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Abstract

We investigate the e0ect on primitive words of point mutations (inserting or deleting symbols,
substituting a symbol for another one), of morphisms, and of the operation of taking pre-xes.
Several ways of producing primitive words are obtained in this framework. ? 2002 Elsevier
Science B.V. All rights reserved.
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1. Primitive words; prerequisites

The primitive words, those which cannot be written as the power of another word,
play an important role in formal language theory, coding theory, combinatorics on
words, etc. In spite of the fact that many researches were devoted to them, still the
subject is far from being exhausted. It is enough to mention the open problem whether
or not the language of all primitive words over a given alphabet is context-free; see
[2,5], and their references.
For an alphabet V , we denote by V ∗ the free monoid generated by V under the

operation of concatenation; the empty word is denoted by � and V ∗ − {�} is denoted
by V+. For x ∈ V ∗, |x| is the length of x, |x|a is the number of occurrences in x of
the symbol a ∈ V , and alph(x) is the set of symbols appearing in x. We also denote
by pref(x) the set of all non-empty preAxes of x. For a language L⊆V ∗, we put
length(L) = {|x| | x ∈ L}. The cardinality of a set X is denoted by card(X ).
For elementary notions and results of formal language theory, we refer to [7].
In what follows, V is always an alphabet containing at least two symbols.
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A word x ∈ V+ is said to be primitive if x=un; u ∈ V+, implies n=1 (hence x=u).
Note the fact that the empty word is not primitive. For every word x ∈ V+ there is a
unique primitive word u and a unique integer m¿1 such that x = um; the word u is
called the root of x.
The language of all primitive words over an alphabet V is denoted by QV ; when

V is understood, we write simply Q. The language of non-primitive words over V is
denoted by ZV (by Z when V is understood).
A language L is called re=ective if uv ∈ L implies vu ∈ L, for any u; v ∈ V ∗.
Several facts about primitive words are known; we recall some of them which will

be useful below; proofs can be found in [1,8].

Lemma 1. (i) If uv= vu; u; v ∈ V+; then u=pm; v=pn; for some p ∈ Q and n; m¿1.
(ii) (The periodicity theorem of Fine and Wilf). If um; vn have a common pre-x

of length at least |u|+ |v| − 1; then u and v are powers of the same word.
(iii) The languages Q and Z are re=ective

Lemma 2. (i) If u ∈ V+; u �= an for some a ∈ V; n¿1; then at least one of the words
u; ua is primitive.

(ii) If u; v ∈ Q; u �= v; then umvn ∈ Q; for all m¿2; n¿2.

Point (i) in Lemma 2 has the following immediate consequence.

Corollary 1. If u1; u2 ∈ V+; u1u2 �= an; a ∈ V; n¿1; then at least one of u1u2; u1au2 is
primitive

This corollary suggests the following problem: start with a primitive word w and try
to obtain new primitive words by inserting symbols into w. More generally, consider
point mutations (as, for instance, in the genetic area), that is insertions, deletions, or
substitutions of a single symbol each. The next sections are devoted to investigating
such operations. Still more generally, any operation with words can be considered from
the point of view of primitivity preserving. Two natural cases investigated here are the
morphisms and the operation pref, of taking preAxes.

2. Insertion, deletion and primitivity

We start by a result related to Lemma 2(i) and Corollary 1 above.

Proposition 1. For every word u ∈ V+ and every symbols a; b ∈ V; a �= b; at least
one of the words ua; ub is primitive.

Proof. If u = ai; i¿0, then ub is primitive, and if u = bi; i¿0, then ua is primitive.
Thus, we may assume that alph(u) is di0erent from both {a} and {b}.
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Suppose that none of ua; ub is primitive, hence there are f; g ∈ Q such that ua =
fn; ub= gm for some n¿2; m¿2:

We cannot have n = m: if n = m, then f = g, which is impossible because a �= b.
Therefore, at least one of n; m must be strictly greater than 2. Let us assume that m¿3;
the case n¿3 is similar.
From the equations ua= fn; ub= gm, we obtain |u|= n|f| − 1, and |u|= m|g| − 1;

hence 2|u|= n|f|+ m|g| − 2; that is |u|= n=2|f|+ m=2|g| − 1: Therefore, making use
of the relations n¿2; m¿3, we obtain |u|¿|f|+ |g| − 1.

