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Abstract. In this paper we present a different framework for the studyzey finite machines and
their fuzzy languages. Unlike the previous work on fuzzygiaeges, characterized by fuzzifica-
tion at the level of their acceptors/generators, here wevioh top-down approach by starting our
fuzzification with more abstract entities: monoids andipalar families in monoids. Moreover, we
replace the unit interval (in fact, a finite subset of the imtiérval) as support for fuzzy values with
the more general structure of a lattice. We have found thafpdetely distributive complete lattices
allow the fuzzification at the highest level, that of recagttile and rational sets. Quite surprisingly,
the fuzzification process has not followed thoroughly ttassical (crisp) theory. Unlike the case of
rational sets, the fuzzification of recognizable sets hesaled a few remarkable exceptions from
the crisp theory: for example the difficulty of proving closyroperties with respect to complement,
meet and inverse morphisms. Nevertheless, we succeedeavtwthe McKnight and Kleene theo-
rems for fuzzy sets by making the link between fuzzy ratitreabgnizable sets on the one hand and
fuzzy regular languages and FT-NFA languages (languadeseddy NFA with fuzzy transitions)
on the other. Finally, we have drawn the attention to fuzzipnal transductions, which have not
been studied extensively and which bring in a strong notg@pheability.
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1. Introduction

In the mid 60’s, L. A. Zadeh ([39]) established the basis of fuzzy setrtha field which has not ceased
to intrigue mathematicians and computer scientists ever since. Soon after iafioun the theory was
extended to formal languages; first indirectly, by the work of J. A. @og(j10]) who introduced a
general “Principle of Fuzzification”, and later explicitly, by Zadeh andrEl.ee, in [14]. Since then,
there have been many attempts to define devices which either accept @tgeements/words of fuzzy
languages. Some of them were “machine oriented”, in the sense that thewweng at simply adding
fuzzy values to either transitions or states of classical automata (seeaimpbix FT-NFA as defined
in [17] or Moore fuzzy automata as in [34]). Some others used heaviebig concepts, such as
sigma algebras, steady or complete semirings, semimodules, etc. (seearfgple@x[23]). These two
trends follow two major approaches in automata theory: a machine orientexhaidebraic approach.
However, there exist other formalisms worth considering. Arguably thet nemsarkable one is the
formalism proposed in mid 60’s by S. Eilenberg ([8]), aiming at the study ofgarticular families of
subsets in arbitrary monoids: sets defined by rational operations argkfietsd by monoid actions. To
our knowledge, there has been no attempt to study the fuzzification ofab#iod recognizable sets in
arbitrary monoids. To some extent, our approach follows a line similar to thedagewent of the general
theory of formal power series on noncommutative variables with coefticiara semiring. We believe
that this method leads, in a natural way, to the concept of fuzzy machinegratticular, to fuzzy finite
automata and transducers. This paper addresses the need fond tifienry which follows the classical
theory of rational and recognizable sets in arbitrary monoids, using setztheoretic concepts. In this
paper we are proving that this endeavor is possible, and that it leadsrnoalism which does not always
follow the “crisp” counterpart (i.e., it is not a trivial rewriting of what halseady been done). Moreover,
we prove (or ensure) that restricting our new formalism to special ¢aads to existing results on fuzzy
machines.

Why fuzzy machines? It is well known that both stochastic and fuzzy autocaa be viewed as par-
ticular types of weighted automata, i.e., automata with transitions taking valuesnmiringe From this
point of view, all results and algorithms concerning weighted automata eatilyrdoe employed when
dealing with stochastic and fuzzy automata. However, it is in our perceptatriita general theory of
automata over semirings has a very broad spectrum and it sometimes misisegapiies which would
make it extremely applicable. For example, in the context of semirings, the ruftigertial order is a
second class citizen. In contrast, a lattice is built upon this very notion,@rsquently, fuzzy automata
are versatile tools for classification of words according to their associvated. In addition, arbitrary
semirings can seldom be used for weighted automata. Indeed, one mangs$ @msure that the semiring
allows infinite sums (hence the use of complete semirings), or that the asdauitdenata trigger sums
involving locally finite sets (see, for example, [9, p. 127]). In contrdetesa complete lattice is a com-
plete semiring, this difficulty is avoided for fuzzy automata in a natural mawkken comparing fuzzy
and stochastic (probabilistic) automata, one observes that they havemlifieterpretations and serve
different purposes. Moreover, it has been noticed that the probabiiputed by stochastic automata
decrease predictably, as a function of the length of the input (this coesegq is more pronounced in
the deterministic case, where there is at most one successful computaaowy fyive input). If the input
is long enough (inevitable for infinite languages), the computed probabiliiesnbe too small for any
practical purpose (they go beyond the precision of any particular mgcHimcontrast, fuzzy automata
do not have this drawback. It is our belief that particularizing the gétieeary of automata over semi-
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rings to automata over lattices (i.e., fuzzy automata) brings in specific andagpliesults which make
fuzzy machines rather interesting, from an algebraic, as well as a @lagiint of view.

The need of defining fuzzy automata at a more abstract level and in a mioeead framework has
been felt before, and a prolific research activity in this direction hasepled our work. Recent studies
worth mentioning are: [21] concerned with the connection between thecrgtefifuzzy automata and
that of chains of nondeterministic automata, [22] which introduces genedalizzzy automata over
complete residuated lattices, [12] in which are studied fuzzy recognindreegognizable sets (notions
having little in common with the concept of recognizability defined in this pap&f)where types of
fuzzy languages and deterministic fuzzy automata are defined, [15] dewlim fuzzy machines over
lattice-ordered monoids (in contrast with the present paper where the katiicenonoid structures are
separated), or [16, 11, 13] where operations with fuzzy machineh égicoverings, cascades and wreath
products) were studied, to mention just a few sources. These efforgstegen fuelled and inspired
by early developments of the late 60’s and the 70's when fuzzy systemwy Automata, and their
applications reached a peak of their popularity. Examples of pioneeringiwehe field are: [37] and
later [38, 28] where was first discussed the notion of fuzzy automatonanittnfuzzy initial state and
nonfuzzy inputs, in rigorous mathematical terms, [19] where a fuzzy automwéth a fuzzy initial state
was introduced for the first time in a formal languages context, [32, 38yRére various types of valued
sequential machines, including fuzzy automata over the unit interval, vefieed and analyzed, [30]
where one can find initial attempts to reduce fuzzy automata by means of a matgabra of real
numbers, and where various criteria of reducibility and minimality are proviskeel also the newer [24],
in a broader context), etc.. In the past, there have been many attempts to iitedbalgebraic structure
as a support for fuzzy automata, such as: ordered semigroups[@28] or ordered (or not) semirings
([35], and the newer [23]), boolean lattices ([20]), normalized crrfugzy sets in the unit interval
([18]), and the list goes on. The legacy is indeed impressive, comimg frany research fields and
following different approaches; and consequently, a certain dejréecentralization has occurred. For
example, one can find in the present literature several ways of defisiagna type of fuzzy automaton,
definitions which are not equivalent despite their identical terminology. eMarmingly, there exist
results in different sources which are valid within their own context, hewthey become contradictory
when placed side-by-side in an effort to consolidate the theory. Treeprgaper does not claim to
have solved this unification problems, which may very well be insurmountalolegver it is a step
toward its resolution by exposing a rigorous framework built incrementatignfwery basic concepts
and gradually covering aspects most relevant to the topic, from a forngdae point of view. It aims
at a compromise formula balancing the complexity of the framework and its formalisver. There
are several fundamental differences between our work and thepséx+mentioned endeavors, many
originating in our novel approach of combining basic concepts of fuetyheory with the abstract
notion of computable set in arbitrary monoids as reflected in the well-knowtityltrational set —
recognizable set”. In doing this, we took a special care to preserveatheenof both worlds, hoping
to combine (by fuzzification) the notions without diluting them into each othens€guently, we hope
to have accomplished a fuzzification as easily accessible as possible toa fmanguage theorist (for a
more set-theoretic treatment of the topic, which goes beyond the formakgagontext consult [7]).

It has become apparent by now that one of the goals of this paper isive the topic of fuzzy
machines, and bring to attention a fresh point of view. Some of the resultsrieal here can arguably
be viewed as derived from the theory of formal power series ovéramnpsemirings with noncommuting
variables, in as much as fuzzy automata can be viewed as weighted autooraotBer results, with
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a fuzzy set theoretic specific, or those concerning arbitrary mono#&l® ho match in the context of
formal power series (formal power series were first studied in [3and]further developed in [27] and
[4], to mention just a few). Whether a fuzzy subset of a monoid can beidered a formal power series
is a matter of debate, since formal power series require honcommuting leariabst of the time and
in most cases the variables are elements of finitely generated free monbaisdifferences, subtle or
not, lead to the state of having two fully developed and independent thearfegzy set theory and a
formal power series theory. Moreover, unlike most of the work on fopower series, focussed mainly
on either free monoids or direct products of free monoids, in this papdéoeus on arbitrary monoids.
We also rebuild some classical definitions; for example, our notion of fuezeggnizable set is not in
line with the notion of recognizabl& -subset (as in [9]) or recognizable series (as in [27]). Furthermore
using completely distributive complete lattices as proper algebraic structureofwid fuzzification, we
bring forward properties of fuzzy sets specifically derived fromerssuctures. Finally, our formalism
appears to be more friendly than that used in formal power series, thalgelyraic structures used here
being that of a lattice and a monoid.

