
Journal of Automata, Languages and Combinatorics 9 (2004) 1, 121–146
c© Otto-von-Guericke-Universität Magdeburg

BIMACHINES AND STRUCTURALLY-REVERSED
AUTOMATA

Nicolae Santean

Department of Computer Science, The University of Western Ontario
1151 Richmond Street, Suite 2, London, Ontario N6A 5B8, Canada

e-mail: nic@csd.uwo.ca

ABSTRACT

Although bimachines are not widely used in practice, they represent a central concept
in the study of rational functions. Indeed, they are finite state machines specifically de-
signed to implement rational word functions. Their modelling power is equal to that of
single-valued finite transducers. From the theoretical point of view, bimachines reflect
the decomposition of a rational function into a left and a right sequential function. In
this paper we define three new types of bimachines, classified according to the scanning
direction of their reading heads. Then we prove that these types of bimachines are
equivalent to the classical one and for doing so, we define and use a new concept, of
structurally-reversed automaton. Consequently, we prove that the scanning directions
of bimachines are irrelevant from the point of view of their modelling power. This leads
to a method of simulating a bimachine by a left sequential transducer (or generalized
sequential machines - GSM for short). Indeed, a preprocessing of the input word al-
lows sequential transducers to realize the full range of rational functions. Remarkably
enough, we basically show that the so versatile functional transducers - nondeterminis-
tic and with λ-input transitions - can successfully be replaced by a simple deterministic
setup: a “trimmer” coupled with a GSM . Intuitively, this fact proves that sequential
functions are not much weaker than rational functions.

Keywords: structurally-reversed automata, rational functions, bimachines, GSM

1. Introduction

The interest in providing finite and effective descriptions of sets in certain algebraic
structures dates as early as 40’s. Formal machines, initially designed as nets of for-
malized neurons (McCulloch-Pitts nets, comprising of synchronized elements, each
capable of some boolean function) were introduced by McCulloch and Pitts in 1943
([14]) in order to carry out the control operations of a Turing Machine ([25]). The
idea was further refined by Kleene in 1956 ([11]), who interrelated regular sets (or
regular events in nerve nets), regular expressions and finite automata.

In parallel, a special interest in formal and natural language processing was devel-
oping. Indeed, in addition to classification

(
[3, 4] - Chomsky, 1956–59

)
, recognition

and generation of languages, a growing interest for the study of devices with out-
put emerged. In [16](Mealy, 1955), [18](Moore, 1956) and [22](Raney, 1958) we find

122 Nicolae Santean

the design of finite sequential machines which both decide whether some input word
belongs to a given language and record a “trace” of their computation during the
decision process.

These initial attempts to implement language transductions were followed in 60’s
and 70’ by a systematic study of rational and regular families of sets, in particular
of rational word relations and functions. Bimachines

(
[23] - Schutzenberger, 1961

)
,

generalized/complete sequential machines
(
[7] - Ginsburg, 1966

)
and subsequential

transducers
(
[24] - Schutzenberger, 1977

)
were added to the portfolio of finite sequen-

tial machines with output. Soon, sequential and subsequential transducers gained
momentum, being extensively studied in [5](Eilenberg, 1974) and [2](Choffrut, 1978).

The past 15 years have witnessed a revival of the topic, due to an increased practical
interest. Indeed, applications of rational relations and functions in Code Theory and
Communications

(
[9] - Head and Weber, 1993; [12] - Konstatinidis, 2002

)
, in Natural

Language Processing
(
[17] - Mohri, 1997

)
, as well as in DNA Computing

(
[20] - Paun

et al., 1998; [13] - Manca et al., 1999
)

have undoubtedly proven the high degree of
applicability of this endeavour.

The present paper tackles aspects of bimachine design. These machines, which re-
alize rational word functions, have two reading heads which scan the input in opposite
directions and in multiple passes. One may ask why these machines need more than
one reading head and why the scanning direction of their two reading heads is the
way Schutzenberger designed it to be. We addressed these questions and found that
a simple preprocessing of the input word can lead to the disuse of one reading head
and that the scanning directions do not actually matter.

In Section 2 we give a few basic notions related to automata, equivalences and
rational sets and we review the relationship between recognizable and rational sets
in monoids. In Section 3 we describe bimachines, we present two characterizations of
rational functions and we define three new types of bimachines, classified based on the
scanning direction of their reading heads. In order to prove their equivalence we first
introduce the concept of structurally-reversed automaton and study its properties in
Section 4. In Section 5 we prove that indeed, all types of bimachines are equivalent, by
essentially using the properties of structurally-reversed automata. Finally, in Section
6 we use the equivalence of a classical bimachine with a left sequential bimachine in
order to prove that GSM (generalized sequential machines, also referred to as left
sequential transducers) can eventually replace bimachines. This application conveys
the fact that rational functions and sequential functions are not too far apart and that
we can successfully implement rational functions by means of sequential transducers,
hence obsoleting bimachines and single-valued transducers. The advantage of this
approach becomes apparent when we notice that both bimachines and single-valued
transducers are quite difficult to design and manipulate (for example, to minimize).

2. Basic Notions

Let X be an alphabet, i.e., a nonempty, finite set of symbols. By X∗ we denote the
set of all finite words (strings of symbols) over X and by λ we denote the empty word

Bimachines and Structurally-Reversed Automata 123

(a word having zero symbols). The operation of concatenation (juxtaposition) of two
words u and v is denoted by u · v, or simply uv. Notation wise, if u is a word, then
uR is the word obtained by reversing the order of symbols in u (uR is the reverse of
u). A language is a subset of X∗.

A deterministic finite automaton over X, DFA for short, is a tuple A =
(Q,X, δ, q0, F) where

• Q is a finite set of states and X is an input alphabet;
• δ : Q×X → Q is a next state function;
• q0 is an initial state and F ⊆ Q is a set of final states.

The next state (or transition) function is extended to work on words as following:
δ(q, λ) = q, ∀q ∈ Q and δ(q, aw) = δ(δ(q, a), w), ∀a ∈ X, w ∈ X∗andq ∈ Q. The
language recognized by A is L(A) = {w ∈ X∗ | δ(q0, w) ∈ F} (a regular language
over X is any language recognized by some DFA over X). A DFA can be viewed as
a machine with a reading head, an internal current state and a finite table governing
the change of its state with respect to the symbols read from an input tape. By a
computation in A we understand an expression qw1w2 ` q′w2, which denotes that
A has advanced from state q to state q′ while reading(consuming) the prefix w1 of
the input w1w2. If δ is a total function, we say that A is complete, otherwise A is
incomplete. A complete DFA rejects a word if the reading of that word leads to a
non-final state. An incomplete DFA rejects a word also when it blocks - i.e. when
the next state function is not defined on the initial state and that word. A state
is accessible in A if there exists a computation from q0 to that state. A state is
coaccessible, if there exists a computation form that state to some final state. A state
is useful if it is both accessible and coaccessible.

Let A,B be two arbitrary sets. The Cartesian product of A and B is denoted by
A × B := {(a, b) | a ∈ A, b ∈ B}. A binary relation over A and B is a subset R of
A × B. The inverse relation of R is R−1 = {(b, a) | (a, b) ∈ R}. The identity of A is
the relation idA = {(x, x) | x ∈ A}. The composition of two relations R1 ⊆ A×B and
R2 ⊆ B × C is the relation R2 ◦ R1 = {(a, c) | ∃b ∈ B : (a, b) ∈ R1 and (b, c) ∈ R2}.
We say that a relation R1 is coarser than another relation R2 if R2 ⊆ R1. R ∈ A×A is
an equivalence over A if it is reflexive (idA ⊆ R), symmetric (R−1 = R) and transitive
(R◦R ⊆ R). A binary operation over A is a function φ : A×A → A. We use the infix
notation to denote binary operations: aφb := φ(a, b). Let φ be a binary operation and
R be an equivalence, over A. Then R is a right invariant equivalence with respect
to φ if (a, b) ∈ R ⇒ (aφc, bφc) ∈ R, ∀c ∈ A, and is a left invariant equivalence if
(a, b) ∈ R ⇒ (cφa, cφb) ∈ R, ∀c ∈ A. Given an equivalence R over A and an element
a ∈ A, the equivalence class of a with respect to R is the set â := {b ∈ A | (a, b) ∈ R}.
All possible equivalence classes of R represent a partition of A, i.e. they do not overlap
and they cover A.