Consequently, the words fn; gm have a common preAx u of length greater than
|f| + |g| − 1. In view of Lemma 1(ii), it follows that f = pr; g = ps, for some p ∈
V+; r; s¿1. Therefore, ua = prn; ub = psm; which is contradictory, because a �= b. In
conclusion, at least one of ua; ub is primitive.

This result has several rather interesting consequences, proving in some sense that
“there are very many primitive words”.

Corollary 2. (i) For every word u ∈ V ∗; at most one of the words ua; with a ∈ V; is
not primitive. (ii) For every words u1; u2 ∈ V ∗; at most one of the words u1au2; with
a ∈ V; is not primitive.

Proof. (i) For a given u ∈ V ∗, apply Proposition 1 for two symbols a; b ∈ V . If ua is
primitive, mark the symbol a, if ub is primitive, mark the symbol b. At least a symbol is
marked in this way. Continue by considering any two non-marked symbols. Eventually,
at most one symbol remains unmarked, and this completes the proof. Assertion (ii)
follows now from the reNectivity of Q.

Corollary 3. If the language L⊆V ∗ is in-nite; then there is at least one letter a ∈ V
such that L{a} ∩ Q is in-nite.

Proof. Let a; b ∈ V . If both L{a} and L{b} contain only a Anite number of primitive
words, then for some integer n all the words of the form ua; ub with |u|¿n will be
non-primitive. However, by Proposition 1, {u}V contains at most one non-primitive
word, a contradiction.

Corollary 2(ii) also has interesting consequences concerning the possibility of
obtaining primitive words by deletion operations (of single symbols).

Proposition 2. Every word w ∈ Q; |w|¿2; can be written in the form w = u1au2; for
some u1; u2 ∈ V ∗; a ∈ V; such that u1u2 ∈ Q.

Proof. Take w ∈ Q; |w|¿2. Because of the primitivity, we can write w = v1abv2, for
some v1; v2 ∈ V ∗; a; b ∈ V , with a �= b. According to Corollary 2(ii), at least one of
v1av2 and v1bv2 is primitive. The word v1av2 is obtained by erasing the symbol b from
w = v1abv2 (hence, u1 = v1a; u2 = v2), whereas the word v1bv2 is obtained by erasing
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the symbol a from w = v1abv2 (hence u1 = v1; u2 = bv2). In each case, a symbol can
be deleted from w and the obtained word is primitive.

This proposition suggests to consider a robustness notion of the following type: a
primitive word w ∈ V ∗ is said to be del-robust if each symbol of w can be erased such
that the obtained words are all primitive. Symmetrically, we can consider ins-robust
words, those which lead to primitive words irrespective where we insert irrespective
which symbol of V .
It is worth noticing that there are primitive words of arbitrary length which are at

the same time del-robust and ins-robust. An example is provided by the sequence of
words

wn = aba2b2 : : : anbn; n¿2

over V = {a; b}. Removing any symbol from wn or inserting a symbol a or b in
any position, we obtain primitive words: either an or bn remains unchanged, hence no
possibility appears of writing the obtained words as powers of other words.

3. Primitivity and density

Proposition 1 also suggests a series of developments related to the density of words
in a language.
Let k be a positive integer. A language L⊆V ∗ is called right k-dense (strictly right

k-dense) (see [3]) if for every u ∈ V ∗ there exists a word x ∈ V ∗, |x|6k (16|x|6k),
such that ux ∈ L. A language L is right dense if it is k-dense for all k¿1.
Thus, Proposition 1 says that the language Q is right 1-dense and therefore right

k-dense for every k.
A minimal (strictly) right k-dense language L is a (strictly) right k-dense language

that contains no proper (strictly) right k-dense language. Remark that � �∈ L.
It is proved in [3] that every right k-dense language contains a minimal right k-dense

language. Consequently, also the language Q contains a minimal right k-dense language,
for each k¿1.

Proposition 3. Let M be a minimal right 1-dense language of primitive words over
some alphabet V . Then:
(i) M ∩ V �= ∅:
(ii) For every integer n¿1 and every a ∈ V there exists b ∈ V; b �= a; such that

anb ∈ M .
(iii) If M is minimal strictly right 1-dense and if ua; ub ∈ M with u ∈ V ∗; a; b ∈ V;

then a= b.