The paper is structured as follows. In Section 2 we introduce basic ptotlattice theory, with
a focus on completely distributive complete lattices. We have found that thitisedaare the proper
algebraic objects for monoid fuzzification. It is important to note that inddesd,is a generalization
of the previously used unit interval, since in fact, only a finite chain of theiaterval was used in
past work. In Section 3 we proceed with the fuzzification of monoids, ppati for fuzzy rational
and recognizable sets. It is in this section where we define operationsuzithh $ets and study their
properties. We continue in Section 4 and 5 with our main goal, that of fuzgifyia families of rational
and recognizable sets. In these sections we address their closwegigspve define their corresponding
abstract machines and we give links to their “crisp” counterpart. In Seétiwe make the connection
between fuzzy rational and recognizable sets, using particular typesmdids and lattices. As proof
of soundness, in Section 7 we apply the results developed in the prewotisns to fuzzy relations
in general and transductions in particular, with potential applications. A siexaenple of a fuzzy
finite transducer can also be found here. Finally, in Section 8 we conoludeork and outline further
directions.

2. Notions of Lattice Theory

In this section we present a few notions of lattice theory, with a focus ontthaeisfinite properties. Our
main purpose is to reach the concept of completely distributive complete latsied,throughout this
paper.

Definition 2.1. By apartial ordering of a setl. we understand a relation (viewed as a subset of a
Cartesian product) < " C L x L which isreflexive (Vz : z < x ), antisymmetric (Vz,y :
z<yy<x=x=y), andtransitive (Vx,y,2: = <y,y <z = x < z). The order is called
“partial” since there may exist incomparable elements.in

Definition 2.2. Let L be a set ang& a partial ordering of_.

1. Lis alattice if all nonempty, finite subsets df have aleast upper bound and agreatest
lower bound with respect to<.
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2. Lisacomplete lattice if the previous property holds for arbitrary nonempty subsets.of

We denote by (join) andA (meet) the operators which give the least upper bound and the greatest lo

bound of a set (sincg is a partial order, the upper and lower bounds of a subsétrofly not belong

to the subset). I is a complete lattice, we dendle= A L and1 = \/ L; and is useful to define (by

convention) “empty meets and joins”, §) = A @ = A L. Observe that any finite lattice is complete.
For a latticeL we use the notatio(L, <, V, A, 0, 1), where some of the operators may be omitted if

they are given by the context or they are undefined. The following is aarapt property of complete

lattices:

Birkhoff’s law. ([5, p. 53]) In a complete latticeL, <, v, A) the following self-dual law holds:

V ( V %) =V a

Yev  pedy ped
whereV is an index set{ ¢ },cw is a family of index sets (indexed b¥), & = Uweq, ¢, anda,, are
elements of..

Consequently, all complete lattices obey to the following generalized (tréayfaws:

1. (generalized commutativity) Any nonempty subse$ of L has a meet/S and a joinAS
depending only or.

2. (generalized associativity) If {S,}ecao iS afamily of nonempty subsets afindexed by®
and if we denote5 = (J,,c4 Sy then

V (Vo) =S A (A\se)=\s -

ped ped

We say that a latticd. is distributive if a A (bV ¢) = (a Ab) V (a Ac), forall a,b,c € L.
The property is self-dual, in the sense that if we interchangend A, the equality remains true. It is
easy to check that any totally ordered latticebain) is distributive. In this paper we are interested in
a stronger form of distributivity, namely thgeneralized (transfinite) distributivity: arbi-
trary meets distribute over arbitrary joins and vice versa. The properntyrisalized as following.

Let (L, <) be a complete lattice andS, }4co be a family of nonempty subsets bfindexed by®.
DenoteF = {f : ® — Ugyeqp S¢/f(#) € Sy} the set of alkchoice functions which map each index
¢ into an element of ;.

Definition 2.3. ([25]) (L, <) is completely distributive if

A\ (VSo) =V (Af@)

pcd feFr

Remark 2.1. The property of complete distributivity is self-dual.
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Definition 2.4. We say that a latticé has no0-divisors if and only if
Vll,ZQELZ (ll/\l220)2>(l1200rl2:0).
Remark 2.2. Notice that if the order irL is total, thenZ has no)-divisors.

In what will follow we consider onlycompletely distributive complete lattices, abbre-
viated ‘c.d.c. lattices”. Notice that a finite lattice is a c.d.c. lattice if and only if it is distributive
(in the finite sense).

3. Monoid Fuzzification

Let M be an arbitrary set (for now) ar{d., <, v, A, 0, 1) be a lattice.

Definition 3.1. An L-fuzzy set (orfuzzy set,whenL isunderstood) o/ is a functionu : M — L
(see, for example, the definition in [10]).

If we denote by the family of all L-fuzzy sets onV/ then (LM, <, v, A, ug, pas) has a lattice struc-
ture, where:

- Vu,veIM: p<v & Vme M:pu(m)<v(m)inL;

Vi,v e IMYme M: uvve LM (uvv)(im)=Vv{um),vim)};

Yu,v e LM Yme M : pAve LM, (pAv)(m)=A{p(m),v(m)};

pp = {(m,0)/m € M} andurs = {(m,1)/m € M} .
(in this definition we used the extensional representation of a function)

The meets and joins of fuzzy sets can be extended over arbitrary famiiéswing the convention,
in LM we have\/ ) = A0 = uy. Furthermore, the laws df are ported ta.’!, thus L* becomes a
c.d.c. lattice ifL is c.d.c., a fact which will be assumed from now on.

If v € LM, we denotesupp(v) = {m € M/v(m) # 0} to be thesupport of v. A singleton in
LM is an element whose support has cardindlifit has exactly one element), and we use the notation

:Ulm = {(m7l)} U {(n,O)/n € M,n # m}

for the singletons of.». We adopt the following nomenclaturgy is thenull fuzzy set anduys is
theuniform fuzzy set, i.e., the fuzzy set which associates value all the elements o#/ .
Let us define the following two important subfamiliesiof’ :

1. thefamily of singletons in L, denoted by

S(LM) = {p e LM /uuis a singletor} , and

2. thefamily of L-fuzzy sets with finite support, denoted by:

PS(LM) = {v € LM/ | supp(v) |< No} .
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Notice thatsupp(uy) = 0, henceuy € FS(LM). However,uy ¢ S(LM).

Remark 3.1. F'S(L™) is closed under meets (possibly transfinite) and finite joins. Any element of
FS(LM) is the result of finite (possibly empty) joins of elementsSof. ).

If we consider) to have the algebraic structure of a monoid, we can enrich the structiifé efith
an operation derived from the monoid operation, as follows.

Let (M, -, 1,,) be a monoid(L, <,V, A,0,1) be a c.d.c lattice and considéf’, the lattice of L-
fuzzy sets on\/. We callu%M theunit fuzzy set. Letus define an operatior’(multiplication) over
LM as following:

v e LM (uev)m) =\ {u@) Av(o)} (1)

m=u-v

Notice that this operation does not involve empty joins and meets, since anyn¢leme M accepts
at least two decompositions: = m - 1; = 1,7 - m. Furthermore, sincé is complete, we have that
Vv is defined over arbitrary subsets bf hence the operation™is well-defined (despite the fact that
can have an infinite number of decompositions: for example, takirtg be the monoidR, -, 1), a real

numberm # 1 has an infinite number of non-trivial decompositions,= (m%)’“, k € N). Operation
(1) is areflection of what is known in fuzzy set theory asdkeension principle, introduced in[39]
and elaborated upon in [7, p. 36].

Notation.Where there is no source of confusion, the multiplication of either elemenits @f fuzzy
sets will be represented by juxtaposition (by omitting the dot).

Lemma 3.1. Multiplication is associative and distributes owein L.

Proof:
Let u, v, & € LM, For associativity, we verify that for every € M we have

((ev)-&)m) = (- (-9 )m) =\ {n) Av(w) A} -

m=u-v-w

Indeed, we have
(1) IM) = Ve {11() A () () } =
= Vorawr { M), Vo 10(0) A (w1} } =
(here we invoke the generalized distributivity/ify

Vo { Vo ) A ) 1) } =

(we invoke generalized associativity)

~ Vo {10) Av(0) A () }
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On the other hand, we have

(1)€)(m) =V s {<W><uf> NE(w)} =
= Vincuro { (Vo {0) Av(0)}) A ()} =

(we invoke yet again the generalized distributivity)

= Vicwo { Vit {10) ANEw)} | =

(we invoke generalized associativity)
= Voo {100) A 0(0) A ) }

We have used the fact thatr = vvw) < (m = «'w andu’ = uv), given by the associativity in/,
and we also used the fact that meets distribute over arbitrary(transfiniis)ifol. The last equality is
given by general associativity - as mentioned in-line.

We now prove that multiplication distributes over joins:

(- VEM) =V, { p(u) A (v V g)(v)} — (by distributivity)
=V {(u(u) A V(v)) V (u(u) A §(v))} = (by gen. commutativity)
= (Voo {00 Av @}V (Vi {10) A 60D} = (G0) v (1)) ()

We have used the law of generalized commutativity irDistributivity “to the right” is proven in a
similar way. O

By the previous lemma (by distributivity over joins, in particulaf) becomes a multiplicative
lattice. Distributivity over meets does not hold in general. However, welaeeta prove the following

property.
Lemma 3.2. For anyyu, v, £ € L the following inequality holds:

pv A E) < (uv) A (p)

Proof:

(1 v A O)m) = Vpoey {11(w) A (v A €)(v) } = (by definition)

=Voieuw {u (v)} (by idempotence)

=Vieuo {p Av(v) AE(v )} = (by commutativity)

=Vieuo {(M ) (/J, )} < (from transfinite distributivity)

< (Vi {1w) u<v>}) A (vm:u.v {p(w) A &@)}) = () A (16) ) (m) - 0

The inequality derived from transfinite distributivity is similar to the following tielas: (A; A B;) Vv
(AQ N BQ) = (A1 vV AQ) AN (A1 vV B2) VAN (Bl V Ag) (Bl vV B2) (A1 vV Ag) (Bl V Bz) . Notice that
the inequality of the lemma holds also when we multiply “to the right'A &) < (vp) A (Ep) -
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Corollary 3.1. (S(LM)U{up},-, pi,,) is a submonoid of F.S(LM), -, i, ) which is a submonoid of
(LM? '7/"L%1w)'

Proof:
Here we prove only thak'S(L) is closed under-*, the rest being straightforward. i ¢ € F.S(LM),
then

V:/dvluv"'v/ilk

mp

§= gy Voo Vg

for some singletong!y, ..., ulk pll ... puly, andis easy to see that

my?

w-om=\ {vm)nem)}

m=m;nj,

where the joinisforall <: < kandalll <j <r.

