
Journal of Automata, Languages and Combinatorics u (v) w, x–y
c© Otto-von-Guericke-Universität Magdeburg

A Family of NFAs Free of State Reductions

Cezar Câmpeanu1

Department of Computer Science and Information Technology, University of Prince
Edward Island

550 University Avenue, Charlottetown, PEI, Canada C1A 4P4
e-mail: ccampeanu@upei.ca

Nicolae Santean

Department of Computer and Information Sciences, Indiana University South Bend
1700 Mishawaka Avenue, South Bend, IN 46634-7111

e-mail: nsantean@iusb.edu

and

Sheng Yu2

Department of Computer Science, University of Western Ontario, Middlesex College,
London, Ontario, Canada N6A 5B7

e-mail: syu@csd.uwo.ca

ABSTRACT

Merging states in finite automata is a main method of reducing the size of the represen-
tation of regular languages. The process has been extensively studied for deterministic
finite automata, where the conditions for merging states can be efficiently computed.
The matter is more complex in the case of non-deterministic finite automata, where
merging states can be done in different ways, and the cost of detecting mergible states
is high. In a recent paper the authors have studied one type of state mergibility and
proven that one cannot have an arbitrarily large (in terms of number of states) non-
deterministic automaton for a given language such that no states can be merged. In
this paper we study a different type of state mergibility for non-deterministic automata,
which is similar to the state mergibility in a deterministic finite automata. We prove
that there are situations where state merging is impossible for arbitrary large equivalent
non-deterministic automata.

Keywords: Non-deterministic Finite Automata, States, Minimization

1Supported by the Natural Science and Engineering Research Council of Canada grant DGP-
I249600. Corresponding author

2Supported by the Natural Science and Engineering Research Council of Canada grant
OGP0041630.

2 C. Câmpeanu, N. Santean, S. Yu

1. Introduction

Succinct representations of regular languages have always been a popular topic in
formal language theory. Besides its theoretical importance, small representations of
regular languages have also strong practical motivations, e.g., lexicons and spelling
checkers [3, 7]. A natural process of reducing the size of a finite automaton is by
merging states without changing the accepting power of the automaton. This can
be efficiently done in a deterministic finite automaton. Not as easy is the case of
non-deterministic finite automata, where the notion of merging states is not a clear
cut and one can have non-minimal machines without mergible states. The process
of merging states having various relations has been studied for the simplification of
non-deterministic automata in quite a number of papers, e.g., [5, 6, 2]. Despite the
difficulties concerning merging states in non-deterministic automata, in [1] we proved
that one cannot “grow” a non-deterministic finite automaton infinitely and still avoid
mergible states. However, our work was partial, in the sense that it treated only one
way of merging states: collapsing one state into another and consolidating all input
and output transitions. By this type of merging, one should only make sure that no
extra words are added to the language. It is important to notice that the relation
among states given by this type of merging is symmetrical, i.e., if we can merge p
into q, we can merge q into p as well. This property allows us to extend the notion
to groups of mergible states.

Here we continue that endeavor by studying a different type of state merging.
According to this second method, in a non-deterministic automaton a state p can be
merged into a state q if by redirecting all input transitions of p to q and eliminating
p together with all its output transitions, the accepted language does not change.
Considering that the initial state has a “free-starting” input transition and all final
states have a “free-ending” output transition, the case when such states are involved in
a merging is self-explained. It is worth mentioning that according to this asymmetric
definition, it is somehow difficult to define the notion of groups of mergible states.

In this paper we are trying to solve the same problem as in [1], however, the second
method of merging is involved this time. We state the main problem of the paper as
follows:

Problem. Does there exist a regular language L such that there is an infinite
number of distinct non-deterministic finite automata for L having no mergible states?
Provide a constructive proof if the answer is positive.

We have found that, surprisingly, the situation turns quite the opposite to what
we found in [1]. In the next section, we present basic concepts used in this pa-
per. In Section 3, we give a positive answer to the above question and construct a
non-deterministic automaton, with no mergible states, accepting the simple language
represented by (1 + 1′)(0 + 1 + 0′ + 1′)∗, while the size of the automaton is p3 + 1,
with p being an arbitrary large prime number.

A Family of NFAs Free of State Reductions 3

2. Basic Notions and Notations

We assume the reader to be familiar with basic notions of formal language theory,
particularly with finite automata concepts. We briefly recall some definitions and
introduce basic notations used in this paper. For further details concerning notions
and notations, the reader is referred to [4, 8].

