closg - complete
lattice ordered semigroups).

4. Fuzzification of Rational Sets

Since we have assigned toLM a monoid structure, it makes sense to talk about the family of rational
sets of fuzzy sets:Rat(LM ), and the family of recognizable sets of fuzzy sets:Rec(LM ). However, the
study ofRat(LM ) andRec(LM ) is beyond the scope of the present paper. Here we define the so called
“fuzzy rational sets” and “fuzzy recognizable sets”, and we should point out that there is a
difference between

“rational sets of fuzzy sets” and “fuzzy rational sets”,

and between

“recognizable sets of fuzzy sets” and “fuzzy recognizable sets”.
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For example, a rational set of fuzzy setsis an element ofRat(LM ), whereas a fuzzy rational setis an
element ofLM obtained from singletons by rational operations, as will be describe in the following
(Definition 4.1).

Note 1. During this study, there has been some debate on whether to adopt the nomenclature “fuzzy
rational sets” or “ rational fuzzy sets”. Arguably, in this case, the most accurate is the latter construct,
which is also in line with the existing terminology (for example “regular fuzzy languages”, or “finite
fuzzy automata”, as in [17]). However, in other circumstances, this construct can notbe applied properly.
For example, the terminology “fuzzy rational expressions” seems more appropriate than “rational fuzzy
expressions”. To alleviate this dilemma, in this paper we adopt the following naming convention:

A concept “C” in a classical (crisp) theory has the analogous “fuzzy C” in the corresponding
fuzzy theory.

According to this, in the following we will talk about “fuzzy rational sets”, “fuzzy recognizable sets”,
“fuzzy finite transducers”, etc. .

Consider yet again the following two structures: a monoid(M, ·, 1M ) and a c.d.c. lattice
(L,≤,∧,∨, 0, 1). Recall that we definedS(LM ) as the set of all singletons inLM andFS(LM ) as the
set of all finite unions of singletons inLM . Observe thatS(LM ) does not containµ∅ whereasFS(LM )
does. We define L-fuzzy rational sets inM by “fuzzifying” the classical definition (as found in [2]) of
rational sets, as follows:

Definition 4.1. The family ofL-fuzzy rational sets on M is the least familyR̃at(M) satisfying
the following conditions:

(i) FS(LM ) ⊆ R̃at(M);

(ii) ∀ν, ν ′ ∈ R̃at(M) : ν ∨ ν ′ ∈ R̃at(M) andν · ν ′ ∈ R̃at(M);

(iii) ∀ν ∈ R̃at(M) : ν+ ∈ R̃at(M).

It follows immediately that ifν ∈ R̃at(M) thenν∗ ∈ R̃at(M), sinceµ1
1M

∈ R̃at(M) by (i). Notice that

condition(i) can be replaced by(i′): S(LM )∪{µ∅} ⊆ R̃at(M). Thus, bothFS(LM ) andS(LM )∪{µ∅}
can be used as a base of our recursive definition.

Denote byR̃atE(M) the set of allL-fuzzy rational expressions, i.e., of all parenthesized
infix formulae obtained from the elements ofS(LM ) (viewed as atomic formulae), the nullary operator
µ∅, the binary operators∨ and ·, and the unary operator∗. The fuzzy set defined by a fuzzy regular
expressionẼ is the join of all fuzzy sets (singletons or null fuzzy set) which can be “expressed” byẼ.
We illustrate what we mean by “expressed” in the following example (a more formal description can be
given using the semigroup homomorphism defined in the proof of Lemma 4.2).

Example 4.1. Let M andL be as usual, and denote byµlm a singleton fuzzy set which assigns the fuzzy
valuel to the elementm. Consider the following fuzzy rational expression:

Ẽ =
(

(

(µl1m1
)∗ ∨ µl2m2

)

· µl3m3

)

∨ µ∅ .
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The following are the fuzzy sets which areexpressed by Ẽ:

µ∅, µl2m2
µl3m3

, µl3m3
, µl1∧l3m1m3

, µl1∧l3
(m1)2m3

, µl1∧l3
(m1)3m3

, µl1∧l3
(m1)4m3

, ...

The fuzzy setdefined by Ẽ is the join of all these fuzzy sets. Here we used that(µl1m1
)0 = µ1

1M

therefore(µl1m1
)0µl3m3

= µl3m3
, and thatl3 ∧ l3 ∧ ... ∧ l3 = l3.

It is clear that a fuzzy rational expression defines exactly one fuzzy set and that the family of sets defined
by R̃atE(M) is exactlyR̃at(M). Notation wise, ifẼ is a fuzzy rational expression then| Ẽ | will
denote the fuzzy set defined bỹE.

A few results concerning rational sets in arbitrary monoids can be provento hold for fuzzy rational
sets as well. In the following we mention some of them together with some propertiesparticular to fuzzy
rational sets.

Proposition 4.1. R̃at(M) is closed under join, product, plus, star and fuzzy morphisms that map sin-
gletons into rational fuzzy sets.

Proof:
The closure under join, product, star and plus follows directly from the definition of R̃at(M). We prove
a stronger version of closure under fuzzy morphisms, namely that rationality is preserved regardless of
the supporting lattice.

Assumẽh : LM1

1 → LM2

2 to be a fuzzy morphism which maps singletons into rational fuzzy sets. If
ν ∈ LM1

1 is represented by the expressionẼν ∈ R̃atE(M1) thenh̃(ν) will be expressed by a rational
expressioñh(Ẽν) obtained as following.

Let {µl1m1
, ..., µlkmk} be the set of all singletons which occur iñEν and denote bỹei the rational

expression corresponding tõh(µlimi), 1 ≤ i ≤ k (recall that̃h maps singletons into rational sets). Then,
denote bỹh(Ẽν) the rational expression obtained from̃Eν by replacing each occurrence ofµlimi with ẽi,
1 ≤ i ≤ k. One can observe that| h̃(Ẽν) |= h̃(ν) and theñh(ν) is a fuzzy rational set inL2

M2 . ut

Notice thatR̃at(M) may not be closed under fuzzy morphisms in general. For example a fuzzy mor-
phism may map a singleton into a fuzzy set with support that may not be obtainedthrough rational
operations (which would contradict Corollary 4.1).

We now wish to make a connection between the rationality of a fuzzy set and therationality of its
support; and in order to do so, the following properties are helpful.

Lemma 4.1. If ν, ξ ∈ LM then

(i) supp(ν ∨ ξ) = supp(ν) ∪ supp(ξ);

(ii) supp(ν ∧ ξ) ⊆ supp(ν) ∩ supp(ξ);

(iii) supp(ν · ξ) ⊆ supp(ν) · supp(ξ);

(iv) supp(ν∗) ⊆ supp(ν)∗.

If in additionL has no0-divisors then
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(ii ′) supp(ν ∧ ξ) = supp(ν) ∩ supp(ξ);

(iii ′) supp(ν · ξ) = supp(ν) · supp(ξ);

(iv′) supp(ν∗) = supp(ν)∗.

Proof:
Recall that in a latticeL with no0-divisors we have a finite meet equal to zero if and only if at least one
of its terms is equal to zero. Moreover, in an arbitrary complete lattice, a join (finite or not) is not zero if
and only if one of its term is not zero.

We prove (iii′) and (iv′), the rest being straightforward. Ifm ∈ supp(ν ·ξ) then(ν ·ξ)(m) 6= 0, hence
by the definition of multiplication there exists a decompositionm = m1 ·m2 such thatν(m1)∧ξ(m2) 6=
0. This implies thatν(m1) 6= 0 andξ(m2) 6= 0, hence thatm1 ∈ supp(ν) andm2 ∈ supp(ξ). Then
m = m1 · m2 ∈ supp(ν) · supp(ξ). Conversely, ifm ∈ supp(ν) · supp(ξ), thenm = m1 · m2 for
somem1 ∈ supp(ν) andm2 ∈ supp(ξ). Thenν(m1) ∧ ξ(m2) 6= 0 (sinceL has no0-divisors), hence
(ν · ξ)(m) 6= 0, i.e.,m ∈ supp(ν · ξ).

