
On Implementing Recognizable Transductions ?

Stavros Konstantinidis1, Nicolae Santean2,??, and Sheng Yu3

1 Saint Mary’s University, Halifax B3H 3C3, NS, Canada
Department of Mathematics and Computing Science

email: stavros@cs.smu.ca
2 Indiana University South Bend, South Bend, IN 46634, USA

Department of Computer and Information Sciences
email: nsantean@iusb.edu

3 University of Western Ontario, London N6A 5B8, ON, Canada
Department of Computer Science

email: syu@csd.uwo.ca

Abstract. Recognizable transductions constitute a proper subclass of rational
transductions, characterized by the well-known Mezei’s Theorem. We propose a
family of transducers which reflect accurately this characterization, and we study
their properties and their algorithmic aspects. We base our construct on the ob-
servation that there is a connection between recognizable transductions and lan-
guages consisting of edit strings. More specifically, we define a saturated trans-
ducer to be a transducer with the property that accepts all possible edit strings
corresponding to each accepted pair of words, when viewed as an automaton over
the edit alphabet. We revisit the theory behind recognizable transductions from
the point of view of saturated transducers, and we give constructive proofs as well
as descriptional complexities for their closure properties. For example, we give
a novel and rather complex algorithm for constructing a saturated transducer for
the concatenation of two saturated transductions. Finally, we discuss the natural
role of these objects in edit distance problems. Perhaps the relevance of this work
lies more in its point of view and initiative rather than in any particular result.

Keywords: Transducer; Recognizable transduction; Saturated transducer; Edit
string; Edit language; Edit distance

1 Introduction

Recognizable transductions constitute a well known, proper subclass of rational trans-
ductions, the latter being the class of all binary relations of words realized by finite
transducers. A well known characterization of recognizable transductions is given by
Mezei’s theorem [Eilenberg, 1974, note at p. 75]. Until now, however, there has been
no characterization of recognizable transductions by a well-defined, special subclass of
transducers. In this work we observe that there is an intimate connection between rec-
ognizable transductions and edit languages, that is, languages consisting of edit strings.

? This work was supported by the Natural Science and Engineering Research Council of Canada
grants R220259 and OGP0041630 .

?? corresponding author

An edit string (or string alignment) is a special word consisting of edit operations, and
describes the sequence of changes (substitutions, insertions and deletions of symbols)
that can transform a word into another word. Edit strings can be used to define formally
concepts related to distances between words [Sankoff, Kruskal, 1999] and, in fact, re-
cently ([Kari, Konstantinidis, 2002], [Kari et al., 2003]) there have been systematic
treatments of edit languages (also called e-systems) in the sense of language theory. In
the context of word and language distances, the main difference between a transduction
and an edit language is that the latter describes the exact changes that are permitted in
transforming words to words, whereas the former describes the result of these transfor-
mations.

This paper introduces the concept of saturated transducer and observes that this
concept constitutes a natural point of connection between recognizable transductions
and edit languages. More specifically, a saturated transducer is a transducer with the
property that, for every pair of words that it realizes, the transducer, when viewed as
an automaton over the edit alphabet, accepts all possible edit strings transforming the
first word of the pair into the second one. The starting point of our study is marked
by the observation that the class of recognizable transductions coincides with that of
transductions realized by saturated transducers. Thus, saturated transducers become a
convenient tool for implementing recognizable transductions. We provide several basic
results on saturated transducers and discuss their use in edit distance problems. In the
next paragraph we give a short overview of our paper.

The paper is organized as follows. In the next section, we provide the formal defi-
nitions about rational transducers, recognizable transductions and edit languages. Sec-
tion 3 introduces saturated transducers and discusses several basic operations on these
objects. These operations can be used to provide constructive proofs (by means of satu-
rated transducers) of closure properties of recognizable transductions, such as intersec-
tion, composition and concatenation. Moreover, the descriptional complexity of these
operations can be used to evaluate the time complexity of algorithms utilizing them.
Section 4 contains the proof of the equivalence of saturated and recognizable transduc-
tions. This proof is constructive in the following sense. Given a tuple consisting of an
even number of finite automata – according to Mezei’s theorem such a tuple specifies a
recognizable transduction – there is an effective construction of a saturated transducer
realizing the transduction specified by the tuple. Moreover, there is a constructive proof
for the converse problem. In Section 5 we elaborate on the use of saturated transducers
in problems related to the edit distance of words and languages. The method here is
not new, in the sense that certain examples of transducers have already been used for
such problems, but we believe that the method is better understood with our systematic
study of saturated transducers. Our observations in this context lead us to the question
of whether the transduction consisting of all pairs of distinct words of some regular
language is recognizable. We show that it is not recognizable in the case of infinite
languages. Finally, Section 6 contains a few concluding remarks.

2

2 Preliminary Notions and Notations

We assume known basic notions of finite automata: DFA (deterministic finite automa-
ton), NFA (nondeterministic finite automaton) and ε-NFA (NFA with ε-transitions) – a
review of these terms can be found in [Hopcroft and Ullman, 1979] or [Yu, 1997]. We
also assume known the basic notions of semigroup (monoid) theory [Howie, 1976] and
of rational and recognizable sets in arbitrary monoids ([Eilenberg, 1974]). We recall
that the class of monoids is closed under cartesian product.

Let (M, ·,1M) be a monoid which consists of a carrier set M equipped with a binary
associative operation “·” and an unit “1M”. By Rat(M) we denote the family of rational
subsets of M and by Rec(M) we denote the family of recognizable subsets. To avoid
cluttering the paper, we omit the folkloric results about rational and recognizable sets.
The reader is encouraged to consult [Berstel, 1979] on this matter.

If X and Y are finite alphabets (nonempty sets of symbols), we denote by X∗ and
Y ∗ their freely generated monoids. Any element of X∗ or Y ∗ is called a word, i.e., a
finite string of symbols. We denote by ε the word with no symbols, i.e., the empty
word. By X∗×Y ∗ we understand the direct product of the monoids X∗ and Y ∗, i.e.,
the monoid of word relations. We will use the terms “word relation” and “transduction”
interchangeably. Notice that this monoid is finitely generated, in the sense that there
exists a finite subset G, called a set of generators, such that G∗ = X∗×Y ∗ (indeed, take
G = (X×{λ})∪ ({λ}×Y)). Notice also that X∗×Y ∗ is not necessarily a free monoid,
in the sense that it may not exist a set of generators which generate each element of the
monoid in a unique way (for example, G – above – may generate an element in more
than one way: (x,y) = (x,λ) · (λ ,y) = (λ ,y) · (x,λ). As a consequence of McKnight’s
theorem ([McKnight, 1964]) we have that

Rec(X∗×Y ∗)⊆ Rat(X∗×Y ∗) ,

inclusion which is strict in general. For example, the transduction {(ai,bi) | i≥ 0} can
be proven to be rational without being recognizable.