Then, there will be at most x r arguments which are mapped by £ into non-null values (all
possible combinatioi(m;, n;)}: ;). This proves that - ¢ belongs toF'S(LM), hence tha# S(LM) is
closed under-”. Notice that in the above proof we can also expresg as

w-Om) =\ Ut .

m=m;n; O

Remark 3.2. If L has no0-divisors then(S(LM), -,M%M) becomes a monoid, more precisely a sub-
monoid of (S(LM) U {up}. -, ik,,)-

Corollary 3.2. In LM, “.” satisfies the following transfinite distributivity laws:
e\ ove=\ (n-vy) , (\/ I/¢) ="\ (s
ped peP ped ped
for an arbitrary index sep, and these laws are self-dual. Furthermore,
- ,U&M‘Z/:V~M%M =v, YWwe LY

- g ANV =pg-v=v-pg=pg, Yve LM

Proof:
We have, for example,

[ (Vo )07 = Ve [10) A (Viea vo0)] =

(here we use transfinite distributivity ih)

= V—uw Voeo [u(u) A 1/¢(v)} = (generalized commutativity)

=Vipea Vi [#00) A 25(0)] = [Vgeo i vs)| (m) -
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For the other claims, we can check, for example, that
(v-pd,)m) =\ ) A, @)} =vm) Apl, (L) = vim) .

The other claims are straightforward. O

Remark 3.3. With these properties.’ becomes aomplete lattice ordered semigroup, ab-
breviatedclosg - notion defined for example in [10, p. 155]. By the fact tiidf is also a distributive
lattice, we affirm that it is @istributive closg.

Since multiplication is associative i we can define the unary operatdt (or “star”, or iteration)
as following:

o0
e LM y*:\/yi,
i=0

with v = u1  (by convention) and’ = v*~! . v, foralli > 1. As usual, we denote

oo
vt = \/1/3 .
j=1

It is worth noticing the following facts:
- i pihy, pr, € S(LM), we haveul,, - uf, = pilf, , hence(u, )" = pl . Vi> 1 ;

- (uo)* = (o) = p1,,

- (no)t = no -

If v € FS(LM), we can writev as a finite (eventually empty) meet of singletons= pl} v --- v plk |
for somek > 0, and ifv # 1y one can express any positive poweras

Lig A=Al
Vp>1: VP = \/ Hmlil...mZ': .
1<in,.yip<k

Observation. Notice thaty € FS(LM) does not necessarily mean thét ¢ FS(LM). Indeed,
the finite support of> may generate an infinite submonoid/af which in turn may become exactly the
support ofv*, as the following example shows.

Example 3.1. Let M = {a, b}*, the monoid of words over the alphabet, b}, andL = {0, 1}, with
0 < 1. Take the following fuzzy set:

v ={(a,1), (b, 1)} U {(w,O)/w € {a,b}*\ {a, b}} .

We have thav € FS(LM), since onlya andb have associated non-null values, aridg FS(LM)
since one can easily check thdt= {(w,1)/w € {a,b}*}.
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In general, ifv € LM andm # 1,,, then

viim =\ Awvlm) @
m=mj..mp j=1

andv*(1y7) = 1 (sincer? = v ). Itis worth putting in words thathe iteration of any fuzzy
set has always value 1 assigned to the unity.

Remark 3.4. According to relation (2), ifn € M has a factorizatiom = my - ms - ... - my such that
wu(m;) = 1foralli € {1,...,k}, theny*(m) = 1.

Corollary 3.3. Letv, & € LM be fuzzy sets such thav (M) | + | £(M) |< Ro. Then| (v - &)(M) |<
Rg and| v*(M) |< No.

Proof:
Let S = v(M) U (M), with S being a finite subset af. Consider the following two subsets éf
derived fromsS:

ShN={leL/ATCS: I=AT} ,and
(SN ={leL/3T CS": I=VT} .

Itis clear thaiS")" is finite and includes (by commutativity and idempotence ). Sincev(M) C S
and by equation (2), we infer that (M) C (S")". Indeed, although (2) may involve transfinite joins,
by idempotence irL the value ofv*(m) must be included ifS")" for anym € M. Similarly, since
bothv(M) C S and&(M) C S and by the equation (1), we infer that - £)(M) C (S”)". This proves
thatv* (M) and(v - §)(M) are finite. 0

Notation wise, let us denote hy,, the constant fuzzy set which associates to all elements of
M the value!.

Corollary 3.4. Any fuzzy setv € LM verifies the following inequality:

vE> U A ug/(llM) .

Proof:
Let v be an arbitrary fuzzy set i andp be an integer greater than Any elementn € M can be
factorized asn = m - (1,,)P~! and then

wm)=\/ {/p\l/(mi)} > v(m) Av(la)
m=m1..mp  i=1

which leads to the inequality*(m) > v(m) A v(15r) . From here the conclusion follows shortly. O

An elementm is prime inM if and only if it can not be written as a product of non-unit elements of
M. In other wordsm € M is prime if and only ifm = mq - mo = mq1 = 137 Ormg = 1)y.
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Corollary 3.5. If m is prime inM andv is a fuzzy set il such that/(1,,) = 0 thenv*(m) = 0.

Proof:
It suffices to observe that if: is prime, then any fuzzy séte LM verifies the equality

£ (m) = £(m) A €(Lar) - -

Definition 3.2. Let M;, M, be monoids and.;, L, be c.d.c. lattices. An application: L} — L3
is amorphism of fuzzy sets (or fuzzy morphism) if it preserves arbitrary meets, and joins.

Remark 3.5. It is important to notice that any fuzzy set can be written as a meet of singlesmal
any product of fuzzy sets can be written as a combination of meets and faisytetons (this equally
applies to the star and plus of a fuzzy set).

Proof:
If v € LM is an arbitrary fuzzy set, then

v="\/ i,

meM

andifv, & € LM, we can express their product as

£ = \/( \/ M%mms(ma)

meM m=mima 0

Corollary 3.6. A fuzzy morphism preserves finite products, star and plus.

Consequently, the definition of fuzzy morphisms is in line with the definitioolekg
homomorphisms as found in [10, p. 155] (recall theﬁ{”1 andLé”2 can be viewed as closg - complete
lattice ordered semigroups).

4. Fuzzification of Rational Sets

Since we have assigned fd” a monoid structure, it makes sense to talk about the family of rational
sets of fuzzy setsRat(L™), and the family of recognizable sets of fuzzy sdtsc(L). However, the
study of Rat(L™) and Rec(L™) is beyond the scope of the present paper. Here we define the so called
“fuzzy rational sets”and “fuzzy recognizable sets”, and we should point out that there is a
difference between

“rational sets of fuzzy sets” and “fuzzy rational sets”,
and between

“recognizable sets of fuzzy sets” and “fuzzy recognizable sets”.
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For example, a rational set of fuzzy sétsan element ofRat(LM), whereas a fuzzy rational sist an
element of L™ obtained from singletons by rational operations, as will be describe inofteving
(Definition 4.1).

Note 1. During this study, there has been some debate on whether to adopt thechainrenfuzzy
rational set$ or “rational fuzzy sets Arguably, in this case, the most accurate is the latter construct,
which is also in line with the existing terminology (for exampkegular fuzzy languagésor “finite
fuzzy automataas in [17]). However, in other circumstances, this construct cab@&ajpplied properly.
For example, the terminologyfuizzy rational expressiohseems more appropriate tharational fuzzy
expressions To alleviate this dilemma, in this paper we adopt the following naming convention:

A concept €” in a classical (crisp) theory has the analogougdzzy C” in the corresponding
fuzzy theory.

According to this, in the following we will talk about “fuzzy rational sets"uzzy recognizable sets”,
“fuzzy finite transducers”, etc. .

Consider yet again the following two structures: a mondifl -, 1,,) and a c.d.c. lattice
(L,<,A,V,0,1). Recall that we defined (L) as the set of all singletons i and F'S(LM) as the
set of all finite unions of singletons ib™. Observe thas (L) does not contaip; whereasS (L)
does. We define L-fuzzy rational setsi by “fuzzifying” the classical definition (as found in [2]) of
rational sets, as follows:

Definition 4.1. The family of L-fuzzy rational sets on MM is the least familyRat(M) satisfying
the following conditions:

() FS(LM) C Rat(M);
(i) Vv,v/ € Rat(M) : vV € Rat(M)andv -/ € Rat(M);
(i) Vv € Rat(M) : vt € Rat(M).

It follows immediately that it € Rat(M) thenv* € Rat(M), sinceu},, € Rat(M) by (i). Notice that
condition(i) can be replaced by'): S(LM)U{py} C Rat(M). Thus, both?S(LM) andS(LM)U{ e}
can be used as a base of our recursive definition.

Denote byRatFE(M) the set of allL-fuzzy rational expressions, i.e., of all parenthesized
infix formulae obtained from the elements L") (viewed as atomic formulae), the nullary operator
up, the binary operators and-, and the unary operatdt The fuzzy set defined by a fuzzy regular
expressiorF is the join of all fuzzy sets (singletons or null fuzzy set) which can be fesged” byE.
We illustrate what we mean by “expressed” in the following example (a monedidescription can be
given using the semigroup homomorphism defined in the proof of Lemma 4.2).