If m ∈ supp(ν)∗ then there exists a decompositionm = m1 · ... ·mk such thatmi ∈ supp(ν), ∀i ∈
{1, ..., k}. Then,νk(m) 6= 0 (sinceL has no0-divisors), henceν∗(m) 6= 0. Conversely, ifm ∈
supp(ν∗) thenm ∈ supp(νi) for at least onei ≥ 0. Then, there exists a decompositionm = m1 · ... ·mi

such thatmj ∈ supp(ν), for all j ∈ {1, ..., i}. Then,m ∈ supp(ν)i ⊆ supp(ν)∗. ut

Corollary 4.1. If L has no0-divisors, then

ν ∈ R̃at(M) ⇒ supp(ν) ∈ Rat(M) .

Proof:
The proof is by structural induction onν ∈ R̃at(M), using the properties of Lemma 4.1. ut

Let Ẽ ∈ R̃atE(M) be a fuzzy rational expression and recall that we denote by| Ẽ | the fuzzy
rational set defined bỹE.

Definition 4.2. By defuzzification of Ẽ we denote the rational expressionϑẼ ∈ RatE(M) ob-
tained fromẼ by replacing

- all termsµlm ∈ S(LM ) of E with the correspondingm ∈ M ,

- the termµ∅ by ∅ – if present, and

- the operator∨ by +,

and leaving the rest unchanged.

Lemma 4.2. If L has no0-divisors andẼ ∈ R̃atE(M), then

| ϑẼ | = supp(| Ẽ |) .
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Proof:
If we replace any occurrence iñE of an element inS(LM ) ∪ {µ∅} by a new symbol and if we denote
by Σ the alphabet of these new symbols, we obtain a regular expressionE over Σ. By doing so, we
implicitly define a semigroup homomorphism

i : Σ∗ → S(LM ) ∪ {µ∅} ,

which maps each symbol ofΣ back to the singleton (orµ∅) which it replaces, in additioni(ε) = µ∅. It is
important to notice that the obtained regular expressionE is unambiguous, in the sense described in [6,
p. 150]. By the fact thatL has no0-divisors we infer that a wordu ∈| E | is mapped toµ∅ if and only if
eitheru is the empty word oru contains a symbol mapped toµ∅. By the same observation we have that

| Ẽ | =
∨

u∈|E|

i(u), and | ϑẼ | =
{

m ∈ M
/

u ∈| E | andi(u) = µlm 6= µ∅

}

.

Then, m ∈ supp(| Ẽ |) if and only if there existsu ∈| E | such thati(u)(m) = l 6= 0, that is,
m ∈| ϑẼ |. ut

Notice that if the condition thatL does not have0-divisors is not satisfied, then we can be certain only of
the following relation:

| ϑẼ | ⊇ supp(| Ẽ |) .

Proposition 4.2. If ν ∈ R̃at(M) then| ν(M) |< ℵ0.

Proof:
We prove this property by structural induction onν. It is clear that all singletons andµ∅ have the property.
If µ, ξ ∈ R̃at(M) such that| ν(M) |< ℵ0 and| ξ(M) |< ℵ0, then clearly| (ν∨ξ)(M) |< ℵ0. Moreover,
by Corollary 3.3 we have that| (ν · ξ)(M) |< ℵ0 and that| ν∗(M) |< ℵ0, fact which completes the
induction. ut

It is worth putting in words the fact thatany fuzzy rational set takes a finite number of

values, when viewed as a function.

Definition 4.3. An L-fuzzy finite automaton onM is a tupleÃ = (Q, S(LM ), E, I, F ), where

1. E ⊆ Q × S(LM ) × Q is afinite set (of transitions); and

2. I, F ⊆ Q are initial, and final sets (of states), respectively.

A computation (or path) inA is an elementc ∈ E+ of the following form:

c = (p1, µ1, p2)(p2, µ2, p3) . . . (pk−1, µk−1, pk)(pk, µk, pk+1).

The computationc is successful if p1 ∈ I andpk+1 ∈ F . We denote by| c | the fuzzy setµ1 · ... ·µk+1,
and we say that| c | is thelabel of c. The fuzzy set defined bỹA is denoted by| Ã | and is given by

| Ã |=
∨

{

| c |
/

c is a successful computation iñA
}
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The finiteness ofE allows us to considerQ to be finite as well.
Notice carefully that we do not admit “empty” computations (c ∈ E+). Consequently, the fuzzy

finite automaton({q}, S(LM ), ∅, {q}, {q}) defines the fuzzy setµ∅ - in contrast with the crisp (i.e.,
classical) theory, where a similar situation leads to the set having the unity as its sole element.

Theorem 4.1. A fuzzy set is defined by a fuzzy finite automaton if and only if it is an element of
R̃at(M).

Proof:
A constructive proof of this result is to apply methods similar to the method of converting a finite au-
tomaton into a rational expression and vice versa. In order to do so, one may find helpful to use the
semigroup morphism defined in the proof of Lemma 4.2. The details are straightforward. ut

Remark 4.1. The definition ofL-fuzzy finite automata can be changed to allowE ⊆ Q×FS(LM )×Q,
without changing the power of these automata.

The following subfamily of rational fuzzy sets will be used in Section 6.

Definition 4.4. By R̃atR(M) we denote the family ofrestricted rational fuzzy sets, defined
by fuzzy finite automata, calledrestricted fuzzy finite automata, which verify the following
conditions:

1. they have only one initial state;

2. for each stateq, there exists a transition(q, µ1
1M

, q); and

3. there is no transition of the form(p, µl1M , q) with p, q different states andl ∈ L \ {0}.

In Section 6 we relate this family to the family of fuzzy recognizable sets in finitely generated free
monoids.

Let m 6= 1M be an element of the monoidM . We say thatm is a divisor of1M , or a1-divisor, if
there existsm′ ∈ M such thatm ·m′ = 1M or m′ ·m = 1M . Notice that this notion is weaker than that
of an invertible element inM .

Lemma 4.3.

1. If ν ∈ R̃at(M) andν(1M ) ∈ {0, 1} thenν ∈ R̃atR(M).

2. If M has no1-divisors andν ∈ R̃at(M) then

ν ∈ R̃atR(M) ⇔ ν(1M ) ∈ {0, 1} .

Proof:
We prove the second affirmation. Ifν ∈ R̃atR(M) is realized by a restricted fuzzy automatoñA =
(Q, S(LM ), E, q0, F ), then we observe that the only situation ensuringν(1M ) 6= 0 is whenq0 ∈ F , in
which caseν(1M ) = 1 (we count the fact thatM has no1-divisors). Conversely, ifν(1M ) ∈ {0, 1} and
ν is realized by a fuzzy finite automatoñA = (Q, S(LM ), E, I, F ), then we can construct an equivalent
restricted automatoñA′, following an algorithm somehow similar to the elimination ofε-transitions in
NFA:
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1. We first perform a “µ∀
1M

” closure inÃ: for every pair of transitions(p, µl11M , q), (q, µl21M , r) we add

a transition(p, µl1∧l21M
, r). Notice that the process is finite, due to the idempotence inL.