In X∗×Y ∗, recognizable and rational sets may be specified by finite state machines.
For example, each rational transduction τ is represented by some finite transducer T =
(Q,X ,Y,∆ ,q0,F), where

1. Q is a finite set of states;
2. ∆ ⊆ Q× X∗ ×Y ∗ ×Q is a finite set of transitions; the label of a transition

(p,x,y,q) is the pair (x,y);
3. q0 is an initial state, F ⊆ Q is a set of final states;
4. a successful computation of T is a sequence

c = (q0,x1,y1,q1),,(qn−1,xn,yn,qn) ,

where (qi−1,xi,yi,qi) ∈ ∆ for all i ∈ {1, ...,n}, and qn ∈ F . The tag of c, denoted
by | c | is the pair of words (x1...xn,y1...yn);

5. τ =| T |= {(u,v) | (u,v) =| c |, for some successful computation c}.

The alphabet X is sometime called the input alphabet and Y the output alphabet. It has
been shown that a transducer with labels in X∗×Y ∗ is equivalent with a transducer hav-
ing labels only in (X ∪{ε})× (Y ∪{ε}). We bring this observation further, by noticing

3

that one can eliminate all “null” transitions, i.e., transitions of the form (ε,ε). How-
ever, for the sake of formalism, it is useful to consider all states having null loops, i.e.,
we have a transition (p,ε,ε, p) for each state p of the transducer. Then we give the
following definition:

Definition 1. A transducer is in standard form if it has transitions with labels in
(X ∪{ε})× (Y ∪{ε}) and each state has an (ε,ε)-loop to itself.

Then each rational transduction is realized by a transducer in standard form.
Note that our definition is slightly different from that of “elementary machine” in
[Elgot and Mezei, 1965] (where ε readings are not allowed) or normalized transducer
mentioned in [Berstel, 1979, Corollary 6.2, p. 79] (in addition we require the presence
of (ε,ε)-loops). This justifies our different nomenclature.

We define the size of a finite state machine M in general (hence of a transducer,
in particular), as being the number of all its states together with all its transitions, and
we denote it by size(M). In complexity matters we will consider the size of the input
alphabet of M to be constant.

In the case of recognizable transductions, one can use Mezei’s characterization (as
in [Eilenberg, 1974, §3.12, Prop. 12.2 & note at p. 75]) to represent a transduction
τ ∈ Rec(X∗×Y ∗) by a tuple of finite automata (A1,B1, ...,An,Bn) such that

τ =
n⋃

i=1

L (Ai)×L (Bi) ,

where by L (A) we understand the language accepted by the automaton A (automata Ai
are over X and automata Bi are over Y). We say that any recognizable transduction is a
finite union of blocks (a block is a direct product of two regular languages).

As a general observation, not much effort has been spent on the study of finite
machines designed to precisely accept recognizable sets. Our paper addresses this issue
and reveals the close connection between recognizable sets and edit languages – defined
in the following.

Let E be the set consisting of all elements of the form (a/ε), (ε/b) and (a/b), where
a ∈ X and b ∈ Y . We treat the elements of E as symbols which denote the so-called
edit operations: deletion, insertion and substitution (for example, the meaning
of operation “(a/ε)” is “deletion of a”). Then, by E∗ we denote the language of edit
strings, i.e., the language of words over the alphabet E. The empty edit string over
E will be denoted by (ε/ε).

Edit strings can implement transductions as the following example shows: if
X = Y = {a,b} then each of the following edit strings defines the transduction
{(aba,bab)}:

e = (a/b)(b/a)(a/b)

f = (a/ε)(b/b)(a/a)(ε/b)

g = (a/ε)(b/ε)(a/ε)(ε/b)(ε/a)(ε/b)

4

We say that each of the edit strings e, f and g “transforms the word aba into the
word bab”. Notation wise, we use the lowercase letters e, f ,g to denote edit strings.

In this paper we are interested in sets of edit strings, i.e., in edit languages.
Such languages are simply subsets of E∗.

3 Saturated Transducers: Definition and Basic Results

The notion of saturated transducer originates in the simple idea that a computation of a
finite transducer in standard form defines both a pair of words and an unique edit string
which transforms a word into another one.

Let X and Y be input and output alphabets and E be the alphabet of edit opera-
tions over X and Y . Across this paper we will frequently refer to the following monoid
homomorphism:

h : E∗→ X∗×Y ∗ ,

given by: h(ε/ε) = (ε,ε), h(a/ε) = (a,ε), h(ε/b) = (ε,b), h(a/b) = (a,b), for all
a ∈ X and b ∈ Y . Due to its importance to our matter, we name this morphism the
edit morphism over X and Y . It should be clear that for any pair of words (u,v),
h−1({(u,v)}) consists of all edit strings that transform u into v.

Let T be a transducer over X and Y , in standard form. By h−1(T) we denote the
finite automaton over E, obtained from T by replacing each transition label (x,y) with
the symbol (x/y) ∈ E ∪{(ε/ε)}. Then h−1(T) will be an ε/ε-NFA over E.

Conversely, given a finite automaton A over E, by h(A) we understand the transducer
over X and Y obtained from A by replacing each transition label (x/y) with the pair
(x,y) ∈ X∗×Y ∗. Then h(A) is in standard form, up to the missing (ε,ε)-loops for each
state. For easing the formalism we assume that these loops are present and that h(A) is
readily in standard form.

In the previous section we have defined what is meant by a successful computation
(and its tag) of a transducer T = (Q,X ,Y,∆ ,q0,F). Let

c = (q0,x1,y1,q1),,(qn−1,xn,yn,qn)

be a successful computation in T . If the transducer T is in standard form, then all pairs
(xi,yi) can be viewed as edit operations, or null operations, and we can define the edit
string corresponding to c as ||c|| := (x1/y1)...(xn/yn).

Notice that we have h(||c||) = |c|, where h is the edit morphism from X to Y . Then
a transducer T in standard form defines a transduction

| T |= {(u,v) | (u,v) = |c|, where c is a successful computation in T} ,

and an edit language

||T ||= {e ∈ E∗ | e = ||c||, where c is a successful computation in T} ,

in other words ||T ||= L (h−1(T)). In the next definition we use the meaning of h as a
monoid homomorphism.

5

Definition 2. A transducer T in standard form is saturated if and only if

h−1(| T |) = ||T || .

In other words, T is saturated if and only if for any accepted pair of words (u,v) ∈
X∗×Y ∗, and for any edit string e∈E∗ which transforms u into v there exists a successful
computation c in T such that ||c||= e.

