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Abstract. We propose a formal definition for the general notion of stochastic transducer, called
stochastic λ-transducer. Our definition is designed with two objectives in mind: (i) to extend naturally
the established notion of stochastic automaton with output – as defined in the classic books of Paz
(1971) and Starke (1972) – by permitting pairs of input-output words of different lengths; (ii) to
be compatible with the more general notion of weighted transducer so that one can apply tools of
weighted transducers to address certain computational problems involving stochastic transducers. The
new transducers can be used to model stochastic input-output processes that cannot be modeled using
classical stochastic automata with output.
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1 Introduction

Many data processes are modeled via certain stochastic (probabilistic) systems that describe the desired
input-output relationships of the process. In many cases these systems are, or can be, represented by
specific finite-state transducers. In this paper we propose a formal definition for the general notion of
stochastic transducer, called stochastic λ-transducer. Our definition is designed with two objectives in
mind:

1. to extend naturally the established notion of stochastic automaton with output – as defined in
the classic books of Paz (1971) and Starke (1972) – by permitting pairs of input-output words of
different lengths;

2. to be compatible with the more general notion of weighted transducer so that one can apply
algorithmic tools of weighted transducers to address certain computational problems involving
stochastic transducers.

1Research supported by the Natural Sciences and Engineering Research Council of Canada.
2Corresponding author.
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In the case of classic stochastic automata with output, transitions are of the form (p, a/b, q), where
p and q are states and a, b are input and output alphabet symbols. Our definition extends this concept
by allowing a and/or b to be equal to λ, where λ is the empty word. In effect this means that, for a
given input word, a stochastic λ-transducer could output a word of different length. This capability
allows one to model stochastic input-output processes that cannot be modeled using classic stochastic
automata with output – see for example the Zigangirov channel in Sections 2 and 3. The price for
the extra capability is a slight increase in the constraints to be obeyed when defining transitions, and
that the correctness proof is not immediate – correctness here means that the constraints on defining
transitions must ensure that, for any given input word, the probability that some word is output is
one.

In the next section we present the definition of stochastic λ-transducers and discuss how these
objects operate. In Section 3, we demonstrate the validity of our definition in terms of two meaningful
examples. Section 4 contains the proof of correctness of our definition, and the last section discusses
some applications and directions for future research.

2 Definition of Stochastic (Probabilistic) λ-Transducers

For any countable set D, we denote by ProbDistr(D) the set of all (discrete) probability distributions
on D. Obviously, for any element µ in ProbDistr(D) we have that

∑

z∈D

µ(z) = 1 and 0 ≤ µ(z) ≤ 1, for any z ∈ D.

Let Σ and ∆ be alphabets, and let λ be the empty word over either of the two alphabets – this
creates no confusion here. The expressions Σλ and ∆λ denote Σ ∪ {λ} and ∆ ∪ {λ}, respectively. A
total stochastic transduction (or total probabilistic transduction) is a mapping

τ : Σ∗ → ProbDistr(∆∗);

that is, for every word w in Σ∗, the function τw = τ(w) is a probability distribution on ∆∗, which
implies ∑

u∈∆∗
τw(u) = 1.

As in the case of ordinary (non-stochastic) transductions [8, 10], stochastic ones are also meant
to model input-output processes, for some input alphabet Σ and output alphabet ∆. Moreover, in a
stochastic transduction τ the quantity τw(u) is equal to

Pr {output = u | input = w},
namely the probability that the output word will be u given that the input word is w. Next we give
our definition of stochastic λ-transducer.

The definition

A stochastic λ-transducer C is defined by a tuple (Σ, ∆, Φ, ϕ, T, β) consisting of the input and output
alphabets Σ and ∆, respectively, a finite nonempty set of states Φ, a probability distribution ϕ on Φ
for the choice of the start state, a finite set T of transitions (labeled edges) of the form (p, x/y, q),
where p and q are states and x ∈ Σλ and y ∈ ∆λ, and a function β that assigns a probability value
in (0, 1] to every transition. In addition, Conditions (1), (2), and (3) must be satisfied as explained
below. To be compatible with [7], we use the notation Hp,x(q, y) for the value β(p, x/y, q) – we shall
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switch to the matrix notation of [4] when we get to the correctness proof of our definition. This value
is the probability that the λ-transducer will follow the transition from p to q with label x/y, given that
the current state is p and the non-consumed part of the input word starts with x. Moreover, we define
Hp,x(q, y) to be 0 when there is no transition (p, x/y, q). In mathematical notation, for fixed p and x,
and for any pair (q, y) in Φ×∆λ, we have

Hp,x(q, y) = Pr {output = y, next-state = q | input-starts-with x, current-state = p}.