For a set T , #T is the number of elements of T . The set of words over a finite
alphabet Σ is denoted by Σ∗, and the empty word is λ. The length of a word w ∈
Σ∗ is denoted by |w|. A deterministic finite automaton (DFA) is a quintuple A =
(Q, Σ, δ, q0, F), where Q is the finite and non-empty set of states and Σ is the finite
and non-empty input alphabet, q0 ∈ Q, F ⊆ Q, and δ : Q× Σ → Q is the transition
function. We can extend δ from Q× Σ to Q× Σ∗ by:

δ(s, λ) = s, and δ(s, wa) = δ(δ(s, w), a),

where a ∈ Σ and w ∈ Σ∗. We usually denote δ just by δ for simplicity. The language
recognized by the automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. Two automata
are equivalent if they recognize the same language.

A non-deterministic finite automaton (NFA) is a quintuple A = (Q, Σ, δ, q0, F),
where Q, q0 ∈ Q and F are the same as for DFA, and δ : Q×Σ → 2Q is a transition
function. We can extend δ from Q× Σ to 2Q × Σ∗ by:

δ(S, λ) = S, and δ(S,wa) =
⋃

s∈δ(S,w)

δ(s, a).

Yet again, we denote δ by δ for simplicity. The language recognized by the automaton
A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

Definition 1 In an NFA A = (Q, Σ, δ, q0, F) we say that p is mergible to q (p ¹ q),
for p, q ∈ Q, if the automaton A′ = (Q − {p}, Σ, δ′, q′0, F − {p}) is equivalent to A,
where:

1. q′0 = q0 if p 6= q0, and q′0 = q if p = q0,

2. δ′(s, a) =

{
δ(s, a) if p /∈ δ(s, a)
(δ(s, a)− {p}) ∪ {q} if p ∈ δ(s, a)

.

For two languages L1, L2 ⊆ Σ∗, we denote

L1L2 = {w | w = xy, x ∈ L1, y ∈ L2}.
If L1 or L2 is a singleton language, we can write the word instead of the language,
e.g., wL2 instead of {w}L2.

Two particular alphabets are used in the paper: Σ = {0, 1} and Σ′ = {0′, 1′}. By h
we denote the projection of Σ ∪ Σ′ onto Σ, i.e., h(0) = 0, h(1) = 1, h(0′) = h(1′) = λ.
Similarly, we define the projection h′ of Σ ∪ Σ′ onto Σ′. For a word u ∈ Σ∗ we
denote by (u)′ the word obtained by applying the isomorphism (0)′ = 0′, (1)′ = 1′

4 C. Câmpeanu, N. Santean, S. Yu

to w. Similarly, if v ∈ Σ′∗, then (v)′′ is the word obtained by applying the inverse
isomorphism (0′)′′ = 0, (1′)′′ = 1.

For a string s ∈ 1{0, 1}∗, value(s) denotes the integer value of s considered as
a number in base 2. For n ∈ N, n(2) is the binary representation of the number
n (without leading zeroes). We extend the definition to include the special case 0:
value(0) = 0 and 0(2) = 0.

For all s ∈ 1{0, 1}∗ and n ∈ N, we have the following relations:

1. value(n(2)) = n,
2. (value(s))(2) = s.

For x, y ∈ N, value(x(2)y(2)) = x2|y(2)| + y. Also, if x ∈ 1{0, 1}∗ and y ∈ {0, 1}∗,
value(xy) = value(x)2|y| + value(y), where value(λ) = 0 and value(0z) = value(z)
for any binary word z (z ∈ {0, 1}).

For p > 2, the set Zp = {0, 1, . . . , p− 1} is the set of remainders modulo p. Recall
that (Zp,+, ·, 0, 1) is a ring, and that when p is prime Zp becomes a field (any non-zero
element has an inverse with respect to multiplication).

3. Avoiding Mergibility in Large NFAs

Our purpose is to construct an infinite family of equivalent NFAs (hence containing
arbitrary large NFAs) such that each automaton in the family has no mergible states,
in the sense of Definition 1. For this purpose, we first prove the following number-
theoretic lemma.

Lemma 1 For any prime p > 2, the following property holds:

for all 0 ≤ r, r′, i, j < p with r 6= r′, there exists x ∈ N such that

1. r · 2|x(2)| + x ≡ i(mod p) and
2. r′ · 2|x(2)| + x 6≡ j(mod p).

