
ARTICLE IN PRESS
Theoretical Computer Science () –

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Predictable semiautomataI

Janusz Brzozowski a,∗, Nicolae Santean b
a David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1
b Computer and Information Sciences, Indiana University South Bend, South Bend, IN 46634, USA

a r t i c l e i n f o

Keywords:
Automaton
Bound
Delegator
Look-ahead
Nondeterminism
Predictor
Semiautomaton
Simulation

a b s t r a c t

We introduce a new class of nondeterministic semiautomata: A nondeterministic semiau-
tomaton S is predictable if there exists k ≥ 0 such that, if S knows the current input a and
the next k inputs, the transition under a can be made deterministically. Nondeterminism
may occur only when the length of the unread input is ≤ k. We develop a theory of pre-
dictable semiautomata. We show that, if a semiautomaton with n states is k-predictable,
but not (k − 1)-predictable, then k ≤ (n2 − n)/2, and this bound can be reached for a
suitable input alphabet. We characterize k-predictable semiautomata, and introduce the
predictor semiautomaton, based on a look-ahead semiautomaton. The predictor is essen-
tially deterministic and simulates a nondeterministic semiautomaton by finding the set of
states reachable by a word w, if it belongs to the language L of the semiautomaton (i.e., if
it defines a path from an initial state to some state), or by stopping as soon as it infers that
w 6∈ L. Membership in L can be decided deterministically.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Nondeterministic finite automata (NFAs) are ubiquitous. They serve asmodels for nondeterministic processes, constitute
design tools (arguably more convenient than deterministic ones), and are often inevitable. They also have drawbacks, such
as increased simulation time and space, and inefficient minimization algorithms.
Several attempts have beenmade to overcome the disadvantages of nondeterminism. NFAs have been used asmodels for

service-oriented computing [1], and as tools for automatedweb service composition [4,5]. In both cases, it was imperative to
enforce deterministic behavior without changing the structure of the model, i.e., without determinization. For this purpose,
‘‘delegators’’ of NFAs were informally introduced in [4,5]. A delegator is a deterministic finite automaton (DFA) based on
the transition graph of the NFA. It has a look-ahead buffer of a fixed length that permits it to determine which of several
possible nondeterministic steps should be taken in such a way that, for each word accepted by the NFA, the delegator has a
deterministic computation. Look-ahead delegation was studied systematically and in a more abstract framework in [9].
We do not solve the delegator problem, nor determinize NFAs. Instead, we provide amethod inwhich a nondeterministic

system can be used essentially deterministically. We use semiautomata (automata without accepting states), because
nondeterminism involves transitions, rather than accepting states. We introduce ‘‘predictable’’ semiautomata, in which it is
possible to replace a nondeterministic step by a deterministic one, with the aid of a bounded number of input letters from
a look-ahead buffer. We compute the set of states reachable by input words from the initial states of a semiautomaton with
as little nondeterminism as possible. We also treat nondeterminism as a local, rather than global, phenomenon. Thus our
theory is substantially different from the work in [4,5,9].

I This researchwas supported by theNatural Sciences and Engineering Research Council of Canada, Grant OGP0000871 and Fellowship PDF-32888-2006.
∗ Corresponding address: David R. Cheriton School of Computer Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, Canada N2L 3G1.
Tel.: +1 519 885 5015; fax: +1 519 885 1208.
E-mail addresses: brzozo@uwaterloo.ca (J. Brzozowski), nsantean@iusb.edu (N. Santean).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.05.010

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:brzozo@uwaterloo.ca
mailto:nsantean@iusb.edu
http://dx.doi.org/10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
2 J. Brzozowski, N. Santean / Theoretical Computer Science () –

The remainder of the paper is organized as follows. Section 2 defines the notation and terminology related to semiau-
tomata in general, introduces predictable semiautomata, and gives a polynomial-time algorithm for testing for predictabil-
ity. In Section 3 we show that the upper bound for an n-state semiautomaton over a 1-letter alphabet is n − 1, and this
bound can be met. We then show that the general upper bound is (n2 − n)/2, and this bound can be met with a suitable
input alphabet. The properties of certain types of words, called ‘‘minimal selectors’’ and ‘‘maximal nonselectors’’, and their
relation to predictability are studied in Section 4. Section 5 describes the construction of auxiliary ‘‘product semiautomata",
which provide a test for predictability and amethod of findingminimal selectors andmaximal nonselectors. In Section 6 we
show that only a part of the product semiautomaton, called the ‘‘core’’, is necessary for our purposes. Semiautomata with
look-ahead are defined in Section 7; these ‘‘predictors’’ permit us to simulate a nondeterministic semiautomaton almost
deterministically. Section 8 concludes the paper.

2. Predictable semiautomata

For a set X , we denote its cardinality by X#. IfΣ is an alphabet, thenΣ+ andΣ∗ denote the free semigroup and the free
monoid, respectively, generated byΣ . The empty word is 1. For k ≥ 1, letΣ≤k = 1∪Σ ∪· · ·∪Σk. Forw ∈ Σ∗, |w| denotes
the length ofw. Ifw = uv, for some u, v ∈ Σ∗, then u is a prefix ofw. A language L is prefix-closed if uv ∈ L implies u ∈ L. If
u ∈ Σ∗, v ∈ Σ+, then uv is an extension of u.
A semiautomaton [6] S = (Σ,Q , P, E) consists of an alphabet Σ , a set Q of states, a set P ⊆ Q of initial states, and a set

E of edges of the form (q, a, r), where q, r ∈ Q and a ∈ Σ . An edge (q, a, r) begins at q, ends at r , and has label a. It is also
denoted as q

a
→ r . A path π is a finite sequence π = (q0, a1, q1)(q1, a2, q2) · · · (qk−1, ak, qk) of consecutive edges, k > 0

being its length, q0, its beginning, qk, its end, and word w = a1 · · · ak, its label. We also write q0
w
→ qk for π . Each state q has

a null path 1q from q to qwith label 1.
If T ⊆ Q and w ∈ Σ∗, then Tw = {q ∈ Q | t

w
→ q, for some t ∈ T } is the set of states reachable by w from states

in T . If T = {t}, we write tw for Tw; if Tw = {q}, we write Tw = q. A state q of S is accessible if there exists p ∈ P and
w ∈ Σ∗ such that q ∈ pw, i.e., such that there is a path p

w
→ q. A semiautomaton is accessible if all of its states are acces-

sible. For any semiautomaton S, the accessible semiautomaton of S is SA and is obtained by deleting every state q that is not
reachable from any initial state, as well as all transitions leading to and coming from q. Formally, if S = (Σ,Q , P, E) is a
semiautomaton, then SA = (Σ,Q A, P, EA) is defined as follows. The set Q A consists of all states q for which there exists a
path π = (q0, a1, q1) · · · (qk−1, ak, qk), with q0 ∈ P and qk = q. An edge e belongs to EA if and only if e appears in such a
path from some initial state.
For T ⊆ Q , the language of T is denoted by RT and it is the set of all labels of paths from states in T , i.e., RT = {w ∈ Σ∗ |

Tw 6= ∅}. Note that RT is prefix-closed. The language |S| of a semiautomaton S = (Σ,Q , P, E) is |S| = RP . If q ∈ Q , the
language of q is Rq = R{q}.
Semiautomaton S is complete if P 6= ∅ and, for every q ∈ Q and a ∈ Σ , there is an edge (q, a, r) ∈ E, for some r ∈ Q . If

