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a b s t r a c t

For eachbasic language operationwedefine its ‘‘unique’’ counterpart as being the operation
that results in a language whose words can be obtained uniquely through the given
operation. These unique operations can arguably be viewed as combined basic operations,
placing thiswork in the popular area of state complexity of combined operations on regular
languages. We study the state complexity of unique rational operations and we provide
upper bounds and empirical results meant to cast light into this matter. Equally important,
we hope to have provided a generic methodology for estimating their state complexity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Finite automata (FAs) are ubiquitous objects in computer science theory asmuch as in computer applications. Theymodel
finite state systems, from a door lock to the entire Universe – in some views – and check the syntax of regular languages.
Computers are deterministic finite automata (DFAs), and the English lexicon can be spell-checked by FAs. Recently, automata
have found new practical applications, such as in natural language processing [17], communications [3] and software
engineering [11] — applications increasingly demanding in terms of computing resources. In this context, the study of state
complexity of operations on FAs and their languages has become a topic of paramount importance.
From the formal languages point of view, FAs are yet another tool for defining the family of regular (or rational, as known

in certain literature) languages, along with regular expressions and right linear grammars. They arise from the perpetual
mathematical effort of expressing infinite objects by finite means. In this paper we pursue a new direction in their study,
namely, that of analyzing the succinctness of expressing a language obtained by certain unique language operations, in
terms of the descriptional complexity of the languages involved.
Similar directions have been pursued in automata theory before, e.g., for basic language operations [29,5,6,25] and

combined operations [9,24,28] on regular languages. In the present paper, we make a leap from the current trend, by
addressing the succinctness of some special operations; namely, we address those operations derived from the basic ones,
that reach a result in a unique manner: an object obtained in two (or more) ways by applying the given operation is
excluded from the result. This work is distinct from another recent examination of concatenation uniqueness in [7], where
the operation is defined in an ‘‘all-or-nothing’’ manner. Our definition of unique concatenation was briefly mentioned in
[15], where pebble automata were used to infer the regularity of this operation. We go beyond this matter, by rigorously
studying all rational operations, with a focus on their state complexity. An extended version of this paper, withmore details,
experiments, and complete proofs, can be found in [21].
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2. Definitions and notation

LetΣ be an alphabet, i.e., a non-empty, finite set of symbols (letters). ByΣ∗ we denote the set of all finite words (strings
of symbols) overΣ , and by ε, the empty word (a word having zero symbols). The operation of concatenation (juxtaposition)
of two words u and v is denoted by u · v, or simply uv. For w ∈ Σ∗, we denote by wR the word obtained by reversing the
order of symbols in w. A non-deterministic finite automaton over Σ , NFA for short, is a tuple M = (Q ,Σ, δ, q0, F) where
Q is a finite set of states, δ : Q × Σ → 2Q is a next-state function, q0 is an initial state and F ⊆ Q is a set of final states.
δ is extended over Q × Σ∗ in the usual way. M is deterministic (DFA) if δ : Q × Σ → Q . We consider complete DFAs,
that is, those whose transition function is a total function. The size of M is the total number of its states. When we want
to emphasize the number n of states of M , we say that M is an n-state DFA. The language of M , denoted by L(M), belongs
to the family of regular languages and consists of those words accepted by M in the usual way. For a background on finite
automata and regular languages we refer the reader to [27].

Definition 1. Let L, R be languages overΣ .

(i) The unique concatenation of L and R is the set

L ◦ R = {w | w = uv, u ∈ L, v ∈ R, and such factorization is unique}.

(ii) The unique star of L is the set

L◦ = {ε} ∪ {w | w = u1 · · · un, n ∈ N, ui ∈ L \ {ε} ∀1 ≤ i ≤ n, and such factorization is unique}.

(iii) The unique union of L and R is the set L
◦

∪ R = (L \ R) ∪ (R \ L).

