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Abstract. Given a language L and a nondeterministic finite automaton
M , we consider whether we can determine efficiently (in the size of M) if
M accepts at least one word in L, or infinitely many words. Given that M
accepts at least one word in L, we consider how long the shortest word can
be. The languages L that we examine include the palindromes, the non-
palindromes, the k-powers, the non-k-powers, the powers, the non-powers
(also called primitive words), and words matching a general pattern.

1 Introduction

Let L ⊆ Σ∗ be a fixed language, and let M be a deterministic finite automaton
(DFA) or nondeterministic finite automaton (NFA) with input alphabet Σ. In
this paper we are interested in three questions:

1. Whether we can efficiently decide (in terms of the size of M) if L(M) contains
at least one element of L, that is, if L(M) ∩ L �= ∅;

2. Whether we can efficiently decide if L(M) contains infinitely many elements
of L, that is, if L(M) ∩ L is infinite;

3. Given that L(M) contains at least one element of L, what is a good upper
bound on the shortest element of L(M) ∩ L?

As an example, consider the case where Σ = {a}, L is the set of primes written
in unary, that is, {ai : i is prime }, and M is a NFA with n states.

To answer questions (1) and (2), we first rewrite M in Chrobak normal form
[5]. Chrobak normal form consists of an NFA M ′ with a “tail” of O(n2) states,
followed by a single nondeterministic choice to a set of disjoint cycles containing
at most n states. Computing this normal form can be achieved in O(n5) steps
by a result of Martinez [17].

Now we examine each of the cycles produced by this transformation. Each
cycle accepts a finite union of sets of the form (at)∗ac, where t is the size of
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the cycle and c ≤ n2 + n; both t and c are given explicitly from M ′. Now,
by Dirichlet’s theorem on primes in arithmetic progressions, gcd(t, c) = 1 for
at least one pair (t, c) induced by M ′ if and only if M accepts infinitely many
elements of L. This can be checked in O(n2) steps, and so we get a solution to
question (2) in polynomial time.

Question (1) requires a little more work. From our answer to question (2),
we may assume that gcd(t, c) > 1 for all pairs (t, c), for otherwise M accepts
infinitely many elements of L and hence at least one element. Each element in
such a set is of length kt + c for some k ≥ 0. Let d = gcd(t, c) ≥ 2. Then
kt+c = (kt/d+c/d)d. If k > 1, this quantity is at least 2d and hence composite.
Thus it suffices to check the primality of c and t + c, both of which are at
most n2 + 2n. We can precompute the primes < n2 + 2n in linear time using
a modification of the sieve of Eratosthenes [18], and check if any of them are
accepted. This gives a solution to question (1) in polynomial time.

On the other hand, answering question (3) essentially amounts to estimating
the size of the least prime in an arithmetic progression, an extremely difficult
question that is still not fully resolved [9], although it is known that there is a
polynomial upper bound.

Thus we see that asking these questions, even for relatively simple languages
L, can quickly take us to the limits of what is known in formal languages and
number theory.

In this paper we examine questions (1)-(3) in the case where M is an NFA
and L is either the set of palindromes, the set of k-powers, the set of powers, the
set of words matching a general pattern, or their complements.

In some of these cases, there is previous work. For example, Ito et al. [12]
studied several circumstances in which primitive words (non-powers) may appear
in regular languages. As a typical result in [12], we mention: “A DFA over an
alphabet of 2 or more letters accepts a primitive word iff it accepts one of length
≤ 3n−3, where n is the number of states of the DFA”. Horváth, Karhumäki and
Kleijn [11] addressed the decidability problem of whether a language accepted
by an NFA is palindromic (i.e., every element is a palindrome). They showed
that the language accepted by an NFA with n states is palindromic if and only
if all its words of length shorter than 3n are palindromes.

A preliminary version of the full version of this paper is available online [2].