S is complete, then Rq = Σ∗ for all q ∈ Q ; hence |S| = Σ∗.
A semiautomaton S is deterministic if it has at most one initial state, and for every q ∈ Q , a ∈ Σ , there is at most one

edge (q, a, r). If S is deterministic and has initial state p, we write S = (Σ,Q , p, E).
Occasionally we find it useful to allow empty-word transitions in semiautomata; these are edges in the graph of a

semiautomaton of the form (q, 1, r). We refer to such semiautomata as 1-semiautomata. Such notions as paths, path labels,
and accessibility are extended to 1-semiautomata in the natural way.
We now introduce nondeterministic semiautomata, called ‘‘predictable’’, in which the knowledge of a bounded number

of symbols read ahead from the input tape removes nondeterminism.We restrict our attention to finite semiautomata, that
is, to semiautomata in whichΣ and Q are finite.
Let S = (Σ,Q , P, E) be a semiautomaton. If q ∈ Q , a ∈ Σ , then a fork (with origin q and input a) is the set 〈q, a〉 =

{(q, a, r1), . . . , (q, a, rh)} of all the edges from q labeled a. The fork set of 〈q, a〉 is 〈〈q, a〉〉 = {r1, . . . , rh}. We assume that
h > 0. Note, however, that forks with single edges are permitted; they are called deterministic transitions. Allowing such
forks has the advantage that a semiautomaton consists only of a set of initial states and forks. A set T ⊆ Q is critical if either
T = P or T = 〈〈q, a〉〉, for a fork 〈q, a〉 in S.

Definition 1. LetS = (Σ,Q , P, E) be a semiautomaton, and k ≥ 0, an integer. A set T ⊆ Q is k-predictable if any twodistinct
states s, t ∈ T satisfy Rs ∩ Rt ∩ Σk = ∅. Also S is k-predictable if every critical set of S is k-predictable, and S is predictable
if it is k-predictable for some k. The index of a predictable semiautomaton S is the smallest k such that S is k-predictable.

One verifies that a semiautomaton S is k-predictable if and only if it is ‘‘deterministic (k + 1)-look-ahead’’ [8]. A set is
0-predictable if and only if it consists of a single state. Thus, S is 0-predictable if and only if it is deterministic, i.e., its critical
sets are singletons.
Note that, for k > 0, a k-predictable semiautomaton S must be incomplete. If it were complete, then we would have

Rs = Rt = Σ∗, and Rs ∩ Rt ∩ Σk = Σk would be nonempty, for all s, t ∈ Q , s 6= t , and for all k ≥ 0. Thus the condition
for k-predictability could not be satisfied for any k. Since a 0-predictable semiautomaton is deterministic, it follows that a
k-predictable semiautomaton is either deterministic or incomplete.
If a set is k-predictable, then it is k′-predictable for all k′ > k, since Rs and Rt are prefix-closed.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 3

a b c
Fig. 1. Illustrating predictability.

Example 2. In Fig. 1(a), fork 〈p, a〉 is a deterministic transition, and fork set 〈〈q, a〉〉 = {q, r} is 1-predictable. Fork set {q, r}
in Fig. 1(b) is 1-predictable, because there are no words of length 1 in Rq or Rr . Fork set {p, q} in Fig. 1(c) is not k-predictable
for any k ≥ 0, because ak ∈ Rp ∩ Rq ∩Σk for all k. �

We now describe a method for testing whether a set T of states of a semiautomaton S = (Σ,Q , P, E) is predictable.
Suppose Q has n states andΣ hasm letters; then S has at mostmn2 edges. For ti, tj ∈ T , ti 6= tj, let Si = (Σ,Q , {ti}, E) and
Sj = (Σ,Q , {tj}, E) be copies of S with initial states ti and tj, respectively.
The square1 of S [2] is the semiautomaton

S�
= S × S = (Σ,Q × Q , P × P, E�),

where ((q1, q2), a, (r1, r2)) ∈ E� if and only if (q1, a, r1),∈ E and (q2, a, r2) ∈ E. Note that S� has n2 states and at mostmn4
edges. Let S�

i,j = (Σ,Q , {ti, tj}, E
�) be S� with initial state changed to {ti, tj}.

For i < j, the nondeterministic product of Si and Sj is the accessible semiautomaton SAi,j = (Σ,Qi,j, {(ti, tj)}, Ei,j) of S�
i,j.

Here Qi,j is the set of all states from Q × Q that are reachable from the initial state (ti, tj) in S�, and Ei,j is the set of edges
from E� that appear on some path from (ti, tj). Let Li,j = R(ti,tj) be the language of Si,j.
For the next theorem it is convenient to use a 1-semiautomaton, that is, a semiautomaton with empty-word transitions.

We define a (nondeterministic) pair 1-semiautomaton

NT = (Σ,QN , q0, EN),

where

QN = {q0} ∪ Q × Q , with q0 6∈ Q × Q ,
PN = {(ti, tj) | ti, tj ∈ T , i < j},

EN = {(q0, 1, (ti, tj)) | (ti, tj) ∈ PN } ∪
⋃

{ti,tj∈T ,i6=j}

Ei,j.

Theorem 3. A set T is predictable if and only if NT has no cycles. Moreover, T is of index k if and only if the length of a longest
path from q0 in NT is k. If S has n states and is predictable with index k, then k ≤ n2. Predictability and k-predictability can be
tested in time polynomial in the size ofNT .

Proof. SupposeNT has a cycle. Then there exists a path

((q1, q′1), a1, (q2, q
′

2)), . . . , ((qα−1, q
′

α−1), aα−1, (qα, q
′

α)), . . . , . . . , ((qβ−1, q
′

β−1), aβ−1, (qβ , q
′

β)),

where (q1, q′1) = (ti, tj) ∈ PN , and (qβ , q
′

β) = (qα, q
′
α). Thus wr = uv

r
= a1 · · · aα−1(aα · · · aβ−1)r is in Li,j for every r . By

the construction of Si,j, we have paths

(q1, a1, q2), . . . , (qα−1, aα−1, qα), . . . , (qβ−1, aβ−1, qβ),
(q′1, a1, q

′

2), . . . , (q
′

α−1, aα−1, q
′

α), . . . , (q
′

β−1, aβ−1, q
′

β)

in Si and Sj, showing that wr ∈ Rti ∩ Rtj . Since r can be arbitrarily large, T cannot be predictable. Thus, if T is predictable,
thenNT has no cycles.
Conversely, supposeNT has no cycles. Let the length of a longest path from q0 be k. Since the label of the first edge in any

path from q0 is the empty word, the length of a longest word in Li,j is k− 1, since such a word starts in (ti, tj). Then, over all
i, j such that (ti, tj) ∈ PN , we have Rti ∩ Rtj ∩Σ

k
= ∅ for all i, j, and T is k-predictable, but not (k− 1)-predictable.

Since there are n2 + 1 states in NT , the length of a longest path in NT is ≤ n2 and the length of a longest word in the
language ofNT is≤ n2 − 1; hence we have k ≤ n2. If we repeat this for all critical sets T , and if the length of a longest path
inNT is k, then S is predictable with index k, where k ≤ n2.
SemiautomatonNT has atmost 1+n2 states and atmost n(n−1)/2+mn4 edges. Since testingwhetherNT has a cycle and

finding a longest path inNN can be done in time linear in the size of the semiautomaton, predictability and k-predictability
can be tested in polynomial time. �

1 A similar construction was used in [7] under the name state-pair graph.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
4 J. Brzozowski, N. Santean / Theoretical Computer Science () –

a

b
Fig. 2. A semiautomaton and its nondeterministic pair semiautomaton.

Fig. 3. An n-state unary semiautomaton which is (n− 1)-predictable.

The upper bound of n2 for kwill be improved in the next section.

Example 4. The semiautomaton of Fig. 2 (a) has 5 states and one nontrivial fork 〈p, a〉. The nondeterministic pair
semiautomaton NT for the fork set T = {p, q, s} is shown in Fig. 2 (b). There are three semiautomata Sp,q, Sp,s, and Sq,s.
Since there are no cycles, T , and hence also S, are predictable. The length of a longest path

(q0, 1, (p, s)), ((p, s), a, (p, t)), ((p, t), c, (q, s)), ((q, s), b, (r, q))

is 4; hence S has predictability index 4. �

3. Predictability bounds

The case of a one-letter alphabet is special.