Proof. (i) Since M is right 1-dense, there exists x ∈ V ∗; |x|61, such that �x ∈ M .
Since � is not primitive, it follows that |x|= 1 and x ∈ M ∩ V .
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(ii) If a ∈ V and n¿2, then an is not primitive. Because of the right 1-density of
M , there is x with |x|61 such that anx ∈ M . This implies x=b for some b ∈ V; b �= a.
(iii) Suppose that a �= b. The set M − {ub} is not strictly right 1-dense and hence

there is v ∈ V ∗ such that {v}V ∩ (M −{ub})= ∅. Since {v}V ∩M �= ∅, it follows that
vx ∈ M for some x ∈ V . From vx �∈ M − {ub} it follows that vx = ub. Since x ∈ V ,
then x = b and v = u. Hence {u}V ∩ (M − {ub}) = ∅ and, since ua ∈ M − {ub}, we
have a contradiction.

Proposition 4. Let M be a strictly right 1-dense language of primitive words over
some alphabet V . Then M is minimal if and only if ua; ub ∈ M for u ∈ V ∗; a; b ∈ V;
implies a= b.

Proof. (⇒) By Proposition 3(iii).
(⇐=) Suppose that M is not minimal. Then there exists a language L⊂M which is

strictly right 1-dense. Let v ∈ M − L; v �= �. Then v = ua for some a ∈ V . Since L is
right 1-dense, there is b ∈ V such that ub ∈ L. Hence ua; ub ∈ M and therefore a= b.
This implies that ua ∈ L and ua ∈ M − L, a contradiction.

Using the previous result, it is possible to construct a minimal strictly 1-dense lan-
guage of primitive words.
Let V = {a1; a2; : : : ; an}; n¿2. Consider the sequence of languages Ui; i¿1, deAned

as follows:

U1 = {u ∈ V ∗ | ua1 ∈ Q}; T1 = V ∗ − U1;

U2 = {u ∈ T1 | ua2 ∈ Q}; T2 = T1 − U2;
...

Ui = {u ∈ Ti−1 | uai ∈ Q}; Ti = Ti−1 − Ui;
...

The sequence Ui; i¿1, is Anite because the alphabet V is Anite (the sequence must
reach a set Ui+1 which is empty or i = n).
Let U = U1{a1} ∪ U2{a2} ∪ · · · ∪ Ui{ai}. The language U is a subset of Q. It is

strictly right 1-dense, because for every u ∈ V ∗ there is at least one aj such that uaj
is primitive and it is minimal by construction and by Proposition 4.

4. Symbol substitutions and primitivity

For x ∈ V+, consider the set

one(x) = {x1bx2 | x = x1ax2; x1; x2 ∈ V ∗; a; b ∈ V; a �= b}:
Consider a language L⊆V ∗ and a word x ∈ L. We say that x is subst-robust (with

respect to L) if one(x)⊆L.
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It is easy to see that Q contains both subst-robust and non-subst-robust words of
arbitrary length. For instance,

wn = aba2b2 : : : anbn; n¿3

are subst-robust, whereas

zn = ban; n¿1

are not. (Note that w2 = abaabb is not subst-robust: replacing the second occurrence
of a by b, we get the non-primitive word abbabb.)

Lemma 3. If L consists of only subst-robust words; then L={w ∈ V ∗ | |w| ∈ length(L)}.

Proof. Take x ∈ L; x = a1a2 : : : an. Because x is subst-robust, each word a1 : : : ai−1

biai+1 : : : an is in L. In turn, these words are subst-robust, hence one more symbol of
them can be changed. Continuing in this way, each word y such that |x|= |y| is proved
to be in L, which implies the inclusion {w ∈ V ∗ | |w| ∈ length(L)}⊆L. The converse
inclusion is obvious.

Corollary 4. If L⊆V ∗ is a context-free language such that all its words are subst-robust;
then L is regular.

Although not all primitive words are subst-robust in the sense deAned above, a
weaker notion of robustness is veriAed at least for alphabets with more than two
symbols.

Proposition 5. If V contains at least three symbols; then for each word x ∈ V ∗ and
for each decomposition x = x1ax2; x1; x2 ∈ V ∗; a ∈ V; there is b ∈ V; b �= a; such that
x1bx2 is primitive.

Proof. Consider a word x ∈ V ∗ and a decomposition x= x1ax2 as above. Consider the
words x1cx2 with c ∈ V . According to Corollary 2(ii), at most one is not primitive.
Because V contains at least three distinct symbols, there is b ∈ V − {a} for which
x1bx2 is primitive.