Proof. Let p be a prime number with p > 2. Let i, j, r, r′ be arbitrary numbers such
that 0 ≤ i, j, r, r′ < p and r 6= r′. We need to find x ∈ N satisfying conditions 1 and
2. Take t = |p(2)| + 1. Because p > 2, one can easily check that #{x ∈ N | |x(2)| =
t + 1} = 2t > 2p. Therefore, for every m > t, one can find at least p consecutive
numbers (xi)0≤i<p (xi + 1 = xi+1) of length m with xi ≡ i(mod p). We take
x = x(p−r2m+i)(mod p) (a parametrized choice, with parameter m), so x ≡ p−r2m+i(
mod p), i.e., r · 2|x(2)| + x ≡ i(mod p).

Assume that r′ · 2|x(2)| + x ≡ j(mod p). Then r′2m + p − r2m + i ≡ j(mod p),
equivalent to 2m(r′−r) ≡ (j−i)(mod p). Since p is prime, Zp is a field, and because
r 6= r′, r′ − r 6= 0, it has an inverse in Zp. Hence, 2m ≡ (j − i)(r′ − r)−1(mod p).

Since m > t is the length of the chosen x and g.c.d.(2, p) = 1, we have {2m(
mod p) | m > t} = Zp \ {0}. This proves that the congruence 2m ≡ (j − i)(r′ − r)−1(
mod p) cannot be satisfied for all m > t, since the right hand side is a fixed value,
whereas the left hand side traverses Zp\{0}. In particular, if we choose an m such that
the congruence does not hold, the corresponding x, of length m, satisfies conditions
1 and 2. 2

A Family of NFAs Free of State Reductions 5

Remark 1

1. One can observe that the above lemma holds for all values 0 ≤ i, j < p, including
the case i = j.

2. If r = r′, but i 6= j, the existence of an x satisfying both conditions 1 and 2 of
Lemma 1 is obvious.

3. The value of m can be as small as t + 1.

Anticipating our construction, we aim at building a “three-dimensional” automa-
ton, consisting of a cubic net of states and transitions. The position of its final states
will be given by a structure supported by the following property:

Lemma 2 For an arbitrary p ≥ 1, we can construct p square matrices (Ak)0≤k<p of
size p× p with component values in {0, 1} such that:

1. for arbitrary i, j, 0 ≤ i, j < p, if Ak[i, j] = 1 for some k, 0 ≤ k < p, then
Al[i, j] = 0 for all l 6= k, Ak[q, j] = 0 for all q 6= i, and Ak[i, t] = 0 for all t 6= j;

2. for every i, j, with 0 ≤ i, j < p, there exists an index k, 0 ≤ k < p, such that
Ak[i, j] = 1.

Consequently, the total number of matrix components having value 1 is p2.

Proof. For p = 1, the lemma holds trivially (A0[0, 0] = 1). We now consider the
cases when p ≥ 2. Clearly, there are p permutations t0, t1, . . . , tp−1, of the numbers
0, 1, . . . , p − 1 such that the numbers at each position of the p permutations also
form a permutation of the p numbers 0, 1, . . . , p − 1. That is, for each i, 0 ≤ i <
p, (t0,i, t1,i, . . . , tp−1,i) is also a permutation. For example, let p = 3. We have
three permutations of the three numbers 0, 1, 2: (0, 1, 2), (2, 0, 1), (1, 2, 0), where the
numbers at each position of the three permutations also form a permutation, (0, 2, 1)
at position 1, (1, 0, 2) at position 2, and (2, 1, 0) at position 3. For an arbitrary p, such
p permutations can be obtained simply by first choosing an arbitrary permutation,
then circularly shifting it for p− 1 times to the right.

We associate each of such p permutations to one of the p square matrices as follows.
Let the permutation be (k0, k1, . . . , kp−1) and the matrix A[i, j], i, j = 0, . . . , p − 1.
Then we assign A[0, k0] = 1, A[1, k1] = 1, . . ., A[p-1, kp−1] = 1, and all other entries
to 0.