A monoid is a tuple (M, ◦, 1M), where M is a nonempty carrier set, ◦ an associative
binary operation over M (∀a, b, c ∈ M : a ◦ (b ◦ c) = (a ◦ b) ◦ c) and 1M a zero-ary
operation denoting the unity of M (∀a ∈ M : 1M ◦ a = a ◦ 1M = a). A monoid
morphism is a total function from one monoid to another, which maps unity to unity
and is compatible with monoid’s operations. If A,B are subsets of M , then A ◦B =

124 Nicolae Santean

{a ◦ b | a ∈ A, b ∈ B}. Let N be the set of natural numbers and N+ = N \ {0}.
Then A0 := {1M} and An := A ◦ ... ◦ A (n times), for all n ∈ N+. In addition,
A+ :=

⋃
n∈N+ An and A∗ := A0 ∪A+.

Definition 1 The family of rational subsets of the monoid M , denoted by RAT (M),
is the least family of subsets of M satisfying the following conditions:

(i) ∅ ∈ RAT (M);

(ii) ∀a ∈ M : {a} ∈ RAT (M) ;

(iii) ∀A,B ∈ RAT (M) : A ∪B ∈ RAT (M) and A ◦B ∈ RAT (M);

(iv) ∀A ∈ RAT (M) : A+ ∈ RAT (M).

Consequently, if A ∈ RAT (M) then A∗ ∈ RAT (M) (see [1, p. 55] for a discussion
on rational sets).

Given X and Y two alphabets, we consider the monoid (X∗ × Y ∗, ◦, 1X∗×Y ∗),
where:

• (u1, v1) ◦ (u2, v2) := (u1u2, v1v2);

• 1X∗×Y ∗ := (λ, λ).

Notice that the monoid X∗ × Y ∗ defined above is finitely generated, in the sense
that there exists a finite subset B, called a set of generators, such that B∗ = X∗×Y ∗

(indeed, take B = (X×{λ})∪ ({λ}×Y)). Notice also that X∗×Y ∗ is not necessarily
a free monoid, in the sense that does not exist a set of generators which generate
each element of the monoid in a unique way (for example, B - above - can generate
an element in more than one way : (x, y) = (x, λ) ◦ (λ, y) = (λ, y) ◦ (x, λ); notice
also that X∗ × Y ∗ is not a commutative monoid). The fact that X∗ × Y ∗ is not a
finitely generated free monoid is of major importance: it implies that finite automata
can not always recognize sets in RAT (X∗ × Y ∗). In order to state this fact clearly,
let us review the definition of recognizable sets and emphasize the difference between
rational and recognizable sets in arbitrary monoids.

By recognizable sets in a monoid M , denoted by REC(M), we understand the
family of all inverse images of subsets of arbitrary finite monoids through monoid
morphisms. For a formal definition and study of recognizable sets consult [1, p. 52]
or [21, p. 689]. The following facts are worth recalling:

1.
(
[15] - McKnight, 1964

)
. If M is a finitely generated monoid then

RAT (M) ⊇ REC(M).

2.
(
[11] - Kleene, 1956

)
. If M is a finitely generated free monoid then

RAT (M) = REC(M),

case in which we refer to this family as the family of regular languages.

3. If M is an arbitrary monoid, we can not relate RAT (M) and REC(M).

Bimachines and Structurally-Reversed Automata 125

As mentioned above, the monoid X∗ × Y ∗ is finitely generated but not free and
Kleene’s result does not hold here. Then we can clearly affirm that RAT (X∗×Y ∗) ⊇
REC(X∗ × Y ∗), the inclusion being strict in general. Hence finite automata over ar-
bitrary monoids (as defined in [26, p. 8] or in [1, Ex. 1.2, p. 55]) can not always
recognize sets in RAT (X∗ × Y ∗) - they can solely recognize sets in REC(X∗ × Y ∗).
However, there exist finite machines - transducers - which exactly express the family
of rational subsets of X∗×Y ∗, also called rational relations. Figure 1 gives an approx-
imate hierarchy of rational relations together with the appropriate machines which
represent each family. In this paper we focus on rational and sequential functions,
realized by bimachines and sequential transducers, respectively. A detailed discussion
on the families of this hierarchy can be found in [1, Chapters III and IV].

bimachines)
(functional transducers,

(finite transducers)

Rational Relations

(subsequential transducers)

(sequential transducers)
Sequential Functions

Rational Word Relations
Rational Word Functions

Subsequential Functions

Figure 1: A hierarchy of rational relations.

3. Types of Bimachines

Rational word functions are partial functions from X∗ to Y ∗ whose graphs are rational
subsets of the monoid X∗×Y ∗. They are a particular case of rational relations, hence
they are realized by functional transducers from X∗ to Y ∗ - also called single-valued
transducers. However, there exists a finite machine specially customized to express
rational functions: the bimachine.

Definition 2 A bimachine B = (Q,P,X, Y, δQ, δP , q0, p0, ω) over X and Y is com-
posed of

(i) two finite sets of states Q and P ;
(ii) a finite input alphabet X and a finite output alphabet Y ;

126 Nicolae Santean

(iii) two partial next state functions δQ : Q×X → Q and δP : X × P → P ;
(iv) two initial states q0 ∈ Q and p0 ∈ P ;
(v) and a partial output function ω : Q×X × P → Y ∗.

The next state functions are extended to operate on words as following:

• ∀q ∈ Q and p ∈ P : δQ(q, λ) = q and δP (λ, p) = p;
• ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

δQ(q, wa) = δQ(δQ(q, w), a) and δP (aw, p) = δP (a, δP (w, p)).

Notice that function δP “reads” its word argument in reverse. We then consider a
similar extension of the output function:

• ∀q ∈ Q and p ∈ P : ω(q, λ, p) = λ;
• ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

ω(q, wa, p) = ω(q, w, δP (a, p))ω(δQ(q, w), a, p).

The partial word function realized by B is a function fB : X∗ → Y ∗, defined by

fB(w) = ω(qo, w, p0) if ω is defined in (q0, w, p0) and is undefined otherwise.

Notice that in essence, a bimachine is composed of two partial automata with-
out final states (more precisely, all states act as final) and an output function. In-
deed, (Q,X, δQ, q0) will denote the left automaton of B and (P, X, δP , p0) its right
automaton. The bimachine B operates as illustrated in Figure 2.

w1 w2a

w1

q′ p′a

q0 p0

current position

wR
2

Left

Automaton

Right

Automaton

... writes ω(q′, a, p′) on the output tape, where q′ = δQ(q0, w1) and p′ = δP (w2, p0)

Figure 2: Computations in a bimachine.

The symbols on the input tape are considered from left to right, starting with the
leftmost one. For each considered symbol the bimachine performs a computation step
yielding some output written on an output tape. In Figure 2, the current computation
step considers some symbol a as the current symbol and a factorization of the input

Bimachines and Structurally-Reversed Automata 127

word as w1aw2. First, both left and right automata are reset to their initial states.
Then the left automaton scans w1 from left to right, reaching an internal state q′. In
the same time, the right automaton scans the subword w2 from right to left, reaching
an internal state p′. At this point, the bimachine applies the output function ω to the
arguments q′, a and p′ and writes the result on the output tape. Next, the current
position advances one symbol to the right and the process is repeated. The final
output is the concatenation of the output for each step, as sequentially written on the
output tape. This process is formally expressed by

∀w = a1...an ∈ X+ (where ai ∈ X, ∀i ∈ {1, ..., n}) : ω(q, w, p) =

ω(q, a1, δP (a2...an, p))ω(δQ(q, a1), a2, δP (a3...an, p))...ω(δQ(q, a1...an−1), an, p).

As we mentioned before, bimachines are of great theoretical importance since they
are specifically designed to characterize the family of rational word functions, as the
following result shows:

Theorem 3 [5, Volume A, §11.7, Theorem 7.1, p. 321] Let X, Y be finite alphabets
and f : X∗ → Y ∗ be a partial word function with f(λ) = λ. Then f is rational if and
only if it is realized by some bimachine over X and Y .