2 Notions and Notation

Let Σ be an alphabet, i.e., a nonempty, finite set of symbols (letters). By Σ∗ we
denote the set of all finite words over Σ, and by ε, the empty word. For w ∈ Σ∗,
we denote by wR the word obtained by reversing the order of symbols in w.
A palindrome is a word w such that w = wR. If L is a language over Σ, i.e.,
L ⊆ Σ∗, we say that L is palindromic if every word w ∈ L is a palindrome.

Let k ≥ 2 be an integer. A word y is a k-power if y can be written as y = xk

for some non-empty word x. If y cannot be so written for any k ≥ 2, then y is
primitive. A 2-power is typically referred to as a square, and a 3-power as a cube.
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Patterns are a generalization of powers. A pattern is a non-empty word p over
a pattern alphabet Δ. The letters of Δ are called variables. A pattern p matches
a word w ∈ Σ∗ if there exists a non-erasing morphism h : Δ∗ → Σ∗ such that
h(p) = w. Thus, a word w is a k-power if it matches the pattern ak.

We define an NFA (or DFA) as the usual 5-tuple M = (Q, Σ, δ, q0, F ). The
size of M is the total number N of its states and transitions. When we want to
emphasize the components of M , we say M has n states and t transitions, and
define N := n + t.

We note that if M is an NFA or NFA-ε, we can remove all states that either
cannot be reached from the start state or cannot reach a final state (the latter
are called dead states) in linear time (in the number of states and transitions)
using depth-first search. We observe that L(M) �= ∅ if and only if any states
remain after this process, which can be tested in linear time. Similarly, if M
is a NFA, then L(M) is infinite if and only if the corresponding digraph has a
directed cycle. This can also be tested in linear time.

We will also need the following well-known results [10]:

Theorem 1. Let M be an NFA with n states. Then

(a) L(M) �= ∅ if and only if M accepts a word of length < n.
(b) L(M) is infinite if and only if M accepts a word of length �, n ≤ � < 2n.

A language L is called slender if there is a constant C such that, for all n ≥ 0, the
number of words of length n in L is less than C. The following characterization
of slender regular languages has been independently rediscovered several times
in the past [14,24,19].

Theorem 2. Let L ⊆ Σ∗ be a regular language. Then L is slender if and only
if it can be written as a finite union of languages of the form uv∗w, where
u, v, w ∈ Σ∗.

For further background on finite automata and regular languages we refer the
reader to Yu [26].

3 Testing If an NFA Accepts at Least One Palindrome

Over a unary alphabet, every string is a palindrome, so problems (1)-(3) become
trivial. Let us assume, then, that the alphabet Σ contains at least two letters.
Although the palindromes over such an alphabet are not regular, the language

L′ = {x ∈ Σ∗ : xxR ∈ L(M) or there exists a ∈ Σ such that xaxR ∈ L(M)}
is, in fact, regular, as often shown in a beginning course in formal languages [10,
p. 72, Exercise 3.4 (h)]. We can take advantage of this as follows:

Lemma 1. Let M be an NFA with n states and t transitions. Then there exists
an NFA M ′ with n2 + 1 states and ≤ 2t2 transitions such that L(M ′) = L′.
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Corollary 1. Given an NFA M with n states and t transitions, we can deter-
mine if M accepts a palindrome in O(n2 + t2) time.

Corollary 2. Given an NFA M , we can determine if L(M) contains infinitely
many palindromes in quadratic time.

Corollary 3. If an NFA M accepts at least one palindrome, it accepts a palin-
drome of length ≤ 2n2 − 1.

Rosaz [21] also gave a proof of this last corollary. The quadratic bound is tight,
up to a multiplicative constant, in the case of alphabets with at least two letters,
and even for DFAs:

Proposition 1. For infinitely many n there exists a DFA Mn with n states over
a 2-letter alphabet such that the shortest palindrome accepted by Mn is of length
≥ n2/2 − 3n + 5.

4 Testing If an NFA Accepts at Least One
Non-palindrome

In this section we consider the problem of deciding if an NFA accepts at least
one non-palindrome. Equivalently, we consider the problem: Given an NFA M ,
is L(M) palindromic?