We could have defined L◦ such that the factorization in the above definition involves ε as well. In this case, if L contained ε,
then L◦ would be empty. Moreover, the connection with unambiguous regular expressions (Lemma 6) could not be made.
For these reasons we adopt the above definition.

Notation-wise, we denote L � R = LR \ (L ◦ R), L� = L∗ \ L◦, and L
�

∪ R = L ∩ R, and we refer to these operations as
poly concatenation, poly star and poly union. Note that ε 6∈ L�. We also consider unique square and poly square, given by
L◦2 = L ◦ L and L�2 = L2 \ L◦2.
The reversal operation is compatible with the unique operations and with their ‘‘poly’’ counterparts. Indeed, for L1, L2 ⊆

Σ∗, one can verify that

(L1 ◦ L2)R = LR2 ◦ L
R
1, (L1

◦

∪ L2)R = LR1
◦

∪ LR2, (L◦1)
R
= (LR1)

◦,

(L1 � L2)R = LR2 � L
R
1, (L1

�

∪ L2)R = LR1
�

∪ LR2, (L�1)
R
= (LR1)

�.

The next examples show that unique and poly concatenation are not associative:

(1) For L1 = {b, ba2}, L2 = {a3, a4} and L3 = {ab, a2b, a3b} we have (L1 ◦ L2) ◦ L3 = {ba4b, ba9b}, and L1 ◦ (L2 ◦ L3) =
{ba4b, ba6b, ba7b, ba9b}.

(2) For L1 = {b, ba}, L2 = {a3, a4}, L3 = {ab, a2b, a3b}we have (L1 � L2) � L3 = ∅ and L1 � (L2 � L3) = {ba6b}.

Consequently, unique concatenation and unique star are unrelated: if L = {a, b, b2} then ab2 ∈ (L◦ L)◦ L; however ab2 6∈ L◦.
Various connections among unique operations can be drawn. For example,

Lemma 2. If L is an arbitrary language then

(L∗ \ {ε})�2 = L�, and (L∗ \ {ε})◦2 = L◦ \ {ε}.

Definition 3. By a unique regular expression, or unireg expression for short, we understand the well-formed, parenthesized
formulas with the following operators: all symbols a ∈ Σ and ε are nullary, ◦ is unary, and ◦,⊕ are binary. The operator⊕

is the expression counterpart of
◦

∪.

Since {a}◦{b} = a◦b = ab, for any symbols a, b ∈ Σ wedenote the unique concatenation of symbols by juxtaposition, as for
the usual concatenation. The languageL(e), denoted by unireg expression e, is defined recursively as in the case of regular
expressions [13]. However, for reasons that will become apparent later, we consider only fully-parenthesized expressions.

3. Properties

In the following, we denote by the shuffle operation on words or languages. We also use two new symbols, 1, 2 6∈ Σ ,
and we denote by h12 the homomorphism that deletes these symbols in words, h12 : (Σ ∪ {1, 2})∗ → Σ∗.

Lemma 4. If L and R are regular languages then L ◦ R, L◦, and L
◦

∪ R are regular languages.
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Proof. It is clear that L
◦

∪ R is regular. For the other two, it suffices to observe that the languages

L � R = h12
(
(L1R 2) ∩ (L2R 1) ∩

(
Σ∗(1Σ+2+ 2Σ+1)Σ∗

))
and

L� = h12
((
(L′1)∗ 2∗

)
∩
(
(L′2)∗ 1∗

)
∩
(
∆∗(1Σ+2+ 2Σ+1)∆∗

))
,

where L′ = L\{ε} and∆ = Σ∪{1, 2}, are both regular, their definition involving operations under which regular languages
are closed. Then, since L ◦ R = LR \ (L � R) and L◦ = L∗ \ L�, the conclusion follows. Note that the expressions for L � R and
L� can be simplified using ‘‘sequential insertion’’ [16]. �

