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ABSTRACT

Merging states in finite automata is a main method of reducing the size of the representation of
regular languages. The process has been extensively studied for deterministic finite automata (DFA),
where the conditions for merging states can be efficiently computed. The matter is more complex
in the case of nondeterministic finite automata (NFA), where merging states can be done in different
ways, and the cost of detecting mergible states is high. In a recent paper the authors have studied
one type of state mergibility and proven that one cannot have an arbitrarily large (in terms of number
of states) NFA for a given language such that no states can be merged. In this paper, we study a
different type of state mergibility for NFA, which is similar to the state mergibility in a DFA. We
prove that there are situations where state merging is impossible for arbitrary large equivalent NFA.

Keywords: Nondeterministic Finite Automata, States, Minimization
1. Introduction
Succinct representations of regular languages have always been a popular topic in formal lan-

guages theory. Besides its theoretical importance, small representations of regular languages
have also strong practical motivations, e.g., lexicons and spelling checkers. A natural process
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of reducing the size of a finite automaton is by merging states without changing the accept-
ing power of the automaton. This can be efficiently done in a deterministic finite automaton
(DFA). Not as easy is the case of nondeterministic finite automata (NFA), where one can
have non-minimal machines which have no mergible states and where the notion of merging
states is not a clear cut. Merging states that have various relations has been studied for the
simplification of NFA in quite a number of papers, e.g., [4, 5, 2]. Despite the difficulties con-
cerning merging states in NFA, in [1] we proved that one cannot “grow” an NFA indefinitely
and still avoid mergible states. However, our work was partial, in the sense that it treated only
one way of merging states: collapsing one state into another and consolidating all input and
output transitions. By this type of merging, one should only make sure that no extra words
are added to the language. It is important to notice that the relation among states given by
this type of merging is symmetrical, i.e., if we can memiato g, we can merge into p as
well. This property allow us to extend the notion to groups of mergible states.

Here we continue that endeavor by studying a different type of state merging. According
to this second method, in an NFA a stagean be merged into a statgif by redirecting
all input transitions ofp to g and eliminatingp together with all its output transitions, the
accepted language does not change. Considering that the initial state has a “free-starting”
input transition and all final states have a “free-ending” output transition, the case when such
states are involved in a merging is self-explained. It is worth mentioning that according to
this asymmetric definition, it is somehow difficult to define the notion of groups of mergible
states.

In this paper we are trying to solve the same problem as in [1], however, the second method
of merging is involved this time. We state the main problem of the paper in the following:

Problem. Does there exist a regular langudgsuch that there is an infinite number of
distinct NFA forL that have no mergible states? Provide a constructive proof if the answer is
positive.

We have found that, surprisingly, the situation turns quite the opposite to what we found
in [1]. In the next section, we present basic concepts used in this paper. In Section 3, we
give a positive answer to the above question and construct an NFA, with no mergible states,
accepting the simple language represente(ilby1')(0+ 1+ 0 + 1')*, while the size of the
NFA is p®+ 1 with p being an arbitrary large prime number.

2. Basic Notions and Notations

We assume the reader to be familiar with basic notions of formal language theory, particularly
with finite automata concepts. Here we briefly recall some definitions and introduce basic
notations used in this paper. For further details concerning notions and notations, the reader
is referred to [3, 6].

For a sefl, #T is the number of elements @f. The set of words over a finite alphal¥et
is denoted by*, and the empty word i. The length of a worav € * is denoted byw|. A
deterministic finite automaton (DFA) is a quintugle= (Q, X, d,do, F), whereQ is the finite
and non-empty set of states ahds the finite and non-empty input alphabag.c Q, F C Q,
andd : Q x ~ — Qs the transition function. We can exteddrom Q x > to Q x Z* by:

5(s,A) =s, and &(s,wa) = 5(5(s,w),a),
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wherea € ¥ andw € Z*. We usually denoté just by & for simplicity. The language recog-
nized by the automatofis L(A) = {w € Z* | 6(qo,w) € F }. Two automata are equivalent if
they recognize the same language.

A nondeterministic finite automaton (NFA) is a quintugle= (Q,Z,d,qo,F), whereQ,
0o € Q andF are the same as f@FA, andd : Q x X — 2% is a transition function. We can
extendd from Q x X to 29 x =* by:

5(SA)=Sandd(Swa)= |J d(sa),

sed(Sw)

Yet again, we denoté by & for simplicity. The language recognized by the automaids
L(A) = {we =* | 5(do,W) NF # 0}.