2. Then, for every pair of transitions(p, µl1M , q), (q, µl
′

m, r) with m 6= 1M , we add a transition

(p, µl∧l
′

m , r). In addition, for every pair of transitions(p, µlm, q), (q, µl
′

1M
, r) with m 6= 1M , we

add a transition(p, µl∧l
′

m , r). Unlike the case ofε-removal in NFA, here we have this additional
“interleave”, fact which will make unnecessary the addition of extra finalor initial states.

3. We eliminate all transitions of type(p, µl1M , q), for l ∈ L \ {0}, and we add the transitions

(p, µ1
1M

, p), for all p ∈ Q. The obtained fuzzy automaton is equivalent toÃ modulus the value in
1M , and is restricted, modulus the fact that we may have multiple initial states.

4. Finally we add a new statesq0 which becomes the only initial state, and a transition(q0, µ
l
m, p)

for each transition(q, µlm, p) with q initial state inÃ. We also add the transition(q0, µ
1
1M

, q0). If
ν(µ1

1M
) = 1 then we addq0 to the set of final states.

We obtain a fuzzy finite automatoñA′ which is restricted and realizesν, hence proving thatν ∈
R̃atR(M). ut

Let ν ∈ LM be an arbitrary fuzzy set. For anyl ∈ L we defined the following “step” fuzzy set:
ν≥l ∈ LM , given by

ν≥l(m) =

{

ν(m), if ν(m) ≥ l;

0, otherwise.

Proposition 4.3. If L is totally ordered, then

ν ∈ R̃at(M) ⇒ ∀l ∈ L : ν≥l ∈ R̃at(M) .

Proof:
Consider a fuzzy finite automatoñA = (Q, S(LM ), E, I, F ) such that| Ã |= ν and choose an arbitrary
l ∈ L. We construct the following finite automaton:̃B = (Q, S(LM ), E′, I, F ), where

E′ = {(p, µtm, q)/(p, µtm, q) ∈ E andt ≥ l} .

It remains to prove that| B̃ |= ν≥l. SinceL is totally ordered,ν can only take values among the fuzzy
values of the singletons labeling the transitions ofÃ (recall that the rationality ofν suffices to ensure
that ν takes a finite number of values). More specifically, ifν(m) = t then there exists a successful
computation

(p0, µ
t1
m1

, p1)...(pk−1, µ
tk
mk

, pk)

with m = m1 · ... · mk andt = tj for somej ∈ {1, ..., k}. In addition,t is the smallest (with respect to
the order inL) value among{t1, ..., tk}. Notice that this happens despite the fact that there may exist an
infinity of successful paths corresponding tom.

Assume now thatν(m) = t ≥ l and consider a successful path iñA as above. This path will also
exist in B̃ by its construction, sincet is smaller than the value of every singleton which appears in the
path. Moreover, since each successful path ofB̃ is a successful path iñA we conclude that| B̃ | (m) = t.
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In the other case, whenν(m) = t < l, there exist no successful path iñA, as above, with allt1, ..., tk
greater than or equal tol. This directly implies that there is no successful path inB̃ corresponding tom,
hence that| B̃ | (m) = 0. ut

This property may prove to be useful in answering the following question, which has not yet been ad-
dressed: ifν ∈ R̃at(M), is it true thatν−1(l) ∈ Rat(M) for an arbitraryl ∈ L? If not, under what
conditions it is true ? Proposition 4.3 is also used in the proof of Theorem 6.4.

5. Fuzzification of Recognizable Sets

Compared to the case of rational sets, the fuzzification of recognizable sets turns out to be a more complex
matter. This can be explained in part by the fact that actions over arbitrarymonoids are algebraically more
complex than rational closures. One clear impact of this difference is the difficulty of stating the usual
closure properties of recognizable sets in the “fuzzy” context. In the following we considerM to be an
arbitrary monoid andL to be a c.d.c. lattice.

Definition 5.1. The elementν ∈ LM is anL-fuzzy recognizable set on M if and only if there
exists a finite monoidN , a monoid morphismh : S(LM ) ∪ {µ∅} → N and a setP ⊆ N such that

ν =
∨

h−1(P ) .

Notice thatν does not necessarily belong to the monoidS(LM ) ∪ {µ∅}, or FS(LM ) for that matter.
Notice also thath(µ∅) acts as a “zero” inN , i.e.,h(µ∅) ·n = n ·h(µ∅) = h(µ∅), for everyn in the image
of h.

In the following we particularize the notion ofaction of a monoid over an arbitrary set

(as defined in [26,§II.2.1]) to the submonoid of singletons ofLM .

Definition 5.2. A (right) fuzzy action of S(LM ) over (or, on) a setQ is a mapping

δ : Q ×
[

S(LM ) ∪ {µ∅}
]

→ Q ,

such that

(i) ∀q ∈ Q : δ(q, µ1
1M

) = q ;

(ii) ∀q ∈ Q, µ, µ′ ∈ S(LM ) ∪ {µ∅} : δ(δ(q, µ), µ′) = δ(q, µ · µ′) .

Notice that we allow null (µ∅) “transitions” and, according to the above definition, ifµ · µ′ = µ1
1M

,
thenδ(δ(q, µ), µ′) = q, for all q ∈ Q.

Definition 5.3. A fuzzy action automaton overM byL is a tupleÃ = (Q, S(LM )∪{µ∅}, δ, q0, F )
where

(i) Q is a finite set (of states);

(ii) δ : Q ×
[

S(LM ) ∪ {µ∅}
]

→ Q is a fuzzy action (the next state function);
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(iii) q0 ∈ Q is an initial state;

(iv) F ⊆ Q is a set of final states.

The fuzzy set defined bỹA is given by

| Ã |=
∨

{

µ
/

δ(q0, µ) ∈ F
}

.

Remark 5.1. We have| Ã | (1M ) = 1 if and only if q0 ∈ F . We have| Ã | (1M ) = 0 if and only if
δ(q0, µ

l
1M

) 6∈ F , for all l ∈ L \ {0}.

Notice thatÃ in Definition 5.3 does not necessarily have a finite representation, since although it has
a finite number of states, it may have an infinite number of “transitions”. Furthermore, since| Ã | is
a possibly infinite join of singletons, it may not be an element ofS(LM ), or FS(LM ) for that matter.
Finally, as in the “crisp” case, fuzzy action automata are close relatives ofdeterministic automata, due to
the functionality of their transition table.

Remark 5.2. If L has no0-divisors, thenS(LM ) becomes a submonoid ofLM and we can replace
S(LM ∪{µ∅}) with S(LM ) in all previous definitions (5.1, 5.2 and 5.3). Observe thatµ∅ is defined by a
fuzzy action automaton with no final states (hence it is always recognizable, by the following theorem).

Theorem 5.1. An element ofLM is anL-fuzzy recognizable set if and only if it is defined by anL-fuzzy
action automaton onM .

Proof:
I. Assume thatν ∈ R̃ec(M). Then there exists a finite monoidQ, a monoid morphismh : S(LM )∪

{µ∅} → Q and a setF ⊆ Q such thatν =
∨

h−1(F ). Consider the fuzzy action automatoñA =
(Q, S(LM )∪{µ∅}, δ, 1Q, F ) whereδ : Q× [S(LM )∪{µ∅}] → Q is given byδ(q, µ) = q ·h(µ).
It can be verified that̃A is well defined and that| Ã |= ν.

II. Consider an arbitraryL-fuzzy action automatoñA = (Q, S(LM ) ∪ {µ∅}, δ, q0, F ) and the finite
monoid of mappingsN = (QQ, ◦, idQ) (whereidQ is the identity mapping onQ). Define the
functionh : S(LM ) ∪ {µ∅} → N as

µ → h(µ) : h(µ)(q) = δ(q, µ) ,

andP = {f ∈ N/f(q0) ∈ F} . Then one can check thath is a monoid morphism and that
| Ã |=

∨

h−1(P ).
ut

Notice thatµ∅ ∈ R̃ec(M), since we follow the convention that
∨

∅ = µ∅ andµ∅ is “recognized” by
the morphism of Definition 5.1, whenP = ∅.