Proposition 5. Let S = (Σ,Q , P, E) be a semiautomaton over a one-letter alphabet. If S has n states and k ≥ 0 is its
predictability index, then k ≤ n− 1.

Proof. If k = 0, the bound is trivially satisfied. Hence assume that there is at least one critical set T = {t1, . . . , th}, h ≥ 2,
which is k-predictable.
We claim that T is predictable if and only if at most one of the languages {Rti}1≤i≤h is infinite. Note first that, if a language

L over one letter a is prefix-closed, then L is infinite if and only if L = a∗. For 1 ≤ i 6= j ≤ h, if Rti and Rtj are infinite then
Rti ∩ Rtj = a

∗, since Rti and Rtj are prefix-closed. Hence T is not predictable, and Rti and Rtj cannot both be infinite.
Without loss of generality, assume now that Rt1 , . . . , Rth−1 are finite. We distinguish two cases:

(1) Rth is infinite. Letw be a longest word in
⋃
1≤i<h Rti , and assume thatw ∈ Rtj , j 6= h. Since Rtj is finite, no path originating

in tj and spelling w can have a state repeated. For suppose that w = uxv, for some x ∈ Σ+, u, v ∈ Σ∗, and tju = tjux.
Then also ux2v ∈ Rtj , contradicting thatw is a longestword of Rtj . We also observe that a pathπ from tj spellingw cannot
visit th; otherwise Rtj would be infinite, since Rth is infinite. Thus π has at most n − 1 states, and |w| ≤ n − 2. Now T
cannot be |w|-predictable, becausew ∈ Rtj ∩Rth , but it is (|w|+1)-predictable. Thus wemust have k = |w|+1 ≤ n−1.

(2) Rth is finite. Letw be a longest word in
⋃
1≤i≤h Rti , and assumew ∈ Rtj . A path originating in tj and spellingw can involve

at most n states (it can possibly visit th); thus |w| ≤ n − 1. If |w| < n − 1 then clearly k ≤ |w| + 1 ≤ n − 1. When
|w| = n− 1, a path π originating in tj and spelling w uses all the states of S. There cannot be another path originating
in ti, i 6= j, spelling w; for then there would be a loop, contradicting the finiteness of Rtj . Thus, k = |w| = n − 1 in this
case.

The semiautomaton in Fig. 3 has n states and is (n− 1)-predictable; thus the bound can be reached when |S| is infinite.
If we remove the loop in Fig. 3 and make states 1 and 2 initial, we reach the bound when |S| is finite. �

Before addressing the case of a general alphabet, we develop some necessary conditions on paths originating from critical
sets in predictable semiautomata.
Let S = (Σ,Q , P, E) be a predictable semiautomaton, with state set Q = {1, . . . , n}, and let r1, s1 be two distinct states

of a critical set in S. If w = a1 · · · am−1 is a longest word in Rr1 ∩ Rs1 , let π1 = (r1, a1, r2) · · · (rm−1, am−1, rm) and π2 =
(s1, a1, s2) · · · (sm−1, am−1, sm) be two paths spelling w, originating from r1 and s1, respectively. Let 1 ≤ i < j ≤ m. We
define three path conditions on the states that appear in such paths:

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 5

(1) Either ri 6= rj or si 6= sj.
(2) Either ri 6= sj or rj 6= si.
(3) If ri = si, then rj 6= ri and sj 6= ri.

We now show that these path conditions must be always satisfied; otherwise, the wordw cannot be longest.

Lemma 6. Let π1 and π2 be two paths as defined above. Then the sequenceL = (r1, s1), . . . , (rm, sm) of ordered pairs of states
encountered by π1 and π2 must satisfy the path conditions.

Proof. By our hypothesis, r1 6= s1. For the remaining conditions we have:

(1) If ri = rj and si = sj, let x be the label of the path ri, . . . , rj in π1. Thenw = uxv for some u, v ∈ Σ∗, and ux2v ∈ Rr1 ∩Rs1 ,
contradicting the maximality of |w|.

(2) If ri = sj and rj = si, let x be the label of the path ri, . . . , rj in π1, and hence also the label of the path si, . . . , sj in π2, and
letw = uxv. Then one verifies that ux3v ∈ Rr1 ∩ Rs1 , contradicting the maximality of |w|.

(3) If ri = si and rj = ri, let x be the label of the path ri, . . . , rj = ri in π1, and let w = uxv. Then ux2v ∈ Rr1 ∩ Rs1 ,
contradicting the maximality of |w|. Similarly, if sj = ri, let x be the label of the path si, . . . , sj in π2, and let w = uxv.
Since si = sj = ri, there is a loop labeled x on ri, and again ux2v ∈ Rr1 ∩ Rs1 . �

Lemma 7. Let n > 0, and letL = (r1, s1), . . . , (rm, sm) be a sequence of ordered pairs of elements from {1, . . . , n}. IfL satisfies
r1 6= s1 and the path conditions, then m ≤ (n2 − n)/2 and the bound can be reached.

Proof. We first show that the bound can be reached. Condition (1) is satisfied by the sequenceL = (1, 1), . . . , (1, n), (2, 1),
. . . , (2, n), . . . , (n, 1), . . . , (n, n), which has length n2. If we remove pairs (i, i), for all 1 ≤ i ≤ n, we have a sequence of
length n2 − n, in which r1 6= s1, and which satisfies Condition (3) as well. Finally, for all i 6= j, remove either (i, j) or (j, i),
but not both. Now the sequence also satisfies Condition (2) and has length (n2 − n)/2.
Next, we proceed by induction on n. If n = 1, then only the empty sequence satisfies all the conditions. Here m = 0 =

(n2 − n)/2. If n = 2, only the empty sequence, (1, 2) and (2, 1) satisfy the conditions. Thusm ≤ 1 = (n2 − n)/2.
For any n > 0, let M(n) be the length of a longest sequence of pairs of elements from {1, . . . , n} satisfying all the

conditions. Assume that M(n − 1) ≤ ((n − 1)2 − (n − 1))/2, for some (n − 1) ≥ 2. Let L be a sequence with M(n)
pairs satisfying all the conditions, and assume that M(n) > (n2 − n)/2. If M(n) > (n2 − n)/2 and n ≥ 3, then M(n) > n.
ThusL contains at least n+ 1 pairs. There are at most 2n− 1 pairs involving n, namely the pairs of the form (n, i) and (i, n).
However, if both (n, i) and (i, n) appear inL, then Condition (2) is violated. Hence there are at most n pairs involving n, and
at least one pair (i, j) not involving n. Without loss of generality we may assume that the first pair ofL does not contain n,
for if it did, we could interchange it with the pair (i, j).
Let L′ be the sequence with m′ pairs obtained from L by removing all the pairs containing n. Then L′ satisfies all the

conditions as well, and its elements are from the set {1, . . . , n− 1}. By the induction hypothesis,

m′ ≤ M(n− 1) ≤ ((n− 1)2 − (n− 1))/2 = (n2 − n)/2− (n− 1).

In addition to the pairs ofL′,L contains pairs from the set

{(1, n), (2, n), . . . , (n, n), (n, 1), (n, 2), . . . , (n, n− 1)}.