We claim that the p square matrices, Ai, 0 ≤ i < p, satisfy the two conditions
in the lemma. Since for each position i of the permutations, (t0,i, t1,i, . . . , tp−1,i) is
also a permutation, if Ak[i, j] = 1, clearly Al[i, j] 6= 1 for all l 6= k. It is also clear
that Ak[i, t] 6= 1 and Ak[q, j] 6= 1 for all t 6= j and q 6= i, because of the way we
link the permutation to the matrix. Also, because the values at each position of the
permutations is also a permutation of all the p numbers, for each row i and each
column j, there is a k such that Ak[i, j] = 1. 2

Let p be a prime number and take the matrices (Ak)0≤k<p, as described in Lemma 2.
To each matrix Ak we associate the following DFA: Dk = (Qk, Σ∪Σ′, δk, s, Fk), given
by

6 C. Câmpeanu, N. Santean, S. Yu

• Qk = {< k, r, i >| r, i ∈ Zp} ∪ {s}, Fk = {< k, r, i >| Ak[r, i] = 1},
• for all 0 ≤ r, i < p, δk is given by the following formulae:

δk(< k, r, i >, a) =< k, value(r(2)a)(mod p), i >, for all a ∈ {0, 1},
δk(< k, r, i >, a) =< k, r, value(i(2)a)(mod p) >, for all a ∈ {0′, 1′},

• δ(s, 1) =< k, 1, 0 > and δ(s, 1′) =< k, 0, 1 >.

Since the only final states of Dk are those given by the characteristic array Ak, we
have that

L(Dk) = {x ∈ {1, 1′}{0, 1, 0′, 1′}∗ | value(h(x)) ≡ r(mod p),

value(h′(x)) ≡ i(mod p), and Ak[r, i] = 1}.
We recall that h is the projection onto Σ and h′ is the projection onto Σ′. An example
of automaton Dk for p = 5 and A = I (the unit matrix) is depicted in Figure 1. Notice
that these automata are minimal, for k 6= l the states of Dk and Dl are disjoint, and
Dk and Dl accept disjoint languages.

Our purpose is to construct an automaton based on Dk as subautomata (build-

ing blocks). Consider the automaton Np =
(p−1⋃

k=0

Qk, Σ ∪ Σ′, δ, s,
p−1⋃

k=0

Fk

)
, where the

transition relation δ is the union of all transition functions δk. Certainly, Np is non-
deterministic. It follows that

δ(s, w) =
{

< k, value(h(w))(mod p), value(h′(w))(mod p) >| 0 ≤ k < p
}

,

for all w ∈ {1, 1′}{0, 1, 0′, 1′}∗. One can easily check that

L(Np) = {1, 1′}{0, 1, 0′, 1′}∗ =
p−1⋃

k=0

L(Dk) .

Theorem 3 For any prime p > 2, the automaton Np has no mergible states.

Proof. Assume by contradiction that Np contains two mergible states q and q′, with
q ¹ q′ (q is the state that is merged into q′, i.e., it disappears after merger). Denote by
N ′

p, the new automaton obtained from Np by merging q into q′, and let L′ = L(N ′
p).

We distinguish the following cases:

1. q = s, q′ =< k, r′, j >, 0 ≤ k, r′, j < p;

2. q′ = s, q =< k, r, i > , 0 ≤ k, r, i < p;

3. q =< k, r, i >, q′ =< k, r′, j >, 0 ≤ k, r, i, j < p and i 6= j or r 6= r′;

4. q =< k, r, i >, q′ =< l, r′, j >, 0 ≤ r, r′, i, j, k, l < p and k 6= l.

A Family of NFAs Free of State Reductions 7

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

k, 0, 0 k, 1, 0 k, 2, 0 k, 3, 0 k, 4, 0

k, 0, 1 k, 1, 1 k, 2, 1 k, 3, 1 k, 4, 1

k, 0, 2 k, 1, 2 k, 2, 2 k, 3, 2 k, 4, 2

k, 0, 3 k, 1, 3 k, 2, 3 k, 3, 3 k, 4, 3

k, 0, 4 k, 1, 4 k, 2, 4 k, 3, 4 k, 4, 4

�
-0
-1 -0

1

1 0

� 1 � 0

0

� �
?

� �
?

� �6� �6

�	� 1

�
-0
-1 -0

1

1 0

� 1 � 0

0

� �
?

� �
?

� �6� �6

�	� 1

�
-0
-1 -0

1

1 0

� 1 � 0

0

� �
?

� �
?

� �6� �6

�	� 1

�
-0
-1 -0

1

1 0

� 1 � 0

0

� �
?

� �
?

� �6� �6

�	� 1

�
-0
-1 -0

1

1 0

� 1 � 0

0

� �
?

� �
?

� �6� �6

�	� 1

 	6

0
′

6

1
′

6

0
′

1
′

1
′

0
′

?