For technical reasons, we assume that the λ-transducer appends the special symbol $ /∈ Σ at the end of
every input word, and that (p, $/λ, p) is a transition, for each state p. The following conditions must
be satisfied, for all states p and input symbols a ∈ Σ.

∑

q∈Φ,y∈∆λ

(Hp,a(q, y) + Hp,λ(q, y)) = 1. (1)

Hp,$(p, λ) = 1−
∑

q∈Φ,y∈∆λ

Hp,λ(q, y). (2)

Another requirement is that the λ-transducer contains no closed set of states K such that for all
states p in K

∑

q∈Φ,y∈∆λ

Hp,λ(q, y) = 1. (3)

A set of states K is called closed (or an ergodic class [4]), if for any two states p and q in K there
is a path from p to q, and for every pair of states p in K and q in Φ \K there is no path from p to
q. Condition (3) ensures that the λ-transducer, with non-zero probability, will ultimately consume the
entire input word, that is, it will never enter a closed set of states in which the transitions consume no
input. Condition (1) ensures that, for any given state p with current input symbol a, the sum of the
probabilities of the next possible events is equal to 1, where each event is a transition to some state q
with some output y and the current input symbol is either consumed with probability Hp,a(q, y), or not
consumed with probability Hp,λ(q, y). Condition (2) is similar to (1), but deals with the special input
symbol ‘$’, which indicates the end of input. When ‘$’ is consumed then the next state is immaterial,
so we have chosen arbitrarily that the next state will be equal to the current one.

The operation

We discuss now concepts related to the operation of a stochastic λ-transducer C. A C-event, or simply
event when C is understood, is an expression ζ of the form (x1/y1)p1 · · · (xn/yn)pn, where n ≥ 1, and
each pi is a state, and each pair (xi/yi) is in Σλ ×∆λ, with xn possibly being equal to $, and xn 6= λ.
This event describes a possible path that the λ-transducer can follow on the input x1 · · ·xn starting
from some state in Φ. If that state is p0, say, then the probability of the event is defined to be

Hp0(ζ) = Hp0,x1(p1, y1) Hp1,x2(p2, y2) · · ·Hpn−1,xn(pn, yn).

The probability of the event ζ when the start state is not specified is

H(ζ) =
∑

p0∈Φ

ϕ(p0)Hp0(ζ).
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As in the classic definition of stochastic automata with output [4, 7] we make no assumptions about
final states. Of course, one can specify that some states of a stochastic λ-transducer are final; however,
then it is not clear what the stochastic meaning of the accepting versus non-accepting paths would be.

As with ordinary transducers, stochastic ones admit graph representations. An example is shown
in Figure 1. Let’s assume that Σ = {a, b}. Given the input b at state 1 the λ-transducer could output
the word ab using one of the following four possible events

ζ1 = (λ/a)1(λ/b)1(λ/λ)2(b/λ)1(λ/λ)2($/λ)2
ζ2 = (λ/a)1(λ/λ)2(b/λ)1(λ/b)1(λ/λ)2($/λ)2
ζ3 = (λ/a)1(λ/λ)2(b/b)1(λ/λ)2($/λ)2
ζ4 = (λ/λ)2(b/λ)1(λ/a)1(λ/b)1(λ/λ)2($/λ)2

One can verify that the probability of the event ζ3 starting from state 1 is H1(ζ3) = (f1/2)g2
1g2.

∀a ∈ Σ, λ/a : f1/ | Σ | $/λ : 1

λ/λ : g1

∀a ∈ Σ

a/a : g2

a/λ : f2

1 2

Figure 1: The Zigangirov channnel. A stroke on an arrow indicates multiple
transitions as indicated in the label of the arrow. A label of the form “x/y : t”
between two states p and q corresponds to Hp,x(q, y) = t. We assume that
Σ = ∆ and f1+g1 = f2+g2 = 1 (see also Section 3 for further explanations).

The correctness

For each nonempty word w that possibly ends with $, we define
Zw to be the set of all C-events (x1/y1)p1 · · · (xn/yn)pn with x1 · · ·xn = w.

