
On Pattern Expression Languages

Cezar Câmpeanu1 and Nicolae Santean2

1 Department of Computer Science and IT, University of Prince Edward Island
2 School of Computer Science, University of Waterloo

Abstract. Pattern Expressions and Regex (practical regular expressions) have recently been
the subject of scrutiny of formal language theorists, in an effort to provide a conceptual basis
to the existing implementations of regular expressions (Perl, Awk, Python, etc). In this paper
we address a standing question on pattern expressions (PE), namely whether the family of
PE languages is closed under the intersection with regular languages or not. Since this family
is not closed under complement, but is closed under reverse, another natural question has
been frequently raised in the past years, on whether particular languages such as the mirror
language and the language of palindromes are PE languages or not. We provide answers to
these and other related questions, hoping to give an insight on the descriptional power of these
language specifications.

Keywords: Pattern expression; Practical regular expression; Pattern automata system

1 Introduction

Regular expressions are powerful programming tools present in many language implemen-
tations such as Perl, Awk and Python, as well as in shells and other software utilities, like
egrep, vi, and emacs. Despite a similar (and unfortunate) nomenclature, these “practical
regular expressions” are quite different from their theoretical counterpart, namely the regu-
lar (or rational) expressions. Practical regular expressions [5] are often abbreviated “Regex”,
and although developed under the influence of theoretical ones, their formalism and descrip-
tional power varies greatly across several environments. For example, Regex implemented
in Lex ([9]) bare a strong similarity to regular expressions, whereas those found in Perl
are significantly different. Perl Regex [5] can express the languages L1 = {anban | n ≥ 0}
and L2 = {ww | w ∈ {a, b}∗} (the language of squares). However, Perl Regex and pattern
expressions (PE, for brevity – a different formalism for Regex) cannot express the language
L3 = {anbn | n ≥ 0}. Even more intriguing, despite the recent theoretical studies on Regex
and PE ([2, 3]), some closure properties, as well as the membership to the family of PE
languages of L4 = {wwR | w ∈ {a, b}∗} (the mirror language), L5 = {(abc)n(cba)n | n ≥ 0},
L6 = {w | w = wR, w ∈ {a, b}∗} (the language of palindromes), and other anthological
languages, have remained unsolved. This theoretical gap has lead to the status quo of ac-
cepting these ubiquitous programming tools without an elementary understanding of their
descriptional capabilities.

Regex are relatively easy to use; for example, L1 can be expressed in Perl by the Regex
(a∗)b\1, and L2 by ((a|b)∗)\1 – the operator “\1” is a reference to (copy of) the content of

the first pair of parentheses. Unlike L3, which has been proven that cannot be generated in
Perl ([2]) and is not a PE language ([3]), very little is known about L4. There has been a
long-standing controversy, on whether L4 can or cannot be generated in Perl or by pattern
expressions. Some people believe the positive, although they cannot give a Perl Regex for
it, whereas some others believe the opposite, yet they cannot provide a rigorous argument
to support their claims. For the latter, the difficulty consists in the fact that both pumping
lemmas for extended regular expressions and pattern expression fail to give a contradiction
for L4 and similar languages. Thus, the present study, which solves this dilemma among
others, is expected to raise the interest of both theoreticians as well as practitioners.

In this paper we adopt the formalism of pattern expressions. One reason for this pref-
erence is that they seem to be more versatile, and they avoid some semantical ambiguities
pointed out in [3]. In [3] can be found a method for converting a Regex into a pattern
expression and vice-versa. Related to our study on pattern expressions (PE) we mention
[1], where was considered the addition of a reverse operator to extend the power of pattern
languages, or [4], where was proposed the use of a mirror operation to increase the power of
multi-pattern languages. Other variations on multi-pattern languages or similar constructs
can be found in [7, 12, 4, 8] and more recently in [8, 11] which give a comprehensive survey
on the topic as well. The formalism and most of the results present in this research stream
are developed under the influence of parallel communication grammar systems and other
similar generative devices. It would be interesting and rather challenging to analyze the
relationship between the formalism proposed and developed in [2, 3] (and used through-
out this paper) and those employed in the past. For example, here we have used pattern
automata introduced in [3], which bear similarities with parallel communicating finite au-
tomata systems mentioned in [10]. It is our belief that the two models are not equivalent,
matter which we plan to address in the near future. Another parallel can be drawn between
PE languages and certain families of languages studied in the past. Despite their proximity,
we could not identify a past model equivalent to pattern expressions, and we believe that
none of the results present in this paper can be stated equivalently in the other frameworks.
One reason for this status, of having several models sharing common ideas and yet being
rather different, is that due to their particularities (e.g., the use of recursive definitions and
iterating mechanisms), small model changes may have a tremendous impact on the behavior
of the model. A conceptual difference between the PE model and the other models, as well
as a justification for its study beside its inherent novelties, is that pattern expressions were
inspired by pragmatic software applications and were influenced by the formalism of expres-
sions (specifications) and automata (acceptors), whereas the previous work originated in
the study of grammars (generative devices), and had only a purely theoretical justification.
For illustration, let us emphasize some differences between the PE model and other models:

– In multi-patterns, variables are replaced with words given by a regular or a context-
free language, while in pattern expressions variables are replaced with words from a

2

pattern expression language, in a recursive manner – thus, there may be stages where
substitutions are done with words in a context-sensitive language.

– For multi-patterns, there is no order for substituting variables (all substitutions are done
in one step), whereas for pattern expressions, the substitutions are done in a predefined
order and in a finite number of steps.

– Despite their names, iterated patterns (model introduced in [7]) do not contain a Kleene
operator (the word “iteration” refers to repeated substitutions), in contrast with pattern
expressions whose definition uses the Kleene operator.

– A model that seems to be the closest to PE is the so-called “iterative multi-patterns”,
where the patterns are given by a language generated by a regular grammar. However,
their differences become apparent when their families of languages are compared to
those in the Chomsky hierarchy.

In some sense, one can view the idea behind pattern expressions as a combination of the con-
cepts used in multi-patterns and iterated patterns. Yet, we do not know whether combining
these models in some way one can obtain a scheme equivalent with the PE formalism.

2 Notations and Definitions

In this section we provide some basic notions and notations used throughout the paper.
Omitted definitions of elementary formal language concepts can be found in [6, 13, 15].

An alphabet Σ is a finite non-empty set. A word over Σ is an element of the free monoid
Σ∗, that is, a finite string of symbols (letters) in Σ. For a word w ∈ Σ∗ we denote by |w|
its length, i.e., the total number of symbols in w, and by |w|a the number of occurrences of
the letter a in w. The word with no letters (the empty word) is denoted by λ, and |λ| = 0.
We use the notation u ¹ v to denote that u is a subword of v (we have λ ¹ v and v ¹ v).

A regular expression over Σ is the set of all well-formed parenthesized infix formulae
obtained from the elements of Σ∗ (viewed as atomic formulae), the null operator λ, the
binary operators + and · (expressed as juxtaposition), and the unary operator ∗. The
language of a regular expression e is denoted by L(e) and is defined as in [6]. If w is a word
in L(e), we say that “w matches the regular expression e”.

Definition 1. Let Σ be an alphabet and V = {v0, . . . , vn−1} be a finite set of variables
such that V ∩Σ = ∅. A regular pattern is a regular expression over Σ ∪ V . A pattern
expression is a tuple of regular patterns p = (r0, r1, . . . , rn) with the following properties:

1. r0 is a regular expression over Σ;
2. for i ∈ {1, . . . , n}, ri is a regular pattern over Σ ∪ {v0, . . . , vi−1}.
The language L(p) generated by p is defined as follows. L0 = L(r0), as defined for a regular
expression, and for all i ∈ {1, . . . , n} :

Li = {(u0/v0) . . . (ui−1/vi−1)ui | uj ∈ Lj for 0 ≤ j ≤ i− 1, and ui ∈ L(ri)},

3

where the notation (u0/v0) . . . (uk/vk)u expresses the substitution of all occurrences of vari-
able vj in u by the word uj , for all 0 ≤ j ≤ k. By definition, L(p) = Ln.

For better handling pattern expressions, we use the notation p = (v0 = r0, v1 =
r1, . . . , vn−1 = rn−1, rn) to track easily which variable is substituted by words in which
language: variable vi is substituted by words in the language Li generated by the regular
pattern ri.

Example 1.

– for p = (v0 = a∗, v0bv0), L(p) = {anban | n ≥ 0};
– for p = (v0 = ab∗, v∗0cv0), L(p) = {(abn)mcabn | n ≥ 0,m ≥ 0};
– for p = (v0 = ab∗, v1 = baa∗, (v0 + v1)(v0 + v1)) we have

L(p) = {abnabn | n ≥ 0} ∪ {banban | n ≥ 1} ∪
{abnbam | n ≥ 0,m ≥ 1} ∪ {bamabn | n ≥ 0,m ≥ 1}.