LetRbe a regular expression overΣ , containing r occurrences of symbols inΣ (multiple occurrences are counted separately).
LetΣ ′ = {a1, . . . , ar} denote an alphabet of r new symbols, and consider hR : Σ ′∗ → Σ∗ the homomorphism that maps ai
to the symbol inΣ representing the ith occurrence of a symbol in R. By Rh we denote the regular expression obtained from
R by replacing each ith occurrence of a symbol inΣ with the corresponding ai ∈ Σ ′. For example, if R = (a+ ab)∗b∗, then
Rh = (a1 + a2a3)∗a∗4 , and hR(a1) = hR(a2) = a, hR(a3) = hR(a4) = b.

Definition 5. With the above notation, a regular expression R is unambiguous if and only if the restriction of hR toL(Rh) is
injective. (This definition is equivalent to that given in [4].)

According to this definition, the above expression R = (a + ab)∗b∗ is not unambiguous, since a1a4, a2a3 ∈ L(Rh) and
hR(a1a4) = hR(a2a3) = ab. An unambiguous regular expression ‘‘matches’’ any word in at most one way.
Let R be a fully-parenthesized regular expression over Σ and denote by R̃ the unireg expression obtained from R by

replacing its regular operations with their unique counterparts. The following result can be proven by induction on the
number of regular operations involved:

Lemma 6. If R is unambiguous thenL(R) = L(R̃).

The converse of this lemma does not hold. Indeed, if R = a + (a + a), then R̃ = a ⊕ (a ⊕ a) and L(R) = L(R̃) = {a}.
However, R is obviously ambiguous.
From Lemmas 4, 6, and from the fact that any regular language is represented by an unambiguous regular expression [4],

we infer a fundamental fact, that

Corollary 7. Unireg expressions define the family of regular languages.

The question whether context-free languages are closed under unique operations appears naturally at this point, and is
answered in the following.

Proposition 8. The following families are not closed under unique union: DCF, CF, and linear CF.

Proof. It is clear that Σ∗
◦

∪ L = L. However, it is well-known that the families CF and linear CF are not closed under
complement.
For the DCF family, let L1 = {aibjck | i 6= j} and L2 = {aibjck | j 6= k}. Clearly L1 and L2 are deterministic CFLs. Then

L1
◦

∪ L2 = {aibjck | i = j 6= k or i 6= j = k}.

We claim that L1
◦

∪ L2 is not context-free. Suppose it is, and let n be the constant of Ogden’s lemma. Let z = anbncn+n! and
mark the b’s. Let z = uvwxy be a decomposition satisfying the conditions of Ogden’s lemma. We have the next cases:

– v = ap and x = bq. If p = q, then uvn!/pwxn!/qy = an+n!bn+n!cn+n! /∈ L1
◦

∪ L2. If p 6= q, then clearly uv2wx2y /∈ L1
◦

∪ L2.

– v = bp and x = cq. Then clearly uv2wx2y /∈ L1
◦

∪ L2.

– vwx = bp. Then clearly uv2wx2y /∈ L1
◦

∪ L2.

Thus the decomposition z = uvxwy fails to satisfy the conditions of Ogden’s lemma, a contradiction; thus, L1
◦

∪ L2 is not
context-free. �

Proposition 9. The following families are not closed under unique concatenation: DCF, CF and linear CF.

Proof. Consider the following CFL: L1 = {an | n ≥ 1} ∪ {anbn | n ≥ 1} and L2 = {cn | n ≥ 1} ∪ {bncn | n ≥ 1}. It is easy to
see that

L1 ◦ L2 = {ancm | m, n ≥ 1} ∪ {anbn+mcm | m, n ≥ 1}
∪ {anbmcm | m 6= n;m, n ≥ 1} ∪ {anbncm | m 6= n;m, n ≥ 1},

that is, the only words in L1L2 that are written as a concatenation in more than one way are anbncn, n ≥ 1. We prove that
L1 ◦ L2 is not context-free by Ogden’s lemma.
Assume by contradiction that it is, and letN be the constant of Ogden’s lemma. Take theword z = aNbNcN+N! ∈ L1◦L2. By