In addition, for any word u over ∆, let
Zw,u be the set of C-events as above such that w = x1 · · ·xn and u = y1 · · · yn.

Theorem 1 Let C be a stochastic λ-transducer. For any given state i0 and any nonempty word w over
Σ that possibly ends with $, the event probability function Hi0 is indeed a probability distribution on
the set of C-events Zw, that is, ∑

ζ∈Zw

Hi0(ζ) = 1.
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The proof of Theorem 1 is given in Section 4. The theorem says that being in any state and for
any given input w, the probability that one of the possible events in Zw will occur is equal to 1. This
establishes the correctness of our constraints (1), (2) and (3). When the start state is not specified
then it is easy to see that again ∑

ζ∈Zw

H(ζ) = 1.

We discuss now the total stochastic transduction |C| specified by C. This is defined as follows, where
w is any input word in Σ∗ and u is any output word in ∆∗:

|C|w(u) =
∑

ζ∈Zw$,u

H(ζ)

The quantity |C|w(u) is the probability that the output is u, given that the input is w, and is equal
to the sum of the probabilities of all the possible events in Zw$,u. The following result establishes the
fact that |C| is indeed a total stochastic transduction.

Corollary 1 Let C be a stochastic λ-transducer. For each word w over Σ, the function |C|w is a
probability distribution on ∆∗, that is,

∑

u∈∆∗
|C|w(u) = 1.

Corollary 1 follows from Theorem 1 when we observe the following facts, where w is an input word
in Σ∗ and i0 is any state.

• Zw$ = ∪uZw$,u.

• If u 6= u′ then Zw$,u ∩ Zw$,u′ = ∅.
• ∑

u∈∆∗
∑

ζ∈Zw$,u
Hi0(ζ) =

∑
ζ∈Zw$

Hi0(ζ).

3 Two Examples

In this section we demonstrate the relevance of our definition with two meaningful examples. The first
example is the stochastic channel of Zigangirov [11] – revisited recently in [1] – which permits insertions
and deletions of symbols to occur in an input word. The second example is the important concept
of stochastic (or probabilistic) automaton with output, as presented in [4, 7], in which any transition
label is of the form a/b, where a and b are symbols in the input and output alphabets, respectively –
this concept had been defined by Shannon [6] as well to model communication channels that permit
substitutions of symbols in an input word by different symbols. In the literature of stochastic processes,
the term channel is normally used in the general intuitive sense of a process that outputs a word with
a certain probability in response to a given input word. In this context, our definition of stochastic
λ-transducer provides a formal method for defining various stochastic channels. We note that, in the
literature of formal languages and coding theory, one can also find the concept of non-stochastic (that
is, combinatorial) channel – see [2], for instance.

The Zigangirov channel is defined as follows [11]: The channel receives input symbols a1, a2, . . . in
Σ. The input a1a2 · · · can be written as λa1λa2λ · · ·. For each λ-position and for each symbol ai, the
channel can make changes as follows.
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• For each λ-position, we have the quantities

Pr{no insertion} = g1 and Pr{insertion of i symbols} = g1f
i
1,

such that f1 + g1 = 1, and Pr{inserting u} = Pr{inserting v}, for any words u and v of the same
length. Hence, for any word u of length i, we have that Pr{inserting u} = g1f

i
1/|Σ|i. This implies

that, for each λ-position, Pr{insertion of a nonempty word} = f1.

• For each input symbol a, we have the quantities

Pr{no deletion} = g2 and Pr{deletion of a} = f2,

such that f2 + g2 = 1.

In Figure 1 we show that stochastic λ-transducers can be used to model the Zigangirov channel. We
assume here that the state 1 is the start state, that is, any input word to the λ-transducer is processed
starting at state 1.

The next example demonstrates that our definition of stochastic λ-transducer is a natural extension
of the concept of stochastic automaton (with output) defined in the classic books [4, 7]. Indeed, in [7]
for instance, a stochastic automaton consists of the alphabets Σ and ∆, the state set Φ, and a function
H that maps any pair (p, a) in Φ× Σ onto Hp,a which is a probability distribution on Φ×∆, that is,
Hp,a(q, b) is the probability that the automaton will go to state q and output the symbol b, given that
the current state is p and the input symbol is a. Moreover, for any p and a,

∑

q∈Φ,b∈∆

Hp,a(q, b) = 1.