Taking a closer look at the control operations of a bimachine, one may pay attention
to the scanning direction of its two reading heads: the left automaton scans always
from left to right and the right automaton scans always from right to left. This
behaviour is in line with the decomposition theorem of Elgot and Mezei:

Theorem 4 [6, §7, Theorem 7.8, p. 61] A partial function f : X∗ → Y ∗ with
f(λ) = λ is rational if and only if there exist an alphabet Z, a left sequential function
α : X∗ → Z∗ and a right sequential function β : Z∗ → Y ∗, such that f = β ◦ α.

We briefly mention that left sequential functions are realized by left sequential
transducers - which scan the input from left to right - and that right sequential
functions are realized by right sequential transducers - which scan the input from
right to left (in Section 6 we give more details about sequential transducers). It is
now straightforward the parallel between bimachines and the above decomposition
theorem.

What will happen if we change the scanning directions in a bimachine? Since
the scanning directions of the reading heads of this “classical” bimachine are from
the extremities of the input word toward each other we will call it a convergent
bimachine. We can then define three new types of bimachines by considering different
scanning directions, as shown in Figure 3: left sequential, right sequential and
divergent bimachines.

For example, a right sequential bimachine would be defined as a tuple B =
(Q,P, X, Y, δQ, δP , q0, p0, ω) where everything remains defined as for convergent bi-
machines, except for δQ : X ×Q → Q which is extended to work on X∗ as following:
δQ(λ, q) = q, δQ(aw, q) = δQ(a, δQ(w, q)), ∀q ∈ Q, a ∈ X and w ∈ X+. In other
words, the left automaton scans the input from right to left this time. Notice that

128 Nicolae Santean

convergent

left sequential

right sequential

divergent

Figure 3: Types of bimachines.

the difference between these four types of bimachines essentially reside in the way the
next state (transition) functions are extended. In the next sections we prove that this
difference is irrelevant from the point of view of their modelling power.

4. Structurally-Reversed Automata

In order to prove the equivalence of these four types of bimachines we first take a closer
look at the left and right automata of a convergent bimachine. As mentioned before,
these automata can be viewed as deterministic finite automata with all states final and
with partial next state functions. Let us consider the convergent bimachine defined
in Section 3 and let (Q,X, δQ, q0) be its left automaton. For an easier formalization
we choose to work with complete DFA with useful states (except a sink state which
- if present - is accessible only), hence consider AL := (Q′, X, δ′Q, q0, F), where

• Q′ := Q ∪ {sink}, sink being a new state;
• δ′Q : Q′ ×X∗ → Q′ is a total function defined as:

δ′Q(q, w) =

{
δQ(q, w), if δQ is defined in (q, w);
sink, otherwise;

• F := Q.

If δQ is a total function in the first place, the above construction is not necessary (in
this case, a sink state may not even exist).

Bimachines and Structurally-Reversed Automata 129

It is easy to observe that AL is simply the complete version of the left automaton
of B. As mentioned, we assume that all states are useful, except possibly a sink
state. Notice also that the bimachine definition can easily be adapted to operate with
complete left and right DFA, by changing the domain of the output function.

In order to prove the equivalence of convergent and - for example - right sequential
bimachines, one must find a way to modify AL to scan the input from right to left.
This has been proven to be nontrivial, since along with changing the left automaton,
one must also adjust the output function of the bimachine in order to preserve its
global behaviour.

Let us first prove a result which can very well be viewed as a general automata-
theoretic result. Recall that by L(AL) we understand the language accepted by AL,
and denote by LR the language obtained from language L by reversing all its words.

Theorem 5 Given a complete DFA AL = (Q′, X, δ′Q, q0, F) there exists a complete
DFA A′L = (Q′′, X, δ′′Q, q′0, F

′) verifying the following relations:

(i) L(AL) = L(A′L)R;

(ii) ∀u, v ∈ X∗ : δ′Q(q0, u) 6= δ′Q(q0, v) ⇒ δ′′Q(q′0, u
R) 6= δ′′Q(q′0, v

R).

Proof. In order to prove this theorem we first prove two interim results. Let Q′

consist of n states, Q′ = {q0, ..., qn−1}. For each i ∈ {0, ..., n − 1}, let ≡i be the
equivalence defined as

∀u, v ∈ X∗ : (u ≡i v) ⇔ δ′Q(si, u) = δ′Q(si, v).

It is easy to see that {≡i}i∈{0,...,n−1} is a family of right invariant equivalences of
finite index. Then denote by ≡L the coarsest equivalence included in all ≡i, i.e.,
≡L :=

⋂n−1
i=0 ≡i, or in other words

∀u, v ∈ X∗ : (u ≡L v) ⇔ (u ≡i v, ∀i ∈ {0, ..., n− 1}).

Lemma 6 The equivalence ≡L is both a left and a right invariant equivalence of finite
index.

Proof. ≡L is a right invariant equivalence of finite index since it is an intersection
of right invariant equivalences of finite index. In order to prove that it is also left
invariant, let u, v ∈ X∗ be two equivalent words with respect to ≡L (i.e. u ≡L v) and
let us fix an arbitrary word z ∈ X∗. Take now an arbitrary i ∈ {0, ..., n−1} and denote
sj := δ′Q(si, z). Then δ′Q(si, zu) = δ′Q(sj , u) and δ′Q(si, zv) = δ′Q(sj , v). But since
u ≡L v then u ≡j v, and from the definition of ≡j we have that δ′Q(sj , u) = δ′Q(sj , v)
and therefore δ′Q(si, zu) = δ′Q(si, zv). In other words we proved that zu ≡i zv. Since
i has been chosen arbitrary from the set {0, ..., n− 1}, it follows that zu ≡L zv. This
proves that ≡L is left invariant. 2

Let us further define a “reversed equivalence”, ≡R, as following:

∀u, v ∈ X∗ : (u ≡R v) ⇔ (uR ≡L vR).

130 Nicolae Santean

Lemma 7 The equivalence ≡R is both a right and a left invariant equivalence of finite
index. Moreover, for any i ∈ {0, ..., n−1} and u, v ∈ X∗, if δ′Q(si, u) 6= δ′Q(si, v) then
uR 6≡R vR.

Proof. Let u, v, z ∈ X∗, such that u ≡R v. Then:

u ≡R v ⇒ uR ≡L vR ⇒r uRzR ≡L vRzR ⇒ (zu)R ≡L (zv)R ⇒ zu ≡R zv,

and

u ≡R v ⇒ uR ≡L vR ⇒l zRuR ≡L zRvR ⇒ (uz)R ≡L (vz)R ⇒ uz ≡R vz.

The inferences ⇒r and ⇒l denote places where we used the property of ≡L of being
right, respectively left invariant. We then proved that ≡R is also right and left
invariant. Next, notice that δ′Q(si, u) 6= δ′Q(si, v) implies that u 6≡L v, hence uR 6≡R

vR. Finally, ≡R is of finite index, since its index equals that of ≡L. 2

It is well known that any regular language - hence any DFA - has associated with
it a right invariant equivalence of finite index (see Myhill-Nerode Theorem, as in [10,
§3.4, Theorem 3.9, p. 65]). Let us consider ≡R and construct a corresponding DFA
as following. Denote by û the equivalence class of u with respect to ≡R. There exists
a finite number of equivalence classes since ≡R is of finite index. Denote by Q′′ the
set of all these classes, i.e. Q′′ := {û | u ∈ X∗}. Let δ′′Q : Q′′×X∗ → Q′′ be a function
defined as δ′′Q(û, w) := ûw. Since ≡R is right invariant, the function δ′′Q is well defined.
Consider now the set F ′ = {û | δ′Q(q0, u

R) ∈ F} and denote q′0 := λ̂. Let now prove
that the DFA A′L := (Q′′, X, δ′′Q, q′0, F

′) verifies the conditions of our theorem.