Again, the problem is trivial for a unary alphabet, so we assume |Σ| ≥ 2.
Horváth, Karhumäki, and Kleijn [11] proved that the question is recursively
solvable. In particular, they proved the following theorem:

Theorem 3. L(M) is palindromic if and only if {x ∈ L(M) : |x| < 3n} is
palindromic, where n is the number of states of M .

For an NFA over an alphabet of at least 2 symbols, the 3n bound is easily seen
to be optimal; for a DFA, however, the bound of 3n can be improved to 3n− 3,
and this is optimal.

While a naive implementation of Theorem 3 would take exponential time, in
this section we show how to test palindromicity in polynomial time.

The main idea is to construct a “small” NFA M ′
t, for some integer t > 1,

where no word in L(M ′
t) is a palindrome, and M ′

t accepts all non-palindromes
of length < t (in addition to some other non-palindromes). We omit the details
of the construction (a similar construction appears in [25]).

Given an NFA M with n states, we now construct the cross-product with
M ′

3n, and obtain an NFA A that accepts L(M) ∩ L(M ′
3n). By Theorem 3,

L(A) = ∅ if and only if L(M) is palindromic. We can determine if L(A) = ∅ in
linear time. If M has n states and t transitions, then A has O(n2) states and
O(tn) transitions. Hence we have proved the following theorem.

Theorem 4. Let M be an NFA with n states and t transitions. The algorithm
sketched above determines whether M accepts a palindromic language in O(n2 +
tn) time.



56 T. Anderson et al.

In analogy with Corollary 2 and using a different construction than that of
Theorem 4, we also have the following proposition.

Proposition 2. Given an NFA M with n states and t transitions, we can de-
termine in O(n2 + t2) time if M accepts infinitely many non-palindromes.

5 Testing If an NFA Accepts a Word Matching a Pattern

In this section we consider the computational complexity of the decision problem:

NFA PATTERN ACCEPTANCE
INSTANCE: An NFA M over the alphabet Σ and a pattern p over some
alphabet Δ.
QUESTION: Does there exist x ∈ Σ+ such that x ∈ L(M) and x
matches p?

Since the pattern p is given as part of the input, this problem is actually
somewhat more general than the sort of problem formulated as Question 1 of
the introduction, where the language L was fixed.

The following result was proved by Restivo and Salemi [20] (a more detailed
proof appears in [4]).

Theorem 5 (Restivo and Salemi). Let L be a regular language and let Δ be
an alphabet. The set PΔ of all non-empty patterns p ∈ Δ∗ such that p matches
a word in L is effectively regular.

Observe that Theorem 5 implies the decidability of the NFA PATTERN AC-
CEPTANCE problem. It is possible to give a boolean matrix based proof of
Theorem 5 (see Zhang [27] for a study of this boolean matrix approach to au-
tomata theory) that provides an explicit description of an NFA accepting PΔ,
but due to space constraints we omit this proof. However, the reader may per-
haps deduce the argument from the proof of the following algorithmic result,
which uses similar ideas.

Theorem 6. The NFA PATTERN ACCEPTANCE problem is PSPACE-
complete.

Proof (sketch). We first show that the problem is in PSPACE. By Savitch’s
theorem [23] it suffices to give an NPSPACE algorithm. Let M = (Q, Σ, δ, q0, F ),
where Q = {0, 1, . . . , n − 1}. For a ∈ Σ, let Ba be the n × n boolean matrix
whose (i, j) entry is 1 if j ∈ δ(i, a) and 0 otherwise. Let B denote the semigroup
generated by the Ba’s. For w = w0w1 · · ·ws ∈ Σ∗, we write Bw to denote the
matrix product Bw0Bw1 · · ·Bws .

Let Δ be the set of letters occuring in p. We may suppose that Δ={1, 2, . . . , k}.
First, non-deterministically guess k boolean matrices B1, . . . , Bk. Next, for each
i, verify that Bi is in the semigroup B by non-deterministically guessing a word
w of length at most 2n2

such that Bi = Bw. We guess w symbol-by-symbol and
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reuse space after perfoming each matrix multiplication while computing Bw.
Then, if p = p0p1 · · · pr, compute the matrix product B = Bp0Bp1 · · ·Bpr and
accept if and only if B describes an accepting computation of M .