IfL contains (n, n), then it cannot contain any other pair involving n, for this would violate Condition (3). Hence,

M(n) = m′ + 1 ≤ (n2 − n)/2− (n− 2) < (n2 − n)/2,

which contradicts our assumption. If L does not contain (n, n), it contains at most (n − 1) pairs involving n. Now M(n) ≤
m′+ (n−1) ≤ (n2−n)/2, which is again a contradiction. Thus,M(n) ≤ (n2−n)/2 and the induction step goes through. �

Theorem 8. Let S = (Σ,Q , P, E) be a semiautomaton, n = Q#, and k ≥ 0, the predictability index of S. IfΣ# > 1, then k ≤
(n2 − n)/2, and this bound is reachable for a suitableΣ .

Proof. First, we prove that the bound is reachable for a suitable alphabet. Let n ≥ 1, and let L = (r1, s1), . . . , (rk, sk) be a
sequence satisfying the conditions of Lemma 7, with k = (n2 − n)/2. Consider the semiautomaton S = (Σ,Q , P, E), with
Σ = {a1, . . . , ak}, Q = {1, . . . , n}, P = {r1} and E = E1∪Er ∪Es, where E1 = {(r1, a1, r1), (r1, a1, s1)}, Er = {(ri, ai+1, ri+1) |
1 ≤ i < k}, and Es = {(si, ai+1, si+1) | 1 ≤ i < k}.We show that S is k-predictable, but not (k− 1)-predictable.
Observe that E1 = 〈r1, a1〉 is a fork in S and its fork set 〈〈r1, a1〉〉 = {r1, s1} is critical. Consider w = a2 · · · ak; clearly,

w ∈ Rr1∩Rs1 , implying thatS is not (k−1)-predictable, since |w| = k−1. Also Rrk∩Rsk = ∅; for if both (rk, aj, r) and (sk, aj, s)
were in E for some r, s ∈ Q and j ∈ {1, . . . ,m}, then either (rk, sk) = (rj−1, sj−1) for j > 1, or (rk, sk) = (r1, s1) for j = 1. In
both cases, thiswould violate path Condition (1). Thusw is a longestword in Rr1∩Rs1 , implying that 〈〈r1, a1〉〉 is k-predictable.
Since P# = 1, P is 0-predictable. If there exists a fork other than 〈r1, a1〉 in S, then there must be a pair (ri, si) inLwith

ri = si, since only such states have outgoing edges with a same label, by the construction of S. By the argument in the proof
of Lemma 7,L cannot be of maximal length. Hence there are no other forks, and S has index k.
In summary, the minimal predictability bound of (n2 − n)/2 can be reached, possibly at the cost of a large alphabet. �

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
6 J. Brzozowski, N. Santean / Theoretical Computer Science () –

a b

Fig. 4. Semiautomata reaching the predictability bound.

Fig. 5. A k-predictable semiautomaton over a two-letter alphabet.

Example 9. For n = 4, the semiautomata in Fig. 4(a) and 4(b) correspond to the sequences

L1 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
andL2 = {(2, 3), (3, 4), (1, 4), (2, 4), (1, 3), (2, 1)},

respectively. Both sequences obey the conditions of Lemma 7 and are of maximal length. Therefore, both semiautomata are
6-predictable, and reach the upper bound for 4 states. �

Remark 10. For fixed alphabets, the bounds may turn out to be smaller. The semiautomaton in Fig. 5 over a two-letter
alphabet has n states and is k-predictable, where

k =
⌊n
2

⌋⌊n+ 1
2

⌋
.

When n is even, then k = n2/4, and when n is odd, k = (n2 − 1)/4. Thus, in both cases we have k ≤ n2/4—a value strictly
smaller than the upper bound of n(n− 1)/2 when n > 2; when n = 2 the bound is 1 and is reached. In general, we do not
know whether the bound in Theorem 8 can be reached for a binary alphabet or a larger fixed alphabet.

4. Selectors and nonselectors

We classify a wordw in the language RT of a set T ⊆ Q as a ‘‘t-selector in T ’’, if it originates in t ∈ T (is the label of a path
from t) and in no other state of T , or as a ‘‘t-nonselector in T ’’, if it originates in t and in at least one other state of T . These
words play a key role in predictability. Selectors are look-ahead words that permit us to choose only one state from a set T ,
whereas nonselectors limit the choice to a subset of T that has at least two states.
We use the symbol

4
= to mean ‘‘is by definition’’.

Definition 11. If S = (Σ,Q , P, E) is a semiautomaton, T = {t1, . . . , th} ⊆ Q , then a wordw ∈ Σ∗ is a ti-selector in T if

w ∈ σ(ti, T)
4
=

(
Rti \

⋃
j∈{1,...,h},j6=i

Rtj
)
.

Wordw is a ti-nonselector in T if

w ∈ σ(ti, T)
4
= Rti \ σ(ti, T) =

⋃
1≤j≤h,j6=i

(Rti ∩ Rtj).

Wordw is a selector in T if it is a ti-selector in T for some ti, i.e., if

w ∈ σ(T)
4
=

h⋃
i=1

σ(ti, T).

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 7

Fig. 6. Selectors and nonselectors.

Wordw is a nonselector in T if it is a ti-nonselector in T for some ti, i.e., if

w ∈ σ(T)
4
=

h⋃
i=1

σ(ti, T) = RT \ σ(T) =
⋃

1≤i6=j≤h

(Rti ∩ Rtj).

A selectorw isminimal if no prefix ofw is a selector. A ti-nonselector u ismaximal if no extension of u is in Rti .

Example 12. In Fig. 1(a), the set of q-selectors in the fork set 〈〈p, a〉〉 = {q} is a∗, and 1 is the only minimal q-selector in {q}.
There are no q-nonselectors in {q}. Fork 〈q, a〉 has critical set T = {q, r}. The set of q-selectors in T is a+, and a is a minimal
q-selector in T . The empty word 1 is the only q-nonselector in T , and it is not maximal because a = 1a ∈ Rq. There are no
r-selectors in T , and 1 is the only r-nonselector in T ; it is maximal because no extension of 1 is in Rr .
In Fig. 1(b), the fork set 〈〈p, a〉〉 is T = {q, r}. Here RT = {1}, there are no selectors, and 1 is a maximal q-nonselector in

T and a maximal r-nonselector in T . Thus, there exist sets that are predictable and yet have no selectors. Also, a set that is
not predictable may have selectors, as we shall see in Example 24.
In Fig. 1(c), there is a fork 〈p, a〉with fork set T = {p, q}. There are no selectors, since Rp ∩ Rq = a∗. Every word in a∗ is a

p-nonselector and a q-nonselector, and there are no maximal nonselectors. �

When necessary, we denote minimal selectors in square brackets andmaximal nonselectors in ‘‘floor’’ brackets, as in the
next example.

Example 13. The semiautomaton S of Fig. 6 illustrates the usefulness of minimal selectors and maximal nonselectors. The
only critical set with more than one element is P = {p1, p2, p3}. One verifies that S is 2-predictable. There is a minimal
p1-selector aa, and maximal nonselectors a for p2, and 1 for p3. In the figure, [aa] is a minimal selector and bac is a maximal
nonselector.
If the input word to S is 1, then any state in P can be the initial state, and there is no further computation. If the input

word is a, then the initial state could not be p3, but is limited to {p1, p2}. Finally, if the input word begins with aa, then the
initial state is necessarily p1. �

Selectors and nonselectors have the following prefix properties:

Proposition 14. Let S = (Σ,Q , P, E) be a semiautomaton and T ⊆ Q .

(1) Every extension of a t-selector is a t-selector.
(2) The set of all nonselectors in T is prefix-closed.
(3) If an s-selector u is a prefix of any wordw in Rt , then s = t.
(4) The set of all minimal selectors in T is prefix-free.
(5) No selector is a prefix of a nonselector.
(6) For any t ∈ T , no maximal t-nonselector is a prefix of a t-selector.
(7) For any t ∈ T , the set of all maximal t-nonselectors is prefix-free.