Ogden’s lemma, if wemark the a’s, there exists a factorization z = uvwxy such that vx has at least one marked symbol, vwx
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has at most N marked symbols and uviwxiy ∈ L1 ◦ L2 for all i ≥ 0. One can observe that such factorization must necessarily
have v = at and x = bt , 0 < t ≤ N . But then, for i = 1+ N!/t we have uviwxiy = aN+N!bN+N!cN+N! contradicting that such
word must not be in L1 ◦ L2.
Since L1 and L2 are both deterministic and linear CF languages, the conclusion follows. �

Proposition 10. CF and linear CF families are not closed under unique star.

Proof. Let L1 and L2 be as in the previous proposition. Clearly, L1 ∪ L2 is context-free. It can be shown that (L1 ∪ L2)◦ is not
context-free by showing that (L1 ∪ L2)◦ ∩ a∗b∗c∗ is not context-free, as before. From this, it follows that CF family is not
closed under unique star. Since L1 ∪ L2 is a linear CF language, it follows that linear CF family is not closed under unique
star. �

4. State complexity

Before dealing with the state complexity of unique operations, we first prove a result concerning unambiguous
computations in NFAs. The idea behind the following construction will be useful in proving upper bounds for the state
complexities of unique concatenation and unique star.

Lemma 11. Let A be an NFA of size m, and let L be the language of those words inΣ∗ that are accepted unambiguously by A. Then
L is regular and its state complexity is at most 3m − 2m + 1.

Proof. We construct a DFAwhose states are vectors withm components, showing the number of paths from the initial state
to each state: 0, 1 or 2 (2 stands for ‘‘two or more paths’’). The final states are those vectors that denote exactly one path to
one final state of the initial NFA.
Formally, let A = (QA,Σ, δA, qA, FA), |QA| = m. We construct a DFA B = (QB,Σ, δB, qB, FB) for L of size 3m − 2m + 1 as

follows:

(1) QB = VB − V ′B ∪ {s}, where VB = {0, 1, 2}
m and V ′B is the subset of VB consisting of those vectors that do not have the

value 1 in any component. Clearly, |QB| = 3m − 2m + 1. State s has the role of a sink state.
(2) qB = (1, 0, . . . , 0), FB is the set of all vectors v such that the sum of all components of v corresponding to the final states
of A is precisely 1.

(3) For all a ∈ Σ , we denote byMa the incidence matrix of Awith respect to the symbol a (Ma[i, j] is 1 if there is a transition
from qi to qj labeled with a, and 0 otherwise). Then, for all v ∈ VB − V ′B,

δB(v, a) =
{
vMa, if vMa /∈ V ′B;
s, if vMa ∈ V ′B;

and δB(s, a) = s. Here the matrix multiplication is done as usual, but with ⊕ and ⊗ as component-wise addition and
multiplication, described as follows: for a, b ∈ {0, 1, 2}, we define a⊕ b = min(a+ b, 2) and a⊗ b = min(a · b, 2). (See
[18] for an early use of these operations.) �

Notice that the construction can be modified to recognize the language of those words that are accepted ambiguously by
the NFA: just make the appropriate states final. Since this symmetry holds for most constructions proposed throughout the
paper, we state, a priori, the following fact:

Theorem 12. The state complexity results on unique operations, based on this construction and described in the following, hold
for poly operations as well.

Whilewe have not proven that the bound given in Lemma 11 is tight, we can give an exponential lower bound, as follows.
For k ≥ 0, define a language

Lk = (0+ 1)∗0(0+ 1)k1(0+ 1)∗.