In [3] can be found a method for converting a pattern expression into an extended regular
expression and vice-versa. Extended regular expressions are essentially the Regex constructs
in Perl (the so-called practical regular expressions), and are defined as regular expressions
which accept the additional atoms “\n”, denoting “back-references”. For example, the word
a2ba2 matches the expression (1(2a

∗)b)\2 since the content of the second pair of parentheses
matches the subword a2 and \2 duplicates it. For more on extended regular expressions we
refer the reader to [5]. We also emphasize that pattern expressions are extensions of patterns
([1]), i.e., words containing letters and variables. A pattern language([1, 12]) is obtained from
a pattern by substituting variables with arbitrary words.

Remark 1. ([3]) It is clear that regular languages are PE languages, and it has been shown
that PE languages are context-sensitive. Context-free languages and PE languages are in-
comparable – these families have a nonempty symmetric difference. PE languages are closed
under reverse and homomorphism, and are not closed under complement, inverse homo-
morphism and finite substitution. PE languages under the unary alphabet may be neither
regular, nor context-free, as the language {am | m is not prime } proves it.

Lemma 1. (Pumping Lemma [3]) Let L be a pattern expression language or a Regex lan-
guage. There exists a constant N , such that any word w ∈ L, |w| > N , has a decomposition
w = x0yx1yx2 · · ·xm for some m ≥ 1, such that:

1. |x0y| ≤ N ,
2. |y| ≥ 1,
3. x0y

jx1y
jx2 · · ·xm ∈ L, for all j > 0 (notice that y may not be deleted).

We now recall the notion of pattern automaton, introduced in [3]. A pattern automaton
(PA) is an automata system P = (A0, A1, . . . , An) where

A0 = (Q0, Σ, δ0, q0,0, F0), and

4

Ai = (Qi, Σ ∪ {v0, . . . , vi−1}, δi, qi,0, Fi), 0 < i ≤ n,

are finite automata, also called modules of P . A0 operates over Σ, and for each i ∈
{1, . . . , n}, Ai has the same structure as A0, except for the transition labels which may even-
tually be one of the variables v0, . . ., vi−1. We assume that Qi ∩Qj = ∅ for 0 ≤ i 6= j ≤ n,
and we denote Q =

⋃n
i=0 Qi. This automata system mimics closely the structure of a pat-

tern expression p = (v0 = r0, v1 = r1, . . . vn−1 = rn−1, rn), where ri is the regular pattern
corresponding to automaton Ai, for all i ∈ {0, . . . , n}. Then p will represent a pattern
expression associated to the pattern automaton P .

If n = 0, the pattern automaton consists of only one automaton which operates as an
usual finite automaton. For n > 0, P uses a stack S storing elements of Q, an array of
stacks U = (Ui)0≤i<n, whose stacks store elements of {0, 1}, and an array V = (Vj)0≤j<n,
whose stacks store elements of Σ∗. The interpretation for U and V is as follows. Let p =
(v0 = r0, v1 = r1, . . . , vn−1 = rn−1, rn) be a pattern expression associated with P . A
computation step of P involving a transition labeled vi consists of matching a prefix of
the remaining input with an expression ri of p, leading to the instantiation of variable vi.
When this happens, the top element of each Uj indicates whether the variable vj has been
instantiated, whereas the top of stack Vj stores the actual string which instantiates vj . One
can observe that all stacks in U and V are bounded, each containing at most n elements.

The current configuration of pattern automaton P can be described by its current state
q ∈ Q, the remaining of the input word w ∈ Σ∗, the current content of the state stack S,
and of every stack in U and V . Thus, the current configuration at step t is (st, xt, St, U t, V t),
where st denotes the current state and xt denotes the remaining input. This configuration
is an accepting configuration if st ∈ Fn and xt = λ.

Initially, P holds an input string w ∈ Σ∗ on its tape, and its current (initial) state is
qn,0. S is empty and all the stacks in U and V are empty. Thus, the initial configuration is
described by

(s0, x0, S0, U0, V 0) = (qn,0, w, λ, λ, λ).

The first step of P is push(Ui, 0), for all 0 ≤ i < n (meaning that no variable has been
instantiated yet). The transitions between consecutive configurations are defined by one of
the following rules:

1. Let xt = ay ∈ Σ∗, with a ∈ Σ. If st = p ∈ Qn, then st+1 = q with q ∈ δn(p, a), and
xt+1 = y. If st = p ∈ Qi for some i < n, then st+1 = q with q ∈ δi(p, a), xt+1 = y, and
top(Vi) = top(Vi)a.

2. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i − 1} we have q ∈ δi(p, vj)
and top(Uj) = 0, then push(S, q), push(Vj , λ), push(Uk, 0) for all 0 ≤ k < j. Then set
st+1 = qj,0 and leave xt+1 = xt.

5

3. If st = p ∈ Fi for 0 ≤ i < n and top(Ui) = 0, then set st+1 = top(S), pop(S), pop(Vj)
for 0 ≤ j < i, pop(Uj) for all 0 ≤ j < i, and set top(Ui) = 1.

4. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i− 1} we have q ∈ δi(p, vj),
top(Uj) = 1, and xt = top(Vj)y, then set st+1 = q, top(Vi) = top(Vi)top(Vj) and
xt+1 = y.

5. If st ∈ Fn and xt = λ, then accept.

The language recognized by P is: L(P) = {w | (qn,0, w, λ, λ, λ) `∗ (f, λ, S, U, V), f ∈ Fn}.
If for each automaton Ai with 0 ≤ i ≤ n, we denote Ri = L(Ai) ⊆ (Σ∪{v0, . . . , vi−1})∗,

then is easy to observe that the language recognized by P is
Wn = {(u0/v0) . . . (un−1/vn−1)un | un ∈ Rn, ui ∈ Wi, 0 ≤ i ≤ n− 1}, where
W0 = R0, and for i ∈ {1, . . . , n− 1},
Wi = {(u0/v0) . . . (ui−1/vi−1)ui | ui ∈ Ri, uj ∈ Wj , 0 ≤ j ≤ i− 1}.

Since Ri = L(ri), it follows that Wi = Li, hence L(P) = L(p), i.e., the automata system
recognizes the same language as the language generated by the pattern expression p.

We can easily see that the PA operation is non-deterministic, making the running time
exponential. Since pattern automata recognize languages generated by pattern expressions,
we question whether is possible to construct some device that has a better running time
than PA. The following theorem gives the answer, with a surprising practical implication:
Perl Regex constructs can not operate efficiently, regardless of their implementation in Perl.

Theorem 1. The membership problem for pattern expressions is NP-complete and has
O(n2m) space complexity, where n is the number of regular patterns of the pattern expression
and m is the length of the input word.

Proof. We analyze the membership problem for pattern automata. Let P be a pattern
automaton as previously defined, and w be an input word. If we guess the “right choice” in
each module Ai of P (i.e., we always make the right variable substitutions, hence avoiding
backtracking), it takes O(|w|) time to recognize w; thus, the problem is in NP. Since the
problem w ∈ L(p) is NP-hard when p is just a pattern (see [1, T. 3.2.3, p.133]), we conclude
that our problem is also NP-hard, therefore NP-complete.

The space complexity results from the fact that all stack elements (words) used for
simulating a pattern automaton have a length bounded by the length of the input word w
(storing some subwords of w) and there are 2n + 1 stacks, each of depth at most n. ut

3 Main Result

In the previous section we presented a pumping lemma for PE languages (and for extended
regular expression languages). This lemma turns out to be too weak for proving that a

6

language like L4 (mentioned in introduction) is not a PE language. To alleviate this problem,
as well as for other theoretical and practical reasons, we first prove an important closure
property for the family of pattern expression languages, which has remained hidden.

Theorem 2. The family of pattern expression languages is closed under intersection with
regular languages.

Proof. Let L = L(p) with p = (r0, r1, . . . , rn) be a pattern expression language and R be
a regular language accepted by a trim DFA B = (Σ,QB, 0, δB, FB). We consider a pattern
automaton P , such that L(P) = L(p), and construct a pattern automaton which simulates
the run of P in “parallel” with B. The simulation goes in parallel when P transits from
state to state based on letters in Σ. When P meets a transition labeled with a variable
name “v”, B is put on hold, and P calls the proper module which takes over the resolution
of v. Whenever a module called recursively uses a transition labeled with a letter in Σ, B is
revived and advances again in parallel with P . This idea is facing the challenge of designing
this simulator as a pattern automaton. The problem turned to be rather difficult, and we
will see that the newly constructed pattern automaton uses significantly more variables
than P – number increase (multiplied) of order O(| QB |2). One essential technique used
in the proof is to index the newly introduced variables in such manner, that the subscripts
themselves provide information on where the run of B has paused or where it should resume
from, in terms of the states of B. Hence, we anticipate that beside the normal indexing of
variables in P we need two more sets of subscripts.