Example 4.1. Let M andL be as usual, and denote by, a singleton fuzzy set which assigns the fuzzy
valuel to the elemenin. Consider the following fuzzy rational expression:

E= (((ui}“)* Vouz,) -u?”ns) Vg
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The following are the fuzzy sets which asepressed by E:

lo l 11 N\l3 11 Al3 1 Al3 1 N\l3
,U/@, /"nglu“m37 /'ngﬂ Mm1m37 lu’(ml)2m37 M(m1)3m3’ M(m1)4m37

The fuzzy setdefined by E is the join of all these fuzzy sets. Here we used tha}, )° = u}
therefore(u!s )Ouls, = pls ., and thatis Alg A ... A l3 = 5.

Itis clear that a fuzzy rational expression defines exactly one futzyrgl that the family of sets defined
by RatE(M) is exactly Rat(M). Notation wise, ifE is a fuzzy rational expression thén® | will
denote the fuzzy set defined

A few results concerning rational sets in arbitrary monoids can be prtovieald for fuzzy rational
sets as well. In the following we mention some of them together with some propeatigsular to fuzzy
rational sets.

Proposition 4.1. Rat(M) is closed under join, product, plus, star and fuzzy morphisms that map sin-
gletons into rational fuzzy sets.

Proof:

The closure under join, product, star and plus follows directly from thiaitien of Rat(M). We prove
a stronger version of closure under fuzzy morphisms, namely that rhtyoisgpreserved regardless of
the supporting lattice.

Assumeh, : LM1 — LM2 to be a fuzzy morphism which maps singletons into rational fuzzy sets. If
v e LM1 is represented by the expressiBp € RatE(M) thenh( ) will be expressed by a rational
expressmrh( ) obtained as following.

Let {Mml,. .,uifgk} be the set of all singletons which occur i, and denote by; the rational
expression corresponding /ijuﬁn) 1 < i < k (recall thath maps singletons into rational sets). Then,
denote byi(E,) the rational expression obtained frdii by replacing each occurrence;dgi with é;,

1 <i < k. One can observe thah(E,) |= h(v) and them(v) is a fuzzy rational set if.,"2. O

Notice thatRat(M) may not be closed under fuzzy morphisms in general. For example a fuzzy mo
phism may map a singleton into a fuzzy set with support that may not be obttireeyh rational
operations (which would contradict Corollary 4.1).

We now wish to make a connection between the rationality of a fuzzy set andttbeality of its
support; and in order to do so, the following properties are helpful.

Lemma4.1. If v, & € LM then

(i) supp(v V &) = supp(v) U supp(§);
(i) supp(v A &) C supp(v) N supp(§);
(iii) supp(v - §) C supp(v) - supp(§);

(iv) supp(v*) C supp(v)*.

If in addition L has no)-divisors then
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(ii") supp(v A &) = supp(v) N supp(§);
(iii ") supp(v - §) = supp(v) - supp(§);
(iv) supp(v*) = supp(v)*.
Proof:

Recall that in a latticd. with no 0-divisors we have a finite meet equal to zero if and only if at least one
of its terms is equal to zero. Moreover, in an arbitrary complete lattice, a joite(br not) is not zero if
and only if one of its term is not zero.

We prove (iii) and (iV), the rest being straightforward. € supp(v-§) then(v-£)(m) # 0, hence
by the definition of multiplication there exists a decompositior= m; - my such thav(mq) A&(ms) #
0. This implies that/(m;) # 0 and{(mz) # 0, hence thain; € supp(v) andmsa € supp(§). Then
m = mi-me € supp(v) - supp(). Conversely, ifm € supp(v) - supp(&), thenm = m; - mqy for
somem; € supp(v) andmsz € supp(§). Thenv(my) A (mse) # 0 (sinceL has no0-divisors), hence
(v-&)(m) #0,ie.,m e supp(v-§).

If m € supp(v)* then there exists a decomposition= m; - ... - my such thatn; € supp(v), Vi €
{1,....k}. Then,v*(m) # 0 (since L has no0-divisors), hence/*(m) # 0. Conversely, ifm €
supp(v*) thenm € supp(v*) for at least oné > 0. Then, there exists a decompositian= my - ... -m;
such thatn; € supp(v), forall j € {1,...,i}. Then,m € supp(v)® C supp(v)*. O

Corollary 4.1. If L has na0-divisors, then
v € Rat(M) = supp(v) € Rat(M) .

Proof:
The proof is by structural induction ane Rat(M), using the properties of Lemma 4.1. O

Let E € RatE(M) be a fuzzy rational expression and recall that we denoté By| the fuzzy
rational set defined by .

Definition 4.2. By defuzzification of E we denote the rational expressiof € RatE(M) ob-
tained fromE by replacing

- alltermsyl, € S(LM) of E with the corresponding: € M,
- the termuy by () — if present, and
- the operator by +,

and leaving the rest unchanged.

Lemma 4.2. If L has nd)-divisors andE € RatE(M), then

| 0E | = supp(| E|) .
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Proof:

If we replace any occurrence i of an element inS(L™) U {yy} by a new symbol and if we denote
by ¥ the alphabet of these new symbols, we obtain a regular expreBsaer . By doing so, we
implicitly define a semigroup homomorphism

P = S(LM)U g}

which maps each symbol &f back to the singleton (qry) which it replaces, in additiof(s) = pg. Itis
important to notice that the obtained regular expresgiogunambiguous, in the sense described in [6,
p. 150]. By the fact that has na)-divisors we infer that a word €| E' | is mapped tqu if and only if
eitheru is the empty word or contains a symbol mapped tg. By the same observation we have that

|E| = \/ i(u), and |9E | :{meM/ue|E| andi(u):,ulmgéuw} .
u€|E|

Then,m € supp(] E |) if and only if there exista: €| E | such thati(u)(m) = [ # 0, that is,
m €| IE |. 0

Notice that if the condition that does not have-divisors is not satisfied, then we can be certain only of
the following relation: . .
| 9E | D supp(| E]) .

Proposition 4.2. If v € Rat(M) then| v(M) |< .

Proof:

We prove this property by structural induction®nlt is clear that all singletons ang, have the property.
If 1, & € Rat(M)suchthat v(M) |< Rgand| (M) |< o, then clearlyl (vVE)(M) |< Rg. Moreover,
by Corollary 3.3 we have that(v - £)(M) |< Xy and that] v*(M) |< Np, fact which completes the
induction. O

It is worth putting in words the fact thainy fuzzy rational set takes a finite number of
values, when viewed as a function.

Definition 4.3. An L-fuzzy finite automaton on )M isatupled = (Q,S(LM), E, I, F), where

1. ECQx S(LM) x Qis afinite set (of transitions); and

2. I, F C @ are initial, and final sets (of states), respectively.
A computation (or path) inA is an element € E™ of the following form:

c = (p1, o1, 02) (P2, 12, D3) - - - (Pk—1, Hk—1, Pk ) (Phs k> Piet1)-

The computatior is successful if p; € I andpy1 € F. We denote by c | the fuzzy sefu - ... pg11,
and we say thatc | is thelabel of c. The fuzzy set defined byt is denoted by A | and is given by

| A|=\/{|¢| /cis asuccessful computation i}
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The finiteness ofy allows us to considef to be finite as well.

Notice carefully that we do not admit “empty” computationsq E*). Consequently, the fuzzy
finite automaton({q}, S(LM), 0, {q}, {q}) defines the fuzzy sety - in contrast with the crisp (i.e.,
classical) theory, where a similar situation leads to the set having the unity aeisdament.

Theorem 4.1. A fuzzy set is defined by a fuzzy finite automaton if and only if it is an elemént o
Rat(M).

Proof:

A constructive proof of this result is to apply methods similar to the method ofesting a finite au-
tomaton into a rational expression and vice versa. In order to do so, opdimdahelpful to use the
semigroup morphism defined in the proof of Lemma 4.2. The details are staightfi. O

Remark 4.1. The definition ofL-fuzzy finite automata can be changed to allowC Q x F'S(LM) x Q,
without changing the power of these automata.

The following subfamily of rational fuzzy sets will be used in Section 6.

Definition 4.4. By RatR(M) we denote the family ofestricted rational fuzzy sets, defined
by fuzzy finite automata, calletestricted fuzzy finite automata, which verify the following
conditions:

1. they have only one initial state;

2. for each state, there exists a transitiofy, M}M, q); and

3. there is no transition of the for(p, Ml1Ma q) with p, ¢ different states ande L\ {0}.

In Section 6 we relate this family to the family of fuzzy recognizable sets in finitelyegated free
monoids.

Letm # 1,4 be an element of the monoid. We say thatn is a divisor ofl;;, or al-divisor, if
there existsn’ € M such thatn - m’ = 1, orm’ - m = 1. Notice that this notion is weaker than that
of an invertible element id/.

Lemma 4.3.

1. If v € Rat(M) andv (1) € {0,1} thenv € RatR(M).

2. If M has nol-divisors ands € Rat(M) then
v € RatR(M) < v(1y) € {0,1} .

Proof:

We prove the second affirmation. #f € RatR(M) is realized by a restricted fuzzy automatdn=
(Q,S(LM), E, qo, F), then we observe that the only situation ensutii,;) # 0 is whengy € F, in
which case/(1;,) = 1 (we count the fact that/ has nol-divisors). Conversely, if(1,,) € {0,1} and

v is realized by a fuzzy finite automatoh= (Q,S(LM),E, I, F), then we can construct an equivalent
restricted automator’, following an algorithm somehow similar to the eliminationsefransitions in
NFA:
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H D ” H ~. H 1 l l
1. We first perform au\{M closure inA: for every pair of transitionép, 11, , q), (¢, u7,,,7) we add
11 A\lo

a transition(p, 7', ", 7). Notice that the process is finite, due to the idempotende in

2. Then, /for every pair of transition®, ,ullM,q), (q,,uf;l,r) with m # ,1M' we add a transition
(p, 2", r). In addition, for every pair of transition®, 1il,,, q), (q, 4, 7) With m # 1y, we
add a transitior(p, /", ). Unlike the case of-removal in NFA, here we have this additional
“interleave”, fact which will make unnecessary the addition of extra fimahitial states.