Proof. (1) If u is a t-selector and uv is a t-nonselector, then uv ∈ Rs for some s ∈ T , s 6= t . Since Rs is prefix-closed, also
u ∈ Rs, which is a contradiction.

(2) Word w is a nonselector if and only if there exist s, t ∈ T , such that w ∈ Rs ∩ Rt . Since Rs and Rt are prefix-closed, we
have u ∈ Rs ∩ Rt , for every prefix u ofw.

(3) This follows from (1).
(4) This follows from the definition of minimal selector.
(5) This follows from (2).
(6) If u is a maximal t-nonselector, then ua 6∈ Rt , for all a ∈ Σ . Hence no extension of a maximal t-nonselector is in Rt .
(7) This follows by the same reasoning as (6). �

Theorem 15. Let S = (Σ,Q , P, E) be a semiautomaton and T ⊆ Q . The following are equivalent: (1) T is k-predictable.
(2) Every word of length k in RT is a selector in T . (3) Every word of length ≥ k in RT has a minimal selector in T as a prefix.
(4) Every nonselector is of length< k.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
8 J. Brzozowski, N. Santean / Theoretical Computer Science () –

Fig. 7. A semiautomaton with many minimal selectors and maximal nonselectors.

Proof. (1)⇒ (2) Suppose w ∈ Σk. If w is nonselector in T , then w ∈ Rs ∩ Rt ∩ Σk, for some s, t ∈ T , contradicting (1).
Hencew must be a selector in T .

(2)⇒ (3) Every wordw of length≥ k in RT has a prefix u of length k, and u is a selector in T by (2). By definition of minimal
selector, u (and hence alsow) must have a minimal selector as a prefix.

(3)⇒ (4) If |w| ≥ k, then w has a minimal selector as a prefix by (3). Then w is an extension of a selector, and must itself
be a selector. Hence, ifw is a nonselector in T , then |w| < k.

(4)⇒ (1) If a longest nonselector in T is of length< k, then Rs∩Rt∩Σk = ∅, for all s, t ∈ T , s 6= t , and T is k-predictable. �

Corollary 16. If T is a k-predictable set of a semiautomaton S, then every minimal selector in T is of length≤ k.

Proposition 17. Let S = (Σ,Q , P, E), let T ⊆ Q , and let t ∈ T . If T is k-predictable, then there exists either a minimal t-selector
in T or a maximal t-nonselector in T .

Proof. Note first that Rt is not empty, since 1 ∈ Rt . If t has a selector in T , then it has a minimal selector in T . Assume now
that t has no selectors in T . If Rt is finite, letw be a longest word in Rt , necessarily a nonselector. Thenwa 6∈ Rt for all a ∈ Σ ,
andw is a maximal t-nonselector in T . By Theorem 15(4), the case where Rt is infinite is impossible. �

We now show that the number of minimal selectors andmaximal nonselectors of a state of a k-predictable semiautoma-
ton may be exponential in k.

Proposition 18. Let S = (Σ,Q , P, E) be a semiautomaton with an alphabet of m letters, let T ⊆ Q be a k-predictable set, and
let t ∈ T . Then the number St of minimal t-selectors (Nt of maximal t-nonselectors) is bounded from above by mk (mk−1), and
this bound is reachable.

Proof. Suppose that T is a k-predictable set. Eachw ∈ RT ∩Σk has a prefix which is a minimal selector. Since the set of all
minimal selectors is prefix-free, w has exactly one such prefix. Since there are at mostmk such words w, we have St ≤ mk.
Similarly, every maximal nonselector is of length ≤ k − 1; thus it is a prefix of a word of length k − 1. Since the set of all
maximal t-nonselectors is prefix-free, we have Nt ≤ mk−1.
Now consider the semiautomaton of Fig. 7. There are 2k + 1 states, and only one nontrivial critical set, {q1, r1}, the set

of initial states. Since Rq1 ∩ Rr1 ∩ Σ
k
= ∅, the semiautomaton is k-predictable. Every word of length k is a minimal q1-

selector; thus there aremk minimal selectors. Also, every word of length k− 1 is a maximal q1-nonselector (and a maximal
r1-nonselector). Thus there aremk−1 maximal nonselectors. �

By Theorem 8, k ≤ (n2 − n)/2; hence St ≤ m(n
2
−n)/2 and Nt ≤ m(n

2
−n)/2−1. The semiautomaton in Fig. 7 has n = 2k+ 1

states. For that automaton St = m(n−1)/2 and Nt = m(n−1)/2−1, which shows that St and Nt can be exponential in the number
of states. We do not know whether the boundsm(n

2
−n)/2 andm(n

2
−n)/2−1 can be met.

5. Product semiautomata

We now introduce deterministic ‘‘product semiautomata’’, whose definition involves subset constructions. They explain
the nature and the role of selectors and nonselectors, and provide another test for predictability.
Recall that, to test for predictability of a set T = {t1, . . . , th} ⊆ Q of states of S = (Σ,Q , P, E), we need to show that

there exists a k such that Rti ∩ Rtj ∩ Σ
k
= ∅ for all i, j such that i 6= j and 1 ≤ i, j ≤ h. The language Rti is defined by

the nondeterministic semiautomaton Si = (Σ,Q , {ti}, E). We first determinize each such semiautomaton using the subset
construction and obtain a deterministic semiautomatonDi = (Σ, 2Q , ti, Ei), where 2Q is the set of all subsets of Q . Then we
construct the direct productD1 × · · · ×Dh of these h deterministic semiautomata in order to study intersections of their
languages. The direct product of h copies of 2Q is denoted by (2Q)h.

Definition 19. If S = (Σ,Q , P, E) is a semiautomaton and T = {t1, . . . , th} ⊆ Q , define the deterministic semiautomaton

D1 × · · · ×Dh = (Σ, (2Q)h, γ0, ÊD),

where γ0 = ({t1}, . . . , {th}), and, for every state (S1, . . . , Sh) of D1 × . . . × Dh and every a ∈ Σ , there is an edge
((S1, . . . , Sh), a, (S ′1, . . . , S

′

h)) ∈ ÊD , if (Si, a, S
′

i) is an edge in the semiautomaton Di, for i = 1, . . . , h. Then the product
semiautomaton for T is the accessible semiautomaton ofD1 × · · · ×Dh, and it is denoted by

D(T) = (Σ,Γ , γ0, ED).

Note thatD(T) is complete.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 9

a

b
Fig. 8. An unpredictable semiautomaton and its product semiautomaton.

Next we identify several types of states in the product semiautomaton; these states will help us to findminimal selectors
and maximal nonselectors.
Let γempty = (∅, . . . ,∅) ∈ (2Q)h.

• A state is ti-singular if only its ith component is nonempty; it is ti-plural if at least two of its components, including the
ith, are nonempty.
• A state γi is ti-primary if there exists a path (γ0, a1, γ1) · · · (γj−1, aj, γj), where γ0, . . . , γj−1 are ti-plural and γj is ti-
singular.
• A state γ is ti-ultimate if it is ti-plural and the ith component of γ a is empty, for each a ∈ Σ .
• A state is singular, plural, primary, or ultimate, if it is ti-singular, ti-plural, ti-primary, or ti-ultimate for some ti ∈ T ,
respectively.
• Let Γpl (Γpr) be the set of all plural (primary) states of Γ .
• A state is cyclic if it appears in a cycle.

A wordw is singular (primary, plural) if γ0w is singular (primary, plural);w = a1 · · · ai is nullary if its path is (γ0, a1, γ1)
· · · (γi−1, ai, γi),where γ0, . . . , γi−1 are plural and γi = γempty.