The languages Lk (or variations thereof) have been used by several authors [22,12,14,8] to prove lower bounds for non-
deterministic state complexity. The language Lk consists of allwords containing at least one occurrence of aword in 0(0+1)k1.
Now consider the languageULk = (0⊕1)◦◦0◦(0⊕1)◦k◦1◦(0⊕1)◦, obtained from the regular expression for Lk by replacing
the ordinary operations with the unique ones. The language ULk consists of all words containing exactly one occurrence of a
word in 0(0+ 1)k1.

Lemma 13. Any NFA accepting ULk has at least 2k states.

Proof. For every word x ∈ {0, 1}k, define a pair (0x, 1x). Note that 0x1x is in ULk, since there is exactly one instance where a
0 is followed by a 1 k positions later. However, for any 2 distinct words x and y, at least one of the words 0x1y or 0y1xmust
contain two occurrences of a subword in 0(0 + 1)k1 (since x and ymust mismatch in at least one place). Thus, at least one
of 0x1y or 0y1x is not in L. Since there are 2k pairs, it follows from a result of Birget [1] that any NFA for ULk has at least 2k
states. �

From this, we easily deduce the following results:
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Proposition 14. There exists an NFA Mk with O(k) states such that any DFA, NFA, or regular expression for the set of words
accepted unambiguously by Mk has size at least 2k.

Proof. The language Lk is accepted by an NFAMk withO(k) states. The set of words accepted unambiguously byMk is exactly
ULk. The result now follows from Lemma 13. �

Proposition 15. There exists a regular language generated by a unireg expression of size O(k) such that any equivalent DFA, NFA,
or regular expression has size at least 2k. (The language ULk used in Lemma 13 has the desired properties.)

4.1. Unique union

For the unique union, we observe that given two DFAs A and B, of size m and n respectively, we can easily construct a

DFA of sizemn for L(A)
◦

∪ L(B) by performing the cross-product of A and B and by setting as final states those state pairs that
have exactly one component final. We prove that this upper bound ofmn is tight.

Theorem 16. For m, n ≥ 3, let L1 and L2 be accepted by DFAs with m and n states respectively. The state complexity of L1
◦

∪ L2 is
mn.

Proof. For m, n ≥ 3, we use the languages A = {w ∈ {0, 1}∗ | |w|0 ≡ m − 1 mod m} and B = {w ∈ {0, 1}∗ | |w|1 ≡
n − 1 mod n}, that were used by Maslov [19] to prove a similar result for the ordinary union. Clearly, A is accepted by an

m-state DFA, B is accepted by an n-state DFA, and C = A
◦

∪ B is accepted by an mn-state DFA. We show that mn states are
necessary.
For integers i, i′ and j, j′, 0 ≤ i, i′ ≤ m− 1 and 0 ≤ j, j′ ≤ n− 1, let x = 0i1j and y = 0i

′

1j
′

be distinct words. To complete
the proof, it is enough to show that x and y are inequivalent with respect to the Myhill–Nerode equivalence relation. We
leave the details to the reader. �

4.2. Unique concatenation

We now approach the more difficult problem of determining the state complexities of unique concatenation and unique
star.

Theorem 17. The state complexity of unique concatenation for regular languages is at most m3n− k3n−1, where m and n are the
sizes of the input DFAs, and k is the number of final states of the first DFA.

Proof (Sketch). Let A = (QA,Σ, δA, qA, FA) and B = (QB,Σ, δB, qB, FB) be the input DFAs, of size m and n respectively. For
proving the upper bound we construct a DFA C = (QC ,Σ, δC , qC , FC ) for L(A) ◦ L(B), of sizem3n − k3n−1:

(1) QC = QA × VB − FA × V ′B, where VB = {0, 1, 2}
n and V ′B is a subset of VB, of those vectors that have 0 in their first

component. Clearly, |QC | = m3n − k3n−1.
(2) qC = 〈qA, (0, . . . , 0)〉 if qA 6∈ FA and qC = 〈qA, (1, 0, . . . , 0)〉 otherwise; FC is the set of those states 〈q, v〉 such that the
sum of all components of v corresponding to the final states of B is precisely 1.