I. We first prove that L(AL) = L(A′L)R. Let w be a word in L(AL). Then
δ′Q(q0, w) ∈ F , hence ŵR ∈ F ′. This further implies that δ′′Q(λ̂, wR) ∈ F ′, in
other words that wR ∈ L(A′L). This proves that L(AL) ⊆ L(A′L)R. Conversely,
let w be a word of L(A′L). Then δ′′Q(λ̂, w) ∈ F ′, hence ŵ ∈ F ′. This implies
that δ′Q(q0, w

R) ∈ F , in other words that wR ∈ L(AL). This proves that
L(A′L)R ⊆ L(AL), hence the conclusion.

II. Next we prove that ∀u, v ∈ X∗ : δ′Q(q0, u) 6= δ′Q(q0, v) ⇒ δ′′Q(q′0, u
R) 6=

δ′′Q(q′0, v
R). Notice that this property is not necessarily implied by (i) and that

the implication in the opposite direction is not true in general (i.e. we can not
interchange δ′Q and δ′′Q in (ii)). We prove this property by contradiction. As-
sume that there exist two words u, v ∈ X∗ such that δ′Q(q0, u) 6= δ′Q(q0, v) and

yet, that δ′′Q(q′0, u
R) = δ′′Q(q′0, v

R). From the later we derive that ûR = v̂R,
in other words that uR ≡R vR. This means that u ≡L v, hence that
δ′Q(qi, u) = δ′Q(qi, v),∀i ∈ {0, ..., n − 1}. In particular for i = 0, this implies
that δ′Q(q0, u) = δ′Q(q0, v), contradicting the initial assumption.

Then the above defined automaton A′L verifies the conditions of Theorem 5. Notice
that this proof is constructive, giving a base for an algorithm which finds A′L for any
given AL. 2

Bimachines and Structurally-Reversed Automata 131

Example 8 Let AL := (Q′, X, δ′Q, q0, F), where Q′ = {q0, q1, q2}, X = {a, b}, F =
{q1} and δ′Q is given by the transition graph in Figure 4 (A). Then the family of
equivalences {≡i}i∈{0,1,2} is given by:

(≡0) : X∗/≡0 = {{b∗}, {b∗a}, {b∗aX+}};
(≡1) : X∗/≡1 = {{λ}, X+};
(≡2) : X∗/≡2 = {{X∗}}.

Then, since ≡L=
⋂2

i=0 ≡i, we obtain: X∗/≡L = {{λ}, {b+}, {b∗a}, {b∗aX+}}, from
which we directly derive ≡R: X∗/≡R = {{λ}, {b+}, {ab∗}, {X+ab∗}}.

a, b

a

b

q0 q1

q2

{λ} {X+ab∗}

b

b

b

a a

a, b

a

(B)

(A)

AL :

A′L :

{ab∗}

{b+}

a, b

Figure 4: A complete DFA and its corresponding “reversed” automaton.

Then, the automaton A′L will have Q′′ = {{λ}, {b+}, {ab∗}, {X+ab∗}} - set of
states, q′0 = λ̂ - initial state, F ′ = {{ab∗}} - set of final states, and the transition
function δ′′Q given by Figure 4 (B). Take for example the words b, ba and bab. Then
δ′Q(q0, b) 6= δ′Q(q0, ba) 6= δ′Q(q0, bab). It is easily verifiable that δ′′Q(q′0, b) 6= δ′′Q(q′0, ab) 6=
δ′′Q(q′0, bab). Also, ab ∈ L(A′L) since ba ∈ L(AL).

In the following we give one important property of the automaton constructed in
Theorem 5.

Proposition 9 Giving an arbitrary DFA AL, the corresponding DFA A′L as con-
structed in the proof of Theorem 5 is a minimal (with respect to the number of states)
DFA verifying the conditions (i) and (ii) of the theorem.

Proof. Recall that we consider only complete automata with all states accessible
(except eventually a sink state). Let AL be an arbitrary complete DFA and A′L the

132 Nicolae Santean

DFA constructed in Theorem 5. Proceed by contradiction assuming that there exists
a complete DFA B with fewer states than A′L, which verifies the conditions (i) and
(ii) of the theorem. Denote by δB the transition function of B and by qB the initial
state of B. Since B is smaller than A′L and since all the states are accessible, there
exist two words u and v such that δB(qB , u) = δB(qB , v) and δ′′Q(q′0, u) 6= δ′′Q(q′0, v).
The later implies that u 6≡R v, hence uR 6≡L vR (the notations ≡L, ≡R and ≡i have
the same meaning as in Theorem 5). Furthermore, we infer that there exists i ∈
{0, ..., n− 1} such that uR 6≡i vR, hence that δ′Q(qi, u

R) 6= δ′Q(qi, v
R) in A′l. But since

qi is accessible, there exists a word z such that δ′Q(q0, z) = qi. Take now the words zuR

and zvR. We have δ′Q(q0, zuR) 6= δ′Q(q0, zvR) and δB(qB , (zuR)R) = δB(qB , uzR) =
δB(δB(qB , u), zR) = δB(δB(qB , v), zR) = δB(qB , vzR) = δB(qB , (zvR)R). We found
that δ′Q(q0, zuR) 6= δ′Q(q0, zvR) and δB(qB , (zuR)R) = δB(qB , (zvR)R). Since these
relations contradict property (ii) of Theorem 5, we proved the inexistence of B. 2

Example 10 The example shown in Figure 5 proves that the reciprocal of property
(ii) of Theorem 5 does not hold for A′L - as constructed in Theorem 5. Given the
automaton AL as in Figure 5 (A) we obtain the automaton A′L as shown in Figure 5
(B).

q0 q1

a b

a, b

(A)

a

(B)

b a

a, b

AL :

A′L :

{(bb)∗}

{b(bb)∗}

{b(bb)∗a(a + b)∗}
a, b

b

{(bb)∗a(a + b)∗}

Figure 5: Counter-example for the reciprocal of property (ii), Theorem 5.

Consider the words bb and ab. In A′L, δ′′Q(q′0, bb) 6= δ′′Q(q′0, ab). However, in AL,
δ′L(q0, bb) = δ′Q(q0, ba) = q0. A similar situation can be observed in Example 8, when
we consider the words λ and b.

Definition 11 We call A′L a minimal structurally-reversed automaton of AL.

One may naturally ask whether there exist more than one minimal structurally-
reversed automaton for a given a DFA. The following result answers this rather
nontrivial question.

Bimachines and Structurally-Reversed Automata 133

Proposition 12 There exists a unique (up to an isomorphism) minimal structurally-
reversed automaton for a given DFA.

Proof. We prove this result by showing that any minimal structurally-reversed au-
tomaton of a given DFA is isomorphic with the automaton constructed in Theorem
5. For doing so, let us import the notations used in the mentioned theorem. Consider
an arbitrary complete DFA AL = (Q′, X, δ′, q0, F) having all states useful (except
possibly a sink state) and let A′L = (Q′′, X, δ′′, q′0, F

′) be the structurally-reversed
automaton as previously constructed. We have already proven the minimality of A′L.
Assume that there exists another minimal structurally-reversed automaton for AL:
B = (QB , X, δB , s0, FB). Notice that | Q′′ |=| QB | and let Q′′ = {q′0, q1, ..., qn−1},
QB = {s0, ..., sn−1}. We will use letter “p” to denote states in AL, “q” for states in
A′L and “s” for states in B.

For each state q ∈ Q′′ choose a smallest word xq ∈ X∗ such that δ′′(q′0, xq) = q
(actually, the condition of being “a smallest” word is not critical - however, it helps
the formalization). Then xq′0 = λ, and let us define a function ψ : Q′′ → QB given by

ψ(q) = δB(s0, xq).

Consequently, ψ(q′0) = s0. We next prove that ψ is a bijection and in order to do so
it suffices to show that ψ is injective (since both Q′′ and QB are finite and have the
same number of elements).

Assume that ψ(qi) = ψ(qj) for some different states qi, qj ∈ Q′′. Then ψ(qi) =
δB(s0, xqi) = ψ(qj) = δB(s0, xqj). But qi 6= qj implies that xqi 6≡R xqj and
δB(s0, xqi) = δB(s0, xqj) implies that xR

qi
≡0 xR

qj
(recall the notations ≡R and ≡i from

Theorem 5). Since xqi 6≡R xqj , there exists t ∈ {0, ..., n− 1} such that xR
qi
6≡t xR

qj
. In

other words, there exists a state pt in automaton AL such that δ′(pt, x
R
qi

) 6= δ′(pt, xqR
j
).