To show hardness we reduce from the following PSPACE-complete problem
[7, Problem AL6]. We leave the details to the reader.

DFA INTERSECTION
INSTANCE: An integer k ≥ 1 and k DFAs A1, A2, . . . , Ak, each over the
alphabet Σ.
QUESTION: Does there exist x ∈ Σ∗ such that x is accepted by each
Ai, 1 ≤ i ≤ k? 
�

We may define various variations or special cases of the NFA PATTERN
ACCEPTANCE problem, such as: NFA ACCEPTS A k-POWER, NFA
ACCEPTS INFINITELY MANY k-POWERS, where each of these prob-
lems is defined in the obvious way. When k is part of the input (i.e., k is not
fixed), these problems can be shown to be PSPACE-complete by a variation on
the proof of Theorem 6. However, if k is fixed, both of these problems can be
solved in polynomial time, as we now demonstrate.

Proposition 3. Let M be an NFA with n states and t transitions, and set N =
n + t, the size of M . For any fixed integer k ≥ 2, there is an algorithm running
in O(n2k−1tk) = O(N2k−1) time to determine if M accepts a k-power.

Proof (sketch). For a language L ⊆ Σ∗, we define L1/k = {x ∈ Σ∗ : xk ∈ L}. It
is well-known that if L is regular, then so is L1/k. We leave it to the reader to
verify that an NFA-ε M ′ accepting L1/k can be constructed with n2k−1+1 states
and at most tk distinct transitions. Testing whether or not L(M ′) accepts a non-
empty word can be done in linear time, so the running time of our algorithm is
O(n2k−1tk). 
�

Corollary 4. We can decide if an NFA M with n states and t transitions accepts
infinitely many k-powers in O(n2k−1tk) time.

We may also consider the problems NFA ACCEPTS A ≥ k-POWER and
NFA ACCEPTS INFINITELY MANY ≥ k-POWERS, again defined
in the obvious way. Here, even for fixed k, these problems are both PSPACE-
complete. Setting k = 2 corresponds to the problems NFA ACCEPTS A
POWER and NFA ACCEPTS INFINITELY MANY POWERS, so we
see that both these problems are PSPACE-complete as well.

To show PSPACE-hardness for the “infinitely many” problems, we reduce
from the DFA INTERSECTION INFINITENESS problem, which is de-
fined similarly to the DFA INTERSECTION problem, except that we now
ask if there are infinitely many words x such that x is accepted by each Ai. This
problem is easily seen to be PSPACE-complete as well.
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6 Testing If an NFA Accepts a Non-k-Power

In the previous section we showed that it is computationally hard to test if an
NFA accepts a k-power (when k is not fixed). In this section we show how to
efficiently test if an NFA accepts a non-k-power. Again, we find it more congenial
to discuss the opposite problem, which is whether an NFA accepts nothing but
k-powers.

First, we need some classical results from combinatorics on words.

Theorem 7 (Lyndon and Schützenberger [15]). If x, y, and z are words
satisfying an equation xiyj = zk, where i, j, k ≥ 2, then they are all powers of a
common word.

Theorem 8 (Lyndon and Schützenberger [15]). Let u and v be non-empty
words. If uv = vu, then there exists a word x and integers i, j ≥ 1, such that
u = xi and v = xj. In other words, u and v are powers of a common word.

We include here the following combinatorial result, which, when applied to words
in a regular language, gives a sort of “pumping lemma” for powers in a regular
language.

Proposition 4. Let u, v, and w be words, v �= ε, and let f, g ≥ 1 be integers,
f �= g. If uvfw and uvgw are non-primitive, then uvnw is non-primitive for all
integers n ≥ 1. Further, if uvw and uv2w are k-powers for some integer k ≥ 2,
then v and uvnw are k-powers for all integers n ≥ 1.