Example 20. Fig. 8(a) shows a semiautomatonwith one initial state and one fork 〈p, b〉, with fork set T = {p, q}. The product
semiautomatonD(T) is given in Fig. 8(b), where, for simplicity, we represent sets of states as words; for example, we write
pq for {p, q}.
Here γempty = (∅,∅). There are five p-singular states: (pq,∅), (rt,∅), (st,∅), (q,∅), and (t,∅), and two q-singular states:

(∅, t) and (∅, q). States (p, q), (r, t), and (s, t) are both p-plural and q-plural. State (pq,∅) is p-primary, while (∅, t) and
(∅, q) are q-primary. There are no p-ultimate or q-ultimate states. All the plural states are cyclic.
Examples of singular words are bbaa and aabaaa. All words in (aab)∗(1+ a+ aa) are plural. There is an infinite number

of p-primary words; the set of all such words is denoted by the regular expression (aab)∗b. There is an infinite number
of q-primary words: (aab)∗(ab + aaa). Note that a primary state may be also reached by words that are not primary. For
example, (∅, t) can be reached by aba. There are no nullary words. �

Our next proposition characterizes the selectors and nonselectors in a set T of states of a semiautomaton S in terms of
the types of states reached by these words in the product automatonD(T).

Proposition 21. Let D(T) be the product semiautomaton of a set T in S. (1) Word w is a ti-selector in T if and only if γ0w is
ti-singular. (2)Word w is a minimal ti-selector if and only if γ0w is ti-primary. (3)Word w is a ti-nonselector if and only if γ0w
is ti-plural. (4)Wordw is a maximal ti-nonselector if and only if γ0w is ti-ultimate.

Proof. Properties (1) and (3) follow easily from the definitions.
For (2), ifw is a minimal ti-selector, then γ0w is ti-singular by (1). Ifw has a proper prefix u, then umust be a nonselector.

Thus every state of the form γ0u is plural, and hence w is primary. Conversely, if w is primary, then it defines a path
(γ0, a1, γ1) · · · (γm−1, am, γm),where γ0, . . . , γm−1 are plural and γm is singular. Therefore no proper prefix ofw is a selector,
andw is minimal.
For (4), if γ = γ0w is ti-ultimate, then γ is ti-plural. Since w is not a ti-selector and w ∈ Rti , then w is a ti-nonselector.

Because every extension wa leads to a state with an empty ith component, wa 6∈ Rti , and no extension wau is in Rti , since
Rti is prefix-closed. Hence w is maximal. Conversely, if w is a maximal ti-nonselector, then w ∈ Rti and w ∈ Rtj for some
j 6= i. Hence γ0w is a state with nonempty ith and jth components. If γ0w is not ti-ultimate, then there exists a ∈ Σ such
that γ0wa has a nonempty ith component. But thenwa ∈ Rti andw is not maximal. Therefore γ0w is ti-ultimate. �

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
10 J. Brzozowski, N. Santean / Theoretical Computer Science () –

a

b
Fig. 9. A predictable semiautomaton and its product semiautomaton.

Theorem 22. The length of a longest primary or nullary word in product semiautomata D(T) over all critical sets T is k if and
only if S is predictable with index k.

Proof. Let k − 1 be the length of a longest plural word w in D(T). Then w is a nonselector in T , by Proposition 21(3). By
Theorem 15, T is not (k − 1)-predictable. Since there are no plural words of length k in D(T), every word u of length k is
either nullary or singular. In the first case, u 6∈ RT . In the second case, u is a selector by Proposition 21(1). Thus every word
of length k in RT is a selector, and T is k-predictable by Theorem 15.
Conversely, if T is k-predictable, then all nonselectors in T and (by Proposition 21(3)) all plural words in D(T) are of

length< k, by Theorem 15. If T is not (k− 1)-predictable, then RT must have a nonselector of length k− 1, and hence there
is a plural word of that length inD(T). �

Corollary 23. A set T = {t1, . . . , th} ⊆ Q of S is predictable if and only if the product semiautomatonD(T) does not have cyclic
plural states.

Example 24. The semiautomaton of Fig. 8 is not predictable because its product semiautomaton has cyclic plural states.
This is in spite of the fact that the set {p, q} has an infinite number of minimal selectors denoted by the regular expression
(aab)∗(b+ ab+ aaa).
Semiautomaton S of Fig. 9 (a) has one nontrivial critical set T = {p, q}, of fork 〈p, a〉. The product semiautomatonD(T)

is shown in Fig. 9(b). Since no plural state is cyclic, S is predictable.
The plural words, and hence nonselectors, are 1, b, and bc , and none is maximal. There is one nullary word bca. In every

deterministic transition in Fig. 9 (a), 1 is theminimal selector. The primarywords a, c , ba, bb and bcb areminimal p-selectors,
and the only minimal q-selector is bcc. The length of a longest primary or nullary word is 3; hence the set {p, q} and S are
3-predictable by Theorem 22. �

6. Core semiautomata

Wenow show that, for a predictable semiautomaton S, a part of the product semiautomaton suffices for finding selectors
and nonselectors.

Definition 25. The core of a product semiautomatonD(T) = (Σ,Γ , γ0, ED) is an incomplete deterministic semiautomaton
C(T) = (Σ,Ω, γ0, EC),where

Ω =

{
Γpl ∪ Γpr ∪ {γempty} if there is an edge from a plural state to γempty,
Γpl ∪ Γpr otherwise,

and EC consists of edges that join a plural state to a plural state, primary state, or γempty.

Sinceminimal selectors are primary words andmaximal nonselectors lead to ultimate states, both can be found from the
core semiautomaton. Thus, it is not necessary to construct the full product semiautomaton.

Example 26. The core semiautomaton C(T) of product semiautomatonD(T) of Fig. 9(b) is in Fig. 10. The minimal selectors
and maximal nonselectors are now easier to find by inspection. �

Example 27. In Fig. 11 the symbols in [] and b c show theminimal selectors andmaximal nonselectors. There are two initial
states and two forks. The core semiautomata are shown in Fig. 12. The semiautomaton is 2-predictable. �

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 11

Fig. 10. The core of the product semiautomaton in Fig. 9(b).

Fig. 11. Illustrating selectors and nonselectors.

a b c
Fig. 12. Core semiautomata for Example 27.

The number of states of the core semiautomaton is≤ (n+ 1)(2n)n, since there are n+ 1 critical sets, each of which may
have n states, and each state is a subset of the set of all n states. More research is needed to determine how complex the core
semiautomata are in typical cases. When the semiautomaton has a small predictability bound, or only a few forks, or small
critical sets, it may be practical to construct the predictor. In any case, theminimal selectors andmaximal nonselectors need
only be computed once, and can be used in many applications, as explained in the next section.
Minimal selectors permit us to determine precisely which state t must be chosen from a set T in a computation step.

Sometimes it is also possible to reduce nondeterminism further by using maximal nonselectors. A maximal nonselector
restricts the choice of states from T to a subset S ⊆ T containing at least two states. In the worst case, when S = T , no
reduction is possible. These ideas are applied in the next section.

7. Predictors

The concepts of the previous sections are now used to simulate a predictable semiautomaton almost deterministically.
Let

Σ≤ks = {[w] | w ∈ Σ
≤k
}

be the set of all possible minimal selectors, let

Σ≤k−1n = {bwc | w ∈ Σ≤k−1},

be the set of all possible maximal nonselectors, and let

Σs,n = Σ
≤k
s ∪Σ

≤k−1
n .

Startingwith a semiautomaton S, we define a semiautomatonP that hasΣ×Σs,n as input alphabet; the new input consists
of the current input letter a and up to k letters of look-ahead information.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
12 J. Brzozowski, N. Santean / Theoretical Computer Science () –

Definition 28. Let S = (Σ,Q , P, E) be a k-predictable semiautomaton, k ≥ 0. The predictor of S is a semiautomaton P =
(Σ ×Σs,n,Q , P, EP),where:

(1) The set of initial states is P . The sets of minimal p-selectors and maximal p-nonselectors in P are associated with each
state p ∈ P .