Since pt is accessible, there exists a word z such that δ′(q0, z) = pt. It follows that
δ′(q0, zxR

qi
) 6= δ′(q0, zxR

qj
). However, notice that this is in contradiction with the

fact that δB(s0, xqiz
R) = δB(s0, xqj z

R) (which holds since δB(s0, xqi) = δB(s0, xqj)).
Since we have reached a contradiction, we conclude that ψ is injective, hence a bijec-
tion.

It remains to prove that ψ is an automata homomorphism (i.e. that it maps
initial state into initial state, final states into final states and is compatible with the
transition table). Figure 6 is an useful companion of this proof. By the definition of
ψ, we have that ψ(q′0) = s0.

Let us now prove that ψ(δ′′(q, w)) = δB(ψ(q), w), for all q ∈ Q′′ and w ∈ X∗.
Let q ∈ Q′′ and w ∈ X∗ arbitrarily taken and denote q′ := δ′′(q, w). Then
ψ(δ′′(q, w)) = ψ(q′) = δB(s0, xq′) and δB(ψ(q), w) = δB(δB(s0, xq), w) = δB(s0, xqw).
It then remains to prove that δB(s0, xq′) = δB(s0, xqw). Assume by contradiction
that s′ := δB(s0, xq′) is different from s′′ := δB(s0, xqw). Denote q′′ := ψ−1(s′′).
Since ψ−1 is injective, q′ 6= q′′ hence xqw 6≡R xq′′ . Then wRxR

q 6≡k xR
q′′ for some

k ∈ {0, ..., n− 1}, hence there exists a word z such that δ′(q0, zwRxR
q) 6= δ′(q0, zxR

q′′)
in AL. But this would mean that δB(s0, xqwzR) 6= δB(s0, xq′′z

R) in B which is a
contradiction with the fact that δB(s0, xqw) = δB(s0, xq′′). We reached this contra-

134 Nicolae Santean

diction by assuming that δB(s0, xq′) 6= δB(s0, xqw); hence the equality holds. We
conclude that ψ(δ′′(q, w)) = δB(ψ(q), w), ∀q ∈ Q′′ and w ∈ X∗.

Finally, notice that q ∈ F ′ ⇒ ψ(q) ∈ FB , from the fact that A′L and B recognize
the same language. This completes the proof, that ψ is an automata homomorphism.
Hence A′L and B are isomorphic. 2

q

A′
L :

q′

q′′

s0

s′

s′′

xq w

xq′

xq′′

xqw

xq′′

xq′

xqw

ψ
: ψ(δ′′(q, w))

: δB(ψ(q), w)

: δ′′(q, w)

q′0

B :

Figure 6: Companion for the proof of Proposition 12.

Notice that the structurally reversed automaton A′L can be modified to scan the
input from right to left, hence accepting the same language as AL. Moreover, if two
input words lead to different states in AL, then the same input words lead to different
states in this modified version of A′L. This construction will be detailed in the next
section.

Observe also that the structurally-reversed automaton of a given DFA is more
“powerful” than a plain reversed automaton - which simply accepts the reverse of
the given language. Indeed, if two words are “state-discriminated” by the given
DFA, then the reversed words are state-discriminated by its structurally-reversed
automaton. This observation is central to the proof of bimachine equivalence.

Definition 13 Let AL = (Q′, X, δ′Q, q0, F) be a DFA and let A′L =
(Q′′, X, δ′′Q, q′0, F

′) be its minimal structurally-reversed automaton (as previously de-
fined). The structural connection between AL and A′L is the function ν : Q′ →
P(Q′′) given by:

ν(q) = {q′ ∈ Q′′ | ∃u ∈ X∗ : δ′Q(q0, u) = q and δ′′Q(q′0, u
R) = q′}.

In this definition we denoted by P(Q′′) the powerset (set of all subsets) of Q′′.

Proposition 14 The image of ν is a partition of Q′′.

Bimachines and Structurally-Reversed Automata 135

Proof. It is clear that the image of ν covers Q′′. Indeed, given a state q′ ∈ Q′′,
choose an arbitrary word u such that δ′′Q(q′0, u) = q′ (such word always exists, since
the construction of A′L ensures that all its states are accessible). Then clearly q′ ∈
ν(δ′Q(q0, u

R)). Next, let us prove that ν(q1) ∩ ν(q2) = ∅ for any two different states
q1, q2 ∈ Q′. Suppose (by contradiction) that there exists q′ ∈ ν(q1) ∩ ν(q2). Then by
the definition of ν there exist two different words u1 and u2 such that δ′Q(q0, u1) = q1,
δ′Q(q0, u2) = q2 and δ′′Q(q′0, u

R
1) = δ′′Q(q′0, u

R
2) = q′. However, one can easily observe

that these relations contradict the definition of a structurally-reversed automaton
(condition (ii) of Theorem 5). 2

Example 15 Considering the automata described in Example 8, we obtain the fol-
lowing structural connection:

ν8

({q0}
)

=
{{λ}, {b+}}, ν8

({q1}
)

=
{{ab∗}}, ν8

({q2}
)

=
{{X+ab∗}},

and considering the automata described in Example 10, we obtain:

ν10

({q0}
)

=
{{(bb)∗}, {(bb)∗a(a + b)∗}},

ν10

({q1}
)

=
{{b(bb)∗}, {b(bb)∗a(a + b)∗}}.

The structural connection can actually be defined for any DFA and any associated
structurally-reversed automaton(hence not necessarily minimal), and yet the property
of Proposition 14 will still hold.

5. Bimachine Equivalence

We now have all ingredients for proving one of the main results of this paper, namely
that all types of bimachines defined in Section 3 are equivalent (two bimachines are
equivalent if they realize the same rational function).

Theorem 16 For any bimachine of type A there exists an equivalent bimachine of
type B, where

A,B ∈ {“convergent”, “left sequential”, “right sequential”, “divergent”}.
Proof. Notice that this theorem essentially says that the scanning directions of
the reading heads of a bimachine are irrelevant. Let fB : X∗ → Y ∗ be a ratio-
nal function realized by a convergent bimachine B = (Q,P, X, Y, δQ, δP , q0, p0, ω).
In the following we prove that there exists a right sequential bimachine B′ =
(Q′′, P,X, Y, δR, δP , q′0, p0, ω

R) realizing the same function fB . The reciprocal of this
property as well as the equivalence among other types of bimachines are proved in
a similar way and will be omitted. Consider the left automaton (Q,X, δQ, q0) of B
together with its complete version, AL = (Q′, X, δ′Q, q0, F). We first construct the
minimal structurally-reversed automaton of AL, namely A′L = (Q′′, X, δ′′Q, q′0, F

′) (as
detailed in Theorem 5). The minimality of A′L is not crucial; however, it makes
the formalization easier. We noticed earlier that A′L can be modified to scan the

136 Nicolae Santean

input from right to left and accept exactly L(AL). Indeed, construct the automa-
ton AR

L := (Q′′, X, δR, q′0, F
′), where δR : X∗ × Q′′ → Q′′ is defined (extended) as

following:

δR(λ, q) = q, δR(w, q) := δ′′Q(q, wR), δR(aw, q) := δR(a, δR(w, q)).

Notice that the extension of δR implies a right to left direction of scanning for the
reading head of automaton AR

L .

Fact L(AR
L) = L(AL) = L(A′L)R. Moreover, if δ′Q(q0, u) 6= δ′Q(q0, v) for two words

u, v, then subsequently δR(u, q′0) 6= δR(v, q′0).

Proof. The proof of this fact is straightforward and is left to the reader. 2

Consider now the left sequential bimachine B′ = (Q′′, P, X, Y, q′0, p0, δ
R, δP , ωR),

where ωR : Q′′ ×X × P → Y ∗ is given by:

ωR(q, a, p) =

{
ω(q′, a, p), if q ∈ ν(q′) and ω(q′, a, p) is defined ;
undefined, otherwise.