If we start with x ∈ V ∗; x ∈ Z , then all substitutions lead to primitive words: we
know that x=x1ax2 is not primitive, hence from Corollary 2(ii) all words x1bx2; b �= a,
are primitive. The argument holds even for V = {a; b}.
The assertion in Proposition 5 does not hold true for V={a; b}: in abaabb we cannot

replace the second occurrence of a by b, or the last occurrence of b by a without losing
the primitivity. However, we have the following result.

Proposition 6. If V = {a; b}; then for each word x ∈ V ∗; |x|¿3; and for each decom-
position x= x1&'x2; x1; x2 ∈ V ∗; &; ' ∈ V; at least one of the words x1&′'x2; x1&'′x2 is
primitive; where &; ' ∈ V; &′ �= & and '′ �= '.
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Proof. Take x = x1&'x2 as above &; ' ∈ V; |x1x2|¿1. In view of the reNectivity of Q,
it is enough to prove that at least one of x2x1&′'; x2x1&'′ is primitive. Assume the
contrary, that is x2x1&′' = fn, and x2x1&'′ = gm; for some n¿2; m¿2 and f; g ∈ Q.
As in the proof of Proposition 1, we may assume that at least one of n; m is greater
than or equal to 3; assume that m¿3.
If |g|=1, then x2x1&'′ = gm, for some g ∈ {a; b}. Because &′ �= &; '′ �= ', it follows

that x2x1&′' is primitive, a contradiction to the previous assumption. Thus, we may
assume that |g|¿2.

We have |x2x1| = n|f| − 2; and |x2x1| = m | g| − 2; which implies |x2x1| = n=2|f| +
m=2|g| − 2: Because n¿2 and m¿3, we get |x2x1|¿|f| + |g| + 1=2|g| − 2: Because
|g|¿2, we conclude that |x2x1|¿|f| + |g| − 1: From Lemma 1(ii), we obtain that f
and g are powers of the same primitive word, which is impossible because &′ �= & and
'′ �= '. In conclusion, at least one of x1&′'x2, x1&'′x2 is primitive.

The condition |x|¿3 in the theorem is necessary: for x = ab, none of the words
aa and bb is primitive. Note also that ab is primitive, hence the condition of x being
primitive does not help.

5. Taking pre'xes and primitivity

Consider now the operation pref. Let L⊆V ∗ be a given language.
We say that x ∈ L is pref-robust (with respect to L) if pref(x)⊆L. We denote by

Lpr the set of all pref-robust words in L.
It is easy to see that there are primitive words of arbitrary length which are pref-robust:

ban; n¿1, and aba2b2 : : : anbn; n¿1, are such examples.

Proposition 7. The language Qpr is not context-free.

Proof. Consider the regular language R= ba+ba+ba+ba+: Intersecting Qpr with R we
obtain

Qpr ∩ R= {ban1ban2ban3ban4 | n1; n2; n3; n4¿1;

n1¿n2 and (n1 �= n3 or n2¿n4)}:

The inclusion ⊇ is obvious. Conversely, take a word x=ban1ban2ban3ban4 ∈ Qpr ∩R.
Because pref(x)⊆Q, we must have
1. n1¿n2 (otherwise ban1ban1 ∈ pref(x)− Q) and
2. n1 �= n3 or n2¿n4 (otherwise ban1ban2ban1ban2 ∈ pref(x)− Q).
Because x ∈ pref(x), no further restriction is entailed by the fact that x ∈ Q. Conse-
quently, also the inclusion ⊆ holds.



246 G. P5aun et al. / Discrete Applied Mathematics 117 (2002) 239–252

Using a sequential transducer (a gsm), we can now translate Qpr∩R into the language

L= {an1bn2cn3dn4 | n1; n2; n3; n4¿1;

n1¿n2 and (n1 �= n3 or n2¿n4)}:
This is not a context-free language.
Indeed, assume that L is context-free. Then L has to satisfy Ogden’s lemma, that is

there is a constant N such that every z ∈ L in which at least N symbols are considered
marked can be written in the form z= uvwxy such that the following conditions hold:
(i) vwx contains at most N marked symbols, (ii) v and x together have at least one
marked symbol, (iii) for all i¿0, uviwxiy ∈ L.