Remark 5.3. One may observe thath(S(LM ) ∪ {µ∅}) in part (II) of the proof of Theorem 5.1 is what
one may call afuzzy transition monoid associated to a fuzzy action automaton.

Notice also that unlike the case of fuzzy rational sets, it is not clear whether we can replaceS(LM )∪
{µ∅} with FS(LM ) in either Definition 5.1 or Definition 5.3. It may very well lead to a different family
of recognizable sets. This matter is left for further work.
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As for the case of fuzzy rational sets, a few classical results about “crisp” recognizable sets can be
obtained for fuzzy recognizable sets as well.

Proposition 5.1. R̃ec(M) is closed under finite joins.

Proof:
Let ν1, ν2 ∈ R̃ec(M) be “recognized” by the finite monoidsN1, N2, the monoid morphismsh1, h2 and
the subsetsP1, P2, as in Definition 5.1. Then consider the product monoid(N1 × N2, ·, (1N1

, 1N2
)) and

the morphismg : S(LM ) ∪ {µ∅} → N1 × N2 given byg(µ) = (h1(µ), h2(µ)). One can check thatg is
indeed a morphism, and that

(ν1 ∨ ν2)(m) = ν1(m) ∨ ν2(m) =
∨

[

h−1
1 (P1)

]

(m) ∨
∨

[

h−1
2 (P2)

]

(m) =

=
∨

{µ(m)/h1(µ) ∈ P1} ∨
∨

{µ(m)/h2(µ) ∈ P2} =

(here we use generalized join associativity and idempotence inL)

=
∨

{µ(m)/(h1(µ), h2(µ)) ∈ (P1 × N2) ∪ (N1 × P2)} =

=
∨

{

µ(m)
/

µ ∈ g−1
(

(P1 × N2) ∪ (N1 × P2)
)

}

.

Then, we have proven that

ν1 ∨ ν2 =
∨

g−1
(

(P1 × N2) ∪ (N1 × P2)
)

,

which justifies thatν1 ∨ ν2 is rational. ut

So far, there exist no pertinent results about the closure of fuzzy recognizable sets under meet, inverse
fuzzy morphisms, complement and difference. This matter will be the subject of further study. Moreover,
we have not classified yet the support of a fuzzy recognizable set over an arbitrary monoid. However, the
next result gives an answer for the case when the monoid does not have1-divisors.

Proposition 5.2. If L has no0-divisors andM has no1-divisors then

ν ∈ R̃ec(M) ⇒ supp(ν) ∈ Rec(M) .

Proof:
Let Ã = (Q, S(LM ) ∪ {µ∅}, δ, q0, F ) be such thatν =| Ã |. We define the following action automaton
overM :

B =
(

P(Q), M, δ′, {q0}, {K ⊆ Q/K ∩ F 6= ∅}
)

, with

- P(Q) is the power-set(set of parts, or2Q) of Q; and

- δ′ : P(Q) × M → P(Q), given by

δ′(K, 1M ) = K , and

∀m ∈ M \ {1M} : δ′(K, m) = {δ(q, µlm)/q ∈ K, µlm ∈ S(LM )} .
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Let us prove that indeedδ′ is an action (it is clearly a function). Ifm1, m2 ∈ M \ {1M} andK ⊆ Q,
then we have

δ′(δ′(K, m1), m2) = δ′({δ(p, µl1m1
)/p ∈ K, µl1m1

∈ S(LM )}, m2) =

= {δ(δ(p, µl1m1
), µl2m2

)/p ∈ K, µl1m1
, µl2m2

∈ S(LM )} = ( δ is an action)

= {δ(p, µl1∧l2m1m2
)/p ∈ K, l1, l2 ∈ L \ {0}} = ( L has no0-divisors)

= {δ(p, µlm1m2
)/p ∈ K, µlm1m2

∈ S(LM )} = ( M has no1-divisors)

= δ′(K, m1m2)

The cases when either one or both ofm1 andm2 are the unity (1M ) can be easily proven to obey action’s
laws as well. Consequently,| B | is recognizable inM . If m ∈ M \ {1M}, we have that

| Ã | (m) 6= 0 ⇔
[

∨

{µ/δ(q0, µ) ∈ F}
]

(m) 6= 0 ⇔

⇔ ∃µlm ∈ S(LM ) : δ(q0, µ
l
m) ∈ F ⇔

⇔ {δ(q0, µ
l
m)/µlm ∈ S(LM )} ∩ F 6= ∅ ⇔

⇔ δ′({q0}, m) ∩ F 6= ∅ ⇔ m ∈| B | .

If | Ã | (1M ) = 0, then it follows immediately thatsupp(ν) =| B |, hence the conclusion.
Otherwise, we distinguish two cases. Ifq0 ∈ F , thenµ1

1M
∈ ν and1M ∈| B |, hence, yet again,

supp(ν) =| B |. Finally, if q0 6∈ F , then1M 6∈| B |; however,supp(ν) =| B | ∪{1M}, which is still
recognizable (we invoke the closure under finite joins). It follows thatsupp(ν) ∈ Rec(M). ut

Many questions concerning the properties of fuzzy recognizable sets are still open, some of which
are outlined in Section 8.

6. Kleene and McKnight Theorems for Fuzzy Sets

In this section we are drawing various connection between the following families of sets: fuzzy rational
(or restricted rational), fuzzy recognizable, fuzzy regular and the family of languages realized by FT-
NFA ([17]). As usual, unless specified otherwise, we consider fuzzysets over a c.d.c. latticeL. We start
by relating fuzzy rational/recognizable sets and regular languages.

Corollary 6.1. Let Σ be an alphabet andν ∈ R̃at(Σ∗) or ν ∈ R̃ec(Σ∗). If L has no0-divisors, then
supp(ν) is a regular language inΣ∗.

Proof:
One can apply Corollary 4.1 or Proposition 5.2 (sinceΣ∗ has no1-divisors) and the Kleene theorem (as
found in [2, T. 2.1, p. 56]) for “crisp” languages. ut
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Remark 6.1. It is important to notice that ifM is a free monoid, thenM has no1-divisors. Indeed,
assume there existm1, m2 ∈ M \ {1M}, such thatm1 · m2 = 1M . Consider the representation of
m1 andm2 as a free product of generators,m1 = g1 · ... · gk andm2 = gk+1 · ... · gt. We have that
g1 · ... · gt = 1M , which contradicts the freeness ofM .

Theorem 6.1. (a McKnight theorem for fuzzy sets)Let M be a monoid andL be a finite, distributive
lattice. If M is finitely generated, theñRat(M) ⊇ R̃ec(M) .

Proof:
SinceL is finite, thenL is a c.d.c. lattice as well. DenoteL = {l1, ..., lm} and assume that a set of
generators forM is {g1, ..., gn}. Consider a fuzzy action automatoñA = (Q, S(LM ) ∪ {µ∅}, δ, q0, F ).
It suffices to prove that| Ã | can be realized by a fuzzy finite automaton overM .

Construct the fuzzy finite automatoñA′ = (Q, S(LM ), E, {q0}, F ) where for alli ∈ {1, ..., n}, j ∈
{1, ..., m} we set:

(p, µ
lj
gi , q) ∈ E ⇔ δ(p, µ

lj
gi) = q .

Clearly E is finite. We first prove that| Ã | (m) =| Ã′ | (m), for all m ∈ M \ {1M}. Assume
| Ã | (m) = l 6= 0 for somem ∈ M \ {1M}. We have that

| Ã | (m) =
∨

{l′/δ(q0, µ
l′

m) ∈ F} ,

in other words, there existl′1, ..., l
′
k ∈ L such thatδ(q0, µ

l′i
m) ∈ F , for all i ∈ {1, ..., k}; andl = l′1∨...∨l′k.