Let p = (r0, ..., rn) be the initial pattern expression with n regular patterns and vari-
ables v0, . . . , vn−1, and let P = (A0, A1, . . . , An) be the corresponding pattern automaton,
where Ai = (Qi, Σ ∪ {v0, . . . , vi−1}, δi, qi,0, Fi) are the modules of P , for i ∈ {0, . . . , n}. We
construct a pattern automaton P ′ consisting of the following finite automata:

1. for all i, j ∈ QB:

a. A0,i,j =
(
Q0 ×QB, Σ, (q0,0, i), δ0,B, F0,j

)
, where

∀(p, l) ∈ Q0 ×QB,∀a ∈ Σ : δ0,B

(
(p, l), a

)
=

(
δ0(p, a), δB(l, a)

)
,

and F0,j = F0 × {j};

b. for all k ∈ {1, . . . , n− 1}:

Ak,i,j =
(
Qk ×QB, Σ ∪ {vk′,i′,j′ |i′, j′ ∈ QB, k′ < k}, (qk,0, i), δk,B, Fk,j

)
, where

∀(p, l) ∈ Qk ×QB, a ∈ Σ : δk,B

(
(p, l), a

)
=

(
δk(p, a), δB(l, a)

)
,

∀k′ < k,∀p ∈ Qk,∀i′, j′ ∈ QB : δk,B

(
(p, i′), vk′,i′,j′

)
=

(
δk(p, vk′), j′

)
, and

Fk,j = Fk × {j};

7

2. An,0,FB
=

(
Qn ×QB, Σ ∪ {vk,i,j |i, j ∈ QB, k < n}, (qn,0, 0), δn,B, Fn,B

)
, where

∀(p, l) ∈ Qk ×QB, ∀a ∈ Σ : δn,B

(
(p, l), a

)
=

(
δn(p, a), δB(l, a)

)
,

∀k < n,∀p ∈ Qn, ∀i, j ∈ QB : δn,B

(
(p, i), vk,i,j

)
=

(
δn(p, vk), j

)
,

and Fn,j = Fn × FB.

Then, the sought pattern automaton P ′ is obtained by ordering all the above automata
as follows:

P ′ =
(

A0,0,0, . . . , A0,0,t, A0,1,0, . . . , A0,1,t, A0,2,0 . . . , A0,2,t, . . . , A0,t,t,
A1,0,0, . . . , An−1,t,t, An,0,FB

)
,

where t =| QB |. We make the following observations which justify the correctness of our
construction:

1. If in the pattern automaton P ′ we consider only the first component of each state and
ignore the extra subscripts (i.e., the above i and j), we discover that a computation in
P for an input word w is successful if and only if there exists a successful computation
for w in this reduced version of P ′, since all automata Ak,i,j are identical with Ak, for
all i, j.

2. For i, j ∈ QB denote by Bi,j the automaton obtained from B by setting i to be the
initial state and j the only final state. Also denote pk = (r0, . . . , rk) the pattern ex-
pression obtained from p considering only the first k + 1 patterns with 0 ≤ k < n, and
similarly denote P ′

k,i,j to be the pattern automaton obtained from P ′ considering only
the automata from A0,0,0 to Ak,i,j , for 0 ≤ k < n and i, j ∈ QB. Then one can check by
induction that

∀i, j ∈ QB, ∀k ∈ {0, n− 1} : L(pk) ∩ L(Bi,j) = L(P ′
k,i,j).

3. If a word w belongs to L(p), then it can be factorized as w = x0u1x1 . . . usxs, where
we have all xi ∈ Σ∗ and each ui ∈ L(pr) for some r ∈ {0, . . . , n− 1}. The words ui are
the substitution words for the variables in the pattern rn used for generating w. If w
belongs to L(B) as well, then we have the following sequence:

x0 ∈ B0,i1 , u1 ∈ Bi1,j1 , x1 ∈ Bj1,i2 , . . .

. . . , xs−1 ∈ Bjs−1,is , us ∈ Bis,js , xs ∈ Bjs,is+1 , and is+1 ∈ FB.

Since each ul also belongs to a language L(pt) for some t ∈ {0, . . . , n − 1}, we obtain
ul ∈ L(pt)∩Bil,jl

= L(P ′
t,il,jl

). Using this relation, it can be checked that the automaton
An,0,FB

should accept w as well, hence that w ∈ L(P ′).