Consider a constant N associated to L as in Ogden’s lemma and let z= an1bn2cn3dn4

with n1 =N +1; n2 =N; n3 = (N +1)! +N +1; and n4 = (N +1)! +N +1: It is clear
that z ∈ L (we have n1¿n2 and n1 �= n3). We mark all occurrences of the symbol b
in z (there are at least N such occurrences).
Let z=uvwxy be a decomposition of z which satisAes the conditions (i)–(iii) above.

It is clear that neither v nor x may contain two di0erent symbols. Condition (ii) implies
that |vx|b¿1. It suRces to consider the following two cases.
(1) vx does not contain any occurrence of a. Then z′ = uv2wx2y should be in L by

condition (iii) in Ogden’s lemma. However, |z′|a6|z′|b, a contradiction.
(2) vx contains occurrences of a. Then, we obviously have v = ai and x = bj for

some i; j¿1. If i¡ j, then for large enough k we get words z′′ = uvkwxky with
|z′′|a ¡ |z′′|b, again contradicting point (iii) above. Therefore, we must have i¿j.
Let

k =
(N + 1)!

i
+ 1

and consider the word z′′′ = uvkwxky = am1bm2cm3dm4 . We have

m1 = ik + N + 1− i = (N + 1)! + i + N + 1− i = (N + 1)! + N + 1;

m2 = jk + N − j6(N + 1)! + j + N − j = (N + 1)! + N;

m3 = n3 = (N + 1)! + N + 1; and

m4 = n4 = (N + 1)! + N + 1:

Consequently, m1 = m3 and m2¡m4, that is z′′′ �∈ L. Again, this contradicts Ogden’s
lemma.
We conclude that L is not context-free. Because the family of context-free languages

is closed under intersection with regular languages and under sequential transducers,
the language Qpr is not context-free.

Unfortunately, proving that Qpr is not context-free does not imply that Q is not
context-free: there are context-free languages L such that Lpr is not context-free. An
example is

L= {anbmamb | n; m¿1} ∪ pref({anbnam | n; m¿1}):
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This is a linear language (over V = {a; b}). However,

Lpr ∩ a+b+a+b= {anbnanb | n¿1};

which is non-context-free. (The equality above is obvious: the preAx anbmam of anbmamb
is in L only if anbmam ∈ pref({apbpaq |p; q¿1}), which implies n= m:)

6. Morphisms and primitivity

The behavior of morphisms with respect to primitivity has been considered previ-
ously, in particular in [4,10]. For a morphism f that is injective, it has been shown
in [4] that f(Q) ∩ Q is inAnite when |V | = 2. As shown below, this is in fact a
characteristic property of injective morphisms for alphabets containing two letters.
Recall (see [9]) that a morphism f is injective if and only if f(V ) is a code and

|f(V )|= |V |. Also a language {u; v}⊆V+ is a code if and only if uv �= vu.
A morphism f is said to be �-free if � �∈ f(V ).

Lemma 4. Let V = {a; b} and let f be a �-free morphism such that |f(V )|= |V |. If
f is not injective; then f(a) = pm; f(b) = pn for some p ∈ Q.

Proof. Since f is not injective, then f(V ) = {f(a); f(b)} is not a code. Therefore,
f(a)f(b) = f(b)f(a) and, by Lemma 1(i), f(a) = pm; f(b) = pn for some p ∈ Q.

Proposition 8. Let f be a �-free morphism of V ∗ with V ={a; b}. Then the following
properties are equivalent:
(i) f is injective;
(ii) f(Q) ∩ Q is in-nite.

Proof. (i) → (ii). The words anbn are primitive for all n¿1. Let u= ambm with m¿2
and suppose that f(u) is not primitive. Let f(a) = pr; f(b) = qs where p; q ∈ Q.
Then f(u) =prmqsm with rm; sm¿2. Since f(u) is not primitive, this is only possible
if p= q (Lemma 2(ii)). Hence f(ab) = f(ba), a contradiction.
(ii) → (i) Suppose that f is not injective. If |f(V )| = |V |, then by Lemma 4

f(a) = pm; f(b) = pn. Hence f(V+)⊆p+ and f(Q) ∩ Q is Anite, a contradiction.
If |f(V )|= 1, then f(a) =f(b). Let u=f(a). Then f(V+) = u+ and f(Q) ∩Q is

Anite, a contradiction.