In the above definition we have used ν, the structural connection between AL and
A′L. Then ωR is extended to work on Q′′ ×X∗ × P in the usual way. It is clear that
bimachine B′ is right sequential and well defined. Let us prove now that the function
fB′ realized by B′ is the same as function fB . Take an arbitrary word w ∈ X∗. We
distinguish the following three relevant cases:

Case I. There exists a factorization w = w1aw2 with w1 a proper prefix of w, such that
δQ(q0, w1) is undefined (hence fB is undefined in w). This implies that δ′Q(q0, w1) =
sink. Then , since δR(w1, q

′
0) = δ′′Q(q′0, w

R
1) ∈ ν(δ′Q(q0, w1)) = ν(sink) and since ω

is not defined in (sink, a, δP (w2, p0)), it follows that ωR(δR(w1, q
′
0), a, δP (w2, p0)) is

undefined, hence that fB′ is undefined in w as well.

Case II. There exists a factorization w = w1aw2 with w1 a proper
prefix of w, such that δQ(q0, w1) and δP (w2, p0) are both defined and
ω(δQ(q0, w1), a, δP (w2, p0)) is undefined. Then δ′Q(q0, w1) = δQ(q0, w1) 6= sink,
hence ωR(δR(w1, q

′
0), a, δP (w2, p0)) = ω(δQ(q0, w1), a, δP (w2, p0)), which is undefined.

Case III. fB is defined in w. By the definition of B, fB(w) = ω(q0, w, p0).
Consider w = a1a2...ak, with ai ∈ X, ∀i ∈ {1, ...k}. Then

fB(w) = ω(q0, a1, δP (a2...ak, p0))

ω(δQ(q0, a1), a2, δP (a3...ak, p0))...ω(δQ(q0, a1...ak−1), ak, p0),

by the definition of ω. Notice now that for any i ∈ {1, ..., k − 1}:
δR(a1...ai, q

′
0) = δ′′Q(q0, ai...a1) ∈ ν(δ(q0, a1...ai)),

Bimachines and Structurally-Reversed Automata 137

hence for k ≥ 3:

ωR(δR(a1...ai, q
′
0), ai+1, δP (ai+2...ak, p0)) =

= ω(δ(q0, a1...ai), ai+1, δP (ai+2...ak, p0)),

from the definition of ωR. It is now easy to check that ω(q0, w, p0) = ωR(q′0, w.p0),
hence that fB(w) = fB′(w).

All other cases are either similar to the above ones or they can easily be proven.
Concluding, we found a right sequential bimachine B′ equivalent to the convergent
bimachine B, i.e. such that fB′ = fB . Similar constructions lead to the conversion
of bimachines of a given type to a bimachine of any other type. Notice that the
core of this conversion is the construction of a structurally-reversed automaton of a
given DFA and the use of the structural connection between the automaton and its
structurally-reversed counterpart.

Finally notice that if we want to convert for example a convergent bimachine into a
left sequential bimachine, we need to “structurally reverse” a right automaton - which
is a DFA which scans the input from right to the left. With care, one can adapt the
construction of structurally-reversed automata to this situation as well. In this case
a corresponding structurally-reversed automaton will scan the input in the common
way, from left to right. 2

6. Simulating Bimachines by GSM

In this section we give a representation of rational functions which leads to a method
of simulating bimachines by means of left sequential transducers (or GSM).

Definition 17 [1, p. 96] A left sequential transducer is a tuple
L = (Q,X, Y, δ, q0, γ) where

(i) Q is a finite set of states, q0 is an initial state and X,Y are input and output
alphabets;

(ii) δ : Q×X → Q is a partial next state function;

(iii) γ : Q×X → Y ∗ is a partial output function with the same domain as δ (notation
wise, dom(γ) = dom(δ)).

The functions δ and γ are extended in the usual way to operate on words. Accord-
ingly, for the output function we have: γ(q, λ) = λ and γ(q, wa) = γ(q, w)γ(δ(q, w), a)
where a ∈ X, w ∈ X+ and q ∈ Q. In essence, the left sequential transducer is a
DFA(incomplete, with all its states final) with output words associated to its tran-
sitions. While scanning the input word, this automaton sequentially writes on the
output tape all the output words associated to those transitions triggered by the
input. Formally, the partial function realized by L is fL : X∗ → Y ∗ given by

fL(w) := γ(q0, w).

138 Nicolae Santean

Notice that we can relax the above definition - without loss of generality - by allow-
ing dom(γ) ⊆ dom(δ). Indeed, the transitions where γ is not defined can eventually
be ignored/discarded. In this section we construct a left sequential transducer in
which this situation occurs and where the corresponding adjustments are omitted.

A left sequential transducer is also called a generalized sequential machine ([7, 5])
or GSM for short.

The family of all partial functions realized by left sequential transducers is called
the family of left sequential functions(or sequential functions - if no confusion
arises) and can be proved that this family is strictly included in the family of ratio-
nal functions. In other words, bimachines are strictly more powerful than GSM (for
example, the rational function used in Example 20 is neither sequential nor subse-
quential; also recall the hierarchy in Figure 1).

Let w = a1...ak ∈ X∗ with k ≥ 1 and ai ∈ X, ∀i ∈ {1, ..., k}. By the trimming of
w we understand the ordered sequence (a1...ak−1ak, a2...ak−1ak, ..., ak−1ak, ak).

Definition 18 By a trimming over X we understand a total function µ$, given by

µ$: X∗ → (X ∪ {$})∗,

∀k ≥ 1 : µ$(a1...ak) = a1...ak$a2...ak$...$ak−1akak,

where $ is a symbol not in X. By convention, µ$(λ) = λ.

Notice that a trimming over X is simply a global description of the trimming of
all words of X∗.

Theorem 19 If f : X∗ → Y ∗ is a rational function such that f(λ) = λ, then there
exists a left sequential function fL : (X ∪ {$})∗ → Y ∗ such that f = fL ◦ µ$.

Proof. In proving this result we make use of bimachine equivalence presented in the
previous section. Accordingly, any rational function can be realized by a left sequen-
tial bimachine. Let B = (Q,P,X, Y, δQ, δP , q0, p0, ω) be a left sequential bimachine
realizing f . As previously mentioned, we can assume that both the left and the right
automata of B are complete (we can always enforce this situation, by tweaking the
domain of the output function). Then δQ and δP are total functions, ω is a partial
function and the automata composing this bimachine can be viewed as complete DFA
with all states final (i.e. themselves alone do not reject any input).

Let us first focus on the left DFA, AL = (Q,X, δQ, q0). We modify this automaton
in order to process $. Notice that given (a1...ak, a2...ak, ..., ak) a trimming of a word
w, if we consider only the first symbol of each of its components we obtain a “trace”
of w: (a1, a2, ..., ak). Based on this observation we construct a new DFA A′L =
(Q′, X ∪ {$}, δ′Q, q0) where

• Q′ = Q ∪ (Q×X);

Bimachines and Structurally-Reversed Automata 139

• δ′Q : Q′ × (X ∪ {$}) → Q′, given by:

δ′Q(r, x) =

(r, x), if x ∈ X and r ∈ Q;
r, if x ∈ X and r ∈ Q×X;
δQ(q, a), if x = $ and r = (q, a) ∈ Q×X;
undefined, otherwise.

Notice that δ′Q is designed in such way that the behaviour of A′L when scanning
µ$(w) simulates the behaviour of AL when scanning w (in B). Indeed if for some
input w = a1a2 for example, AL executes the following computation:

q1a1a2 ` q2a2 ` q3,

then A′L will execute the following computation for the input µ$(w) = a1a2$a2$:

q1a1a2$a2$ ` (q1, a1)a2$a2$ ` (q1, a1)$a2$ ` q2a2$ ` (q2, a2)$ ` q3.

(q1, a1)

(q2, a2)

q3

q2

q1

$

$

∀a ∈ X

∀a ∈ X

a2

a1

a2

a1

Figure 7: Relationship between δQ and δ′Q.

Notice that A′L memorizes the “trace” of w, performs “useful” transitions only
triggered by the symbol $ and “skips” the other symbols. Figure 7 illustrates the
relationship between δQ and δ′Q: dotted lines represent old transitions of AL and solid
lines represent the new corresponding transitions of A′L. We let A′L be an incomplete
DFA.