The following result is an analogue of Theorem 3, from which we will derive an
efficient algorithm for testing if a finite automaton accepts only k-powers.

Theorem 9. Let L be accepted by an n-state NFA M and let k ≥ 2 be an
integer.

1. Every word in L is a k-power if and only if every word in the set {x ∈ L :
|x| ≤ 3n} is a k-power.

2. All but finitely many words in L are k-powers if and only if every word in
the set {x ∈ L : n ≤ |x| ≤ 3n} is a k-power.

Further, if M is a DFA over an alphabet of size ≥ 2, then the bound 3n may be
replaced by 3n − 3.

Ito et al. [12] proved a similar result for primitive words: namely, that if L
is accepted by an n-state DFA over an alphabet of two or more letters and
contains a primitive word, then it contains a primitive word of length ≤ 3n− 3.
In other words, every word in L is a power if and only if every word in the set
{x ∈ L : |x| ≤ 3n − 3} is a power.

The proof of Theorem 9 is similar to that of [12, Proposition 7], albeit with
some additional complications. We shall give a complete proof in the full version
of this paper.
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The characterization due to Ito et al. [12, Proposition 10] (see also Dömösi,
Horváth, and Ito [6, Theorem 3]) of the regular languages consisting only of
powers, along with Theorem 2, implies that any such language is slender. A
simple application of the Myhill–Nerode Theorem gives the following weaker
result.

Proposition 5. Let L be a regular language and let k ≥ 2 be an integer. If all
but finitely many words of L are k-powers, then L is slender. In particular, if L
is accepted by an n-state DFA and all words in L of length ≥ � are k-powers,
then for all r ≥ �, the number of words in L of length r is at most n.

The following characterization is analogous to the characterization of palin-
dromic regular languages given in [11, Theorem 8], and follows from Propo-
sition 5, Theorem 2, and the (omitted) proof of Proposition 4.

Theorem 10. Let L ⊆ Σ∗ be a regular language and let k ≥ 2 be an integer.
The language L consists only of k-powers if and only if it can be written as
a finite union of languages of the form uv∗w, where u, v, w ∈ Σ∗ satisfy the
following: there exists a primitive word x ∈ Σ∗ and integers i, j ≥ 0 such that
v = xik and wu = xjk .

Next we apply Theorem 9 to deduce the following algorithmic result.

Theorem 11. Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if every word in L(M) is a k-power in
O(n3 + tn2) time.

Proof (sketch). We create an NFA, M ′
r, for r = 3n, such that no word in L(M ′

r)
is a k-power, and M ′

r accepts all non-k-powers of length ≤ r (and perhaps some
other non-k-powers).

Note that we may assume that k ≤ r. If k > r, then no word of length ≤ r is
a k-power. In this case, to obtain the desired answer it suffices to test if the set
{x ∈ L(M) : |x| ≤ r} is empty. However, this set is empty if and only if L(M)
is empty, and this is easily verified in linear time.

We now form a new NFA A as the cross product of M ′
r with M . From Theo-

rem 9, it follows that L(A) = ∅ iff every word in L(M) is a k-power. Again, we
can determine if L(A) = ∅ in linear time.

We omit the details of the construction of M ′
r, noting only that M ′

r can be
constructed to have at most O(r2) states and O(r2) transitions. After construct-
ing the cross-product, this gives a O(n3 + tn2) bound on the time required to
determine if every word in L(M) is a k-power. 
�
Theorem 9 suggests the following question: if M is an NFA with n states that
accepts at least one non-k-power, how long can the shortest non-k-power be?
Theorem 9 proves an upper bound of 3n. A lower bound of 2n− 1 for infinitely
many n follows easily from the obvious (n + 1)-state NFA accepting an(an+1)∗,
where n is divisible by k. However, Ito et al. [12] gave a very interesting example
that improves this lower bound: if x = ((ab)na)2 and y = baxab, then x and xyx
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are squares, but xyxyx is not a power. Hence, the obvious (8n + 8)-state NFA
that accepts x(yx)∗ has the property that the shortest non-k-power accepted is
of length 20n+18. We generalize this lower bound by defining x and y as follows:
let u = (ab)na, x = uk, and y = x−1(xbau−1x)kx−1. We leave it to the reader
to deduce the following result.