The details, as well as the reciprocal of the last observation are omitted, being too elaborated
to fit the present space constraints. The construction and behavior of P ′ goes beyond an
automaton cross product, P ′ having (n + 1)|QB|2 modules with a total of |QB|3|Q| states.

Thus, the newly constructed automata system P ′ recognizes the intersection between
L(P) and L(B), proving that the intersection is a pattern expression language. ut

8

4 Limitations of Pattern Expressions

In this section we use Theorem 2 to prove that a few remarkable languages, such as the
mirror language (L4), are not pattern expression languages, despite the fact that the family
of PE languages is closed under the reverse operation. We first prove the easier case, that
of alphabets with at least three letters, and we start with a preliminary result.

Lemma 2. The language L5 = {(abc)n(cba)n | n ≥ 0} is not a pattern expression language.

Proof. Assume by contrary, that L5 is a PE language. Invoking the pumping lemma
(Lemma 1), there exists a constant N such that any word w ∈ L5 with |w| > N can
be factorized as w = x0yx1 . . . xm−1yxm such that m ≥ 1, |x0y| ≤ N , | y |≥ 1, and
wi = x0y

ix1 . . . xm−1y
ixm ∈ L5, for all i ≥ 1.

Let w = (abc)n(cba)n with 3n > N , and consider a factorization of w as above. It is
clear that y can not consist of only one letter, since otherwise w3 6∈ L5. If |y| = 2, then
y can be one of the following words: ab, bc, ca, cc, cb, ba or ac, and one can check that
y2 6¹ (abc)n(cba)n for any n ≥ 0. It remains the case when |y| ≥ 3.

We first notice that y ¹ (abc)n, since |x0y| ≤ N . We also observe that y can only be
in one of the following forms: bxa, cxb, axc, bxc, axb or cxa, with x a nonempty word
(otherwise, y3 6¹ (abc)n(cba)n, for any n ≥ 0).

If y is either bxc, axb or cxa, then clearly y2 should cross the middle of w2, since it has
one of the subwords cb, ba, or ac (found only in the second half), and the first occurrence
of y is in the first half of w. Thus y2 must produce a cc, and y4 must produce two such
groups – a contradiction.

It remains that y must be of the form bxa, cxb, or axc, and then, no occurrence of y
can be in the second half of w. Indeed, y can not cross the middle of w, and it can not be
completely in the second half of w since y2 produces one of the sequences ab, bc, or ca found
only in the first half. Then there exists k sufficiently large such that one factor yk will cross
the middle of wk, since for each pumped y, the first half of w increases with |y| symbols,
whereas the middle shifts to the right |y|/2 positions. But this leads to a contradiction yet
again, since once yk has produced cc, y2k will produce two such groups. Having exhausted
all possibilities, we conclude that L5 is not a PE language. ut
Corollary 1. Let Σ be an alphabet with at least three letters. Then the language L′4 =
{wwR | w ∈ Σ∗} is not a pattern expression language.

Proof. We assume by contradiction that L′4 is a pattern expression language, i.e., that there
exists a pattern expression p = (r0, . . . , rn) such that L′4 = L(p). Let a, b, c be three distinct
letters of Σ. Invoking Theorem 2, it follows that L5 = L∩(abc)∗(cba)∗ is also a PE language.
This contradicts Lemma 2. ut

In the following we prove an analogue result for the binary alphabet, this time us-
ing a more intricate combinatorial apparatus. The idea is to take the language L9 =

9

{(aababb)n(bbabaa)n | n ≥ 0} and prove that is not a pattern expression language. We
first prove two useful combinatorial lemmas.

Lemma 3. Let v ∈ {a, b}∗ be such that v ¹ (aababb)2 and 0 < |v| < 6. Then vk 6¹
(aababb)n, for all n ≥ 0 and k > 2.

Proof. Let us list all the subwords v of (aababb)2 with 0 < |v| < 6: a and b, of length 1; ab,
ba, bb and aa, of length 2; aab, aba, bab, abb, bba and baa, of length 3; aaba, abab, babb, abba,
bbaa and baab, of length 4; aabab, ababb, babba, abbaa, bbaab and baaba, of length 5. One may
check that if v is any of these subwords, then v3 6¹ (aababb)n, for any n ≥ 0. For example,
if v = baaba, then v3 = baababaababaaba, and we observe that any two occurrences of b are
separated by a’s; nevertheless, this is not true for (aababb)n. Thus, v3 can not be a subword
of (aababb)n, therefore we have that vk 6¹ (aababb)n, for all n ≥ 0 and k > 2. ut

Lemma 4. Let n ≥ 0 and v ∈ {a, b}∗ be such that v ¹ (aababb)n. If |v| ≥ 6, then v 6¹
ababb(bbabaa)m for all m ≥ 0.