Definition 1 Inan NFAA= (Q,Z, , 0o, F) we say thap is mergible tog (p < q), for p,q €
Q, if the automatorN' = (Q— {p},Z, 8,0y, F — {p}) is equivalent toA, where:

1. g5 = qo if p# o, anday = qif p=qp,

) ] a(sa) ifpg o(sa)
Zoksa { (8(s,a)—{p})u{a} ifped(sa)

For two languagek, L, C 2*, we denote

Lilo ={w|w=xy,x€ L1,y € Lp}.

If L1 orL> is a singleton language, we can write the word instead of the languageyiexg.,
instead offw}L,.

Two particular alphabets are used in the papger- {0,1} and¥’ = {0/,1'}. By h we
denote the projection @UZ' ontoZ, i.e.,h(0) = 0,h(1) = 1,h(0') = h(1') = A. Similarly,
we define the projectioh’ of ZUZ’ ontoZ’. For a wordu € £* we denote byu)’ the word
obtained by applying the isomorphigi®)’ = 0, (1)’ = 1’ tow. Similarly, if ve ™, then(v)”
is the word obtained by applying the inverse isomorph{§iit’ = 0, (1')" = 1.

For a strings € 1{0, 1}*, valugs) denotes the integer value ®€onsidered as a number in
base 2. Fon € N, ny) is the binary representation of the numbgwithout leading zeroes).
We extend the definition to include the special casealug0) = 0 andQ ) = 0.

For allse 1{0,1}* andn € N we have the following relations:

1. valugng)) = n,
2. (valug(s))p) =s.

Forx,y € N, valug(x2)y(2)) = x2¥2| +y. Also, if x € 1{0,1}* andy € {0,1}*, valug(xy) =
valugx)2 4 valugy), wherevalug A ) = 0 andvalug0z) = valug(z) for any binary wordz
(ze {0,1}).

For p > 2, the setZ, = {0,1,...,p— 1} is the set of remainders modufp Recall that
(Zp,+,-,0,1) is aring, and that whep is primeZp becomes a field (any non-zero element
has an inverse with respect to multiplication).
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3. Avoiding Mergibility in Large NFA

Our purpose is to construct an infinite family of equivalent NFA (hence containing arbitrary
large NFA) such that each automaton in the family has no mergible states, in the sense of
Definition 1. For this purpose, we first prove the following number-theoretic lemma.

Lemma 1 For any primep > 5 the following property holds:

forall 0<rr’)i,j < pwithr #r’, there exitx € N such that

1. r-2%2l +x=i( modp) and
2 r/.2‘X<2)‘—|—X$éj( modp).

Proof. Let p be a prime number witp > 5. Leti, j,r,r’ be arbitrary numbers such thag
i,j,r,r" < pandr#r’. We need to fina € N satisfying conditions 1 and 2. Take- [p(»)|+1.
Becausep > 5, one can easily check théfx € N | [x)| =t} = 2 > 2p. Therefore, for every
m>t, one can find at leagt consecutive numbers; )o<i<p (X + 1 = X;+1) of lengthm with
X =i( modp). We takex = X(p_romiy( modp) (@ parameterized choice, with parametgy
sox=p—r2"+i( modp),i.e.r 2%l x=i( modp).

Assume that’ - 2%@| 4 x= j( modp). Thenr’2™+ p—r2™+i = j( modp), equivalent
to2™(r'—r) = (j—i)( modp). Sincepis prime,Z; is a field, and because# ', r’ —r # 0,
it has an inverse ift,. Hence2™= (j —i)(r' —r)~1( modp).

Sincem >t is the length of the chosenandg.c.d.(2, p) = 1, we have{2™( modp) |
m>t} = Zp\ {0}. This proves that the congruen28 = (j —i)(r' —r)~1( modp) can not
be satisfied for alin >t since the right hand side is a fixed value, whereas the left hand side
traverse<Z, \ {0}. In particular, if we choose am such that the congruence does not hold,
the corresponding, of lengthm, satisfies conditions 1 and 2. o

Remark1 1. One can observe that the above lemma holds for all values, j < p,
including the case= j.
2. If r =1/, buti # j, the existence of arsatisfying the conditions 1 and 2 of Lemma 1
is obvious.

3. The value oincan be as small ast- 1, since2™ has two different values faon=t and
m=t+ 1. In this case we can chooseawith [ | <t+1<p-1

Anticipating our construction, we aim at building a “three-dimensional” automaton, con-
sisting of a cubic net of states and transitions. The position of its final states will be given by
a structure supported by the following property:

Lemma 2 For an arbitrary p > 1, we can construcp square matricegAy)o<k<p Of size
p x p with component values {0, 1} such that:
1. for arbitrary i, j, 0<i, j < p, if A([i, j] = 1 for somek, 0 < k < p, thenA[i, j] = O for
all I £k, Aq, j] =0for all q+#i, andAyfi,t] = 0for all t # j;
2. for every i, j, with0 <, j < p, there exists an indeg 0 < k < p, such that[i, j] = 1.
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Consequently, the total number of matrix components having dakip®.