(3) For a ∈ Σ we denote by Ma the incidence matrix of B with respect to the symbol a. Then δC (〈q, v〉, a) = 〈δA(q, a), v′〉,
where v′ = vMa if δA(q, a) 6∈ FA and v′ = vMa + (1, 0, . . . , 0) otherwise. The matrix operations are done as usual, with
the component-wise⊕ and⊗ as described in the proof of Lemma 11.

The idea of this construction is to find the ‘‘multiplicity’’ of ambiguous computations of the NFA for L(A)L(B), as inspired by
the proof of Lemma 11. �

Considering the DFA Nn in Fig. 3, we have found that this DFA is a state complexity worst-case for unique square, proving
that the upper bound is reached:

Proposition 18. For n ≥ 3, the state complexity of L(Nn)◦2 is n3n − 3n−1, thus this is a sharp upper bound for unique square
(when k = 1).

Proof (Sketch — [21] Provides a Complete Proof). We show that the construction in the proof of Theorem 17 leads to a
minimal DFA, by proving its total reachability and non-mergibility. Consider that the states of Nn are numbered (and
named) from 0 to n − 1, and recall that the corresponding DFA (as constructed in Theorem 17) has states of the form
〈i, (x1, . . . xn)〉, where xj ∈ {0, 1, 2} and the component-wise operations of the vectors (x1, . . . xn) are x⊕ y = min(x+ y, 2)
and x⊗ y = min(x · y, 2).
The following facts about state transitions are useful:

〈0, (x1, . . . , xn)〉
a
−→ 〈0, (x1 ⊕ xn, 0, x2, . . . , xn−1)〉,

〈i, (x1, . . . , xn)〉
a
−→ 〈i+ 1 mod n, (x1 ⊕ xn, 0, x2, . . . , xn−1)〉, ∀i 6= 0,

〈j, (x1, . . . , xn)〉
b
−→ 〈j+ 1 mod n, (xn, x1, . . . , xn−1)〉, ∀j 6= n− 2,
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Fig. 1. Histogram for unique concatenation over 3-state minimal DFAs.

〈n− 2, (x1, . . . , xn)〉
b
−→ 〈n− 1, (xn ⊕ 1, x1, . . . , xn−1)〉,

〈0, (x1, . . . , xn)〉
bn
−→ 〈0, (x1, x2 ⊕ 1, x3, . . . , xn)〉,

〈1, (x1, . . . , xn)〉
bn
−→ 〈1, (x1, x2, x3 ⊕ 1, x4, . . . , xn)〉,

. . .

〈j, (x1, . . . , xn)〉
bn
−→ 〈j, (x1, x2, . . . , xj+2 ⊕ 1, . . . , xn)〉, ∀j 6= n− 1,

. . .

〈n− 2, (x1, . . . , xn)〉
bn
−→ 〈n− 2, (x1, x2, . . . , xn ⊕ 1)〉,

〈n− 1, (x1, . . . , xn)〉
bn
−→ 〈n− 1, (x1 ⊕ 1, x2, . . . , xn)〉.

Reachability. Let 〈i, (x1, . . . , xn)〉 be an arbitrary state, i < n − 1. From the initial state 〈0, (0, . . . , 0)〉 we first reach
〈0, (xi+1, . . . , xn, x1, . . . , xi)〉 by reading the word bnxi+1abnxiabnxi−1 · · · abnx1abnxnabnxn−1 · · · abnxi+2 . If we further apply the
word bi we reach 〈i, (x1, . . . xn)〉. For reaching 〈n− 1, (x1, . . . , xn)〉, with x1 > 0 (recall that x1 cannot be 0 in this case), we
first reach 〈0, (xn, x1 − 1, . . . , xn−1)〉, then we apply bn−2 reaching 〈n − 2, (x2, . . . , xn, x1 − 1)〉, and then we apply b one
more time.
Non-mergibility.We now show that no two distinct states 〈i, (x1, . . . , xn)〉 and 〈j, (y1, . . . , yn)〉 are mergible, by providing a
word that maps one of these states into a final state and the other into a non-final state. Incidentally, it becomes apparent
that our DFA has no sink state.
If i 6= j, we choose the word an−ibnan−2. From 〈i, (x1, . . . , xn)〉 we reach a final state, namely 〈n − 2, (1 ⊕∑n
j=1 xj, 0, . . . , 0, 1)〉. For the other state we reach 〈j+ n− i mod n, (