Consider a representation ofm as a product of generators,m = g′1 · ... · g
′
t. It can easily be checked that

δ(q0, µ
l′i
g′
1

· ... · µ
l′i
g′t

) ∈ F , for all i ∈ {1, ..., k}. If we consider an arbitraryi ∈ {1, ..., k}, let us denote

q1 = δ(q0, µ
l′i
g′
1

), ..., qk = δ(δ(...δ(q0, µ
l′i
g′
1

)..., µ
l′i
g′
k−1

), µ
l′i
g′
k

). Thenqk ∈ F and there exists a successful

computationc in | Ã′ |, given by

c = (q0, µ
l′i
g′
1

, q1)...(qk−1, µ
l′i
g′
k
, qk) .

In other words, for eachµ
l′i
m, there exists a successful computation in| Ã′ | labeledµ

l′i
m. One can observe

also that each successful computation in| Ã′ |, labeledµl
′

m, impliesδ(q0, µ
l′

m) ∈ F , by the construction.
Then we have proven that| Ã | (m) = l ⇔| Ã′ | (m) = l. ThenÃ′ realizesν, modulus the value in1M .

One can observe thatν(1M ) =| A′ | (1M )∨ µ
ν(1M )
1M

, which implies thatν ∈ R̃at(M), as a join of fuzzy
rational sets. ut

Corollary 6.2. Let L be a finite, distributive lattice and M be a finitely generated monoid. Ifν(1M ) ∈
{0, 1} andν ∈ R̃ec(M) thenν ∈ R̃atR(M).

Proof:
We apply Theorem 6.1 and Lemma 4.3 (1). ut

Theorem 6.2. If L is a finite, distributive lattice andM is free, thenR̃atR(M) ⊆ R̃ec(M) .
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Proof:
Consider a code (as in [3, p. 38])G ⊆ M such thatG∗ = M (M is freely generated byG). If
Ã = (Q, S(LM ), E, q0, F ) is a restricted fuzzy finite automaton, we construct an equivalent fuzzy action
(automaton) as following. First we take allµlm ∈ S(LM ) \ µ1

1M
which are labels of some transitions in

E (implying thatm can not be1M , due to the restrictions of̃A). There is a finite number of such labels.
Each labelµlm is expanded as a “maximal” join of singletons

µlm =
∨

{µl1g1 · ... · µ
lt
gt

/l1 ∧ ... ∧ lt = l, g1 · ... · gt = m} .

Notice that the join is across a finite set, since theG-representation of m is finite and unique and
sinceL is finite. Then we replace each transition(p, µlm, q) by a new path (we add new states) corre-
sponding to the above expansion. More precisely, for each termµl1g1 ·µ

l2
g2
· ... ·µltgt in the above expansion,

we add the set of transitions(p, µl1g1 , p1), (p1, µ
l2
g2

, p2)..., (pt−1, µ
lt
gt

, q), wherep1, ..., pt−1 are new states;
followed by the removal of transition(p, µlm, q). To this new automaton we perform a process of “de-
terminization”, considering each label (singleton)µlg as a symbol. After this process we add transitions

(p, µ1
1M

, p) for all statesp in Ã. One can check that this new fuzzy finite automaton can be extended
to a fuzzy monoid action, due to the freeness ofM (one may need to add a “sink” state to capture the
singletons which are not considered in the above expansion). ut

In the following we denote by FT-NFA(Σ∗) the family of fuzzy languages accepted by
nondeterministic finite automata with fuzzy transitions, as defined in [17]. However,
we do not restrict these automata to take a finite number of values in the unit interval (they may take
values in an arbitrary lattice).

Theorem 6.3. (a Kleene theorem for fuzzy sets) LetL be a finite, distributive lattice andΣ a finite
alphabet. Ifν ∈ LΣ∗

is a fuzzy set such thatν(1M ) ∈ {0, 1}, then:

ν ∈ R̃at(Σ∗) ⇔ ν ∈ R̃ec(Σ∗) ⇔ ν ∈ FT -NFA(Σ∗).

Proof:
The monoidΣ∗ is a finitely generated free monoid. Assumeν ∈ R̃at(Σ∗). SinceΣ∗ has no1-divisors
andν(1M ) ∈ {0, 1} we have thatν can be realized by a restricted fuzzy finite automaton, by Lemma
4.3. Then, by Theorem 6.2 we deduce thatν ∈ R̃ec(Σ∗). Finally, a restricted fuzzy finite automaton for
ν is an FT-NFA. The other direction is proven in a similar way. ut

Let us denote bỹReg(Σ∗) the family of fuzzy regular languages over an alphabetΣ, as defined in
[17]. For completeness, we give here the definition, adapted to our context (the family of “crisp” regular
languages will be denoted byReg(Σ∗)).

Definition 6.1. A fuzzy setν ∈ LΣ∗
is a fuzzy regular language if| ν(Σ∗) |< ℵ0 and ν−1(l) ∈

Reg(Σ∗), for all l ∈ L.

The following results give the relation between this family and the family of fuzzyrational languages.

Lemma 6.1.
R̃at(Σ∗) ⊇ R̃eg(Σ∗) .
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Proof:
Consider an arbitrary fuzzy regular languageν ∈ R̃eg(Σ∗). By the definition, for any fuzzy value
l ∈ L, the setν−1(l) is a “crisp” regular language inΣ∗. Assumeν(Σ∗) = {l1, ..., ln} (the set is
finite by definition), and consider all regular languages

{

Li = ν−1(li)
}

i∈{1,...,n}
. Then there existn

DFA A1, ..., An such thatLi =| Ai | for all i ∈ {1, ..., n}. It is important to notice that the languages
L1, ..., Ln are mutually disjoint. We transform each DFAAi into a fuzzy finite automaton by augmenting
the fuzzy valueli to all its transitions. We obtainn fuzzy rational sets:̃L1, ..., L̃n with

L̃i = {(u, li)/u ∈ Li} ∪ {(v, 0)/v 6∈ Li}

SinceR̃at(Σ∗) is closed under joins and the languages{L̃i}i are mutually disjoint, it follows thatν =
∨

i∈{1,...,n} L̃i, which proves thatν ∈ R̃at(Σ∗). ut

Theorem 6.4. If L is totally ordered then

R̃at(Σ∗) = R̃eg(Σ∗) .

Proof:
Considering the result of Lemma 6.1, it suffices to prove thatR̃at(Σ∗) ⊆ R̃eg(Σ∗). Letν be an arbitrary
fuzzy rational language. Consider a fuzzy finite automatonÃ = (Q, S(LΣ∗

), E, I, T ) which realizesν.
In order to prove thatν is fuzzy regular, it suffices to prove thatν takes a finite number of fuzzy values
and that the preimage of any fuzzy value is a regular language. We have already proven in Proposition
4.2 that| ν |< ℵ0, sinceν is rational. Then it remains to prove thatν−1(l) ∈ Reg(Σ∗), for all l ∈ L.

Take an arbitraryl ∈ L. Sinceν is rational, by Proposition 4.2 we infer that| ν(Σ∗) |< ℵ0, and
let ν(Σ∗) = {l1, ..., ln} with l1 > ... > ln. If l 6∈ {l1, ..., ln} then clearlyν−1(l) = ∅ ∈ Reg(Σ∗). It
remains to consider the case whenl ∈ {l1, ..., ln}.