Proof. We observe that any subword of (aababb)n, of length at least 6, must have as a prefix
one of the following words: aababb, ababba, babbaa, abbaab, bbaaba and baabab. We also
notice that each of these prefixes have one of the following subwords: aaba, bbaa and babba.
However, one may check that none of these three subwords is a subword of ababb(bbabaa)m,
for any m ≥ 0. For example, aaba can not be a subword, since in ababb(bbabaa)m any double
occurence of a is followed by two b’s. Thus, the conclusion follows. ut

Theorem 3. Let Σ be an alphabet with at least two symbols. The language L4 = {wwR |
w ∈ Σ∗} is not a PE language.

Proof. The language L4 ∩ {(aababb)n(bbabaa)m | n,m ≥ 0} can be written as L′ =
{(aababb)n(bbabaa)n | n ≥ 0}. Indeed, the middle of a word w = (aababb)i(bbabaa)j must
divide w in two factors of equal length, multiple of 3. Since w is a “mirror word”, one can
check that the middle of w must separate precisely the iterations of aababb from those of
bbabaa.

Invoking the closure of PE languages to intersection with regular languages, it suffices
to prove that L′ is not a PE language. Assume by contradiction that L′ is a PE language.
Then, by applying the pumping lemma, there exists a constant N such that any word w ∈ L′

of length greater than N has a decomposition w = x0yx1y . . . xt−1yxt for some t ≥ 1, such
that |x0y| ≤ N , |y| ≥ 1, and wk = x0y

kx1y
k . . . xt−1y

kxt ∈ L′, for all k > 0.
The pumping lemma applies for the word w = (aababb)n(bbabaa)n with 6n > N +6, and

w has a decomposition as above. We observe that the factor y must be a proper subword
of (aababb)n (since |y| ≤ N). We distinguish the following two choices: |y| < 6 or |y| ≥ 6.

If |y| < 6, we have that y ¹ (aababb)2, thus we can apply Lemma 3 and infer that
y3 6¹ (aababb)m, for any m > 0. Notice that pumping two extra y after x0 in w, would

10

shift the middle of w at most |y| < 6 symbols to the left (at most half of how much was
pumped), thus the resulting subword y3 would still be in the first half of w3 (since y occurs
within the first N symbols of w, the middle of w is beyond N + 6, y3 occurs within the
first N +2|y| symbols, and the middle of w3 is beyond N + |y|+6). This is in contradiction
with the fact that y3 is a subword of (aababb)m. Thus, w3 6∈ L′, contradicting the pumping
lemma.

If |y| ≥ 6, we first show that all occurrences of y must necessarily be in the first half of
w. We have that y ¹ (aababb)n by |x0y| ≤ N ; if a subsequent occurrence of y was spanning
across the middle of w, then y would have b3 as a subword. Since this is impossible, we infer
that no occurrence of y can cross the middle of w. Furthermore, since y ¹ (aababb)n and
|y| ≥ 6, by applying Lemma 4 it follows that y 6¹ ababb(bbabaa)n, thus y cannot occur in
the second half of w either. It follows that all possible occurrences of y are in the first half of
w. Notice that in this case, for each y “pumped”, the middle of the word shifts to the right
|y|/2 symbols (the word expands twice as fast as the displacement of its middle). Thus, for
k sufficiently large, there must be an occurrence of y which goes beyond the middle of wk.
This leads to a contradiction by the same arguments used in the first place to prove that y
must occur within the first half of w.

We have obtained a contradiction in both cases, thus L′ is not a PE language, and by
Theorem 2 it follows that L4 can not be a PE language either. ut

The closure of PE languages under the intersection with regular languages is a very
powerful tool, in particular for proving that certain languages are not PE. The following
results illustrate this technique. We use a, b, c for letters and u, v, w for words.

Corollary 2. The following languages are not pattern expression languages:

L6 =
{
w | w = wR

}
, (the language of palindromes)

L7 =
{
w | |w|a = |w|b

}
, (the language of balanced words)

L8 =
{
w | |w|b = 2|w|a

}
, (the language of semi-balanced words)

L9 =
{
w | |w|a = |w|b = |w|c

}
,

L10 =
{
w | |w|a + |w|b = |w|c

}
,

L11 =
{
ucv | |u|a + |u|b = |v|a + |v|b

}
.