∑
(· · · ), 0, . . . , 1, . . . , 0)〉, which is not final.

If i = j, there must be a position k such that xk 6= yk, since the states are distinct. Without loss of generality we may
assume that xk < yk (otherwise we flip the states). We distinguish the following subcases:
I. xk = 1 or yk = 1. For xk = 1 we use the word bn−k (recall that xk 6= yk), and for yk = 1 we flip the states.
II. xk = 0, yk = 2. Here we distinguish two situations. If k = i+ 2 (thus, i ≤ n− 2) we choose the word b2(n−1)−i, which

maps 〈i, (x1, . . . , xn)〉 into the final state 〈n − 2, (xk+1, . . . xn, x1, . . . , 1 = xk ⊕ 1)〉. The same word maps 〈i, (y1, . . . yn)〉
into a non-final state, for yk ⊕ 1 = 2. If k 6= i + 2, we first apply the word bn−k+2an−2ba, which maps 〈i, (x1, . . . , xn)〉
into 〈t, (xk, 0, z, 0, . . . , 0)〉, for some t ∈ {0, . . . , n − 1} and z ∈ {0, 1, 2}. From here, there exists a word w = ar that
continues the computation up to 〈∗, (1 = xk ⊕ 1, 0, . . . 0, z, 0, . . . , 0)〉, and after that, the word bn−1 leads to the state
〈∗, (0, . . . 0, z, 0, . . . , 0, 1)〉. Thus, the word bn−k+2an−2bawbn−1maps 〈i, (x1, . . . , xn)〉 into a final state, however, this is not
true for 〈i, (y1, . . . , yn)〉. �

We can also prove the following exponential lower bound for the non-deterministic state complexity of unique
concatenation.

Proposition 19. There exists a pair of NFAs M1 and M2 with O(k) states combined, such that L(M1)L(M2) is accepted by an O(k)
state NFA, but any NFA accepting L(M1) ◦ L(M2) has at least 2k states.

Proof. Take L(M1) = (0+ 1)∗0(0+ 1)k1 and L(M2) = (0+ 1)∗. Then L(M1)L(M2) is accepted by an O(k) state NFA, but any
NFA accepting L(M1) ◦ L(M2) = ULk has at least 2k states (see Lemma 13 and def. of ULk used in Lemma 13). �

On the experimental side, we generated all minimal DFAs with 3 states and performed unique concatenation on all pairs.
There are 1028 distinct DFAs, leading to 1056,784 operations. Fig. 1 provides a histogram of our results: the x-axis represents
the size of the output DFAs, and the y-axis plots the number of cases that resulted in DFAs of that size. For two DFAs of sizem
and n, the theoretical upper bound ism3n−k3n−1 (k is the number of final states in the first DFA). The largest DFAs obtained
from this experiment are of size 72, and are the result of operations where the first DFA has precisely one final state. Thus
the bound is reached form = n = 3 and k = 1. Notice that small DFAs have a higher incidence rate, hinting at the fact that
the worst-case scenarios are very sparse.
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Fig. 2. Histogram for unique square over 3-state minimal DFAs.

Fig. 3. Parameterized automata Ji and Ni .