Thus, at each step, the automaton consumes exactly one input symbol and outputs exactly one output
symbol. The book [7] does not use the concept of event that we use here, but extends the function H
to words such that, for any words w = a1 · · · an ∈ Σn, u = b1 · · · bn ∈ ∆n, and state word p = p1 · · · pn ∈
Φn, for some n ≥ 0, we have that

Hp0,w(p, u) = Hp0,a1(p1, b1) · · ·Hpn−1,an(pn, bn).

One can verify that our definition of stochastic λ-transducer reduces to the classic definition of stochastic
automaton when we omit any component that involves the empty word λ. We note that the correctness
of the classic definition is not an issue, that is, it is not difficult to see that, for any word w of length
n and for any state p0, the sum of the probabilities Hp0,w(p, u), for all p and u, is equal to 1. On the
other hand, in our extended version of stochastic machine, the proof of Theorem 1 is not immediate –
see Section 4.

4 Proof of Theorem 1

For the proof of Theorem 1, we use the notation of the previous section as well as the matrix represen-
tation of stochastic λ-transducers (following [4]). Let s be the number of states in Φ. Without loss of
generality, assume that Φ = {1, . . . , s}. For any x in Σλ ∪ {$} and y in ∆λ, we define the s× s matrix
A(x/y) such that each entry (i, j) of the matrix is

[A(x/y)]i,j = Hi,x(j, y).
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Thus, the entry (i, j) of the matrix A(x/y) is the probability that the λ-transducer will go to state j
and output y, given that the current state is i and the input word to be consumed starts with x. These
matrices are sufficient to define the stochastic λ-transducer in question. We also need the following
notation

Ax =
∑

y

A(x/y),

Pi(x) =
s∑

j=1

[Ax]i,j , for any state i.

By definition, for any symbol a in Σ ∪ {$}, we have

Pi(a) =
s∑

j=1

∑
y

Hi,a(j, y), Pi(λ) =
s∑

j=1

∑
y

Hi,λ(j, y),

which implies that Pi(a) + Pi(λ) = 1, for any state i. Thus the matrix Ax + Aλ is stochastic (each row
sums to 1) and each of Ax and Aλ is sub-stochastic (each row sums to at most 1).

In the next lemma Is denotes the s × s unit matrix, that is, the unique matrix with the property
IsA = AIs = A, for all s × s matrices A. The proof of the lemma uses the following properties of
eigenvalues of stochastic matrices (page 98 of [4]). Let t1, . . . , ts be the eigenvalues of some stochastic
matrix M . Then

(E1) |ti| ≤ 1 for all i.

(E2) There is a single closed set of states in the incidence graph of M if and only if there is a simple
eigenvalue ti = 1.

(E3) If there is no closed set of states in the graph of M then there are no eigenvalues tj with tj 6= 1
and |tj | = 1 – here we use a weaker form of the Property 4 in [4] that involves the concept of
periodic class.

Lemma 1 The matrix Is −Aλ is invertible, which implies that the following equality is valid

Is + Aλ + A2
λ + · · · = (Is −Aλ)−1.

Proof. It is sufficient to show that all the eigenvalues, say t1, . . . , ts, of Aλ are such that |ti| < 1. This
ensures that the sum

∑∞
r=0 Ar

λ is well-defined and equal to (Is −Aλ)−1. Recall that the eigenvalues of
an s× s matrix A are the s roots of the equation det (A− tIs) = 0, where the unknown variable is t.

We shall view the λ-transducer C as a labeled graph. Let Cλ be the graph that results from C when
we keep all states in Φ and only the transitions of the form (i, λ/y, j). Then, let C′λ be the graph that
results when we add the following elements in Cλ:

• a new state 0;

• the transition (0, λ/λ, 0) with weight β(0, λ/λ, 0) = 1;

• for each state i ∈ Φ, the transition (i, λ/λ, 0) with weight β(i, λ/λ, 0) = 1− Pi(λ)
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It is evident that C′λ has a single closed set of states which is equal to {0}. Let C′′λ be the graph that
results from C′λ when we replace, for every pair of states (i, j), the set (if nonempty) of transitions
(i, λ/y1, j), (i, λ/y2, j), . . . with a single transition (i, g, j) where g is the sum of the weights of these
transitions. Note that, for fixed i, the sum of g’s corresponding to all j’s is equal to Pi(λ). It is evident
that C′′λ contains a single closed set of states, which is {0}. Let B be the (s + 1) × (s + 1) incidence
matrix of C′′λ, that is, the matrix whose entry (i, j) is equal to the weight q of the edge (i, q, j) of C′′λ.
Then the structure of B is as follows

B =




1 0 · · · 0
1− P1(λ)

... Aλ
1− Ps(λ)




Obviously B is a stochastic matrix. Moreover, for every variable t,

det (B − tIs+1) = (1− t) · det (Aλ − tIs).