If the alphabet V has more than two letters, the above proposition is no longer true.
For example, let V ={a; b; c} and let f be deAned by f(a)=a; f(b)=ab; f(c)=aba.
This morphism is not injective because f(ba) = f(c). However, f(Q) ∩ Q is inAnite
because anbn ∈ Q and f(anbn) ∈ Q for n¿1.
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Lemma 5. Let f be a �-free morphism of V ∗ with |V |¿2. Then the following prop-
erties are equivalent:
(i) f is injective;
(ii) f(uv) = f(vu) implies uv= vu for all u; v ∈ V ∗.

Proof. (i) → (ii). Immediate.
(ii) → (i) Suppose that f(u)=f(v). Then f(uv)=f(vu); uv=vu and u=pm; v=pn

with p ∈ Q. Hence f(p)m = f(u) = f(v) = f(p)n. Since f(p) �= �, we have m = n
and u= v.

Corollary 5. If f is injective; then f(uv)=f(vu) implies f(u)=pm; f(v)=pn with
p ∈ Q; m; n¿1.

Proof. Since uv= vu, then u= qr; v= qs and f(q) =pk for some q; p ∈ Q; r; s; k¿1.
Therefore, f(u) = pm; f(v) = pn with m= kr; n= ks.

Let f be a morphism of V ∗. Denote by fQ the set of all the primitive words u ∈ Q
such that f(u) ∈ Q and by fZ the set of all the primitive words u ∈ Q such that
f(u) ∈ Z; i.e. f(u) = pn; p ∈ Q; n¿2.

Proposition 9. Let f be a morphism of V ∗. Then:
(i) The languages fQ and fZ are re=ective.
(ii) If f is injective, then u; v ∈ fZ; u �= v imply uv �∈ fZ and uv ∈ Q.

Proof. (i) If fQ=∅, this is immediate. Suppose fQ �= ∅ and let uv ∈ fQ. Then uv ∈ Q
and f(u)f(v)=f(uv) ∈ Q. Since Q is reNective, then vu ∈ Q and f(vu)=f(v)f(u) ∈
Q. Therefore, vu ∈ fQ.
If fZ=∅, this is immediate. Suppose fZ �= ∅ and let uv ∈ fZ . Then uv ∈ Q; vu ∈ Q

and f(u)f(v)=f(uv) ∈ Z . Since Z is reNective, then f(vu)=f(v)f(u) ∈ Z . Therefore,
vu ∈ fZ .
(ii) We have f(u) = pm; f(v) = qn with p; q ∈ Q and m; n¿2. Since u �= v and

u; v ∈ Q, then p �= q. Indeed if p = q, then f(uv) = f(vu) and uv = vu because of
the injectivity of f. This implies that u; v are powers of the same primitive word, a
contradiction. Hence f(uv) = pmqn with p �= q. By Lemma 2(ii), this implies f(uv)
primitive. Therefore, uv �∈ fZ and uv ∈ Q.

If f is a morphism of V ∗, the word u is said to be f-reductible if f(u)=pm; p ∈
Q; m¿2. Since Q and Z are reNective, then uv is f-reductible if and only if vu is
f-reductible. Remark that if � �∈ f(V ), then every non-primitive word is f-reductible.

Proposition 10. Let f be an injective morphism of V ∗ and let u be an f-reductible
word. If u = u1wu2 with wu2u1 �= u2u1w and if w is f-reductible; then v = u1u2 is
primitive and v is not f-reductible.
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Proof. Suppose that v = u1u2 is f-reductible. Then u2u1 is also f-reductible and
f(u2u1)=rk1 ; r ∈ Q; k1¿2. We have f(u)=f(u1)f(w)f(u2)=pm, p ∈ Q; m¿2. Since
f(u) ∈ Z which is reNective, then f(w)f(u2)f(u1) ∈ Z i.e. f(w)f(u2)f(u1)=qn; q ∈
Q; n¿2. Since w is f-reductible, then f(w) = sk2 ; s ∈ Q; k2¿2. Hence,

f(w)f(u2u1) = sk2f(u2u1) = sk2rk1 = qn:

We have s �= r. Indeed if s = r; then f(wu2u1) = f(u2u1w) and, since f is injective,
wu2u1=u2u1w, against our hypothesis. By Lemma 2(ii), it follows then that qn, n¿2;
is primitive, a contradiction.
Therefore, v is not f-reductible and hence v is primitive.