(2) If 〈q, a〉 is a fork, and (q, a, r), an edge inS, then (q, (a, [u]), r) ∈ EP , if u is aminimal r-selector, and (q, (a, buc), r) ∈ EP ,
if u is a maximal r-nonselector.

By Proposition 17, each state in P and in 〈〈q, a〉〉, for each q ∈ Q , a ∈ Σ , has a minimal selector or a maximal nonselector.
Thus it is easily verified that there is a one-to-one correspondence between predictable semiautomata and predictors.

Example 29. Fig. 11 without the minimal selectors and maximal nonselectors is a semiautomaton S. With the minimal
selectors and maximal nonselectors, it becomes a predictor. The incoming edge of q1 is labeled with minimal selectors
[a], [ba], and [bb], and that of q6, with maximal nonselector bbc. The edge (q1, a, q2) is replaced by edges (q1, (a, [a]), q2)
and (q1, (a, [bb]), q2), etc. Note that the two objects have the same set of states and initial states. The alphabet of the
predictor has been expanded to includeminimal selectors andmaximal nonselectors, and the transitions have beenmodified
accordingly. �

Wenowdescribe howapredictor can be used to simulate a nondeterministic semiautomaton. The objective is to compute
the set of states that can be reached by anyw ∈ |S|; ifw is not in |S|, then the set of states reached is empty. The simulation
decides as soon as possible whether the input is accepted or rejected.

Lemma 30. Let S = (Σ,Q , P, E) be a semiautomaton, and let T ⊆ Q be k-predictable. Ifw ∈ Rt , for some state t ∈ T , then one
of the following conditions holds: (1) A prefix u ofw is a minimal t-selector. (2) |w| < k, andw is a prefix of a minimal t-selector.
(3) |w| < k, andw is a prefix of a maximal t-nonselector.

Proof. If |w| ≥ k, thenw has a prefix which is a minimal selector, by Theorem 15(3). If |w| < k, andw is a selector, then it
has a prefix which is a minimal selector, by the definition of the latter. Assume now that w is a t-nonselector and |w| < k.
Consider any extension wx of w. This extension can be a t-selector, a t-nonselector, or not in Rt . If wx is a t-selector, then
it has a prefix u which is a minimal t-selector. Now u cannot be a prefix of w, since no selector is a prefix of a nonselector,
by Proposition 14(5). Hence u is an extension of w, and (2) holds. If neither (1) nor (2) holds, then all extensions of w are
either t-nonselectors or are not in Rt . If, for all a ∈ Σ , the extension wa is not in Rt , then w is a maximal t-nonselector.
Otherwise, there is an a such that wa is a t-nonselector. Continuing with this argument we obtain longer and longer t-
nonselectors. By Theorem 15(4), every nonselector is of length less than k. Therefore we must eventually reach a maximal
t-nonselector, and (3) holds. �

Definition 31. In a predictor P , for a word w ∈ Σ∗ and T ⊆ Q , we define the handle of w in T . If a minimal selector x in T
is a prefix ofw, then x is the handle. Ifw is a prefix of a minimal selector or a maximal nonselector in T , thenw itself is the
handle. Otherwise,w does not have a handle. Ifw has a handle in T , the handle applies to a state t ∈ T ifw ∈ Rt .

Definition 32. Given a predictorP (S) = P = (Σ×Σs,n,Q , P, EP) of a k-predictable semiautomaton S and an input word
w, a prefix y ofw yields a state s ∈ Q , written y⇒ s, as follows:

- Basis Step (Step 0): 1⇒ s if s ∈ P and the handle ofw in P applies to s.
- Induction Step (Step m + 1, m ≥ 0): Assume now that w = yaz, for some a ∈ Σ , y, z ∈ Σ∗. Then ya ⇒ s if y ⇒ r , for
some r ∈ Q , s ∈ 〈〈r, a〉〉 and the handle of z in 〈〈r, a〉〉 applies to s.

Example 33. Consider the semiautomaton of Fig. 11, the fork 〈q1, a〉 and the fork set 〈〈q1, a〉〉 = {q2, q3}. Words a and bb
areminimal q2-selectors, and ba is aminimal q3-selector.Words 1, a, b, ba and bb are all prefixes of minimal selectors. Hence
they are their own handles. Word abb has handle a, and word bbb has handle bb.
Supposew = aaab. The handle ofw in P = {q1, q6} is a. Since a applies only to q1, we have 1⇒ q1.
Now w has the form w = aaab = (1)(a)(aab) = yaz. Since 1 ⇒ q1, the current input is a, the fork set to consider is

〈〈q1, a〉〉 = {q2, q3}. Since the handle of z = aab in {q2, q3} is a, and the handle applies to q2, we have a⇒ q2.
Now w has the form w = aaab = (a)(a)(ab) = yaz. Since a ⇒ q2, the current input is a, the fork set is 〈〈q2, a〉〉 =

{q4, q5, q6}. Since the handle of z = ab in {q4, q5, q6} is a, and the handle applies to q4, we have aa⇒ q4.
Noww has the formw = aaab = (aa)(a)(b) = yaz. Since aa⇒ q4, the current input is a, the fork set is 〈〈q4, a〉〉 = {q1}.

Since the handle of z = b in {q1} is 1, and the handle applies to q1, we have aaa⇒ q1.
Now w has the form w = aaab = (aaa)(b)(1) = yaz. Since aaa ⇒ q1, the current input is b, the fork set is

〈〈q1, b〉〉 = {q1}. Since the handle of z = 1 in {q1} is 1, and the handle applies to q1, we have aaab⇒ q1. �

The next result proves the correctness of the predictor’s simulation, and defines termination conditions.

Theorem 34. Let S = (Σ,Q , P, E) be a k-predictable semiautomaton,P = (Σ ×Σs,n,Q , P, EP), its predictor, andw = yv ∈
Σ∗, an input word of S. Then the predictor operation is correct in the following sense:

1. Ifw ∈ |S|, then y⇒ q in P if and only if q ∈ Py and v ∈ Rq in S.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
J. Brzozowski, N. Santean / Theoretical Computer Science () – 13

2. The simulation stops with the remaining input v if and only if one of the following holds: (a) It is step 0 and w has no handle
in P; this implies w 6∈ |S|. (b) It is a step> 0 and v = 1; this implies that w ∈ |S|. (c) It is a step> 0 and v = az, for some
a ∈ Σ , z ∈ Σ∗ and there is no fork 〈q, a〉 in S; thenw 6∈ |S|. (d) It is a step> 0 and v = az, for some a ∈ Σ , z ∈ Σ∗ there is
a fork 〈q, a〉 in S, but z has no handle in 〈〈q, a〉〉; this impliesw 6∈ |S|.