The the property of saturation can be generalized to arbitrary transducers. Indeed,

let T be an arbitrary transducer, and denote by
◦
T the transducer obtained from T by

removing all its transitions which don’t have labels in (X ∪{ε})× (Y ∪{ε}). We call
◦
T

the standard component of T .

Definition 3. An arbitrary finite transducer T is saturated if and only if

| ◦T |=| T | and h−1(| ◦T |) = || ◦T || .

In other words, a finite transducer is saturated if it is equivalent to its standard compo-
nent, which is saturated.

We keep in mind that any saturated transducer is equivalent to a saturated transducer
in standard form (its standard component): if T is an arbitrary saturated transducer, one
can discard all transitions with labels not in (X ∪{ε})×(Y ∪{ε}) without changing the
transduction realized by T .

Remark 1. The saturation of a transducer is not a trivial property, since there may exist
a non-saturated transducer in standard form equivalent to a non-saturated transducer, as
the following example shows.

Example 1. Consider the transduction τ , over {0,1} and {a}, which contains all pairs
(u,v) with the value of u, as a binary word, being odd and v an arbitrary word over
{a}∗. Both transducers in Fig.1 are in standard form and realize τ; however, only the
transducer in Fig.1 (b) is saturated.

We say that a transduction over X and Y is saturated if and only if there exists a saturated
transducer T such that τ =| T |. We denote by

Sat(X∗×Y ∗)

the family of saturated transductions. Then clearly Sat(X∗×Y ∗)⊆ Rat(X∗×Y ∗).
In this section we are interested in basic operations on saturated transducers with

the aim of providing constructive proofs for the closure properties of saturated trans-
ductions. As it turns out, many known operations on ordinary automata and transducers
result in saturated transducers with no extra effort when applied on saturated transduc-
ers. For example, the standard product constructions on finite automata (possibly with
ε transitions) for union and intersection would result in saturated transducers when ap-
plied on saturated transducers. The same happens in the case of the product construction
for the composition of transducers.

In the following operations, the operands A1 and A2 are arbitrary finite automata,
possibly with ε transitions (unless specified otherwise), and the operands T1 and T2 are
arbitrary finite transducers in standard form.

6

(1,ε)

(0,ε)

(1,ε)

(0,ε)

(0,ε)

(1,ε)

(ε,a)

(b)(a)

(1,a),(1,ε),(ε.a)(0,ε),(0,a),(ε.a)

(0,a),(0,ε)

(1,a),(1,ε)

Fig. 1. Equivalent non-saturated and saturated transducers.

det(A1): is the automaton obtained by determinization and completion of A1.

A1 , where A1 is a DFA: the DFA that results when we complete A1 and change
its non-final states to final, and viceversa. It is well known that A1 accepts the
complement of the language accepted by A1 and that size(A1) = O(size(A1)).

A1×A2: is a saturated transducer of size O(size(A1) · size(A2)) such that

|A1×A2|= L (A1)×L (A2).

The transducer A1×A2 consists of the transitions ((p1, p2),x1,x2,(q1,q2)) for all
transitions (p1,x1,q1) of A1 and (p2,x2,q2) of A2, where we assume that there is
always an ε transition from each state to itself – see [Kari et al., 2003] for more
details, where the notation “A1∩E A2” is used instead of A1×A2.

T1∩T2: is the transducer in standard form that is obtained when we apply the
standard product construction on automata for language intersection on the
automata h−1(T1) and h−1(T2) over the edit alphabet E. The size of T1 ∩ T2 is
O(size(T1) · size(T2)). Obviously, |T1∩T2|= |T1|∩ |T2|.

T1∪ε T2: is the transducer in standard form that is obtained when we use a new start
state s and two (ε,ε)-transitions form s to the start states of T1 and T2. Then

|T1∪ε T2|= |T1|∪ |T2|
and size(T1∪ε T2) = O(size(T1)+ size(T2)).

T1∪T2: is the transducer in standard form that is obtained when we apply the standard
product construction on automata for language union on the automata h−1(T1)
and h−1(T2) over the edit alphabet E. The size of T1 ∪T2 is O(size(T1) · size(T2)).
Obviously, |T1∪T2| = |T1| ∪ |T2|. The advantage of this construction over T1∪ε T2
is that the automaton h−1(T1∪T2) is a DFA when both of h−1(T1) and h−1(T2) are
DFAs.

7

T2 ◦T1: is the transducer in standard form that is obtained when we apply a product
construction on the two given transducers for computing their composition (see for
instance [Mohri, 2003]), hence,

|T2 ◦T1|= |T2| ◦ |T1| .

Again, the size of T2 ◦T1 is O(size(T1) · size(T2)). The transducer T2 ◦T1 consists
of the transitions ((p1, p2),x,z,(q1,q2)), for all pairs of transitions (p1,x,y,q1) in
T1 and (p2,y,z,q2) in T2 and y in Y ∪{ε} – recall here that the states of T1 and T2
have (ε,ε)-loops to themeselves, for being in standard form.

T 1: is the transducer h(det(h−1(T1))) such that

|T 1|= |T1| .

If h−1(T1) is an NFA then the size of T1 could be exponential with respect to the
size of T1. On the other hand, if h−1(T1) is a DFA then the size of T1 is O(size(T1)).

Example 2. In Fig.2 we are given two automata A1 and A2, A1 accepting all words
which in binary have an odd value and A2 accepting all words which have an even
length. Following the above construction we obtain a saturated transducer for A1×A2.

1,11,0

A1×A2

0

x1

A2A1

x
1010

10

(0,x),(ε,x)

(1,ε)

(0,x)

(0,x)

(1,x)

(0,x),(ε,x)
(0,ε)

0,0 0,1

(1,x)

(0,ε) (0,ε)(1,ε)(1,ε)

(0,ε)

(1,ε)

(1,x),(ε,x)

(1,x),(ε,x)

Fig. 2. The saturated transducer A1×A2.

8

Lemma 1. If T1 and T2 are saturated transducers then T1∩T2, T1∪T2, T1∪ε T2, T2 ◦T1
and T 1 are saturated.

Proof. We prove only that T2 ◦T1 is saturated.
We need to show that for any pair (x,z) in |T2 ◦T1| and for any edit string e with

h(e) = (x,z), it is the case that e is in ‖T2 ◦T1‖. Suppose that

e = (x1/z1) · · ·(xn/zn),

where each (xi/zi) is an edit operation. There is a computation c′ of T2◦T1 such that ||c′||
is some edit string (x′1/z′1) · · ·(x′m/z′m) and h(||c′||) = (x,z). By the definition of T2 ◦T1,
there are successful computations c′1 and c′2 of T1 and T2, respectively, such that the
edit strings ||c′1|| and ||c′2|| are of the form (x′1/y′1) · · ·(x′m/y′m) and (y′1/z′1) · · ·(y′m/z′m),
respectively. Let y be the word y′1 · · ·y′n. We continue by distinguishing two cases.