This implies that the eigenvalues of B are 1 and t1, . . . , ts (which are the eigenvalues of Aλ). As B is
the incidence matrix of a graph with a single closed set of states, the properties (E1)–(E3) imply that
each |ti| is less than 1, as required. 2

Lemma 2 For any state i0 and any input symbol a in Σ ∪ {$}, we have that
∑

ζ∈Za

Hi0(ζ) = 1.

Proof. For any integer r ≥ 0 and a ∈ Σ ∪ {$}, let Z
(r)
a be the set of all events of the form

ζ = (λ/y1)i1 · · · (λ/yr)ir(a/yr+1)ir+1.

Then,

Za = ∪∞r=0Z
(r)
a and

∑

ζ∈Za

Hi0(ζ) =
∞∑

r=0

∑

ζ∈Z
(r)
a

Hi0(ζ).

Now fix the terms y1, . . . , yr+1 and consider all ζ = (λ/y1)i1 · · · (λ/yr)ir(a/yr+1)ir+1 in Z
(r)
a where only

the terms i1, . . . , ir+1 are arbitrary. Then the sum of Hi0(ζ) over all these ζ’s is equal to

fi0A(λ/y1) · · ·A(λ/yr)A(a/yr+1)g,

where g is the s × 1 matrix (1, . . . , 1)T, and fi0 is the 1 × s matrix (0, . . . , 1, . . . , 0) with a single 1 at
position i0. Suppose that ∆λ = {c0, . . . , cm}. If now we allow the terms y1, . . . , yr+1 to be arbitrary,
then ∑

ζ∈Z
(r)
a

Hi0(ζ) = fi0(A(λ/c0) + · · ·+ A(λ/cm))r(A(a/c0) + · · ·+ A(a/cm))g,

which is equal to fi0A
r
λAag. Hence,

∑

ζ∈Za

Hi0(ζ) =
∞∑

r=0

(fi0A
r
λAag)

= fi0(
∞∑

r=0

Ar
λ)Aag

= fi0(Is −Aλ)−1Aag [using Lemma 1].
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It follows now that Aag = (Is −Aλ)g, as Pi(a) = 1− Pi(λ) for all states i. Hence,
∑

ζ∈Za

Hi0(ζ) = fi0(Is −Aλ)−1(Is −Aλ)g = 1,

as required. 2

Proof of Theorem 1. We use induction on the length of w. The base case where the length of w
is 1 follows from Lemma 2. Assume the statement holds for all words of length up to n. Let w be a
word of length n + 1. Then w = ux for some word u of length n and symbol x in Σ ∪ {$}. Each event
ζ in Zw, when viewed as a word, can be written uniquely as ζ = ζ1ζ2 where ζ1 is in Zu and ζ2 is in Zx.
Moreover,

Hi0(ζ) = Hi0(ζ1) ·H`(ζ1)(ζ2),

where `(ζ1) is the last state in the event ζ1. Conversely, each ζ1 ∈ Zu and ζ2 ∈ Zx defines the event
ζ1ζ2 in Zw. Hence,

∑

ζ∈Zw

Hi0(ζ) =
∑

ζ1∈Zu

∑

ζ2∈Zx

Hi0(ζ1)H`(ζ1)(ζ2)

=
∑

ζ1∈Zu

(Hi0(ζ1) ·
∑

ζ2∈Zx

H`(ζ1)(ζ2))

=
∑

ζ1∈Zu

Hi0(ζ1) [using Lemma 2]

= 1 [using the induction hypothesis].

2

5 Discussion

As demonstrated in Section 3, our definition of stochastic λ-transducer constitutes a natural general-
ization of the classic definition of stochastic automaton with output [4, 7], and can be used to model,
for instance, channels involving insertions and deletions of symbols. Recall that the second objective
of our definition is to be compatible with the more general notion of weighted transducer – see for
example [3]. Using algorithmic tools for these objects we can address certain computational problems
involving stochastic λ-transducers.