Proof. First, we show that, if y⇒ q, then q ∈ Py and v ∈ Rq, by induction on the length of the prefix y. If 1⇒ s, then s ∈ P
by Definition 32. Thus s ∈ P1 = P . Since w ∈ RP by assumption, and the handle of w in P applies to s, we have w ∈ Rs,
and the basis holds. Now assume that, for an arbitrary prefix y of w = yaz, if y ⇒ r , then r ∈ Py and v ∈ Rr . Suppose that
ya ⇒ s. Then y ⇒ r , for some r ∈ Q , s ∈ 〈〈r, a〉〉, and the handle x of z in 〈〈r, a〉〉 applies to s. By the induction hypothesis,
r ∈ Py and az ∈ Rr . Since s ∈ 〈〈r, a〉〉, there is an edge (r, a, s) ∈ E; hence s ∈ Pya. Since z ∈ R〈〈r,a〉〉 because az ∈ Rr , and the
handle of z in 〈〈r, a〉〉 applies to s, we have z ∈ Rs. Thus the induction goes through.
Second, assume that q ∈ Py and v ∈ Rq; we show that y ⇒ q, by induction on the length of y. Consider first the

factorization w = yv = 1w. If p ∈ P and w ∈ Rp, then the handle of w in P applies to p. By Definition 32, the empty prefix
1 of w derives p. Now assume that, for an arbitrary prefix y of w = yv, if r ∈ Py and v ∈ Rr , then y⇒ r . Suppose now that
w = yaz. Sincew ∈ RP , there exists r ∈ Py such that az ∈ Rr , and hence there is a fork 〈r, a〉. Let s be any state in T = 〈〈r, a〉〉
such that z ∈ Rs. By the induction hypothesis, y ⇒ r . Since s ∈ T and z ∈ Rs, the handle of z in T applies to s. Therefore
ya⇒ s, and the claim holds.
For (a), if w has no handle in P , then 1 ⇒ p is false for all p ∈ P , by Definition 32, and the simulation stops. Now if

w ∈ |S|, thenw ∈ RP , and hencew ∈ Rp, for some p ∈ P . Since also p ∈ P1, the first part of the theorem applies, and 1⇒ p,
which is a contradiction; thusw 6∈ |S|.
For (b), if the simulation has consumed y, y⇒ q, and v = 1, thenw = y, and the entire input has been processed. Since

v does not have the form az, the simulation stops. Sincew = y⇒ q, we havew ∈ |S|.
For (c), assume thatw = yv = yaz, the simulation has consumed y, y⇒ q, but there is no fork 〈q, a〉 in S. The induction

step cannot be carried out, and az 6∈ Rq. Suppose now that w ∈ |S|. Since y ⇒ q, we have q ∈ Py and az ∈ Rq, by the first
part of the theorem. This is a contradiction; thusw 6∈ |S|.
For (d), assume thatw = yv = yaz, the simulation has consumed y, y⇒ q, and z has no handle in 〈〈q, a〉〉. The derivation

stops because the induction step cannot be carried out. If w ∈ |S|, since y ⇒ q, we know by the first part of the theorem
that q ∈ Py and v ∈ Rq. Also, there exists r ∈ 〈〈q, a〉〉 such that (q, a, r) is an edge in S and z ∈ Rr . But now r ∈ Pya and z ∈ Rr
implies that ya⇒ r , again by the first part. Thus z must have a handle in 〈〈q, a〉〉, which is a contradiction, andw 6∈ |S|.
One verifies that, if none of the conditions (a)–(d) holds, then the derivation continues. This concludes the proof of the

second claim. �

Corollary 35. In a predictor P ,w ∈ |S| if and only ifw⇒ q, for some q ∈ Q .

Example 36. We continue with the semiautomaton of Fig. 11, and expand Example 33. Supposew = aaababaab. We write
a(z) for az to make it easier to identify the handle of z. Let q be the current state, and v, the remaining input. In Step 0,
v = w = aaababaab, and the handle of w in {q1, q6} is a. We have 1 ⇒ q1, since a applies only to q1. With the look-ahead
information, next seven steps are deterministic:

[a]
⇒ q1

a[a]
⇒ q2

a[a]
⇒ q4

a[1]
⇒ q1

b[1]
⇒ q1

a[ba]
⇒ q3

b[1]
⇒ q7

a[1]
⇒ q1.

Here, the transition q1
a[a]
⇒ q2 means that the current state is q1, and the current input is a. Since q = q1, v = az =

a(aababaab), the handle of z in {q2, q3} is a. Hence a⇒ q2, since a applies only to q2, and a is consumed from the input.
Next q = q2, v = az = a(ababaab), and the handle of z in {q4, q5, q6} is a. Then aa⇒ q4, since a applies only to q4, and

a is consumed, etc.
This deterministic computation continues until q = q1 and v = a(b). Now the handle of b in {q2, q3} is b itself. Since the

handle is a prefix of minimal selectors ba and bb, it applies to both q2 and q3.
Finally, for v = b(1), q2 moves to q6, and q3 moves to q7. Thusw yields {q6, q7}.
As another example, considerw = abba. Here we have:

[a]
⇒ q1

a[a]
⇒ q2

b[1]
⇒ q6

b[1]
⇒ q5.

Then the computation stops, yielding the empty set of reachable states. �

The simulation operates ‘‘almost deterministically’’ in finding next states. By Corollary 35, we can achieve total
determinism concerning the membership of a word in the language of the semiautomaton: Run the simulation until more
than one choice appears, and then choose an arbitrary branch in every step (since all choices lead to the same conclusion).
If the size of the alphabet Σ , the number of nontrivial forks and the integer k are not prohibitively large, one can pre-
compute the set of states reachable from any fork by each word of length≤ k, and use a look-up table for the last part of the
computation, thus making the entire computation completely deterministic.
Another type of simulation, which predicts the next state as long as a prefix of the input word is in the language of the

semiautomaton, is described in [3].

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

ARTICLE IN PRESS
14 J. Brzozowski, N. Santean / Theoretical Computer Science () –

8. Conclusions

We have introduced a class of semiautomata in which it is possible to remove most of the nondeterminism by using
a finite amount of look-ahead information from the input tape. In the worst case, the length k of the look-ahead buffer
is quadratic in the number n of states of S. As long as the input word has length > k, the computation is deterministic,
and nondeterminism is limited to the last k letters of the input word. The application to nondeterministic automata
(semiautomata with accepting states) is straightforward. To determine whether a word w is accepted by an automaton,
find the set of states derived byw and check whether any of these states are accepting.

References

[1] D. Berardi, D. Calvanese, G.D. Giacomo, M. Lenzerini, M. Mecella, Automatic composition of e-services that export their behavior, in: E. Orłowska,
M. Papazoglou, S. Weerawarana, J. Yang (Eds.), Proc. ICSOC 2003, in: LNCS, vol. 2910, 2003, pp. 43–58.

[2] J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York, 1985.
[3] J. Brzozowski, N. Santean, Predictable semiautomata. Technical Report CS-2007-03, School of Computer Science, University of Waterloo, Waterloo, ON,
Canada, pp. 30, 2007. http://www.cs.uwaterloo.ca/research/tr/2007/.

[4] Z. Dang, O.H. Ibarra, J. Su, Composability of infinite-state activity automata, in: R. Fleischer, G. Trippen (Eds.), Proc. ISAAC 2004, in: LNCS, vol. 3341,
2004, pp. 377–388.

[5] C.G. Gerede, R. Hull, O.H. Ibarra, J. Su, Automated composition of e-services: Lookaheads, in: Proc. 2nd International Conference on Service Oriented
Computing, 2004 pp. 252–262.

[6] A. Ginzburg, Algebraic Theory of Automata, Academic Press, New York, 1968.
[7] Y.-S. Han, Y. Wang, D. Wood, Infix-free regular expressions and languages, International Journal of Foundations of Computer Science 17 (2) (2006)
379–393.

[8] Y.-S. Han, D. Wood, Generalizations of 1-deterministic regular languages, Information and Computation 206 (9–10) (2008) 1117–1125.
[9] B. Ravikumar, N. Santean, Deterministic simulation of NFA with k-symbol lookahead, International Journal of Foundations of Computer Science 18 (5)
(2007) 949–973.

Please cite this article in press as: J. Brzozowski, N. Santean, Predictable semiautomata, Theoretical Computer Science (2009),
doi:10.1016/j.tcs.2009.05.010

http://www.cs.uwaterloo.ca/research/tr/2007/

	Predictable semiautomata
	Introduction
	Predictable semiautomata
	Predictability bounds
	Selectors and nonselectors
	Product semiautomata
	Core semiautomata
	Predictors
	Conclusions
	References