1
′

?

0
′

0
′

�

��

�

�

�

�

�
-

�

�

-

� �
?

1
′

 	6

0
′

6

1
′

6

0
′

1
′

1
′

0
′

?

1
′

?

0
′

0
′

�

��

�

�

�

�

�
-

�

�

-

� �
?

1
′

 	6

0
′

6

1
′

6

0
′

1
′

1
′

0
′

?

1
′

?

0
′

0
′

�

��

�

�

�

�

�
-

�

�

-

� �
?

1
′

 	6

0
′

6

1
′

6

0
′

1
′

1
′

0
′

?

1
′

?

0
′

0
′

�

��

�

�

�

�

�
-

�

�

-

� �
?

1
′

 	6

0
′

6

1
′

6

0
′

1
′

1
′

0
′

?

1
′

?

0
′

0
′

�

��

�

�

�

�

�
-

�

�

-

� �
?

1
′

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

'
&

$
%

�
�

�
�s

�
�
�
�
�
�
�
�
��

1
′

�
���

���������

1

�
���

Figure 1: Example of automaton Dk for p = 5 and Ak =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




8 C. Câmpeanu, N. Santean, S. Yu

1

1

1′

1′

1

1

1

1′

1′

1′

D4

D1

D2

D3

D0

Figure 2: The NFA Np, for p = 5

Case q = s, q′ =< k, r′, j >, 0 ≤ k, r′, j < p.

In this case, state s and its output transitions disappear, and state < k, r′, j >
becomes the start state. Then, the states in Qk are the only ones that are reachable
and, even more, the new automaton will accept words starting with 0. Clearly, in this
case N ′

p and Np are not equivalent.

Case q′ = s, q =< k, r, i > , 0 ≤ k, r, i < p.

By the definition of Ak, there exists an index u ∈ {0, ..., p−1} such that Ak[u, i] = 1.
Then, we first prove that there exists a word 0x ∈ Σ∗ such that δk(< k, r, i >, 0x) =<
k, u, i >. Indeed, if t = |p(2)|+ 1, there exist at least p consecutive words of length t.
Then x may be any word of length t such that h(0x) ≡ u(mod p).

Let y = r(2)(i(2))′ if r 6= 0, and y = p(2)(i(2))′ otherwise; we recall that the operator
()′ changes all 0’s into 0′’s and all 1’s into 1′’s. By definition, y starts with 1. We
have that δ(s, y0x) ∩ Qk = δ(< k, r, i >, 0x) =< k, u, i >, which is a final state.
Consequently, y0x is accepted by Np.

Our aim is to show that N ′
p does not recognize y0x, proving that Np and N ′

p are not
equivalent. Indeed, notice that after the merging of < k, r, i > into s, the transition
from < k, r, i > labeled with 0 is lost, and s has no output transitions labeled with 0

A Family of NFAs Free of State Reductions 9

(δ′(s, 0) = ∅), i.e., δ′(s, y0x) = {< l, u, i >| l 6= k}. Since Al[u, i] = 0, for all l 6= k,
it follows y0x /∈ L′, hence Np and N ′

p are not equivalent.

Case q =< k, r, i >, q′ =< k, r′, j >, 0 ≤ k, r, i, j < p and i 6= j or r 6= r′.

Without any loss of generality, we assume that i 6= j (the other case, when r 6= r′,
is proved symmetrically).

Let u be such that Ak[u, i] = 1 and v such that Ak[v, j] = 1. Using the definition
of Ak, u 6= v. We apply Lemma 1 (and Remark 1.1 if r = r′), for r, r′, u, v and we
find an x ∈ N such that 2|x(2)|r + x ≡ u(mod p) and 2|x(2)|r′ + x 6≡ v(mod p).

Let y = r(2)(i(2))′ if r 6= 0, and y = p(2)(i(2))′ otherwise. We have that δ(s, yx(2))∩
Qk = δk(< k, r, i >, x(2)) =< k, u, i > which is final in Np. Therefore, yx(2) is
accepted by Np. Since x(2) ∈ {0, 1}∗, we have that δk(< k, r′, j >, x(2)) =< k, z, j >
for some z ∈ {0, 1, . . . , p−1}. After the state merge, this situation remains unchanged:
δ′(< k, r′, j >, x(2)) =< k, z, j >.