Firstly, suppose that m ≤ n. Let y j = y′j for j ≤ m, and y j = ε for j = m + 1, . . . ,n.
Consider the edit strings

e1 = (x1/y1) · · ·(xn/yn) and e2 = (y1/z1) · · ·(yn/zn).

As T1 and T2 are saturated, and h(e1) = (x,y) and h(e2) = (y,z), there are successful
computations c1 and c2 of T1 and T2, respectively, such that ||c1|| = e1 and ||c2|| = e2.
Then, by definition of the transducer T2 ◦T1, there is a computation c of this transducer
such that ||c||= e, as required.

Secondly, suppose that m > n. The proof of this case is similar to the first one and
is left to the reader. ut
Example 3. Let τ1, τ2 be transductions given by

τ1 = {(u,v) |]2u is odd ,v ∈ {a}∗},
τ2 = {(u,v) | u ∈ {a}∗,]2v is even}

where by]2u we understand the value of u as a binary number. The first two saturated
transducers in Fig.3 realize them. Then, using the above construction we obtain a satu-
rated transducer(shown also in Figure 3) which realizes the transduction

{(u,v) |]2u is odd, and]2v is even} ,

which is their composition.

A natural question that arises here is whether saturated transductions are closed
under the Kleene-star operation and concatenation. The first operation is discussed in
the next section. For the second one consider two transducers T1 and T2 and the stan-
dard construction that connects each final state of T1 with the start state of T2 using an
(ε,ε)-transition, such that the new transducer realizes |T1| · |T2|. Unfortunately, how-
ever, this transducer is not necessarily saturated when both T1 and T2 are saturated. For
example, if we connect a saturated transducer for {(a,ab)} with a saturated transducer
for {(ab,b)}, we obtain a transducer T such that h(T) does not accept the edit string
(a/a)(a/b)(b/b) – hence T is not saturated. A new construction for saturated transduc-
ers for the concatenation operation is presented in the following.

9

(0,ε),

(0,1),(ε,1)

(0,0),(ε,0)

(a,0),(ε,0),(a,ε)(0,a),(0,ε),(ε,a) (1,a),(1,ε),(ε,a)

(1,a),(1,ε)

(0,a),(0,ε)

10

(a,0),(ε,0)

(a,1),(ε,1)

(a,1),(ε,1),(a,ε)

10

0,0 0,1

1,11,0

(0,0)

τ2 ◦ τ1:

τ2 :τ1 :

(ε,0)
(1,ε),
(1,0),

(1,ε),
(1,1),

(ε,1)

(0,0)

(1,1) (0,1)

(1,0)

(1,1),(ε,1)

(1,0),(ε,0)

(0,1)
(0,ε),

(1,1)
(1,ε),(1,ε),

(1,0)

(ε,1),
(1,ε)

(0,1),

(ε,0)
(0,0)
(0,ε),

Fig. 3. Composition of saturated transducers.

For any two edit strings f and g of the form

f = (x1/ε) · · ·(xn/ε) and g = (ε/y1) · · ·(ε/yn),

where each xi is in X ∪{ε} and each yi is in Y ∪{ε}, we define the left and right
merge operations ‘/’ and ‘.’ such that

f /g = g. f = (x1/y1) · · ·(xn/yn).

Lemma 2.

1. For any edit strings f and g of the form shown above, we have that h(f / g) =
h(g. f) = h(f g). Also, (ε/ε) = (ε/ε)/ (ε/ε) = (ε/ε). (ε/ε).

2. If τ1 and τ2 are transductions and e is any edit string with h(e) ∈ τ1 · τ2, then e can
be written as e1e2e3 such that e2 is of the form f2 /g2, or f2 .g2, and h(e1 f2) ∈ τ1
and h(g2e3) ∈ τ2.

Proof. The first statement follows easily from the definition of the operations / and ..
For the second statement, first note that there are (x1,y1) in τ1 and (x2,y2) in τ2 such
that h(e) = (x1x2,y1y2). Notation wise, if α = (u,v) is a pair of words, then we denote
π1(α) = u and π2(α) = v. We distinguish the following factors of e:

- Let e1 be the shortest prefix of e such that either x1 = π1(h(e1)), or y1 = π2(h(e1)).

10

- Let e2 be the edit string such that e1e2 is the shortest prefix of e such that either
y1 = π2(h(e1e2)), or x1 = π1(h(e1)), respectively.

- Finally, let e3 be such that e = e1e2e3.

By looking in detail at the edit operations comprising e, one can verify that there are edit
strings f2 and g2 such that e2 = f2 . g2, or e2 = f2 / g2, respectively, and h(e1 f2) ∈ τ1
and h(g2e3) ∈ τ2, as required. ut
Construction of T1 ·T2:

input: Two saturated transducers T1 = (Q1,X1,Y1,∆1,s1,F1) and T2 =
(Q2,X2,Y2,∆2,s2,F2) in standard form. We shall assume that T1 is already trim,
that is, each state can be reached from s1 and can reach a final state in F1.

step 1: Let U10 be the set of states p1 in Q1 such that there is a successful computa-
tion of T1, from p1, with tag (ε,v), for some v in Y ∗1 . Let U01 be the set of states q1 in
Q1 such that there is a successful computation of T1, from q1, with tag (u,ε), for some
u in X∗1 .

step 2: Define the set Q consisting of the following states.

• All states r1 in Q1. Such an r1 means that the automaton h−1(T1 ·T2) corresponding
to the intended transducer T1 · T2 has read an edit string e which is also the tag
of some computation of h−1(T1) from s1 to r1. This implies that, at state r1, the
machine T1 ·T2 has read some input (x′1,y

′
1) for which there is (x1,y1) in |T1| with

x′1 and y′1 being prefixes of x1 and y1, respectively.

• All states (q1,q2,01) with q1 ∈ U01 and q2 ∈ Q2. Such a state means that
h−1(T1 · T2) has read an edit string e1e2 such that e2 is of the form f2 / g2 and
there is a computation of h−1(T1) from s1 to q1 with tag e1 f2, and a computation
of h−1(T2) from s2 to q2 with tag g2. This implies that, at state (q1,q2,01), T1 ·T2
has read some input of the form (x′1,y1y′2) for which x′1 is a prefix of some x1 with
(x1,y1) ∈ |T1| and y′2 is a prefix of some y2, with (x2,y2) in |T2| for some x2. The
“flag” 01 above reminds us that T1 · T2 has completed reading only the second
component of (x1,y1) and that no part of x2 can be read before completing x1.