3. We eliminate all transitions of typ@a,ullM,q), for! € L\ {0}, and we add the transitions

(p, ;&M,p), for all p € Q. The obtained fuzzy automaton is equivalen#tenodulus the value in
1, and is restricted, modulus the fact that we may have multiple initial states.

4. Finally we add a new states which becomes the only initial state, and a transitigs pl . p)
for each transitioriq, 1!, , p) with ¢ initial state inA. We also add the transitiofp, (i, ). If
v(ug,,) = 1 then we addy to the set of final states.

We obtain a fuzzy finite automatoA’ which is restricted and realizes hence proving thar €
RatR(M). O

Letv € LM be an arbitrary fuzzy set. For aye L we defined the following “step” fuzzy set:
v=t e LM given by
V2 m) — {u(m» if v(m) 1

0, otherwise.
Proposition 4.3. If L is totally ordered, then
veRat(M)=VieL: v e Rat(M) .

Proof:
Consider a fuzzy finite automatoh = (Q, S(LM), E, I, F) such that A |= v and choose an arbitrary
I € L. We construct the following finite automatoB: = (Q, S(LM), E', I, F), where

E' = {(ps ttm>0)/ (P, 13 @) € E andt > 1} .

It remains to prove that B |= v=!. SinceL is totally orderedy can only take values among the fuzzy
values of the singletons labeling the transitionsdofrecall that the rationality of suffices to ensure
that v takes a finite number of values). More specificallyy{in) = ¢ then there exists a successful
computation

(Po, M?mm)---(pk—l, Mfﬁwpk)

with m = m; - ... - my, andt = t; for somej € {1, ..., k}. In addition,t is the smallest (with respect to
the order inL) value amond1, ..., tx }. Notice that this happens despite the fact that there may exist an
infinity of successful paths correspondingto

Assume now that(m) = t > [ and consider a successful pathAras above. This path will also
exist in B by its construction, sinceis smaller than the value of every singleton which appears in the
path. Moreover, since each successful patR & a successful path id we conclude that B | (m) = t.
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In the other case, when(m) = ¢ < [, there exist no successful pathfi?n as apove, with altq, ..., t;
greater than or equal fo This directly implies that there is no successful patfinorresponding ten,
hence that B | (m) = 0. 0

This property may prove to be useful in answering the following questidiciwhas not yet been ad-
dressed: ifr € Rat(M), is it true thatv—1(I) € Rat(M) for an arbitraryl € L? If not, under what
conditions it is true ? Proposition 4.3 is also used in the proof of Theorem 6.4.

5. Fuzzification of Recognizable Sets

Compared to the case of rational sets, the fuzzification of recognizablieises out to be a more complex
matter. This can be explained in part by the fact that actions over arhiti@mgids are algebraically more
complex than rational closures. One clear impact of this difference is theuttif of stating the usual
closure properties of recognizable sets in the “fuzzy” context. In thewng we consider\/ to be an
arbitrary monoid and. to be a c.d.c. lattice.

Definition 5.1. The element € LM is an L-fuzzy recognizable set on M if and only if there
exists a finite monoidV, a monoid morphisnh : S(LM) U {ug} — N and a sef” C N such that

v=\/n1(P) .

Notice thatv does not necessarily belong to the monsid.™) U {uy}, or FS(LM) for that matter.
Notice also thab(u) acts as a “zero” iV, i.e.,h(ug) -n = n-h(uy) = h(up), for everyn in the image
of h.

In the following we particularize the notion @aktion of a monoid over an arbitrary set
(as defined in [26511.2.1]) to the submonoid of singletons af*.

Definition 5.2. A (right) fuzzy action of S(LM) over (or, on) a sef) is a mapping

6:Qx [SIM) U} - Q
such that
() Ve Q: d(q,p,,)=q;
(i) Vg€ Q, pp' € SLM)U{up}: 6(3(q,p), 1) = (g, - p') -

Notice that we allow null 4p) “transitions” and, according to the above definitionuif 1/ = M%M,
thend (6(q, ), ') =g, forallg € Q.

Definition 5.3. A fuzzy action automaton overM by Lisatupled = (Q, S(LM)U{ug}, 6, qo, F)
where

() Q is afinite set (of states);

(i) 6:Q x |S(ILM) U {/J@}] — ( is a fuzzy action (the next state function);
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(i) qo € Q is an initial state;
(iv) F C @ is aset of final states.

The fuzzy set defined byt is given by
| Al=\/{n/d(q. ) € F}.

Remark 5.1. We have| A | (1)7) = 1ifand only ifgo € F. We have| A | (1)) = 0 if and only if
8(qo,ph,,) & F.foralll € L\ {0}.

Notice thatA in Definition 5.3 does not necessarily have a finite representation, sinoeigltfit has
a finite number of states, it may have an infinite number of “transitions”. Furtee, since A | is
a possibly infinite join of singletons, it may not be an elemens af’), or FS(LM) for that matter.
Finally, as in the “crisp” case, fuzzy action automata are close relativéstefministic automata, due to
the functionality of their transition table.

Remark 5.2. If L has no0-divisors, thenS(L*) becomes a submonoid & and we can replace
S(LM U {up}) with S(LM) in all previous definitions (5.1, 5.2 and 5.3). Observe that defined by a
fuzzy action automaton with no final states (hence it is always recognjzabtie following theorem).

Theorem 5.1. An element ofL" is anL-fuzzy recognizable set if and only if it is defined by Buzzy
action automaton oi/.

Proof:
|. Assume that € Rec(M). Then there exists a finite monaig] a monoid morphisnh : S(LM) U
{up} — Q and a sef” C @ such that = \/ h~1(F). Consider the fuzzy action automaten=
(Q. S(LM)U{ug}. 6, 1g, F) wheres : Q x [S(L™) U {up}] — Q is given bys(q, s)) = q - h(y).
It can be verified thatl is well defined and thgtA |= v.

Il. Consider an arbitrary.-fuzzy action automatod = (Q, S(L™) U {1y}, 4, qo, ') and the finite
monoid of mappingsV = (Q¥, o,idg) (wWhereidg is the identity mapping oid)). Define the
functionh : S(LM) U {uy} — N as

p—h(p) = h(p)(q) =6d(q,n) ,

andP = {f € N/f(qo) € F} . Then one can check thatis a monoid morphism and that
| Al=VhH(P).

O

Notice thatuy € Rec(M), since we follow the convention thjt(® = s andy is “recognized” by
the morphism of Definition 5.1, wheR = 0.

Remark 5.3. One may observe that S(L*) U {uy}) in part (Il) of the proof of Theorem 5.1 is what
one may call #uzzy transition monoid associated to a fuzzy action automaton.

Notice also that unlike the case of fuzzy rational sets, it is not clear whethean replacé (L) U
{ugp} with FS(LM) in either Definition 5.1 or Definition 5.3. It may very well lead to a different family
of recognizable sets. This matter is left for further work.
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As for the case of fuzzy rational sets, a few classical results aboigp"aecognizable sets can be
obtained for fuzzy recognizable sets as well.

Proposition 5.1. Rec(M) is closed under finite joins.

Proof:

Letvy, s € Rec(M) be “recognized” by the finite monoids;, No, the monoid morphisma,, h, and
the subset$’;, P, as in Definition 5.1. Then consider the product mondid x Na, -, (1n,,1x,)) and
the morphisny : S(LM) U {ug} — N1 x Ny given byg(u) = (h1(u), ho(1)). One can check thatis
indeed a morphism, and that

(1 V va)(m) = v (m) V wa(m) = (AT (P)|(m) vV (b3 (Py)] (m) =
= V{u(m)/hi (1) € Pi} v \{ju(m)/ha(p) € Py} =

(here we use generalized join associativity and idempotentg in

= V{u(m)/(h1(p), ha(p)) € (Pr x Na) U (N1 x Pp)} =
_ {u(m)/,u € g7H((P1 x Na) U (Ny x PQ))} .
Then, we have proven that
V1 Vi = \/g P1 X NQ (Nl X PQ)) ,

which justifies that; Vv v, is rational. O

So far, there exist no pertinent results about the closure of fuzognerable sets under meet, inverse
fuzzy morphisms, complement and difference. This matter will be the subfjieotioer study. Moreover,
we have not classified yet the support of a fuzzy recognizable setovarbitrary monoid. However, the
next result gives an answer for the case when the monoid does reotaavisors.

Proposition 5.2. If L has na)-divisors and}M has nol-divisors then
v € Rec(M) = supp(v) € Rec(M) .

Proof:
Let A = (Q, S(LM) U {up}, 6, qo, F) be such that =| A |. We define the following action automaton
overM:

B=(P(Q),M,d {q},{K CQ/KNF #0}),with
- P(Q) is the power-set(set of parts, 2¥) of Q; and
- & :P(Q) x M — P(Q), given by

0 (K,1p) =K ,and
vm e M\ {1y} : 6'(K,m) ={d(q,uin)/a € K, pp, € S(LM)}
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Let us prove that indeedl is an action (it is clearly a function). Wy, my € M \ {1)/} andK C Q,
then we have

§'(8"(K,ma),ma) = & ({6(p, i) /p € K, i, € S(LM)},ma) =

= {6(6(p, pit)> 12, /0 € K, piby,, iz, € S(LM)} = (4is an action)
= {6(p, Witz V/p € K, 11,1 € L\ {0}} = (L has no0-divisors)

= {6(p, Wy my) /P € K, iy, € S(LM)} = (M has nol-divisors)
= 0'(K,mimy)

The cases when either one or botlmof andm, are the unity () can be easily proven to obey action’s
laws as well. Consequently | is recognizable ilV/. If m € M \ {15}, we have that

| A (m) #0< | V{n/d(q,p) € F}|(m) #£0 &
& 3ubh, € SLM) 2 8(qo, phy) € F &
& {0(q0, i) /i € S(ILMNINF #0
< I{erm)NF#0emel B .