Proof. For p= 1, the lemma holds trivially4o[0,0] = 1). We now consider the cases when

p > 2. Clearly, there argp permutationdp,ts,...,ty_1, of the number®,1,...,p—1 such

that the numbers at each position of thg@ermutations also form a permutation of the
numbers0,1,...,p—1. That is, for each, 0 <i < p, (to;,t1,...,tp—1i) iS also a per-
mutation. For example, lgh = 3. We have 3 permutations of the three numb@rk 2:
(0,1,2),(2,0,1),(1,2,0), where the numbers at each position of the three permutations also
form a permutation(0,2,1) at position 1,(1,0,2) at position 2, and2,1,0) at position 3.

For an arbitraryp, suchp permutations can be obtained simply by first choosing an arbitrary
permutation, and then circularly shifting it for— 1 times to the right.

We associate each of suplpermutations to one of the square matrices as follows. Let
the permutation béko,k1,...,kp—1) and the matridAfi, j],i,j =0,...,p—1. Then we assign
Al0,ko] =1, AL ki] =1, ..., Alp-1,kp_1] = 1, and all other entrie8.

We claim that thep square matricesy;, 0 <i < p, satisfy the two conditions in the lemma.
Since for each position of the permutationsto;,ty,...,tp—1;) iS also a permutation, if
Adi, j] =1, clearlyA[i, j] # 1for all | #k. Itis also clear thak[i,t] # 1 andA[q, j] # 1 for
allt = j andq # i, because of the way we link the permutation to the matrix. Also, because
the values at each position of the permutations is also a permutation of alhtivabers, for
each rowi and each columij, there is & such thatA[i, j] = 1. |

Let p be a prime number and take the matri¢8g)o<kp, as described in Lemma 2. To
each matrixA, we associate the following DF®y = (Qx,ZUZY’, &, s, F), given by

o Qu={<kri>|riezZy}u{s} Re={<kri>|Alri] =1},
e forallO<r,i<p, &isgiven by the following formulae:
&(< ki > a) =<k, valugra)( modp),i >, forallac {0,1},
&(<k,r,i>,a) =<krvalugiza)( modp) >, forallac {0,1'},
e 0(s,1) =<k,1,0>andd(s,1) =< k,0,1>.
Since the only final states @f, are those given by the characteristic arfaywe have that
L(Dy) = {x € {1,1'}{0,1,0/,1'}" | valugh(x)) = r( modp) ,
valugh'(x)) =i( modp), andAg[r,i] = 1}.
We recall thath is the projection ont@ andh’ is the projection ont@’. An example of
automatorDy for p =5 andA =1 (the unit matrix) is depicted in Figure 1. Notice that these
automata are minimal, fdt # | the states oDy andD, are disjoint, and and D, accept
disjoint languages.
Our purpose is to construct an automaton basebpas subautomata (building blocks).

p-1 p-1
Consider the automatdd, = ( U Q. >UY.9d,s, U Fk) , Where the transition relatiodi is
k=0 k=0

the union of all transition function&. Certainly,N;is nondeterministic. It follows that

3(s.w) = { < k,valugh(w))( modp),valugh'(w))( modp) >|0<k < p},
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Figure 1: Example of automatddy for p
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forallwe {1,1'}{0,1,0/,1'}*. One can easily check that

p—1
L(Np) = {1,1'}{0,1,0,2'}* = | J L(Dx) .

k=0

Figure 2: The NFANp, forp=5

Theorem 3 For any primep > 5, the automatom,, has no mergible states.

Proof. Assume by contradiction that, contains two mergible statesandq’, with q < ¢

(g is the state that is merged intfi i.e., it disappears after the merging). Denotd\lgythe
new automaton obtained froh, by mergingq into ¢/, and letl’ = L(N}). We distinguish
the following cases:

1.g=s d=<kr,j> 0<kr j<p;

2.d=s, g=<kri> ,0<kri<p;

3. q=<kri>, =<kt j> 0<kri,j<pandi#jorr#r’;

4. g=<kri>, d=<I,r',j> 0<rr'ijkl<pandk#I.
Casegq=s, ¢ =<kr',j> 0<kr j<p.
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In this case state and its output transitions disappear, and stater’, j > becomes the
start state. Then, the states@p are the only ones that are reachable and, even more, the
new automaton will accept words starting with Clearly, in this caseN{D andNp are not
equivalent.

Case g =s, q=<k,ri> ,0<kri<np.

By the definition of{ A}k, there exists an index € {0, ..., p— 1} such thatA[u,i] = 1.
Then, we first prove that there exists a wsde Z* such thad(< Kk, r,i >,0x) =< k,u,i >.
Indeed, ift = |p(y)| + 1, there exist at leagt consecutive words of length Thenx may be
any word of length such thah(0x) = u( modp).