Now, δ′(s, yx(2)) = {< l, u, i >| l 6= k} ∪ {< k, z, j >}. Using the fact that
2|x(2)|r′+x 6≡ v(mod p), it follows that δ′(s, yx(2))∩F ′ = ∅ (Al[u, i] = 0 for all l 6= k
and Ak[z, j] = 0 since z 6= v).

Case q =< k, r, i >, q′ =< l, r′, j >, 0 ≤ r, r′, i, j, k, l < p and k 6= l.

The situations when r 6= r′ or i 6= j are proved exactly as in Case 3. Assume that
r = r′ and i = j, therefore we merge < k, r, i > into < l, r, i >.

Let u be such that Ak[u, i] = 1 and v such that Al[v, i] = 1. Using the definition
of (Ak)0≤k<p, we have u 6= v.

By Remark 1.2, we know that there exists x ∈ N such that 2|x(2)|r+x ≡ u(mod p)
and 2|x(2)|r+x 6≡ v(mod p). Let y = r(2)(i(2))′ if r 6= 0, and y = p(2)(i(2))′ otherwise.

We have that δ(s, yx(2)) ∩ Qk = δ(< k, r, i >, x) =< k, u, i >. But < k, u, i > is
final because Ak[u, i] = 1, therefore yx(2) is accepted by Np.

Since x(2) ∈ {0, 1}∗, we have that δ(< l, r, i >, x) =< l, z, i > for some z ∈
Zp. After the state merge, we will still have δ′(< l, r, i >, x) =< l, z, i >. Since
2|x(2)|r + x 6≡ v(mod p), it follows that z 6= v.

We have that δ′(s, yx(2)) = {< m, r, i >| m 6= k} ∪ {l, z, i}. Using Am[r, i] = 0 for
all m 6= k and Al[z, i] = 0 (since z 6= v), it follows that δ′(s, yx(2)) contains no states.
Hence, yx(2) is not accepted by N ′

p.

In the previous cases we did not make explicit reference to the situation when one
of the states involved in merging is final. It can be easily seen that the proof holds
for these cases, as well. This concludes the proof.

2

4. Conclusion

In this paper we have completed a study on the mergibility of states in NFAs, started
in [1]. We have distinguished two main ways of merging states: (1) a weak method,
where two states are merged by simply collapsing one into the other and consolidate

10 C. Câmpeanu, N. Santean, S. Yu

all their input and output transitions, and (2) a strong method, where one state is
merged into another one by redirecting its input transitions toward the other state
and completely deleting it and all its output transitions. In [1] we have proven the
following result:

(the weak mergibility) Let L be an arbitrary regular language and k ≥ 2 be an
arbitrary integer. It does exist (effectively) a constant EL,k such that any ε-NFA of
size at least EL,k has at least k weakly mergible states.

In the present paper we have supplemented the weak mergibility result with the
following:

(the strong mergibility) There exist regular languages for which one may have
an infinite number of NFAs (consequently, of arbitrary large size) having no pairs of
strongly mergible states.

Specifically, we have given a construction of equivalent automata {Np}p:prime, where
no pair of states are mergible. Left for future work is to define the notion of groups of
weak mergible states and to study the above properties for groups of a parameterized
size. Notice carefully that the non-existence of pairs of mergible states in an NFA
does not imply the non-existence of groups of mergible states with more than two
states, in general. For example, if in the example given in Figure 2 we keep the initial
state and merge all the other 125 states, into one of the final states, we obtain an
equivalent NFA.

References

[1] C. Câmpeanu, N. Sântean, and S. Yu, Mergible States in Large NFA. The-
oretical Computer Science, 330 (1) (2005) 23–34.

[2] J.-M. Champarnaud and F. Coulon. NFA reduction algorithms by means of
regular inequalities. Theoretical Computer Science, 327 (2004) 241-253.

[3] F. J. Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7 (3) (1964) 171-176.

[4] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison Wesley, Reading Mass, 1979.

[5] L. Ilie and S. Yu, Algorithm for computing small NFAs. Lecture Notes in
Computer Science, 2420 Springer-Verlag, 2002, 328-340.

[6] L. Ilie and S. Yu, Reducing NFA by invariant equivalences. Theoretical Com-
puter Science, 306 (1-3) (2003) 373–390.

[7] Mehryar Mohri, Finite-state transducers in language and speech processing,
Computational Linguistics, 23 (2) June (1997) 269-311.

[8] S. Yu, Regular Languages. In: A. Salomaa and G. Rozenberg (ed.), Hand-
book of Formal Languages, Springer Verlag, 1997, 41–110.