If | A | (1p7) = 0, then it follows immediately thatupp(v) =| B |, hence the conclusion.
Otherwise, we distinguish two cases. gif € F, thenyu;, € v and1y €| B |, hence, yet again,
supp(v) =| B |. Finally, if o € F, thenlys €| B |; however,supp(v) =| B | U{1xs}, which is still
recognizable (we invoke the closure under finite joins). It follows thai(v) € Rec(M). 0

Many questions concerning the properties of fuzzy recognizable settith open, some of which
are outlined in Section 8.

6. Kleene and McKnight Theorems for Fuzzy Sets

In this section we are drawing various connection between the following fanafisets: fuzzy rational
(or restricted rational), fuzzy recognizable, fuzzy regular and thelyaof languages realized by FT-
NFA ([17]). As usual, unless specified otherwise, we consider fsetyover a c.d.c. lattice. We start
by relating fuzzy rational/recognizable sets and regular languages.

Corollary 6.1. Let X be an alphabet and € Rat(X*) or v € Rec(X*). If L has no0-divisors, then
supp(v) is a regular language B*.

Proof:
One can apply Corollary 4.1 or Proposition 5.2 (sidtehas nol-divisors) and the Kleene theorem (as
foundin [2, T. 2.1, p. 56]) for “crisp” languages. O
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Remark 6.1. It is important to notice that if\/ is a free monoid, thed/ has nol-divisors. Indeed,
assume there existy,ma € M \ {1a}, such thatn; - ma = 1,,. Consider the representation of
my andmy as a free product of generators; = g; - ... - g andms = gg11 - ... - g:- We have that
g1 - ... - g+ = 17, which contradicts the freeness if.

Theorem 6.1. (a McKnight theorem for fuzzy sets¢t M/ be a monoid and. be a finite, distributive
lattice. If M is finitely generated, theRat(M) O Rec(M) .

Proof:
Since L is finite, thenL is a c.d.c. lattice as well. Denote = {/i,...,1,,} and assume that a set of
generators foR/ is {g1, ..., g }. Consider a fuzzy action automaten= (Q, S(L™) U {xp},d, qo, F).
It suffices to prove thth | can be realized by a fuzzy finite automaton o¥ér

Construct the fuzzy finite automatoti = (Q, S(LM), E, {q}, F) where for alli € {1,...,n},j €
{1,...,m} we set:

l; L;
(P 1ngi»q) € E = 5(p,pugi) = q -

Clearly E is finite. We first prove that A | (m) =[ A’ | (m), forallm € M\ {1)}. Assume
| A| (m)=1+# 0forsomem € M \ {1,/}. We have that

| A | (m) = \/{U'/8(ao0, ) € F}

in other words, there exist, ..., [, € L such thaﬁ(qo,u%) € F,foralli € {1,...,k};andl = V...VI].
Consider a representationof as a product of generators, = ¢/ - ... - g;. It can easily be checked that

5(qo,ﬂgi Cae ug) € F,foralli € {1,...,k}. If we consider an arbitrary € {1, ..., k}, let us denote

g = 5(q0,ulgi,), e Qi = 5(6(...5(q0,ulgi,)...,ulgi, ),ulgi,). Theng, € F and there exists a successful
1 1 k—1 k
computatiorrin | A’ |, given by
l/

¢ = (q0: f1gy - 1)~ (Gh—1: 1y ) -

In other words, for each%, there exists a successful computatiomjif | Iabeledﬂﬁ%. One can observe
also that each successful computatiomjc?d l, Iabeleduﬁl, impliesé(qo,uﬁil) € F, by the construction.
Then we have proven thatd | (m) =1 <| A’ | (m) = I. ThenA'’ realizess, modulus the value it ;.
One can observe that1y,) =] A" | (1ar) V MZ{JSM), which implies that € Rat(M), as a join of fuzzy
rational sets. O

Corollary 6.2. Let L be a finite, distributive lattice and M be a finitely generated monoid.(1) €
{0,1} andv € Rec(M) thenv € RatR(M).

Proof:
We apply Theorem 6.1 and Lemma 4.3 (1). O

Theorem 6.2. If L is a finite, distributive lattice and/ is free, thenRatR(M) C Rec(M) .
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Proof:

Consider a code (as in [3, p. 38} C M such thatG* = M (M is freely generated byy). If
A= (Q,S(LM), E, qo, F) is arestricted fuzzy finite automaton, we construct an equivalent fuztigna
(automaton) as following. First we take alf, € S(L)\ n1, which are labels of some transitions in
E (implying thatm can not bel 7, due to the restrictions of). There is a finite number of such labels.
Each labe}.!, is expanded as a “maximal” join of singletons

an = \/{,ulgl1 . ...~,u§ft/l1 AN Nlg=1, g1-ccoge=m} .

Notice that the join is across a finite set, since therepresentation of m is finite and unique and
since is finite. Then we replace each transitign 4. ,, ¢) by a new path (we add new states) corre-
sponding to the above expansion. More precisely, for each/lcglyrml;2 e 'Mlg*t in the above expansion,

we add the set of transitionts, 1%, p1), (p1, 12, p2).... (pi—1, 14, q), wherepy, ..., p;_1 are new states;
followed by the removal of transitiofp, 1i\,,, ¢). To this new automaton we perform a process of “de-
terminization”, considering each label (singlet@:@)as a symbol. After this process we add transitions
(p, M%M,p) for all statesp in A. One can check that this new fuzzy finite automaton can be extended
to a fuzzy monoid action, due to the freeness\Hf(one may need to add a “sink” state to capture the
singletons which are not considered in the above expansion). O

In the following we denote by FT-NFAZ*) the family of fuzzy languages accepted by
nondeterministic finite automata with fuzzy transitions, as defined in [17]. However,
we do not restrict these automata to take a finite number of values in the uniiainfirey may take
values in an arbitrary lattice).

Theorem 6.3. (a Kleene theorem for fuzzy sets) Lete a finite, distributive lattice and a finite
alphabet. Ifv € L*" is a fuzzy set such that1,,) € {0, 1}, then:

v € Rat(X*) & v € Rec(X*) & v € FT-NFA(XY).

Proof:

The monoid>* is a finitely generated free monoid. Assume Rat(X*). SinceX* has nol-divisors
andv (1) € {0,1} we have thav can be realized by a restricted fuzzy finite automaton, by Lemma
4.3. Then, by Theorem 6.2 we deduce that Rec(X*). Finally, a restricted fuzzy finite automaton for

v is an FT-NFA. The other direction is proven in a similar way. O

Let us denote byfieg(E*) the family of fuzzy regular languages over an alphabeéas defined in
[17]. For completeness, we give here the definition, adapted to oun¢dtite family of “crisp” regular
languages will be denoted Reg(X*)).

Definition 6.1. A fuzzy setry € L*  is a fuzzy regular language jf v(X*) |< Ry andv=1(l) €
Reg(X*),foralll € L.

The following results give the relation between this family and the family of fuatignal languages.

Lemma 6.1. . .
Rat(X*) D Reg(¥*) .
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Proof:

Consider an arbitrary fuzzy regular languages Reg(X*). By the definition, for any fuzzy value
| € L, the setv—1(l) is a “crisp” regular language ix*. Assumev(3*) = {li,...,l,} (the set is
finite by definition), and consider all regular languadds = Ufl(li)}ie{l,...,n}' Then there exist
DFA A4, ..., A, such thatl; =| A, | foralli € {1,...,n}. Itis important to notice that the languages
L4, ..., L, are mutually disjoint. We transform each DI?A into a fuzzy finite automaton by augmenting
the fuzzy valué; to all its transitions. We obtain fuzzy rational setsL, ..., L,, with

L; = {(u,l;)/u € L;} U{(v,0)/v & L;}

SlnceRat(Z*) is closed under j Joms and the Ianguagég}z are mutually disjoint, it follows that =
Viei,.., }L,, which proves that € Rat(3*). O

Theorem 6.4. If L is totally ordered then
Rat(X*) = Reg(X*) .

Proof:

Considering the result of Lemma 6.1, it suffices to prove fat(>*) C Reg(X*). Letv be an arbitrary
fuzzy rational language. Consider a fuzzy finite automaton (Q,S(L*"), E,I,T) which realizes-.

In order to prove that is fuzzy regular, it suffices to prove thattakes a finite number of fuzzy values
and that the preimage of any fuzzy value is a regular language. We hmaae\aproven in Proposition
4.2 that| v |< R, sincev is rational. Then it remains to prove that!(l) € Reg(X*), foralll € L.

Take an arbitrary € L. Sincev is rational, by Proposition 4.2 we infer that/(3X*) |< Xy, and
letv(X*) = {l1, ...l withl; > ... > I,. If I & {l1,...,1,,} then clearlyv=1(]) = ) € Reg(X*). It
remains to consider the case when {[1, ..., 1, }.