For example, the maximum likely event problem is as follows. Let C be a stochastic λ-transducer
and let u be a given word. We wish to compute an event

ζ = (x1/y1)p1 · · · (xn/yn)pn

of C such that u = y1 · · · yn and, for any event ζ ′ = (x′1/y′1)p
′
1 · · · (x′m/y′m)p′m with u = y′1 · · · y′m, we

have that H(ζ) ≥ H(ζ ′). This problem can be solved by reducing it to the best alignment problem for
weighted transducers, [3], as follows.

1. Let C1 be the weighted transducer resulting when we replace every weight t of C with − log t.
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2. Let C2 be the weighted transducer that results when we add in C1 a single start state σ, say, and
transitions (σ, λ/λ, q) for every state q of C1 , such that the weight of such a transition is equal
to − log ϕ(q), where ϕ is the start state distribution of C. We note that this step is not necessary
if there is already a single state q in C1 with ϕ(q) = 1.

3. Let C3 be the weighted transducer that results by intersecting (or composing) C2 with the finite
automaton that accepts the single word u such that in every event ζ = (x1/y1)p1 · · · (xn/yn)pn

of C3, with pn being a final state, we have that y1 · · · yn = u. This step is possible using a state
Cartesian-product construction on automata – see for example [3].

4. Compute a shortest path in C3 from the start state σ to a final state and return the event specified
by the path.

A more intricate problem is the maximum likely input problem. Again, let C and u be as before.
We wish to compute a word w such that |C|w(u) ≥ |C|w′(u), for all input words w′. This problem is
usually reduced to the problem of determinizing weighted automata [3].

aλ/b : 1/16
λ/a : 1/16

b/λ : 1/8
b/b : 7/8

a/λ : 1/8
a/a : 7/8

1′ 2′

λ λ

b

1′1 1′2

2′2

2′1
λ/λ : 7/8

λ/a : 1/16
λ/b : 1/16

λ/λ : 7/8

M :

C ′ :

Figure 2: The automaton M accepting the language (ba)∗. The λ-transitions
are just used to compose M with the transducer of Fig. 1. The result C′ of
this composition is shown in this figure.

The above problems are useful in situations where C is viewed as a channel and one wants to
compute, for a given word u, the most likely input word that resulted into u via the channel. The
channel could be, for example, an ordinary digital communications channel, or a typesetter conveying
words from his/her mind into a computer [9]. In such cases, the required input words usually belong
to a certain language (the dictionary), say L. When L is a regular language given by some finite
automaton M , we can use a Cartesian-product construction between M and C to compute a weighted
transducer C′, the composition of M and C, with final states whose domain (input part) is equal to L.
Then steps (1)–(4) above can be applied to C′ in order to compute the most likely event that turned a
word from L to the output word u. Obviously, this event would give the input word that was turned to
u by the channel. We demonstrate the above procedure with the following example. The channel C is
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the stochastic transducer of Fig. 1 with alphabets Σ = ∆ = {a, b}, and f1 = f2 = 1/8, g1 = g2 = 7/8.
The language of input words is equal to (ba)∗ and is given by the automaton M of Fig. 2. In that
figure we also show the composition transducer C′. The output word u is equal to the letter b.

Figure 3 shows the automaton for b and the transducer C′3 as described in step (3) above. One
verifies that the two shortest paths in C′3 are

1′11′′(λ/b)1′12′′ and 1′11′′(λ/λ)1′21′′(b/b)2′12′′(λ/λ)2′22′′(a/λ)1′12′′.

The corresponding input words in these two paths are λ and ba. The shorter of the two paths is the
second one whose input word is ba.

2′21′′

λ λ

b
1′′ 2′′

1′11′′

1′21′′

1′12′′

2′22′′ 2′12′′

2′11′′

1′22′′

λ/b : 4

b/b : 3− log7

λ/b : 4

λ/λ : 3− log7

λ/λ : 3− log7

λ/λ : 3− log7

a/λ : 3

b/λ : 3

b/λ : 3a/λ : 3

λ/λ : 3− log7

C ′
3 :

Figure 3: The automaton accepting the word b and the weighted transducer
C′3, which is the composition of the automaton for b and the transducer C′1.
The transducer C′1 is simply the transducer C′ of Fig. 2 with each weight t
replaced with − log t.

There are a few directions for further research arising from this work. For example, (1) investigate
state minimization methods for stochastic λ-transducers using as a guide the existing tools in [4, 7],
(2) consider determinization methods specific to stochastic λ-transducers, and (3) define and study
stochastic λ-transducers with final states.
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