Recall the notationν≥l, used in Proposition 4.3. We have thatν−1(l1) = supp(ν≥l1) and fori > 1
we haveν−1(li) = supp(ν≥li) \ supp(ν≥li−1). Sinceν ∈ R̃at(Σ∗), by Proposition 4.3 we infer
that ν≥li ∈ R̃at(Σ∗). Then, by Corollary 4.1 (L has no0-divisors, being totally ordered), we obtain
supp(ν≥li) ∈ Rat(Σ∗) = Reg(Σ∗). Summing up, we have thatsupp(ν≥li) ∈ Reg(Σ∗) for all i ∈
{1, ..., n} andsupp(ν≥li) \ supp(ν≥li−1) ∈ Reg(Σ∗), for all i ∈ {2, ..., n}, by the closure of regular
languages under set difference. This implies thatν−1(li) ∈ Reg(Σ∗), for all i ∈ {1, ..., n}. ut

It is worth mentioning that the finiteness ofL, in Theorem 6.1, 6.2 and 6.3 is not as restrictive as it
seems (at least it can not be viewed as a restriction to the cases studied in thepast). Most of the previous
results concerning fuzzy regular languages and finite automata with fuzzytransitions are built upon the
assumption that the set of fuzzy values is finite. For example, although a finiteautomaton with fuzzy
transitions (or states) is said to take values in the unit interval, it actually takes afinite set of values which
can be viewed as a finite, totally ordered lattice which contains all the transition values of the automaton.
In a similar manner one can argue that the condition in Theorem 6.4, thatL is totally ordered, is not a
particularization of previous results (since the unit interval is already totallyordered).

We end this section by observing that ifL is chosen to be the Boolean lattice({0, 1},≤,∧,∨, 0, 1)
with 0 < 1, we obtain results pertinent to the crisp theory of rational and recognizable sets, and regular
languages.



26 S. Konstantinidis et al. / Fuzzification of Rational and Recognizable Sets

7. Application: Fuzzy Finite Transducers

In this section we intend to use the framework developed so far to a particularclass of machines, namely
finite transducers. For the sake of completeness, we first give a resultconcerning fuzzy recognizable
relations, by proving a weak version of Mezei’s characterization theorem. Then, we focus on fuzzy
rational transductions (relations on words), fuzzy finite transducers and their properties. We start with a
definition of fuzzy rational and recognizable relations.

Definition 7.1. Let M , M ′ be arbitrary monoids andL be a c.d.c lattice. We denote

- LM×M ′
: the family ofL-fuzzy relations onM andM ′;

- R̃at(M × M ′) : the family ofL-fuzzy rational relations;

- R̃ec(M × M ′) : the family ofL-fuzzy recognizable relations.

Let us define a Cartesian product of fuzzy recognizable sets as following:

× : LM × LM
′
→ LM×M ′

, given by

∀ν1 ∈ LM , ν2 ∈ LM
′

: ν1 × ν2 ∈ LM×M ′

, (ν1 × ν2)(m1, m2) = ν1(m1) ∧ ν2(m2) .

Theorem 7.1. (a Mezei representation for fuzzy recognizable relations) LetM , M ′ be monoids andL
be a c.d.c. lattice. Thenν ∈ R̃ec(M × M ′) only if it can be expressed as

ν =
n
∨

i=1

ϕi × ξi ,

wheren is a positive integer,ϕi ∈ R̃ec(M) andξi ∈ R̃ec(M ′) ∀1 ≤ i ≤ n .

Proof:
Sinceν is a fuzzy recognizable set, there exists a finite monoidN , P ⊆ N and a monoid morphism
h : S(LM×M ′

) ∪ {µ∅} → N such thatν =
∨

h−1(P ). Denote by “1” the unity of eitherM or M ′

(the choice will be established by the context). For anyn ∈ N we define two fuzzy setsϕn ∈ LM and
ξn ∈ LM

′
as following:

ϕn =
∨

{

µlm/h(µl(m,1)) = n
}

, ξn =
∨

{

µlm/h(µl(1,m)) = n
}

.

Let us first observe thatϕn ∈ R̃ec(LM ) andξn ∈ R̃ec(LM
′
). Indeed, consider the homomorphism

h′ : S(LM ) ∪ {µ∅} → N , given byh′(µlm) = h(µl(m,1)) andh′(µ∅) = h(µ∅). One can observe that

ϕn =
∨

h′−1({n}). By the definition of fuzzy recognizable sets, this proves thatϕn ∈ R̃ec(LM ) and a
similar argument may be used to show thatξn ∈ R̃ec(LM

′
). Furthermore, for anyn1, n2 ∈ N :

(ϕn1
× ξn2

)(m1, m2) = ϕn1
(m1) ∧ ξn2

(m2) =

=
(

∨
{

l
/

h(µl(m1,1)
) = n1

}

)

∧
(

∨
{

l
/

h(µl(1,m2)) = n2

}

)

=
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(here we use the transfinite distributivity law)

=
∨

{

l1 ∧ l2
/

h(µl1(m1,1)
) = n1 andh(µl2(1,m2)) = n2

}

.

We now observe that for arbitrarym1 ∈ M, m2 ∈ M ′ we have

⋃

n1·n2∈P

{

l1 ∧ l2
/

h(µl1(m1,1)
) = n1 andh(µl2(1,m2)) = n2

}

=

=
⋃

n1·n2∈P

{

l
/

h(µl(m1,m2)) = n1 · n2

}

.

Indeed, let us prove this equality by double inclusion. If we havel = l1 ∧ l2 with h(µl1(m1,1)
) = n1 and

h(µl2(1,m2)) = n2 with n1 · n2 ∈ P thenh(µl1(m1,1)
· µl2(1,m2)) = h(µl(m1,m2)) = n1 · n2. This proves

the inclusion to the right (⊆). Conversely, leth(µl(m1,m2)) = n1 · n2 ∈ P . Denotet1 = h(µ1
(m1,1)

)

and t2 = h(µl(1,m2)). Thenl = 1 ∧ l, andh(µ1
(m1,1)

) = t1, h(µl(1,m2)) = t2 and t1 · t2 ∈ P since
t1 · t2 = n1 · n2. This proves the inclusion to the left (⊇).

We then have
[

∨

n1·n2∈P
ϕn1

× ξn2

]

(m1, m2) =
∨

n1·n2∈P

[

(ϕn1
× ξn2

)(m1, m2)
]

=

=
∨

n1·n2∈P

{

∨
{

l1 ∧ l2
/

h(µl1(m1,1)
) = n1 andh(µl2(1,m2)) = n2

}

}

=

(here we use generalized commutativity in L)

=
∨

n1·n2∈P

{

l1 ∧ l2
/

h(µl1(m1,1)
) = n1 andh(µl2(1,m2)) = n2

}

=

(we use the previous observation)

=
∨

n1·n2∈P

{

l
/

h(µl(m1,m2)) = n1 · n2

}

=
∨

{

l
/

h(µl(m1,m2)) ∈ P
}

=

=
∨

{

µ(m1, m2)
/

h(µ) ∈ P
}

=
[

∨

h−1(P )
]

(m1, m2) ,

in other words, we have proven that

∨

n1·n2∈P

ϕn1
× ξn2

=
∨

h−1(P ) = ν .

SinceN is finite, the join on the left side of the equality is a finite join, hence the conclusionfollows. ut

Remark 7.1. Unlike the case of “crisp” recognizable sets, so far we have no reasonto believe that the
converse of the above theorem holds. The difficulty of proving the converse reside in the fact that we
have no results concerning the closure of fuzzy recognizable sets under inverse morphisms and under
meets.

Yet again, letL be a c.d.c. lattice, and letX, Y be finite alphabets.
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Definition 7.2. An L-fuzzy rational transduction is an element of̃Rat(X∗×Y ∗). An L-fuzzy
recognizable transduction is an element of̃Rec(X∗ × Y ∗).