Recall the notatiom=!, used in Proposition 4.3. We have that'(I;) = supp(v=") and fori > 1
we haver—1(l;) = supp(v=%) \ supp(v=-1). Sincer € Rat(X*), by Proposition 4.3 we infer
thatv=! € Rat(2*). Then, by Corollary 4.1 has no0-divisors, being totally ordered), we obtain
supp(v=l) € Rat(¥*) = Reg(X*). Summing up, we have thatupp(r=') € Reg(X*) for all i €
{1,...,n} andsupp(v=4) \ supp(v=i-1) € Reg(¥*), for alli € {2,...,n}, by the closure of regular
languages under set difference. This implies that(l;) € Reg(Z*), foralli € {1, ...,n}. 0

It is worth mentioning that the finiteness bf in Theorem 6.1, 6.2 and 6.3 is not as restrictive as it
seems (at least it can not be viewed as a restriction to the cases studiegasthdvost of the previous
results concerning fuzzy regular languages and finite automata with framitions are built upon the
assumption that the set of fuzzy values is finite. For example, although adiutidenaton with fuzzy
transitions (or states) is said to take values in the unit interval, it actually tdketeaset of values which
can be viewed as a finite, totally ordered lattice which contains all the trans#loas/of the automaton.
In a similar manner one can argue that the condition in Theorem 6.4 ttsatotally ordered, is not a
particularization of previous results (since the unit interval is already tatadlgred).

We end this section by observing thatlifis chosen to be the Boolean latticf, 1}, <, A, V,0, 1)
with 0 < 1, we obtain results pertinent to the crisp theory of rational and recodgizals, and regular
languages.
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7. Application: Fuzzy Finite Transducers

In this section we intend to use the framework developed so far to a parttasasrof machines, namely
finite transducers. For the sake of completeness, we first give a oesudérning fuzzy recognizable
relations, by proving a weak version of Mezei’'s characterization tmeor&éhen, we focus on fuzzy
rational transductions (relations on words), fuzzy finite transducetdteeir properties. We start with a
definition of fuzzy rational and recognizable relations.

Definition 7.1. Let M, M’ be arbitrary monoids anfl be a c.d.c lattice. We denote

- LM*M" - the family of L-fuzzy relations onM andM’;
- Rat(M x M') : the family of L-fuzzy rational relations;
- Rec(M x M) : the family of L-fuzzy recognizable relations.

Let us define a Cartesian product of fuzzy recognizable sets as fiofjow

x : LM x LM —, [MxM’ " given by

LMXM/

Vv, e LMy € M. V1 X g € , (11 X ) (mi,ma) = v1(my1) Ave(ms) .

Theorem 7.1. (a Mezei representation for fuzzy recognizable relations)etV/’ be monoids and.
be a c.d.c. lattice. Theme Rec(M x M’) only if it can be expressed as

n
v=\pix&,
i=1

wheren is a positive integerp; € Rec(M) and¢; € Rec(M') V1<i<n .

Proof:

Sincev is a fuzzy recognizable set, there exists a finite moméjdP C N and a monoid morphism
ho: S(LM*M'y U {uy} — N such thaty = \/ h~'(P). Denote by 1” the unity of eitherM or M’
(the choice will be established by the context). For any N we define two fuzzy setg,, ¢ L™ and
&, € LM as following:

o =\ (b holy) =}, &=/ {1y ) = )

Let us first observe thap, € Rec(LM) andé¢, € Rec(LM'). Indeed, consider the homomorphism
B2 S(LM) U {uy} — N, given byh'(pl,) = h(ul(m 1y) and?h/(ug) = h(pg). One can observe that
©on = \/ K~ 1({n}). By the definition of fuzzy recognizable sets, this proves that Rec(L) and a

similar argument may be used to show thae Rec(LM"). Furthermore, for anyi;, ny € N:

(@nl X gnz)(mlv m2) = Pny (ml) N &ny (m2) =

- (v {l/h(ﬂl(ml,l)) = nl}) A (V {l/h(“l(lymz)) - nQ}) B
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(here we use the transfinite distributivity law)

=V {lAl/bp,, 1) = mandh(ud ) =n2} .

We now observe that for arbitrary; € M, my € M’ we have
Uninaep {ll Ao /By, 1)) = andh(ug; ) = ”2} -

= Unymger {1/, ) = ma iz

Indeed, let us prove this equality by double inclusion. If we hawel; A [, with h(ul(;m 1)) = ny and
h(:“’l(21,m2)) =ng Withny -ny € P thenh(,u,l(lml,l) ~,ul(21’m2)) = h(u! ) = m1 - n2. This proves

(m1,m2)
the inclusion to the rightQ). Conversely, Ie'h(ul(mhm)) = ny - ng € P. Denotet; = h(u%mhl))

andty = h(u(,,,,)). Thenl = 1 Al andh(ug,, 1y) = t1, h(ufy,,,)) = t2 andt; - t» € P since

! . ) (ma,1)
t1 - to = ny - no. This proves the inclusion to the lefdj.

We then have
[vnl-nQGP Pnqg X £n2i| <m17m2) = \/nl-nQGP [((pnl X gnz)(mlv m2)] =

= Vomer { V {l Ala/h(ulh, 1)) =i andh(uf ) = nQ}} -

(here we use generalized commutativity in L)

= Voymger {0 A lz/h(uiﬁnhl)) =n andh(ul&m)) =y} =

(we use the previous observation)
- \/nl'nQGP {l/h(ul(mlymﬂ) =ni- n2} = \/ {l/h(’ul(mhmz)) € P} =

=V {plms,ma) 1) € P} = [V A1 (P)| (ma,ma)

in other words, we have proven that
\V o x&=\n'P)=v.
ni-ng€P

SinceN is finite, the join on the left side of the equality is a finite join, hence the concldsitmws. O

Remark 7.1. Unlike the case of “crisp” recognizable sets, so far we have no readoglieve that the
converse of the above theorem holds. The difficulty of proving the @sevreside in the fact that we
have no results concerning the closure of fuzzy recognizable seés umveirse morphisms and under
meets.

Yet again, letZ be a c.d.c. lattice, and léf, Y be finite alphabets.



28 S. Konstantinidis et al. / Fuzzification of Rational and Recognizable Sets

Definition 7.2. An L-fuzzy rational transductionisanelementofat(X*xY*). An L-fuzzy
recognizable transduction is an element oRec(X* x Y*).

A direct consequence of Theorem 6.1 is the following corollary.
Corollary 7.1. If L is finite, anyL-fuzzy recognizable transduction is rational.

Proof:
It follows from the fact thatX™* x Y* is finitely generated, which allows us to apply Theorem 6.10

For an arbitraryL-fuzzy transductiorr we use the notation : X*=Y™*, which, in fact, implies
the functionr : X* — LY. Such a function can be viewed as a fuzzy relatibre L* <Y, with
7'(u,v) = 7(u)(v). In the following we will not distinguish betweenandr’.

Remark 7.2. The above convention is in line with the fact thak <", (L¥")* ) are

set-theoretic isomorphic.

and (LX"

If R C X*is an arbitrary language, the image®throughr is the L-fuzzy setrr C LY given by

7r(v) = \/ T(u,0) |

uER

with the usual convention th§t ) = 0. We intend to prove that, as in the classical theory, a fuzzy rational
transduction preserve rationality. In our context this translates to: the iofiagegular language through

a fuzzy rational transduction is a fuzzy rational language. This ptppel be proven later, by using
fuzzy transducers (see Proposition 7.1).

Given two fuzzy transductions : X*=Y™* and7’ : Y*=Z*, we define their compositiorf o 7 :
X*57Z*, given by

(7' o 7)(u,w) = \/ 7(u,v) AT (v,w) . 3)
veY*

In Proposition 7.2 we will prove that the family of fuzzy rational transdudisnclosed under com-
position. The proof will be constructive, and will show that cascaddszfy transducers (the output
tape of one transducer is the input tape of another) may be replacedibgleqt, compact fuzzy trans-
ducers. For that we must first define fuzzy transducers and pravéhiy represent exactly the family
of fuzzy rational transductions.

Definition 7.3. A fuzzy finite transducer isatuplel = (Q,X,Y, E, q, F), where
1. X,Y arefinite alphabets;
2. Qis afiniteset of states;
3. ¢ € Qisaninitial state, F' C () isasetoffinal states; and

4. FECQxX*xY*x L xQisafiniteset of transitions.
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A computation inl" is a sequence it of the form

¢ = (p1,u1,v1,l1, p2)(p2, u2, v2, 12, 03)...(Pks Uks Vics Loy Diet1) -

Thenc is a successful computation if and onlypif = g9 andpi,1 € F. The computatiore has two
components:

1. thelabel of ¢, denoted by ¢ |, is the pair(u, v) whereu = wu;...u andv = vy...vg;
2. thevalue of ¢, denoted byic, is the fuzzy valué = i; A ... A .

The fuzzy transduction realized Hyis | T |: X*=Y* given by

| T'| (u,v) = \/ {1/3c successful computatiot:= tc and(u,v) =| c| },
or, in its other form,

| T | (u) =\ {,/3c successful computationh:= fc and(u,v) =| c| },

where byy!, we denote, as usual, a singletonZih”.

Example 7.1. We present a generic, simple example which shows a possible use oftfanggucers,
namelyclassification andprocessing. Suppose we want to classify an incoming traffic of words in
¥*, with ¥ = {a, b}, based on a given pattern/criterion. This pattern can be given by @ laniguage”

L, in our case we use the simple cdse- a*. We are not interested in deciding whether an input word
is or is not inL, but rather we want to asses “how far” from the pattefran input word is. We have the
following criteria, given by four levels of assessment:

1. “exact”, for a word inL;

2. “close”, for a word which contains only one “irregularity” from thettean, i.e., it has exactly one
occurrence ob’s;

3. “far”, for a word which contains twé's; and
4. “remote”, for a word which has more than two irregularities.

Our levels of assessment are in total order (hence we have a finite lattice):
exact > close > far > remote .

We also want to perform some processing of the input, in our case wetavaimply delete the “irreg-
ularities”, i.e., the occurrences bfin the input. The fuzzy transducer in Figure 1 realizes these simple
tasks.