• All states (p1, p2,10) with p1 ∈ U10 and p2 ∈ Q2. Such a state means that
h−1(T1 ·T2) has read an edit string e1e2 such that e2 is of the form f2 .g2 and there
is a computation of h−1(T1) from s1 to p1 with tag e1 f2, and a computation of
h−1(T2) from s2 to p2 with tag g2. This implies that, at state (p1, p2,10), T1 · T2
has read some input of the form (x1x′2,y

′
1) for which y′1 is a prefix of some y1 with

(x1,y1) ∈ |T1| and x′2 is a prefix of some x2, with (x2,y2) in |T2| for some y2.

• All states r2 in Q2. Such an r2 means that h−1(T1 · T2) has read an edit string
e1e2e3 such that e2 is of the form f2 . g2, or f2 / g2, and there is a computation
of h−1(T1) from s1 to F1 with tag e1 f2, and a computation of h−1(T2) from s2 to r2
with tag g2e3. This implies that, at state r2, T1 ·T2 has read some input of the form
(x1x′2,y1y′2) for which (x1,y1) is in |T1| and there is (x2,y2) in |T2| such that x′2 and
y′2 are prefixes of x2 and y2, respectively.

11

step 3: Define the set ∆ consisting of the transitions of T1 ·T2 in such a way that the
meaning of the states in Q is preserved. More specifically we have that ∆ consists of
the following transitions.

• All transitions in ∆1.

• All transitions of the forms 〈p1,ε,ε,(p1,s2,10)〉, with p1 in U10, and
〈q1,ε,ε,(q1,s2,01)〉, with q1 in U01.

• All transitions of the form 〈(p1, p2,10),a,b,(p′1, p′2,10)〉, with p1, p′1 ∈ U10,
p2, p′2 ∈ Q2, and (p1,ε,b, p′1) in ∆1, and (p2,a,ε, p′2) ∈ ∆2.

• All transitions of the form 〈(q1,q2,01),a,b,(q′1,q
′
2,01)〉, with q1,q′1 ∈ U01,

q2,q′2 ∈ Q2, and (q1,a,ε,q′1) in ∆1, and (q2,ε,b,q′2) ∈ ∆2.

• All transitions of the forms 〈(p1, p2,10),ε,ε, p2〉, with p1 in F1 and p2 ∈ Q2, and
〈(q1,q2,01),ε,ε,q2〉, with q1 in F1 and q2 in Q2.

• All transitions in ∆2.

output: The transducer T1 ·T2 = (Q,X1∪X2,Y1∪Y2,∆ ,s1,F2).

Theorem 1. For any saturated transducers T1 and T2, the transducer T1 ·T2 is saturated
and realizes the transduction |T1| · |T2|. Moreover, size(T1 ·T2) = O(size(T1) · size(T2)).

Proof. The statement about the size of T1 ·T2 follows easily from its construction. For
the first statement, it is sufficient to prove that |T1 ·T2| ⊆ |T1| · |T2| and that, for any edit
string e with h(e) ∈ |T1| · |T2|, we have that e ∈ h−1(T1 ·T2). Let (x,y) be any element in
|T1 ·T2|. There is a computation of T1 ·T2 with tag (x,y) and a corresponding computation
of h−1(T1 ·T2) with some tag e, with h(e) = (x,y). By the definition of the final states
of T1 ·T2, e is of the form e1e2e3 with e2 = f2 / g2 – the case e2 = f2 .g2 is symmetric
– and h−1(T1) accepts e1 f2, and h−1(T2) accepts g2e3. This implies that

(x,y) = h(e1)h(f2g2)h(e3) = h(e1 f2)h(g2e3) ∈ |T1| · |T2|.

Now consider any edit string e such that h(e) ∈ |T1| · |T2|. We shall use the notation
in the preceding construction. The string e can be written as e1e2e3 such that e2 is of the
form f2 /g2 – the case f2 .g2 is symmetric – and h(e1 f2)∈ |T1| and h(g2e3)∈ |T2|. This
implies that there is a computation of h−1(T1) from s1 to some q1 ∈U01 with tag e1, and
a computation of h−1(T1) from q1 to some state q′1 ∈U01 with tag f2. Moreover there
is a computation of h−1(T2) from s2 to some q2 ∈ Q2 with tag g2, and a computation
of h−1(T2) from q2 to some state q′2 ∈ F2 with tag e3. Using the transitions of T1 · T2
one can verify that there is a successful computation of h−1(T1 ·T2) with tag e1e2e3, as
required. ut

We close this section by noting that the construction of T1 · T2 can be carried out
in time O(size(T1) · size(T2)) – recall here the size of a transducer is the number of

12

states plus the number of transitions in the transducer. This is clear in steps 2 and 3.
In Step 3, the computation of U10 can be done in time O(size(T1)) as follows. Let G1
be the (directed) graph obtained by adding in the graph of T1 a new state N and (ε,ε)-
transitions from all final states of T1 to N. Consider the graph G2 obtained if we keep
only the transitions of G1 of the form (ε,a) and reverse the direction of these transitions.
Then the set U01 consists of all the states in G2, other than N, that can be reached from
the state N. This traversal can be performed in time linear with respect to the size of G2.
The computation of U01 is analogous.

4 Saturation and Recognizability

Let us recall a few facts mentioned in the preliminaries of this paper. We know that
a recognizable subset of X∗×Y ∗ is rational, therefore there exists a finite transducer
which realizes it. The opposite does not hold: there exist quite simple rational trans-
ductions which are not recognizable, for example the identity over X∗. We also know
a characterization of recognizable transductions as finite unions of blocks. There exist
another two definitions of recognizable sets in arbitrary monoids: a morphism-based
definition and a definition based on monoid actions on finite sets. We recall here the
later one.

Definition 4. Let Q be a finite set and (M, ·,1M) an arbitrary monoid.

(i) An action of M on Q is a function f : M×Q→Q which satisfy the following
two properties: f (q,1M) = q and f (f (q,m),m′) = f (q,mm′), for all q ∈ Q and
m,m′ ∈M.

(ii) A subset D of M is recognizable if there exists a such finite set Q and action f , and
there exists F ⊆ Q and q ∈ Q such that D = {m ∈M | f (q,m) ∈ F}.

In this section we give a fourth characterization of recognizable transductions by
proving that the appropriate machines which realize them are saturated transducers.
We start by giving two useful constructions.