Proof. We observe that: L6 ∩ (aababb)∗(bbabaa)∗ =
{
(aababb)n(bbabaa)n | n ≥ 0

}
, which is

not a PE language (Lemma 2); L7∩a∗b∗ =
{
anbn | n ≥ 0

}
, which is not a PE language ([3]);

L8 ∩ a∗b∗ =
{
a2nbn | n ≥ 0

}
, which is not a PE language ([3, Example 7]); L9 ∩ a∗b∗c∗ ={

anbncn
∣∣n ≥ 0

}
, which is not a PE language ([3]); L10 ∩ (a + b)∗c∗ =

{{a, b}ncn | n ≥ 0
}
,

which is not a PE language ([3, Example 8]); and L11∩ (a+b)∗c(a+b)∗ =
{{a, b}nc{a, b}n |

n ≥ 0
}
, which is not a PE language ([3]).

If any of L6, . . . , L11 was a PE language, so would be its corresponding intersection,
leading to a contradiction. ut

11

Finally, we should mention that some previous results involving several pages of elabo-
rate proofs, such as Lemma 3 in [2], are trivially validated by the closure property of PE
languages under the intersection with regular languages, as given by Theorem 2.

5 Conclusion

In this paper we used pattern automata systems to prove the closure of pattern expression
languages under the intersection with regular languages. This property turned out to be a
very useful tool in showing that several anthological languages, such as the mirror language,
the language of palindromes or the language of balanced words, are not PE, thus revealing
some of the limitations of pattern expression languages unforeseen before. Incidentally,
we have also raised a warning on the inefficiency of the membership testing for pattern
expressions. Due to the parallel between pattern expressions and Perl Regex, these results
reach out beyond theory, to programmers and other users of practical regular expressions.

6 Acknowledgments

We express acknowledgments to Dr. Max Burke for suggesting the language L5.

References

1. D. Angluin: Finding Patterns Common to a Set of Strings. Journal of Comput. System Sci., 21 (1980)
46–62.

2. C. Câmpeanu, K. Salomaa and S. Yu: A Formal Study of Practical Regular Expressions. IJFCS, 14(6)
(2003) 1007–1018.

3. C. Câmpeanu and S. Yu: Pattern Expressions and Pattern Automata. IPL, 92 (2004) 267–274.
4. S. Dumitrescu, G. Păun and A. Salomaa: Pattern Languages versus Parallel Communicating Grammar

Systems. TUCS Report, 42 September 1996.
5. J.E.F. Friedl: Mastering Regular Expressions, O’Reilly & Associates, Inc., Cambridge, (1997).
6. J.E. Hopcroft, R. Motwani, and J.D. Ullman: Introduction to Automata Theory, Languages, and Com-

putation, Addison Wesley, Reading Mass, (2006).
7. L. Kari, A. Mateescu, G. Păun, and A. Salomaa: Multi-Pattern Languages. Theoretical Computer Science

141 (1995) 253–268.
8. S. Kobayashi, V. Mitrana, G. Păun, and G. Rozenberg: Formal Properties of PA-matching. Theoretical

Computer Science, 262(1-2) (2001) 117–131.
9. M.E. Lesk: Lex - a Lexical Analyzer Generator.Computer Science Technical Report, AT&T Bell Labora-

tories, Murray Hill, N.J, 39 (1975).
10. C. Mart́ın-Vide and V. Mitrana: Some Undecidable Problems for Parallel Communicating Finite Au-

tomata Systems. Information Processing Letters, 77 (2001) 239–245.
11. C. Mart́ın-Vide and V. Mitrana: Remarks on Arbitrary Multiple Pattern Interpretations. Information

Processing Letters, in press, available online 24 October 2006.
12. V. Mitrana, G. Păun, G. Rozenberg, and A. Salomaa: Pattern Systems. Theoretical Computer Science,

154(2) (1996) 183–201.
13. A. Salomaa: Theory of Automata. Pergamon Press, Oxford, (1969).
14. A. Salomaa: Formal Languages. Academic Press, New York, (1973).
15. S. Yu: Regular Languages. In: A. Salomaa and G. Rozenberg (eds.), Handbook of Formal Languages,

Springer Verlag (1997) 41–110.

12