Each transition is labeled by “i/o, I", where “i” is an input word, “0” is an outpvord and “I” is
the associated fuzzy value. All states are final and the leftmost state is indgrahd-input wordzbaba
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a/a, exact a/a, exact a/a, exact

O
@

» »

b/e, remote

b/e, close

Figure 1. A simple example of a fuzzy finite transducer.

the transducer outputs the watda and classifies the input as “far”. Notice that the transducer is input-
deterministic and has nsinput transitions. In practice the fuzzy transducers are more comptethan
design of such transducers starting from a practical problem andisticeset of criteria is an elaborated
matter with no clear guidelines so far.

Aside from “classification and processing”, fuzzy transducers mag tao other uses/interpretations:

— “comparison, or pattern recognition”: in this “mode”, a fuzzy transdis®iewed as a two-tape
fuzzy automaton. One tape holds a predefined pattern - which must lmmiees, and the second
tape holds an input sample. The automaton scans the tapes sequentiallyttenérad answers
with a fuzzy value which evaluates to which extent the pattern has beesghrzed” in the sample
(it remains to investigate how learning capabilities may be added to these machines

— “fuzzy automata switch”: in this mode, a fuzzy transducer is viewed adlaction (possible
infinite) of fuzzy rational sets. The input tape acts as a selecterisithe overall transduction re-
alized by this machine, then an input wardor a collection of input words) switches the machine

to “simulate” a fuzzy automaton which realizeg:) (this view will be legitimated by Proposition
7.1).

It is important to note that these modes in which a fuzzy transducer mayteaeindistinguishable
from the theoretical point of view, and only specific application may retleese uses (it is indeed a
matter of interpretation).

Theorem 7.2. A fuzzy transduction oveX andY is rational if and only if it is realized by a fuzzy finite
transducer.

Proof:
One can observe that a fuzzy finite transducer is exactly a fuzzy firtivenation over the monoid * x
Y™, O

Proposition 7.1. Let T € Rat(X* x Y*) andR € Reg(X*). Thentr € Rat(Y*).

Proof:

In other words, we prove that the image of a regular language througgeg fational transduction is a
fuzzy rational language. By definition we have thatc LY, given by

Tr(V) = \/ 7(u,v) .

uER
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Let R be accepted by a DFA = (Q, X, J, qo, F') and T be represented by the fuzzy transdufer=
(Q', X,Y, E,pg, F'). Without loss of generality, we can assume that the transitiofis ledve as input
label either a symbol, or. We construct a fuzzy finite automatdh such that B |= 7z. The set of
states ofB consists of pair of states, i)’ x @, with initial state(pg, o). In an initial stage, a transition
in B will be of the form

((p, 9),a,y,1, (p’,q’)), if 6(g,a) =q¢ and(p,a,y,l,p") € E

and
((p, q9),€ 9,1, (p’,q)), if (p,e,y,l,p) € E .

The final states of will be F’ x F. One can observe that at this stage | is a restriction of 7" | to the
domainR x Y*; nevertheless it is still a fuzzy rational transduction. We now take allitrans of B and
we erase their input labels: for example a transitignq), a, v, [, (¢’, ¢')) becomes(p, q),y,1, (v, ¢')).

It can be checked that after this transformati®ecomes a fuzzy automaton ang |= 5. 0

Remark 7.3. Notice that although in the above proposition we could perform the pradadransducer
and an automaton, this is not always possible in the case of two transdunied, if it were, rational
sets would be closed under intersection, fact which is known to be notHiaveever, in the proof of the
next proposition we show how a “semi”-product of transducers mayhstoucted.

Proposition 7.2. Rat(X* x Y*) is closed under composition.

Proof:
The composition of fuzzy rational transductions has been defined bgltdten (3). It can be shown that
any fuzzy rational transduction can be realized by a transducer wititicars of the form(p, e, b, 1, q)
or (p,a,e,l,q),0r(p,e,e,l,q),witha € X U{e} andb € Y U {¢}. We assume by convention that such
transducer has loops of the form, <, <, 1, p) for all their states.

LetT) = (Q,X,Y, E,py, F) andTy = (Q',Y, Z, F', q0, F') be transducers as defined above. We
construct a transducé? such thal B |=| T; | o | T» |. The set of states dB is Q x @', its final states
areF x F’ and its transitions are formed as following. For any pair of transitions

(p,z,y,l,q)in E,withz € X U{e}andy € Y U{e} ,
(v, y,2,0',¢')in E',withz € ZU {e} ,

we add the transitioli(p, p'), z, 2, I AU, (¢,¢')) in B. The initial state of3 is (po, go) and the set of final
states ofB is ' x F'. Itis easy to check that inded8l realizes the composition o7} | and| T3 |, by
invoking the (generalized) associativity and commutativity laws.in O

Theorem 7.3. (a Nivat representation of fuzzy rational transductions) o
A fuzzy transduction € LX <" s rational only if there exist an alphab&t a fuzzy setk € Rat(Z*)
and two monoid morphismis; : Z* — X* andhs : Z* — Y™ such that

)= \/ [(h;l(u) x L) mﬂ (2) .

thQ_I (v)



32 S. Konstantinidis et al. / Fuzzification of Rational and Recognizable Sets

X" Y™

hi ha

Z*

R € Rat(Z*)

Figure 2. A Nivat representation of fuzzy rational trangahres.

Proof:

We give an informal proof - the details are straightforward. Diagram Zéful for this proof. We
assume thak andY are disjoint (otherwise, we can apply a coloring).vIfs rational, there exists a
fuzzy transducer realizing the functign, v) — v(u,v). SinceX andY are disjoint, we can view this
transducer as a fuzzy automaton with transitions labeled by world§ inY )* (we concatenate the input
label with the output label on each transition). Dendgte- X U Y, h; is the projection ofZ* into X*
andhs is the projection ofZ* into Y*. This fuzzy automaton accepts a fuzzy rationalRet Rat(Z*).

It now suffices to observe théhl‘l(u) X L) N R represents all the computations (and their fuzzy values)
of the initial transducer when is read from the input tape. Notice that, as expected, this expression
denotes a fuzzy set. Since many of these computations give a same outgeteateall computations

with a same output and perform their joikyfzeh;l(v) { . } (z) represents the join of all computations
which give the same output O

Remark 7.4. In proving the converse of the above theorem we encounter the folladifficulty. One
can observe thath; ' (u) x L) N R is the restriction off? to h~!(u) — which is a regular language —
hence it is a fuzzy rational set. Let us denote ithybeing dependent om. Denote alsd?, = hz‘l(v),
which is a regular language. In order to prove the converse of Thre@r2 one should prove that the
transductions : X* x Y* given by

V(uv ’U) = Tu(Rv>

is rational, withr, rational fuzzy sets an®, regular languages. The conditions in which this property
holds are left for further investigation.

Most of the classical theory on finite transducers can readily be porfadzp finite transducers. For
example, there exists a normal form (already mentioned) and a matrixeepagen of fuzzy transducers
as well.

8. Conclusion and Further Work

In this paper we proposed a different approach for the study ofyfgeguential machines. Unlike
previous attempts, we have defined and studied fuzzy rational anchizablg sets in arbitrary monoids,
and in doing so, we relied on completely distributive complete lattices. Besideingthm alternative
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framework for the study of fuzzy sequential machines, we investigatese flaenilies (of fuzzy rational
and recognizable sets), per se, from the theoretical point of view.futare work, we have left un-
addressed a number of questions which require further investigaticew Affthem are presented in the
following.

In our discussion about fuzzy rational sets, we have proven that tlgeinfasuch sets must be finite.
However, we have not addressed properties of the preimage of partstipsets of the lattice. More
precisely, letf € Rat(M) andA C L. What can we say aboyt ! (A) when, for exampleA is finite,
or A is a sublattice of_, or L is totally ordered, finite, etc. . A similar question can be asked for fuzzy
recognizable sets. For fuzzy recognizable sets we have not pebdogeesults concerning the finiteness
of their image.

Proposition 4.3 shows that any step fuzzy set of a fuzzy rational sati@al when the lattice is
totally ordered. Does the proposition hold when the ordér ig partial? Does its converse hold? If not,
in what particular circumstances does it hold?

Another matter for further work is to investigate possible closure propatiezzy recognizable sets
under meets, inverse fuzzy morphisms, complement and difference ofim@ment, we must require
that L be complemented (i.ev] € L,3l' € L : I vI' = 1,1 Al' = 0; consequently the complement is
unique) which implies that alsb" is complemented.

The results of Section 6 hold for particular lattices. We have found thaisastige, these results
suffice to make the point that well established results can be obtained iraouework. However, it is
worth investigating whether these results hold for more general lattices.

In Remark 5.3 we mentioned fuzzy transition monoids. We believe that thesddadogether with
fuzzy syntactic monoids (which can be defined similarly) deserve furttenteoon. Furthermore, we
mentioned that it is not clear whether we can repl&ice )U{ iy} with F.S(L*) in either Definition 5.1
or Definition 5.3, a fact that may very well lead to a different family of reuagble sets. This matter
deserves further attention as well.

At the beginning of Section 7 we gave a representation of fuzzy recalgieizelations. In what
circumstances does the converse of Theorem 7.1 hold? At the end afrtieesection we gave a rep-
resentation of fuzzy rational transductions. It also remains to investigaihah circumstances the
converse of Theorem 7.3 holds: see Remark 7.4.

We believe that there is still a great deal to explore within our framework.ekample, we have
not accommodated yet the family of fuzzy sets realized by FS-NFA (NFA wihyf states) or FT-DFA
(DFA with fuzzy transitions) or FS-DFA. As another example, we believedlgebraic sets in arbitrary
monoids, which have not received the deserved attention in the pastg@ayesuited to a similar
process of fuzzification.

Finally, as an application of our framework, it is worth exploring fuzzy fitfensducers from the
perspective proposed in this paper.
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