Construction #1

input: We are given a saturated transducer T , which we put in standard form, if
it is not already.

step 1: We construct the finite automaton h−1(T) by interpreting the labels
of transitions of T as edit operation symbols. The automaton h−1(T) is over the
alphabet E (and has been described in details at the beginning of Section 3).

step 2: We determinize and minimize the automaton h−1(T), obtaining a
minimal, complete DFA B. Denote B = (Q,E,δ ,q0,F).

step 3: For each state q of B we construct a corresponding automaton Cq as
follows:

13

(a) Cq has the same set of states as B, the same initial state, and it has {q} as the
set of final states;

(b) for each transition in B of type (p,(a/ε), p′) with a ∈ X we assign a transition
(p,a, p′) in Cq.

step 4: For each state q of B we construct a corresponding automaton Dq as
follows:
(a) Dq has the same set of states as B, the same set of final states, and it has q as

initial state;
(b) for each transition in B of type (p,(ε/b), p′) with b ∈ Y we assign a transition

(p,b, p′) in Dq.

output: Let Q′ := {q ∈Q |L (Cq) 6= /0 and L (Dq) 6= /0}. The algorithm ends by
delivering {Cq}q∈Q′ and {Dq}q∈Q′ .

Lemma 3. The above construction ensures the following properties:

(i) | T |= ⋃
q∈Q′ L (Cq)×L (Dq) .

(ii) The languages {L (Cq)}q∈Q′ are disjoint. The languages {L (Dq)}q∈Q′ are dis-
tinct.

(iii) The transition function of the automaton h(B) can be extended to a monoid action
of X∗×Y ∗ on Q.

(iv) If h−1(T) is deterministic then

∑
q∈Q′

(size(Cq)+ size(Dq)) = O(size(T)2) .

Proof. We analyze each step of the above construction. The automaton h−1(T) found
in step 1 has the following property:

∀e ∈L (h−1(T)), ∀e′ ∈ E∗ : h(e′) = h(e)⇒ e′ ∈L (h−1(T)) , (1)

given by the saturation of T . In other words, if h−1(T) accepts some edit string e, it will
necessarily accept all edit strings which express the same word transformation as e. In
algebraic terms, we say that the congruence induced by h – let us call it ≡h – saturates
L (h−1(T)) .

Since B found at step 2 is the minimization of h−1(T), it will preserve the above
property. The automaton B has the following additional property:

∀e,e′ ∈ E∗ : h(e) = h(e′)⇒ δ (q0,e) = δ (q0,e′) ,

in other words:
≡h ⊆ ≡L (B) , (2)

where by ≡L (B) we denoted the Myhill-Nerode equivalence of L (B). We justify this
property by the following:
Let h(e) = h(e′) and denote p = δ (q0,e) and q = δ (q0,e′). Assume by contradiction
that p 6= q. Then, since B is minimal, it follows that there exists e′′ ∈ E∗ such that

14

δ (p,e′′) is a final state in B and δ (q,e′′) is not. But then, ee′′ ∈ L and is easy to see that
h(ee′′) = h(e′e′′). By the property expressed in relation (1) we infer that e′e′′ must be
accepted - a contradiction.

Let a pair of words (u,v)∈ X∗×Y ∗ be accepted by the given transducer T . Consider
that u = u1u2...um, v = v1v2...vn, with u1, ...,um ∈ X and v1, ...,vn ∈ Y . An edit string
which transforms u into v is

e = (u1/ε)...(um/ε)(ε/v1)...(ε/vn) ,

and denote e = e1e2, with e1 = (u1/ε)...(um/ε). Since (u,v) ∈| T |, we have that e ∈
L (B), hence δ (q0,e1e2) ∈ F in B. Denote q = δ (q0,e1) and observe that u ∈L (Cq)
and v ∈L (Dq). Since the reciprocal also holds, we have that

(u,v) ∈| T |⇔ u ∈Cq and v ∈ Dq for some q ∈ Q′ ,

which proves Property (i) of the lemma.
By the fact that B is deterministic, it follows that {Cq}q∈Q are disjoint. For the

second part of Property (ii), we use yet another property of the automaton B, that is,

∀q ∈ Q,∀e,e′ ∈ E∗ such that h(e) = h(e′) : δ (q,e) ∈ F ⇒ δ (q,e′) ∈ F , (3)

which can easily be verified (invoking the saturation of T). Since B is minimal, and
by the above property, we conclude that L (Dp) 6= L (Dq) for any two distinct states
p,q ∈ Q, as long as either L (Dp) or L (Dq) is not empty. This completes the proof of
Property (ii).

Let us consider the transducer h(B), which is obtained from B by replacing the
transition labels(symbols) of the form x/y with the corresponding pairs (x,y). Clearly,
| T |=| h(B) |. If we denote f to be the transition function of h(B) (it is a partial function
due to the determinism of B) it is enough to show that we can extend f to X∗×Y ∗ such
that it verifies the properties of an action. For any (u,v) ∈ X∗×Y ∗, let eu,v be a chosen
edit string such that h(eu,v) = (u,v). We set f (p,(u,v)) := δ (p,eu,v) and f (p,(ε,ε)) :=
p, for all states in Q. It can readily be checked that the definition is independent of the
choice of eu,v, that is, f is a function

f : (X∗×Y ∗)×Q→ Q ,

and that

1. f (p,(ε,ε)) = p,∀p ∈ Q ,
2. f (f (p1,(u1,v1)),(u2,v2)) = f (p,(u1u2,v1v2)) .

Finally we have that (u,v) ∈| T |⇔ f (p0,(u,v)) is a final state in h(B) (where p0 is the
initial state of h(B)). ut
Remark 2. Notice that Property (i) of the above lemma does not depend on the minimal-
ity and completeness of B. Indeed, if we eliminate step 2 of the above construction,
and we consider h−1(T) instead of B in the subsequent steps, we would still obtain
Property (i) of the lemma.

15

Corollary 1.
Sat(X∗×Y ∗)⊆ Rec(X∗×Y ∗) .

Proof. By Mezei’s characterization of recognizable transductions, we observe that the
transduction realized by a saturated transducer is a finite union of blocks, hence it is
recognizable. ut

We now turn our attention to a possible reciprocal of the above corollary, and we
are aiming, as usual, at a constructive proof.

Construction #2

input: We have a transduction τ ∈ Rec(X∗ ×Y ∗) effectively given as a tuple
(A1,B1, ...,An,Bn) of finite automata. That is, we know that

τ =
n⋃

i=1

L (Ai)×L (Bi) .

step 1: For each i ∈ {1, ...,n} we construct a saturated transducer Ti such that
| Ti |= L (Ai)×L (Bi) (the construction has been presented in
Section 3).

step2: Since all Ti are saturated, we construct in n− 1 iterations the transducer
T∪ = T1∪ε ...∪ε Tn which realizes the transduction | T1 | ∪...∪ | Tn | (this construc-
tion has also been presented in Section 3).

output: The algorithm delivers T∪.