Next, let us modify the right DFA AR to allow it to process $. Unlike A′L which
was designed to simulate AL on a single scan, A′R will simulate computations of AR

on multiple scans. More specifically, let AR = (P, X, δP , p0) be the right automaton
of B. Since B is a left sequential bimachine, AR is an “usual” DFA, scanning the
input from left to right. Consider the automaton A′R = (P ′, X ∪ {$}, δ′P , p′0) where

• P ′ = P ∪ {p′0}, with p′0 a new, initial state;

140 Nicolae Santean

• δ′P : P ′ × (X ∪ {$}) → P ′ given by:

δ′P (r, x) =

p0, if x ∈ X and r = p′0;
δP (r, x), if x ∈ X and r ∈ P ;
p′0, if x = $ and r ∈ P .
undefined, otherwise.

The automaton A′R “skips” the symbols immediately following a $ (and the first
symbol of the input). For all the other symbols up to another $, A′R simulates the
computations of AR. Each scanned $ resets the automaton to its new initial state.
Figure 8 illustrates the design of A′R. The dotted rectangle is a replica of the transition
graph of AR; in addition each state in P has an $-transition into p′0. As in the case
of A′L, A′R is an incomplete DFA.

$

p0p′0A′R : AR

∀x ∈ X

Figure 8: The construction of A′R.

We now construct a left sequential transducer corresponding to the left sequential
function required by the theorem. We do this by basically constructing a machine
which “runs in parallel” A′L and A′R, and to which we augment a simple output
function. Indeed, consider the left sequential transducer L = (QL, X∪{$}, Y, δL, qL

0 , γ)
detailed as following:

• QL = Q′ × P ′;

• qL
0 = (q0, p

′
0);

• δL : QL × (X ∪ {$}) → QL, a partial next state function given by:

δL((q, p), a) =

{
(δ′Q(q, a), δ′P (p, a)), if δ′Q and δ′P are defined in (q, a);
undefined, otherwise.

• γ : QL × (X ∪ {$}) → Y ∗, a partial output function given by:

γ((r, p), x) =

λ, if x ∈ X;
ω(q, a, p), if x = $, r = (q, a) ∈ Q×X,

p ∈ P and ω is defined in (q, a, p);
undefined, otherwise.

Bimachines and Structurally-Reversed Automata 141

Recall that we allow the domain of γ to be strictly included in the domain of δL - in
practice, all transitions for which γ is undefined are discarded.

It remains to prove that if fL is the function realized by L then fL ◦ µ$ = f .
Arbitrarily choosing a word w = a1a2....ak ∈ X∗, we distinguish the following cases:

(i) if k = 0, then f(λ) = λ and fL(µ$(λ)) = fL(λ) = γ(qL
0 , λ) = λ;

(ii) if k = 1, then w = a ∈ X and fL(µ$(a)) = fL(a$) = γ(qL
0 , a$), which is equal to

ω(q0, a, p0) if ω is defined in (q0, a, p0) or is undefined otherwise - in both cases
being equal to f(a);

(iii) the case when k ≥ 2 is discussed in the following.

Let us define a “cut” of w to be a factorization of w as w1aiw2. Corresponding to
this cut we consider the following factorization of µ$(w):

µ$(w) = u1vu2, where u1 ends in a $ and v = ai...ak$.

These cut and factorization are illustrated in Figure 9.

u2

µ$(w) =a1... ak $$a2... akak $ ai... akai+1... $$... ...$

v

w1 w2

w = a1... ak...ai

u1

Figure 9: A “cut” of w, and the corresponding factorization of µ$(w).

Case 1. f is undefined in w. Then there exists a cut as above such that
ω(δQ(q0, w1), ai, δP (p0, w2)) is undefined (recall that δQ and δP are complete func-
tions). Consider w1 to be the smallest prefix of w such that the above holds. Then
also γ(qL

0 , u1v) is undefined since otherwise it should have ω(δQ(q0, w1), ai, δP (p0, w2))
as a suffix - which is undefined. Then γ(qL

0 , µ$(w)) is undefined as well, hence fL is
undefined in µ$(w).
Case 2. If f is defined in w then it is clear than fL is defined in µ$(w) as well. We
next prove that in this case f(w) = fL(µ$(w)). We expand the function γ in µ$(w):

γ(qL
0 , µ$(w)) = γ(qL

0 , a1...ak$)γ(δL(qL
0 , a1...ak$), a2...ak$)...

...γ(δL(qL
0 , a1...ak$...$ak−1ak$), ak$).

Notice that if a word u which ends in a $ is a prefix of µ$(w), then δL(qL
0 , u) is a

state of the form (q, p′0) where q ∈ Q. Consider the situation when the transducer
L reaches such state (q, p′0), and assume that the remaining of the input has the
prefix aj ...ak$ for some j < k. In this situation, L will next execute the following
computation (we ignore the output for the time being):

(q, p′0)aj ...ak$ ` ((q, aj), δp(p0, aj+1...ak))$ ` (δQ(q, aj), p′0).

142 Nicolae Santean

The only output of this computation is written in the last step and is exactly
ω(q, aj , δP (p0, aj+1...ak)). In other words,

γ((q, p′0), aj ...ak$) = ω(q, aj , δP (p0, aj+1...ak)),∀q ∈ Q.

Since qL
0 = (q0, p

′
0), δL(qL

0 , a1...ak$) = (δQ(q0, a1), p′0) and so forth up to
δL(qL

0 , a1...ak$...$ak−1ak$) = (δQ(q0, a1...ak−1), p′0), it is an easy exercise to apply
the above relation to the expansion of γ(qL

0 , µ$(w)), hence yielding

γ(qL
0 , µ$(w)) = ω(q0, a1, δP (p0, a2...ak))ω(δQ(q0, a1), a2, δP (p0, a3...ak))...

...ω(δQ(q0, a1...ak−1), ak, p0),

this being exactly ω(q0, w, p0), i.e. f(w). We then proved that f(w) = fL(µ$(w)). 2

This theorem basically says that bimachines can successfully be replaced/simulated
by GSM , at a small cost. The cost is given by a simple preprocessing of the input
words, namely a trimming.

Remark A trimming µ$ over some alphabet X is itself a word function which can
trivially be implemented in practice. However, µ$ can not be realized by any finite
or push-down transducer (defined in [8], for example) - in other words it is neither a
rational nor an algebraic function (see [1, p. 71] for a definition of algebraic transduc-
tions). In order to support this remark, we recall two properties of such functions.

1. Each rational function preserves regular languages. This property can be derived
from Nivat’s characterization of rational relations ([19], [1, Theorem 4.1, p. 66]).

2. The image of a regular language through a push-down transducer is context-free
([8, Theorem 3.3, p. 170]).

Now it suffices to observe that µ$(X∗) is neither regular, nor context-free, fact
easily proven using the pumping lemma for either regular or context-free languages.

In the following we give an example of simulating bimachines by GSM .

Example 20 Let us consider a classical example of a rational function which is not
sequential. Consider f : {x}∗ → {a, b}∗, given by

f(xn) =

{
an, if n is an even natural number;
bn, if n is odd.

The fact that f is rational is proven by the single-valued transducer which realizes
f , shown in Figure 10 . We follow the usual convention, that a label “x/w” of a
transition implies that the transition is triggered by a symbol x and it writes w on
an output tape. For a general discussion on finite transducers consult [1, p. 77].

Function f is not sequential since it is not prefix-preserving, i.e. given two words u
and v such that f is defined in both u and uv, then f(u) is not necessarily a prefix of
f(uv). However, notice that sequential functions are always prefix-preserving. This
means that although there exists a single-valued transducer which realizes f , it surely

Bimachines and Structurally-Reversed Automata 143

x/b

x/a

x/a
x/a

x/b

x/b

Figure 10: A transducer for function f .

does not exist a (left) sequential transducer for f . However, by Theorem 19 we can
construct a sequential transducer which simulates f , i.e. in our case it realizes f
modulo a preprocessing.