Proposition 6. Let k ≥ 2 be fixed. There exist infinitely many NFAs M with
the property that if M has r states, then the shortest non-k-power accepted is of
length (2 + 1

2k−2 )r − O(1).

We may also apply part (2) of Theorem 9 to obtain an algorithm to check if an
NFA accepts infinitely many non-k-powers.

Theorem 12. Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if all but finitely many words in L(M) are
k-powers in O(n3 + tn2) time.

7 Automata Accepting Only Powers

We now move from the problem of testing if an automaton accepts only k-powers
to that of testing if it accepts only powers (of any kind). Just as Theorem 9 was
the starting point for our algorithmic results in Section 6, the following theorem
of Ito et al. [12] (stated here in a slightly stronger form than in the original) is
the starting point for our algorithmic results in this section.

Theorem 13. Let L be accepted by an n-state NFA M .

1. Every word in L is a power if and only if every word in the set {x ∈ L :
|x| ≤ 3n} is a power.

2. All but finitely many words in L are powers if and only if every word in the
set {x ∈ L : n ≤ |x| ≤ 3n} is a power.

Further, if M is a DFA over an alphabet of size ≥ 2, then the bound 3n may be
replaced by 3n − 3.

We next prove an analogue of Proposition 5. We need the following result, first
proved by Birget [3], and later, independently, in a weaker form, by Glaister and
Shallit [8].

Theorem 14. Let L ⊆ Σ∗ be a regular language. Suppose there exists a set of
pairs S = {(xi, yi) ∈ Σ∗×Σ∗ : 1 ≤ i ≤ n} such that: (a) xiyi ∈ L for 1 ≤ i ≤ n;
and (b) either xiyj /∈ L or xjyi /∈ L for 1 ≤ i, j ≤ n, i �= j. Then any NFA
accepting L has at least n states.

Proposition 7. Let M be an n-state NFA and let � be a non-negative integer
such that every word in L(M) of length ≥ � is a power. For all r ≥ �, the number
of words in L(M) of length r is at most 7n.
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Proof. We give the proof in full, as it illustrates an unusual and unexpected
combination of techniques from both the theory of non-deterministic state com-
plexity as well as the theory of combinatorics on words.

Let r ≥ � be an arbitrary integer. The proof consists of three steps.
Step 1. We consider the set A of words w in L(M) such that |w| = r and

w is a k-power for some k ≥ 4. For each such w, write w = xi, where x is
a primitive word, and define a pair (x2, xi−2). Let SA denote the set of such
pairs. Consider two pairs in SA: (x2, xi−2) and (y2, yj−2). The word x2yj−2 is
primitive by Theorem 7 and hence is not in L(M). The set SA thus satifies the
conditions of Theorem 14. Since L(M) is accepted by an n-state NFA, we must
have |SA| ≤ n and thus |A| ≤ n.

Step 2. Next we consider the set B of cubes of length r in L(M). For each
such cube w = x3, we define a pair (x, x2). Let SB denote the set of such pairs.
Consider two pairs in SB: (x, x2) and (y, y2). Suppose that xy2 and yx2 are both
in L(M). The word xy2 is certainly not a cube; we claim that it cannot be a
square. Suppose it were. Then |x| and |y| are even, so we can write x = x1x2

and y = y1y2 where |x1| = |x2| = |y1| = |y2|. Now if xy2 = x1x2y1y2y1y2 is
a square, then x1x2y1 = y2y1y2, and so y1 = y2. Thus y is a square; write
y = z2. By Theorem 7, yx2 = z2x2 is primitive, contradicting our assumption
that yx2 ∈ L(M). It must be the case then that xy2 is a k-power for some k ≥ 4.
Thus, xy2 = uk for some primitive u uniquely determined by x and y. With each
pair of cubes x3 and y3 such that both xy2 and yx2 are in L(M) we may therefore
associate a k-power uk ∈ L(M), where k ≥ 4. We have already established in
Step 1 that the number of such k-powers is at most n. It follows that by deleting
at most n pairs from the set SB we obtain a set of pairs satisfying the conditions
of Theorem 14. We must therefore have |SB| ≤ 2n and thus |B| ≤ 2n.