Lemma 4. The above construction ensures that

| T∪ |= τ .

Moreover, T∪ is saturated and size(T∪) = ∑n
i=1(size(Ai) · size(Bi)).

Proof. The correctness and finiteness of each step has been proven in Lemma 1. ut
Corollary 2.

Rec(X∗×Y ∗)⊆ Sat(X∗×Y ∗) .

Remark 3. This corollary can also be proven by using the closure properties of recog-
nizable sets, as follows:

Proof. Let τ be a recognizable transduction and consider the edit morphism over X and
Y ,

h : E∗→ X∗×Y ∗ .

Since h is a morphism and τ is recognizable in X∗×Y ∗ we have that h−1(τ) is rec-
ognizable in E∗ (by the fact that recognizable sets are closed under inverse morphism).
Then, by Kleene’s theorem we have that h−1(τ) is a regular language, hence there exists
a finite automaton A over E which accepts h−1(τ). Assume that A is a complete DFA.
It now suffices to observe that the transducer h(A) is saturated, in standard form, and it
realizes τ . ut

16

Summing up, we have the following characterization of recognizable transductions.

Theorem 2. A transduction is recognizable if and only if it is realized by a saturated
transducer.

Proof. It is a direct consequence of Corollary 1 and Corollary 2. Notice that the previ-
ous two constructions give a constructive proof of this theorem. ut

It is important to note a consequence of this result : there exist saturated transducers
whose transition table can not be extended to a monoid action; however, the theorem
implies that even these transducers realize recognizable transductions.

Remark 4. We can now give an elegant argument for the fact proven in Lemma 1, using
Mezei’s theorem. Indeed, if T1 and T2 are saturated transducers, then by the theorem we
have that | T1 | and | T2 | are recognizable, hence by Mezei’s theorem we have that

| T1 |=
m⋃

i=1

Ai×Bi and | T2 |=
n⋃

j=1

C j×D j ,

where we expressed the transductions as union of blocks. Then it suffices to observe
that

| T1 | ◦ | T2 |=
⋃

1≤i≤m, 1≤ j≤n

Gi, j ,with Gi, j =

{
/0, i f Bi∩C j = /0;
Ai×D j, otherwise.

Consequently, | T1 | ◦ | T2 | is recognizable, therefore realizable by a saturated transducer
T1 ¦T2, which can effectively be constructed. Notice that T1 ¦T2 may have a structure
different than that of T2 ◦T1 which was proposed in Lemma 1.

Remark 5. We have seen in Theorem 1 that given two saturated transducers T1 and
T2, one can construct a size O(size(T1) · size(T2)) transducer T1 · T2 which realizes
| T1 | · | T2 |. That construction can stand as an alternative proof that recognizable trans-
ductions are closed under concatenation (the other proof makes use of Mezei’s theo-
rem).

Remark 6. We can now explain why in Section 3 we have not mentioned anything about
the “star” operation on a saturated transducer. The reason is that saturated transductions
are not closed under iteration, as the following classical example shows: {(a,b)} is a
saturated transduction, being finite; however, {(a,b)}∗ is not recognizable, hence can
not be realized by a saturated transducer.

Remark 7. It is worth noticing that, given a finite transducer T over alphabets with at
least two letters, it is undecidable whether there exists a saturated transducer equivalent
with T . Indeed, this follows from the known fact that is undecidable whether a finite
transducer over alphabets with at least two letters realizes a recognizable transduction
([Berstel, 1979, §III.8, p. 90]).

17

5 Edit Distance and the non-Recognizability of (L×L)6=

Edit strings and edit languages constitute natural tools for dealing with problems related
to the edit distance between words and languages. In this context, the weight of an edit
string

e = (x1/y1) · · ·(xn/yn)

is the number of edit operations (xi/yi) in e with xi 6= yi, and is denoted by weight(e).
For example, the weight of the edit string f in Section 2 is 2. Then the edit distance be-
tween two words u and v is the minimum of the weights of the edit strings transforming
u into v, that is,

dist(u,v) = min{weight(e)/e ∈ h−1({(u,v)})}.

If we construct automata Au and Av accepting {u} and {v}, respectively, then the sat-
urated transducer Au×Av accepts all edit strings e with e ∈ h−1({(u,v)}). Hence, the
quantity dist(u,v) is the weight of the smallest-weight path (computation) in the graph
corresponding to Au×Av – here the weights on the transitions are in {0,1} such that
the weight of a transition (p,(x/y),q) is 1 if and only if x 6= y. This simple idea can be
generalized for any pair of automata A1 and A2 and for more general types of distances
– see [Kari et al., 2003] and [Mohri, 2003] for details.

The problem of computing the (inner) edit distance of a language L is more difficult,
however. This quantity is the minimum edit distance between any pair of distinct words
of L. Suppose that A is an automaton accepting L. The difficulty here lies in the fact
that the saturated transducer A×A accepts edit strings e corresponding to pairs of equal
words. Therefore, one would like to have a saturated transducer for the transduction

(L×L)6= = {(u,v)/u,v ∈ L and u 6= v}.

Although one can construct an ordinary transducer for this transduction, we show next
that there exists no corresponding saturated transducer, that is, (L×L)6= is not recog-
nizable when L is infinite. For the sake of completeness we mention that the problem of
computing the inner edit distance is solved in [Konstantinidis, 2005] by observing that
(i) this quantity is always realized by two words differing at some position bounded by
jA, for some index that depends on the automaton A accepting L; and (ii) for any index
j, there is a transducer Tj (which turns to be saturated, in our terminology) realizing all
pairs of words that differ at position j.

Given an arbitrary set P, by (P×P)6= we understand the set of all pairs of different
elements of P. In other words, (P×P)6= = (P×P)\ id(P).

Proposition 1. Let P be an arbitrary, infinite set. The set equation

(P×P)6= =
n⋃

i=1

Xi×Yi

has no solution (n,{Xi,Yi}n
i=1). (note: n is viewed as a variable in the equation)

18

Proof. Assume, by contradiction, that there exists (n,{Xi,Yi}n
i=1) – a solution of the

above equation. Notice first that necessarily Xi∩Yi = /0 for all i ∈ {1, ...,n}. Since P is
infinite, there exist 2n+1 different elements in P. Denote by U1 := {u1, ...,u2n+1} a set
of such elements.

Consider the triplet U1,X1 and Y1. We can write

U1 = (U1∩X1)∪ (U1∩Y1)∪
(
U1 \ (X1∪Y1)

)
,

since X1 and Y1 are disjoint. Let us assume, without loss of generality that |U1∩X1 |≥
|U1∩Y1 |, and let us denote U2 := U1 \Y1.