A direct consequence of Theorem 6.1 is the following corollary.

Corollary 7.1. If L is finite, anyL-fuzzy recognizable transduction is rational.

Proof:
It follows from the fact thatX∗ × Y ∗ is finitely generated, which allows us to apply Theorem 6.1.ut

For an arbitraryL-fuzzy transductionτ we use the notationτ : X∗→̃Y ∗, which, in fact, implies
the functionτ : X∗ → LY

∗
. Such a function can be viewed as a fuzzy relationτ ′ ∈ LX

∗×Y ∗
, with

τ ′(u, v) = τ(u)(v). In the following we will not distinguish betweenτ andτ ′.

Remark 7.2. The above convention is in line with the fact thatLX
∗×Y ∗

, (LY
∗
)
X∗

and (LX
∗
)
Y ∗

are
set-theoretic isomorphic.

If R ⊆ X∗ is an arbitrary language, the image ofR throughτ is theL-fuzzy setτR ⊆ LY
∗

given by

τR(v) =
∨

u∈R

τ(u, v) ,

with the usual convention that
∨

∅ = 0. We intend to prove that, as in the classical theory, a fuzzy rational
transduction preserve rationality. In our context this translates to: the imageof a regular language through
a fuzzy rational transduction is a fuzzy rational language. This property will be proven later, by using
fuzzy transducers (see Proposition 7.1).

Given two fuzzy transductionsτ : X∗→̃Y ∗ andτ ′ : Y ∗→̃Z∗, we define their compositionτ ′ ◦ τ :
X∗→̃Z∗, given by

(τ ′ ◦ τ)(u, w) =
∨

v∈Y ∗

τ(u, v) ∧ τ ′(v, w) . (3)

In Proposition 7.2 we will prove that the family of fuzzy rational transductions is closed under com-
position. The proof will be constructive, and will show that cascades offuzzy transducers (the output
tape of one transducer is the input tape of another) may be replaced by equivalent, compact fuzzy trans-
ducers. For that we must first define fuzzy transducers and prove that they represent exactly the family
of fuzzy rational transductions.

Definition 7.3. A fuzzy finite transducer is a tupleT̃ = (Q, X, Y, E, q0, F ), where

1. X, Y arefinite alphabets;

2. Q is a finiteset of states;

3. q0 ∈ Q is aninitial state, F ⊆ Q is a set offinal states; and

4. E ⊆ Q × X∗ × Y ∗ × L × Q is a finiteset of transitions.
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A computation inT̃ is a sequence inE+ of the form

c = (p1, u1, v1, l1, p2)(p2, u2, v2, l2, p3)...(pk, uk, vk, lk, pk+1) .

Thenc is a successful computation if and only ifp1 = q0 andpk+1 ∈ F . The computationc has two
components:

1. thelabel of c, denoted by| c |, is the pair(u, v) whereu = u1...uk andv = v1...vk;

2. thevalue of c, denoted by]c, is the fuzzy valuel = l1 ∧ ... ∧ lk.

The fuzzy transduction realized bỹT is | T̃ |: X∗→̃Y ∗ given by

| T̃ | (u, v) =
∨

{

l/∃c successful computation:l = ]c and(u, v) =| c |
}

,

or, in its other form,

| T̃ | (u) =
∨

{

µlv/∃c successful computation:l = ]c and(u, v) =| c |
}

,

where byµlv we denote, as usual, a singleton inLY
∗
.

Example 7.1. We present a generic, simple example which shows a possible use of fuzzytransducers,
namelyclassification andprocessing. Suppose we want to classify an incoming traffic of words in
Σ∗, with Σ = {a, b}, based on a given pattern/criterion. This pattern can be given by a “crisp language”
L, in our case we use the simple caseL = a∗. We are not interested in deciding whether an input word
is or is not inL, but rather we want to asses “how far” from the patterna∗ an input word is. We have the
following criteria, given by four levels of assessment:

1. “exact”, for a word inL;

2. “close”, for a word which contains only one “irregularity” from the pattern, i.e., it has exactly one
occurrence ofb’s;

3. “far”, for a word which contains twob’s; and

4. “remote”, for a word which has more than two irregularities.

Our levels of assessment are in total order (hence we have a finite lattice):

exact > close > far > remote .

We also want to perform some processing of the input, in our case we wantto simply delete the “irreg-
ularities”, i.e., the occurrences ofb in the input. The fuzzy transducer in Figure 1 realizes these simple
tasks.

Each transition is labeled by “i/o, l”, where “i” is an input word, “o” is an output word and “l” is
the associated fuzzy value. All states are final and the leftmost state is initial. For the input wordababa
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b/ε, remote

b/ε, far

a/a, exacta/a, exacta/a, exact

b/ε, close

Figure 1. A simple example of a fuzzy finite transducer.

the transducer outputs the wordaaa and classifies the input as “far”. Notice that the transducer is input-
deterministic and has noε-input transitions. In practice the fuzzy transducers are more complex and the
design of such transducers starting from a practical problem and a realistic set of criteria is an elaborated
matter with no clear guidelines so far.

Aside from “classification and processing”, fuzzy transducers may have two other uses/interpretations:

– “comparison, or pattern recognition”: in this “mode”, a fuzzy transducer is viewed as a two-tape
fuzzy automaton. One tape holds a predefined pattern - which must be recognized, and the second
tape holds an input sample. The automaton scans the tapes sequentially and atthe end answers
with a fuzzy value which evaluates to which extent the pattern has been “recognized” in the sample
(it remains to investigate how learning capabilities may be added to these machines).

– “fuzzy automata switch”: in this mode, a fuzzy transducer is viewed as a collection (possible
infinite) of fuzzy rational sets. The input tape acts as a selector: ifτ is the overall transduction re-
alized by this machine, then an input wordu (or a collection of input words) switches the machine
to “simulate” a fuzzy automaton which realizesτ(u) (this view will be legitimated by Proposition
7.1).

It is important to note that these modes in which a fuzzy transducer may operate are indistinguishable
from the theoretical point of view, and only specific application may reflectthese uses (it is indeed a
matter of interpretation).

Theorem 7.2. A fuzzy transduction overX andY is rational if and only if it is realized by a fuzzy finite
transducer.

Proof:
One can observe that a fuzzy finite transducer is exactly a fuzzy finite automaton over the monoidX∗ ×
Y ∗. ut

Proposition 7.1. Let τ ∈ R̃at(X∗ × Y ∗) andR ∈ Reg(X∗). ThenτR ∈ R̃at(Y ∗).

Proof:
In other words, we prove that the image of a regular language through a fuzzy rational transduction is a
fuzzy rational language. By definition we have thatτR ∈ LY

∗
, given by

τR(v) =
∨

u∈R

τ(u, v) .
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Let R be accepted by a DFAA = (Q, X, δ, q0, F ) andτ be represented by the fuzzy transducerT̃ =
(Q′, X, Y, E, p0, F

′). Without loss of generality, we can assume that the transitions ofT̃ have as input
label either a symbol, orε. We construct a fuzzy finite automatoñB such that| B̃ |= τR. The set of
states ofB consists of pair of states, inQ′ × Q, with initial state(p0, q0). In an initial stage, a transition
in B will be of the form

(

(p, q), a, y, l, (p′, q′)
)

, if δ(q, a) = q′ and(p, a, y, l, p′) ∈ E

and
(

(p, q), ε, y, l, (p′, q)
)

, if (p, ε, y, l, p′) ∈ E .