Step 3. Finally we consider the set C of squares of length r in L(M). For each
such square w = x2, we define a pair (x, x). Let SC denote the set of such pairs.
Consider two pairs in SC : (x, x) and (y, y). Suppose that xy and yx are both in
L(M). The word xy is not a square and must therefore be a k-power for some
k ≥ 3. We write xy = uk for some primitive u uniquely determined by x and y.
In Steps 1 and 2 we established that the number of k-powers of length r, k ≥ 3,
is |A|+ |B| ≤ 3n. It follows that by deleting at most 3n pairs from the set SC we
obtain a set of pairs satisfying the conditions of Theorem 14. We must therefore
have |SC | ≤ 4n and thus |C| ≤ 4n.

Putting everything together, we see that there are |A|+ |B|+ |C| ≤ 7n words
of length r in L(M), as required. 
�
The bound of 7n in Proposition 7 is almost certainly not optimal. We now prove
the following algorithmic result.

Theorem 15. Given an NFA M with n states, it is possible to determine if
every word in L(M) is a power in O(n5) time.

Proof (sketch). Checking if a word is a power can be done in linear time using
the Knuth-Morris-Pratt algorithm [13]. By Theorem 13 and Proposition 7 it
suffices to enumerate the words in L(M) of lengths 1, 2, . . . , 3n, stopping if the
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number of such words in any length exceeds 7n. If all these words are powers,
then every word is a power. Otherwise, if we find a non-power, or if the number
of words in any length exceeds 7n, then not every word is a power. By the work
of Mäkinen [16] or Ackerman & Shallit [1], we can enumerate these words in
O(n5) time. 
�

Using part (2) of Theorem 13 along with Proposition 7, one obtains the following
in a similar manner.

Theorem 16. Given an NFA M with n states, we can decide if all but finitely
many words in L(M) are non-powers in O(n5) time.

8 Final Remarks

In this paper we examined the complexity of checking various properties of reg-
ular languages, such as consisting only of palindromes, containing at least one
palindrome, consisting only of powers, or containing at least one power. In each
case, we were able to provide an efficient algorithm or show that the problem
is likely to be hard. Our results are summarized in the following table. We also
report some upper and lower bounds on the length of a shortest palindrome,
k-power, etc., accepted by an NFA; due to space constraints we must omit the
proofs of these bounds. Here M is an NFA with n states and t transitions.

decide if decide if upper bound on worst-case
L L(M) ∩ L = ∅ L(M) ∩ L shortest element lower bound

infinite of L(M) ∩ L known

palindromes O(n2 + t2) O(n2 + t2) 2n2 − 1 n2

2
− 3n + 5

non-palindromes O(n2 + tn) O(n2 + t2) 3n − 1 3n − 1

k-powers O(n2k−1tk) O(n2k−1tk) knk Ω(nk)
(k fixed)

k-powers PSPACE- PSPACE-
(k part of input) complete complete

non-k-powers O(n3 + tn2) O(n3 + tn2) 3n (2 + 1
2k−2

)n − O(1)

powers PSPACE- PSPACE- (n + 1)nn+1 eΩ(
√

n log n)

complete complete

non-powers O(n5) O(n5) 3n 5
2
n − 2
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16. Mäkinen, E.: On lexicographic enumeration of regular and context-free languages.

Acta Cybernetica 13, 55–61 (1997)
17. Martinez, A.: Efficient computation of regular expressions from unary NFAs. In:

DCFS 2002, pp. 174–187 (2002)
18. Pritchard, P.: Linear prime-number sieves: a family tree. Sci. Comput. Program-

ming 9, 17–35 (1987)
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