Corollary 6. Let f be an injective morphism and let u be an f-reductible word such
that u = u1xmu2; m¿2; x �= � and xmu2u1 �= u2u1xm. Then u1u2 is primitive and not
f-reductible.

Proposition 11. Let f be an injective morphism of V ∗.
(i) If u; v ∈ V+ with uv �= vu are f-reductible, then uv is not f-reductible.
(ii) If uv is f-reductible and uv �= vu, then either u or v is not f-reductible.

Proof. (i) Since u and v are f-reductible, then f(u) = pm; f(v) = qn where p; q ∈
Q; m; n¿2. If p= q, then f(uv)=pm+n=f(vu). Since f is injective, then uv= vu, a
contradiction. Hence f(uv)=pmqn with p �= q, m; n¿2. From Lemma 2(ii), it follows
then that f(uv) ∈ Q and therefore uv is not f-reductible.
(ii) Suppose that both u and v are f-reductible. Then f(u)=pm; f(v)= qn; p; q ∈

Q; m; n¿2. From uv �= vu and the injectivity of f follows p �= q. By Lemma 2(ii),
f(uv) = pmqn is primitive, a contradiction.

A word u ∈ V+ is said to be universally-primitive or simply u-primitive if for every
injective morphism f of V ∗, the word f(u) is primitive. Hence a u-primitive word is
a word that is not f-reductible for every injective morphism of V ∗. Let QU denote
be the set of all the u-primitive words of V ∗. Clearly QU ⊆Q. Since V ∩QU = ∅, the
inclusion is strict.

Proposition 12. Let w = umvn with u; v ∈ V+ and m; n¿2. Then the following prop-
erties are equivalent:
(i) w is u-primitive;
(ii) u and v have diBerent roots;
(iii) uv �= vu.

Proof. (i) → (ii) If u and v have the same root p, then w = pk for some k¿2 and
hence w is not primitive, a contradiction.
(ii) → (iii) If uv = vu, then u = pr; v = ps for some primitive word p. This again

implies that w is not primitive.
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(iii) → (i) If uv �= vu, then u=pr; v= qs for some p; q ∈ Q and p �= q. Therefore,
w = prmqsn with rm; sn¿2. This implies that w is primitive. Let f be an injective
morphism and let f(p)=pm1

1 ; f(q)= q
n1
1 with p1; q1 ∈ Q; m1; n1¿1. We have p1 �=

q1. If not, then f(uv)=f(vu) and since f is injective, uv=vu, a contradiction. Hence,
f(w) = pm1rm

1 qn1sn1 with p1; q1 ∈ Q; p1 �= q1, m1rm; n1sn¿2. By Lemma 2(ii), this
implies f(w) primitive and therefore w u-primitive.

Corollary 7. The set QU is in-nite.

Proof. Let a; b ∈ V . Then the set {anbn | n¿2} contains only u-primitive words and
hence QU is inAnite.

Proposition 13. If f is an injective morphism; then T = f(Q − QU ) ∩ Q �= ∅.

Proof. Without loss of generality, we can assume that V={a; b}. The words a; b; ab are
not u-primitive. Indeed, the morphisms g deAned by g(a)=a2; g(b)=b2 and h deAned
by h(a) = aba; h(b) = b are injective. This implies that a and b are not u-primitive.
Since h(ab) = (ab)2, then ab is also not u-primitive.
Suppose now that T=∅. Then, since a; b; ab are not u-primitive, f(a); f(b) and f(ab)

are not primitive. This implies in particular that f(a) = pm and f(b) = qn for some
p; q ∈ Q; m; n¿2. Since f is injective, we have p �= q. From f(ab)=f(a)f(b)=pmqn,
it follows by Lemma 2(ii) that f(ab) ∈ Q, a contradiction.

Remark 1. Words of the form pmqn; p; q ∈ Q; p �= q; m; n¿2 are u-primitive (Propo-
sition 12). However, not all u-primitive words are of this form.
For instance, the word u= arbnas with a; b ∈ V; r + s; n¿2 is u-primitive. Suppose

not. Then for some injective morphism f, the word f(u) = f(a)rf(b)nf(a)s is not
primitive. Hence f(u) ∈ Z which is reNective. This implies that

w = f(b)nf(a)sf(a)r = f(b)nf(a)s+r ∈ Z

and therefore w is not primitive. By Lemma 2(ii), this is only possible if f(a) and
f(b) have the same roots. This implies f(ab) = f(ba), a contradiction since f is
injective.
In particular, the word ab2a is u-primitive. However, this word cannot be written in

the form pmqn; m; n¿2.