Since f is rational, it means that there also exists a bimachine realizing f . Indeed,
the convergent bimachine in Figure 11 realizes f . Notice that due to its symmetry(one-
letter input alphabet), this machine can readily be converted into a left sequential
bimachine. Indeed, for this conversion, one needs to simply change the scanning
direction of its right automaton without modifying anything else.

q0

xx x

a

a

b

b

p0 p1

q0

q1

q1 p1

p0

x

ω

Figure 11: A bimachine for function f .

Following the method presented in Theorem 19 we construct the sequential trans-
ducer shown in Figure 12. It is an easy exercise to verify that indeed, this GSM
realizes f when applied on the trimming of the input. Then we can use this machine
and a preprocessing (trimming) of the input in order to implement f .

Let γ be the output function of the sequential transducer shown in Figure 12
and consider the words u = x3 and v = x4. Then, f(u) = b3 and f(v) = a4 - as
also computed by the transducer shown in Figure 10 or by the bimachine shown in
Figure 11. Since µ$(u) = xxx$xxx and µ$(v) = xxxx$xxxxxx$, the sequential
transducer applied to each of these two trimmings issues the following output:

γ([q0, p
′
0], µ$(u)) = γ([q0, p

′
0], xxx$)γ([q1, p

′
0], xx$)γ([q0, p

′
0], x$) =

= γ([(q0, x), p0], $)γ([(q1, x), p1], $)γ([(q0, x), p0], $) = bbb = f(u),

144 Nicolae Santean

$/b

$/b

$/a

$/a

x/λ

x/λ

x/λ

x/λ

x/λ

x/λ

(q0, p′0)

(q1, p′0)

(q0, x), p0 (q0, x), p1

(q1, x), p0

(q1, x), p1

Figure 12: A left sequential transducer which simulates function f .

γ([(q0, p
′
0)], µ$(v)) =

= γ([q0, p
′
0], xxxx$)γ([q1, p

′
0], xxx$)γ([q0, p

′
0], xx$)γ([q1, p

′
0], x$) =

= γ([(q0, x), p1], $)γ([(q1, x), p0], $)γ([(q0, x), p1], $)γ([(q1, x), p0], $) =

= aaaa = f(v)

7. Conclusions and Further Research

Bimachines have been designed in [23] for the purpose of implementing rational func-
tions. Their initial goal was to model in a concise manner the computations performed
by a cascade of a left and a right sequential transducer. Indeed, the decomposition
theorem for rational functions is easily proved using classical bimachines. This was
probably the main reason why Schutzenberger chose the scanning directions of the
reading heads in a bimachine to be the way they are known today. In this paper
we proved that in fact these scanning directions are irrelevant. Furthermore, we give
a method of changing the scanning direction of any reading head of a bimachine.
To this respect, we introduced the new concept of structurally-reversed automaton.
Such an automaton realizes more than a language reversal: it preserves the state-
discrimination among words. Although a few properties of this type of automata
have been studied, there is more to be found. Moreover these automata may have
other useful applications (for example, in reversing Moore machines). Left for future
work is to find an efficient algorithm for computing the minimal structurally-reversed
automaton of a given DFA (in this paper we gave a basis for such algorithm).

The equivalence between convergent and left sequential bimachines helped us give a
simple method of simulating a bimachine by means of only one sequential transducer
(fact which may seem surprising if we consider that the decomposition of rational
functions necessarily requires two sequential transducers: one left sequential, the

Bimachines and Structurally-Reversed Automata 145

other right sequential). In our method, the input word is first preprocessed in a
simple way (we perform a trimming), then is passed to a sequential transducer which
would normally realize a sequential function. However, we found that such setup can
realize any given rational function.

In parallel with the technical aspect of these results, we convey a good intuition
about the gap between sequential and rational functions. To the author in particular,
it appears that these two families of functions are closer than they may seem at
the first glance. This fact may explain why the hierarchy of rational functions is so
succinct and indeed tight (see Figure 1). However, it remains to investigate whether
there exist deterministic, sequential (, retrospective) and finitary automata with
output more powerful than subsequential transducers (notice that neither bimachines
nor single-valued transducers match this profile). In a broader sense, it may be worth
looking at ways to refine the hierarchy of rational functions.

Acknowledgements

I thank Gabriel Thierrin and Sheng Yu for reading the material and drawing use-
ful observations. I also thank Christian Choffrut for making available his These de
Doctorat d’Etat.

References

[1] J. Berstel, Transductions and Context-Free Languages. B. G. Teubner,
Stuttgart, 1979.

[2] C. Choffrut, Contribution a l’Etude de quelques Familles Remarquables de
Fonctions Rationnelles. These d’Etat, Universite Paris VII, 1978.

[3] N. Chomsky, Three Models for the Description of Languages. IRE Transaction
on Information Theory 2 (1956), 113–124.

[4] N. Chomsky, On Certain Formal Properties of Grammars. Information and
Control 2 (1959), 137–167.

[5] S. Eilenberg, Automata, Languages and Machines. Vol. A, Academic Press,
New York and London, 1974.

[6] C.C. Elgot, J. E. Mezei, On Relations Defined by Generalized Finite Au-
tomata. IBM Journal of Research and Development 9 (1965), 47–65.

[7] S. Ginsburg, The Mathematical Theory of Context-Free Languages. McGraw-
Hill Book Co., New York, 1966.

[8] S. Ginsburg, G. F. Rose, Preservation of Languages by Transducers. Infor-
mation and Control 9 (1966), 153–176.

[9] T. Head, A. Weber, Deciding Code Related Properties by Means of Finite
Transducers. In: R. Capocelli(ed.), Proc. Sequences II: Methods in Commu-
nications, Security and Computer Science II (1993), 260–272.

146 Nicolae Santean

[10] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and
Computation. 1st Edition, Addison-Wesley, Massachusetts and London, 1979.

[11] S.C. Kleene, Representation of Events in Nerve Nets and Finite Automata.
Annals of Mathematics Studies 34 (1956), 2–42.

[12] S. Konstantinidis, Transducers and the Properties of Error-Detection, Error-
Correction, and Finite-Delay Decodability. Journal of Universal Computer Sci-
ence 8, no.2 (2002), 278–291.

[13] V. Manca, C. Martin-Vide, Gh. Paun, Iterated GSM Mappings: a Collaps-
ing Hierarchy. In: Jewels are Forever, Contribution on Theoretical Computer
Science in Honor of Arto Salomaa. Springer, 1999.

[14] W.S. McCulloch, W.H. Pitts, A Logical Calculus of the Ideas Immanent
in Nervous Activity. Bulletin of Mathematical Biophysics 5 (1943), 115–133.

[15] J.D. McKnight, Kleene Quotient Theorems. Pacific Journal of Mathematics
14 (1964), 1343–1352.

[16] G.H. Mealy, A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal 34 (1955), 1045–1079.

[17] M. Mohri, Finite-State Transducers in Language and Speech Processing. Com-
putational Linguistics 23 (1997), 269–311.

[18] E.F. Moore, Gedanken-Experiments on Sequential Machines. Annals of Math-
ematics Studies 34 (1956), 129–153.

[19] M. Nivat, Transductions des Langages de Chomsky. Annales de l’Institut
Fourier 18 (1968), 339–456.

[20] Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms. Springer-Verlag, Berlin, 1998.

[21] J. E. Pin, Syntactic Semigroups. In: Handbook of Formal Languages. Vol. 1,
Springer Verlag, Berlin Heidelberg New York, 1997.

[22] G.N. Raney, Sequential Functions. Journal of the Association for Computing
Machinery 5 (1958), 177–180.

[23] M.P. Schutzenberger, A Remark on Finite Transducers. Information and
Control 4 (1961), 185–196.

[24] M.P. Schutzenberger, Sur une Variante des Fonctions Sequentielles. Theo-
retical Computer Science 4 (1977), 47–57.

[25] A.M. Turing, On Computable Numbers, with an Application to the
Entscheidungs-Problem. Proceedings of the London Mathematical Society, Se-
ries 2, 42 (1936), 230–265.

[26] S. J. Walljasper, Non-Deterministic Automata and Effective Languages.
Ph.D. Thesis, University of Iowa, 1970.

(Received: June 17, 2003; revised: August 26, 2003)