We first prove that U2 has at least 2n elements. We have that |U1∩X1 |+ |U1∩Y1 |≤
2n+1 and that |U1 ∩X1 |≥|U1 ∩Y1 |. This implies that |U1 ∩Y1 |≤ 2n, by the fact that
U1∩X1 and U1∩Y1 are disjoint. Then clearly |U1 \Y1 |≥ 2n, hence |U2 |≥ 2n. We may
also observe that the pairs of different elements in U2 can not appear in X1×Y1. Indeed,
we can not have (u,v) ∈ X1×Y1 and u,v ∈U2, since U2 = U1 \Y1.

We repeat the above argument for the triplet U2,X2 and Y2. We obtain a set U3 ⊆U1
with |U3 |≥ 2n−1 and no pair of elements in U3 can be found in X2×Y2.

Then, we repeat this argument till we obtain Un+1 ⊆U2 with |Un+1 |≥ 2 and no pair
of elements in Un+1 can be found in Xn×Yn.

Take two different elements u,v ∈Un+1. Since we have Un+1 ⊆Un ⊆ ... ⊆U1, we
conclude that the pair (u,v) does not belong to any Xi×Yi, for 1≤ i≤ n.

But this contradicts the fact that U1 ⊆ P. ut
Corollary 3. Let L ∈ X∗ be an infinite regular language. The transduction (L× L)6=
can not be realized by a saturated transducer over X.

Proof. In order to have a saturated transducer for (L×L)6=, this set must be recogniz-
able, by Theorem 2. However, Proposition 1 shows that it can not be written as a finite
union of blocks, hence it is not recognizable, by Mezei’s characterization. ut

6 Final Comments and Future Work

In this paper we have achieved the following. We have revealed the relation between edit
languages, recognizable transductions and saturated transducers. We have shown that
operations with saturated transducers can efficiently be implemented, and we outlined
methods to construct and manipulate saturated transducers. We have shown how one can
use saturated transducers for computing the edit distance between words and languages.
Finally, we have studied situations when our framework can not be used, due to the non-
recognizability of various rational relations.

Our starting point in this study was the homomorphic relationship between the free
monoid of edit strings and the Cartesian product monoid of word pairs (as reflected
in the proof of Remark 3 at page 16). This homomorphism has inspired the idea of a
saturated transducer, as a natural machine meant to realize recognizable relations. How-
ever, saturated transducers are interesting machines in their own right, and we studied
them accordingly. For example, we would like to emphasize the construction of a sat-
urated transducer realizing the concatenation of two saturated transductions (page 11):

19

although it is known that recognizable relations (thus, saturated transductions, by Theo-
rem 2) are closed under concatenation, this construction in itself seems rather ingenious,
and certainly non-trivial. Several complexity issues related to operations on saturated
transductions have been investigated as well (Section 3). Purposely, we provided ef-
fective proofs and constructions, to emphasize the algorithmic side of our framework.
Finally, we have exploited the connection between these machines and edit operations.
We revealed some of the potential and limitations of using transducers in computing the
edit distance between regular languages. The combinatorial Proposition 1 has a rather
surprising connection (Corollary 3) with the non-recognizability of a natural and sim-
ple word relation: the set of pairs of distinct words of an infinite regular set. Thus,
we feel that beside the technical aspects of the paper, we delievered a vantage point
of view meant to embrace three distinct areas, that of recognizability in the algebraic
sense, saturated transducers (the machinistic approach) and edit operations. It is worth
noticing that our entire framework still holds when is restricted to the use of only two
edit operations: insertion and deletion (for this case, one defines “restricted saturated
transducers”). This restriction may be of importance in applications where only these
two edit operations are of interest (e.g., [Levenshtein, 1966]).

Left for further analysis are a few matters which have not been tackled yet. For ex-
ample, it is worth investigating algorithms to efficiently compute saturated transducers
for given finite transductions; in particular, for finite identities.

It is interesting to notice that the notion of minimal saturated transducer for a recog-
nizable transduction makes sense, since it is given by the minimal corresponding DFA
over the edit alphabet. Size-complexity matters may be investigated in this aspect.

Finally, we have left for study the comparison of two representations (characteri-
zations) of recognizable transductions: one using saturated transducers the other using
tuples of automata.

References

[Berstel, 1979] J. Berstel: Transductions and Context-Free Languages. B. G. Teubner Stuttgart.
(1979)

[Eilenberg, 1974] S. Eilenberg: Automata, Languages and Machines. Volume A. Academic
Press, New York and London. (1974)

[Elgot and Mezei, 1965] C. C. Elgot, J. E. Mezei: On Relations Defined by Generalized Finite
Automata. IBM Journal of Research and Development, v. 9, pp. 47–768. (1965)

[Hopcroft and Ullman, 1979] J. E. Hopcroft, J.D. Ullman: Introduction to Automata Theory,
Languages and Computation. First Edition. Addison-Wesley Publishing Company, Inc. (1979)

[Howie, 1976] J. M. Howie: An introduction to semigroup theory. Academic Press, New York
and London. (1976)

[Kari, Konstantinidis, 2002] L. Kari, S. Konstantinidis: Descriptional complexity of error/edit
systems. In J. Dassow, M. Hoeberechts, H. Jürgensen, D. Wotschke (eds), Pre-Proceedings of
Descriptional Complexity of Formal Systems 2002, London, Canada, 133–147. To appear in
J. Automata, Languages and Combinatorics 9. (2004)

[Kari et al., 2003] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu: Finite-state
error/edit-systems and difference-measures for languages and words. Technical report TR
2003-01, Dept. Math. and Computing Sci., Saint Mary’s University, Canada, pp 10.

20

[Konstantinidis, 2005] S. Konstantinidis: Computing the Levenshtein distance of a regular lan-
guage. In: Proceedings of IEEE Information Theory Workshop on Coding and Complexity
2005, Rotorua, New Zealand, Aug. 29–Sep. 1, pp. 113–116. (2005)

[Levenshtein, 1966] V. I. Levenshtein: Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Dokl., pp. 707–710. (1966)

[McKnight, 1964] J. D. McKnight Jr.: Kleene Quotient Theorems. Pacific Journal of Mathemat-
ics, v.14, pp. 1343–1352. (1964)

[Mohri, 2003] M. Mohri: Edit-distance of weighted automata: general definitions and algo-
rithms. International Journal of Foundations of Computer Science 14(6) (2003), pp. 957–982.

[Sankoff, Kruskal, 1999] D. Sankoff, J. Kruskal (eds): Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. CSLI Publications. (1999)

[Yu, 1997] S. Yu: Regular Languages. in A. SALOMAA AND G. ROZENBERG (eds.), Handbook
of Formal Languages, v. 1, Ch. 2, pp. 41–110. Springer Verlag. (1997)

21