The final states of̃B will be F ′×F . One can observe that at this stage| B̃ | is a restriction of| T̃ | to the
domainR×Y ∗; nevertheless it is still a fuzzy rational transduction. We now take all transitions ofB̃ and
we erase their input labels: for example a transition((p, q), a, y, l, (p′, q′)) becomes((p, q), y, l, (p′, q′)).
It can be checked that after this transformationB̃ becomes a fuzzy automaton and| B̃ |= τR. ut

Remark 7.3. Notice that although in the above proposition we could perform the productof a transducer
and an automaton, this is not always possible in the case of two transducers. Indeed, if it were, rational
sets would be closed under intersection, fact which is known to be not true. However, in the proof of the
next proposition we show how a “semi”-product of transducers may be constructed.

Proposition 7.2. R̃at(X∗ × Y ∗) is closed under composition.

Proof:
The composition of fuzzy rational transductions has been defined by the relation (3). It can be shown that
any fuzzy rational transduction can be realized by a transducer with transitions of the form(p, ε, b, l, q)
or (p, a, ε, l, q), or (p, ε, ε, l, q), with a ∈ X ∪ {ε} andb ∈ Y ∪ {ε}. We assume by convention that such
transducer has loops of the form(p, ε, ε, 1, p) for all their states.

Let T̃1 = (Q, X, Y, E, p0, F ) andT̃2 = (Q′, Y, Z, E′, q0, F
′) be transducers as defined above. We

construct a transducer̃B such that| B̃ |=| T̃1 | ◦ | T̃2 |. The set of states of̃B is Q × Q′, its final states
areF × F ′ and its transitions are formed as following. For any pair of transitions

(p, x, y, l, q) in E, with x ∈ X ∪ {ε} andy ∈ Y ∪ {ε} ,

(p′, y, z, l′, q′) in E′, with z ∈ Z ∪ {ε} ,

we add the transition
(

(p, p′), x, z, l∧ l′, (q, q′)
)

in B̃. The initial state ofB̃ is (p0, q0) and the set of final
states ofB̃ is F × F ′. It is easy to check that indeed̃B realizes the composition of| T̃1 | and| T̃2 |, by
invoking the (generalized) associativity and commutativity laws inL. ut

Theorem 7.3. (a Nivat representation of fuzzy rational transductions)
A fuzzy transductionν ∈ LX

∗×Y ∗
is rational only if there exist an alphabetZ, a fuzzy setR̃ ∈ R̃at(Z∗)

and two monoid morphismsh1 : Z∗ → X∗ andh2 : Z∗ → Y ∗ such that

ν(u, v) =
∨

z∈h−1

2
(v)

[

(

h−1
1 (u) × L

)

∩ R̃
]

(z) .



32 S. Konstantinidis et al. / Fuzzification of Rational and Recognizable Sets

X∗ ∼

ν
- Y ∗

I@
@

@
@

@
h1

�
�

�
�

�

h2

�

Z∗

R̃ ∈ R̃at(Z∗)

Figure 2. A Nivat representation of fuzzy rational transductions.

Proof:
We give an informal proof - the details are straightforward. Diagram 2 is useful for this proof. We
assume thatX andY are disjoint (otherwise, we can apply a coloring). Ifν is rational, there exists a
fuzzy transducer realizing the function(u, v) → ν(u, v). SinceX andY are disjoint, we can view this
transducer as a fuzzy automaton with transitions labeled by words in(X∪Y )∗ (we concatenate the input
label with the output label on each transition). DenoteZ = X ∪ Y , h1 is the projection ofZ∗ into X∗

andh2 is the projection ofZ∗ into Y ∗. This fuzzy automaton accepts a fuzzy rational setR̃ ∈ R̃at(Z∗).
It now suffices to observe that

(

h−1
1 (u)×L

)

∩ R̃ represents all the computations (and their fuzzy values)
of the initial transducer whenu is read from the input tape. Notice that, as expected, this expression
denotes a fuzzy set. Since many of these computations give a same output, weselect all computations

with a same output and perform their join:
∨

z∈h−1

2
(v)

[

. . .
]

(z) represents the join of all computations

which give the same outputv. ut

Remark 7.4. In proving the converse of the above theorem we encounter the followingdifficulty. One
can observe that

(

h−1
1 (u) × L

)

∩ R̃ is the restriction ofR̃ to h−1(u) – which is a regular language –
hence it is a fuzzy rational set. Let us denote it byτu, being dependent onu. Denote alsoRv = h−1

2 (v),
which is a regular language. In order to prove the converse of Theorem 7.3 one should prove that the
transductionν : X∗ × Y ∗ given by

ν(u, v) = τu(Rv)

is rational, withτu rational fuzzy sets andRv regular languages. The conditions in which this property
holds are left for further investigation.

Most of the classical theory on finite transducers can readily be ported tofuzzy finite transducers. For
example, there exists a normal form (already mentioned) and a matrix representation of fuzzy transducers
as well.

8. Conclusion and Further Work

In this paper we proposed a different approach for the study of fuzzy sequential machines. Unlike
previous attempts, we have defined and studied fuzzy rational and recognizable sets in arbitrary monoids,
and in doing so, we relied on completely distributive complete lattices. Beside outlining an alternative
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framework for the study of fuzzy sequential machines, we investigated these families (of fuzzy rational
and recognizable sets), per se, from the theoretical point of view. Forfuture work, we have left un-
addressed a number of questions which require further investigation. A few of them are presented in the
following.

In our discussion about fuzzy rational sets, we have proven that the image of such sets must be finite.
However, we have not addressed properties of the preimage of particular subsets of the lattice. More
precisely, letf ∈ R̃at(M) andA ⊆ L. What can we say aboutf−1(A) when, for example,A is finite,
or A is a sublattice ofL, or L is totally ordered, finite, etc. . A similar question can be asked for fuzzy
recognizable sets. For fuzzy recognizable sets we have not produced any results concerning the finiteness
of their image.

Proposition 4.3 shows that any step fuzzy set of a fuzzy rational set is rational when the lattice is
totally ordered. Does the proposition hold when the order inL is partial? Does its converse hold? If not,
in what particular circumstances does it hold?

Another matter for further work is to investigate possible closure propertiesof fuzzy recognizable sets
under meets, inverse fuzzy morphisms, complement and difference. For complement, we must require
thatL be complemented (i.e.,∀l ∈ L,∃l′ ∈ L : l ∨ l′ = 1, l ∧ l′ = 0; consequently the complement is
unique) which implies that alsoLM is complemented.

The results of Section 6 hold for particular lattices. We have found that at this stage, these results
suffice to make the point that well established results can be obtained in our framework. However, it is
worth investigating whether these results hold for more general lattices.

In Remark 5.3 we mentioned fuzzy transition monoids. We believe that these monoids together with
fuzzy syntactic monoids (which can be defined similarly) deserve further attention. Furthermore, we
mentioned that it is not clear whether we can replaceS(LM )∪{µ∅}with FS(LM ) in either Definition 5.1
or Definition 5.3, a fact that may very well lead to a different family of recognizable sets. This matter
deserves further attention as well.

At the beginning of Section 7 we gave a representation of fuzzy recognizable relations. In what
circumstances does the converse of Theorem 7.1 hold? At the end of the same section we gave a rep-
resentation of fuzzy rational transductions. It also remains to investigate inwhat circumstances the
converse of Theorem 7.3 holds: see Remark 7.4.

We believe that there is still a great deal to explore within our framework. For example, we have
not accommodated yet the family of fuzzy sets realized by FS-NFA (NFA with fuzzy states) or FT-DFA
(DFA with fuzzy transitions) or FS-DFA. As another example, we believe that algebraic sets in arbitrary
monoids, which have not received the deserved attention in the past, are equally suited to a similar
process of fuzzification.

Finally, as an application of our framework, it is worth exploring fuzzy finitetransducers from the
perspective proposed in this paper.
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