Remark 2. If a u-primitive word u has a decomposition of the type pmqn; p; q ∈
Q; p �= q; m; n¿2; this decomposition is not necessarily unique.

For example, let V = {a; b} and let p1 = ababb, p2 = bababb; q1 = ab; q2 = bababb.
Then p1; p2; q1; q2 ∈ Q, p1 �= p2; q1 �= q2. Then the following word u is u-primitive
and has at least two such di0erent decompositions:

u= p2
1p

2
2 = ababbababbbababbbababb= q

2
1q

3
2:



G. P5aun et al. / Discrete Applied Mathematics 117 (2002) 239–252 251

Remark 3. Words of the type pm1 p
n
2 with p1; p2 ∈ Q; p1 �= p2; m; n¿2 are u-primitive

and hence primitive. This result cannot be extended further. For example, if a; b ∈ V ,
the words a; b and a2b2 are primitive, but the word u= a2b2(a2b2)2 is not primitive.

The word u in the above example is of the form piqj(prqj)m and it is not primitive.
However, as shown below, words of this form are in general u-primitive.

Proposition 14 (Shyr and Yu [9]). Let V with |V |¿2 and let p; q ∈ Q; p �= q. Then:

u= piqj(prqj)m ∈ Q for j; m¿1; i¿0; r¿2; i �= r: (1)

Proposition 15. Every word u of the form (1) is u-primitive.

Proof. Let f be an injective morphism and let f(p) = ps1, f(q) = qt1 with p1; q1 ∈
Q; s; t¿1. Since f is injective, then f(p) �= f(q) and f(pq) �= f(qp). This implies
that p1 �= q1. We have f(u)=psi1 q

tj
1 (p

sr
1 q

tj
1 )
m, with tj; m¿1; si¿0; sr¿2 and si �= sr.

By Proposition 14, it follows then that f(u) is primitive. Since this is true for every
injective morphism, the word u is u-primitive.

7. Final remarks

One can consider other operations with words from the point of view of primitivity
preserving.
One candidate is the interchanging of adjacent symbols. We believe that a result of

the following type is true: for every w ∈ QV ; w �∈ {abba | a; b ∈ V; a �= b}, there is a
decomposition w = x1cdx2; x1; x2 ∈ V ∗; c; d ∈ V; c �= d, such that x1dcx2 ∈ QV .

Acknowledgements

Useful remarks by two referees are gratefully acknowledged. In particular, a variant
of Proposition 6 and Ref. [6] (where a result similar to our Proposition 1 can be found)
were suggested by them.

References

[1] C. Cho0rut, J. Karhumaki, Combinatorics on words, Handbook of Formal Languages, in
Vol. 1, Springer, Berlin, 1997, pp. 329–438 (Chapter 6).

[2] P. DTomTosi, S. Horvath, M. Ito, Formal languages and primitive words, Publ. Math. Debrecen 42
(3–4) (1993) 315–321.

[3] M. Ito, G. Thierrin, Right k-dense languages, Semigroup Forum 48 (1994) 313–325.
[4] Gh. P%aun, G. Thierrin, Morphisms and primitivity, Bulletin of the EATCS 61 (1997) 85–88.
[5] H. Petersen, On the language of primitive words, Theor. Comput. Sci. 161 (1996) 141–156.
[6] J.M. Robson, Separating strings with small automata, Inform. Process. Lett. 30 (1989) 209–214.
[7] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, 3 Vols., Springer, Berlin, 1997.



252 G. P5aun et al. / Discrete Applied Mathematics 117 (2002) 239–252

[8] H. J. Shyr, Free Monoids and Languages, Hon Min Book Company, Taichung, Taiwan, 1991.
[9] H.J. Shyr, S.S. Yu, Non-primitive words in the language p+q+, Soochow J. Math. 20 (1994) 535–546.
[10] H.J. Shyr, G. Thierrin, Codes, languages and MOL schemes, RAIRO. Theor. Computer Sci. 1 (4)

(1977) 293–301.

For Further Reading

M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
Y.S. Tai, H.L. Wu, Primitive properties of words in {uv; u}, Soochow J. Math. 20 (1994) 83–100.