Lety=r(y(iz) if r #0andy = p)(iz) otherwise; we recall that the operatgf
changes a0 into 0’ and alll into 1. By definition,y starts with al. We have thad(s,yOx) N
Qk = d(< k,r,i >,0x) =< k,u,i >, which is a final state. Consequenty{x is accepted by
Np.

pOur aim is to show thaNé) does not recognizgOx, proving thatN, and Né, are not
equivalent. Indeed, notice that after the merging<ok,r,i > into s, the transition from
< k,r,i > labeled withO is lost, ands has no output transitions labeléd &'(s,0) =0), i.e.,
0'(s,y0x) = {< I,u,i >| | #k}. SinceA[u,i] =0, for all | #k, it follows yOx ¢ L', henceN,
andNj, are not equivalent.

Case q=<k,ri>, d=<kr', j> 0<kri j<pandi#jorr#£r.

Without loss of generality, we assume that j (the other case, when# r’, is proved
symmetrically).

Letu be such tha#[u,i] = 1 andv such that\ [, j] = 1. Using the definition ofy, u # v.
We apply Lemma 1 (and Remark 1.1rif=r’), for r,r’,u,v and we find arx € N such that
2@l 4 x=u( modp) and2™@!r’ +x = v( modp).

Lety=rp) (i) if r #0, andy = p(y(i(z))’ otherwise. We have tha(s,yx»)) N Qk =
&(< Kk 1i>,X2)) =<k u,i > which is final inNp. Thereforeyx, is accepted bil,. Since
X2y € {0,1}*, we have thaty(< k,1', ] >,X2)) =<K,z j > for somezc {0,1,...,p—1}.
After the state merge, this situation remains unchan@&a k,r’, j >,X)) =<K,z j >.

Now, &'(s,yX2)) = {< I, u,i >[I #k} U{< K,z j >}. Using the fact tha2X@ v/ 4 x = v(
modp), it follows thatd'(s,yxz) NF’ = 0 (A[u,i] = 0 for all | # k andA¢[z, j] = O since
Z# V).

Case q=<k,ri>, d=<I,r',j>, 0<rr. i jkl<pandk##I.

The situations when#r’ ori # j are proved exactly as in Case 3. Assume that’ and
i = j, therefore we merge k,r,i > into <I,r,i >.

Let u be such thaf[u,i] = 1 andv such thatA [v,i] = 1. Using the definition of Ay},
we haveu # v.

By Remark 1.2, we know that there exists N such tha*@r 4 x = u( modp) and
2Pl 4 x V( modp). Lety=ry(iz) if r # 0, andy = p(z(i(z))" otherwise.

We have thad(s,yX)) NQk = d(< k,r,i >,X) =<k, u,i >. But<k,u,i > is final because
Alu,i] = 1, thereforeyx,) is accepted byNp.
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Sincex(y) € {0,1}, we have thad(< I,r,i >,x) =<1,zi > for somez € Zy. After the
state merge, we will still havd’(< I,r,i >,x) =<1,zi >. Since2™@/r + x £ v( modp), it
follows thatz # v.

We have thad'(s,yXz)) = {<mr,i > m# k} U{l,zi}. UsingAn[r,i] = 0 for all m# k
andA[zi] = 0 (sincez # v), it follows &'(s,yxz)) contains no states. Henggxy) is not
accepted by;,.

In the previous cases we did not make explicit reference to the situation when one of the
states involved in merging is final. It can be easily seen that the proof holds for these cases,
as well. This concludes the proof.

a

4. Conclusion

In this paper we have completed a study on the mergibility of states in NFA, started in [1].
We have distinguished two main ways of merging states: (Wpak method, where two
states are merged by simply collapsing one into the other and consolidate all their input and
output transitions, and (2)stirong method, where one state is merged into another one by
redirecting its input transitions toward the other state and completely deleting it and all its
output transitions. In [1] we have proven the following result:

(the weak mergibility) LetL be an arbitrary regular language dnd 2 an arbitrary
integer. It does exist (effectively) a constdty such that ang-NFAof size at leasE_ x has
at leask weakly mergible states.

In the present paper we have supplemented the above result with the following:

(the strong mergibility) There exist regular languagegor which one may have
an infinite number of NFA (consequently, of arbitrary large size) having no pairs of strongly
mergible states.

Specifically, we have given a construction of equivalent autorfisig p: prim Where no pair

of states are mergible. Left for future work is to define the notion of groups of weak mergible
states and to study the above properties for groups of a parameterized size. Notice carefully
that the non-existence of pairs of mergible states in an NFA does not imply the non-existence
of groups of mergible states with more than two states, in general.
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