Then, we investigated whether the unique square has a smaller state complexity. For this we performed this operation
for all minimal DFAs of size 3 and 4. The results for 3-state DFAs are shown in Fig. 2. We found 6 minimal DFAs of size 3
(with one final state) whose unique square reaches the upper bound of 72.
Consider the two parameterized minimal DFAs, Ji and Ni, with i ≥ 3, shown in Fig. 3. Our experiments show that the

upper bound is reached for any of the following combinations: L(Ji)◦2, L(Ni)◦2, L(Ji) ◦ L(Jj), L(Ni) ◦ L(Nj), L(Ji) ◦ L(Nj), with i, j
arbitrary integers greater than 2. It is interesting to notice that Ji is given in [20] as example for reaching the upper bound
for the normal concatenation, hence it may provide an example where worst-case is achieved for both concatenation and
unique concatenation.

4.3. Unique star

Using a technique similar to that for unique concatenation we can derive an upper bound for the unique star:

Theorem 20. If L \ {ε} is accepted by a DFA A of size m and with k final states, then a DFA for L◦ has at most 3m−1 + (k +
2)3m−k−1 − (2m−1 + 2m−k−1 − 2).

Proof. Let A = (QA = {1, 2, . . . ,m},Σ, δA, 1, FA) be a DFA for L, of sizem, and FA = {m− k+ 1, . . . ,m}. ByMa we denote
the adjacency matrix of Awith respect to the symbol a ∈ Σ , and the matrix operations are performed with the usual⊕ and
⊗ component-wise operations. We define a DFA B = (QB,Σ, δB, 0, FB) for L◦ as follows:

(1) QB = V ∪{0}, where 0 is the initial state of B and V is the set of all vectors withm components holding values in {0, 1, 2}.
The vector entries are indexed from 1 tom.

(2) The transition function is defined as follows:
(a) δB(0, a) = va, where va[δA(1, a)] = 1, va[1] = 1 if δA(1, a) ∈ FA, and va[i] = 0 for all other indices i.
(b) Denote Sk[v] to be the value v[m− k+ 1] ⊕ · · · ⊕ v[m]. For all j ∈ {1, . . . ,m} and a ∈ Σ we set δB(v, a) = v′ + v′′,
where v′ = vMa and v′′ = (Sk(v′), 0, 0, . . . , 0).

(3) FB = {v ∈ V | Sk(v) = 1} ∪ {0}.

We use vectors to store the number of computations in A, from the initial state to every state: 0, 1, or 2 standing for more
than one computation. If a vector v is reached during the computation of B, the value Sk(v) gives the number of different
computations in A reaching final states. This number has been added to the first component of v, meaning that reaching a
final state in A implies reaching its initial state as well, for we aim at accepting words in L∗. If a word w ‘‘reaches’’ a state-
vector v in B, then v[i] gives the number (0, 1, or 2) of distinct paths in A, labeled withw, from the initial state of A to its state
i, when A is modified to accept L∗ in the standard way. By setting as final states in B all those vectors that denote exactly one
successful such path, we force B to accept exactly the words in L◦.
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Fig. 4.Worst-case candidates for unique star.

Fig. 5. Histogram for unique star over 5-state minimal DFAs with k = 1.

Wenowmake two crucial observations: (a) for a reachable state v ∈ V wemust have v[1] ≥ Sk(v), and (b) any reachable
state v ∈ V containing only values 0 and 2 is mergible into (or, is equivalent to) the sink state. It now remains to compute
how many states can possibly be reached in B:

1. There is an initial state 0 and eventually a sink state, amounting for 2 states.
2. At most 3m−k − 1 vectors v with Sk(v) = 0 can be reached (the null vector cannot be reached). From these vectors, we
subtract those having only 0’s and2’s, for theywill eventually bemerged togetherwithin a sink statewhenB isminimized.
There are 2m−k − 1 such vectors, without counting the null vector. Thus, we have altogether 3m−k − 2m−k states in this
case.

3. At most 2k · 3m−k−1 states v with Sk(v) = 1 can be reached. Observe that once Sk(v) = 1 we cannot have v[1] = 0 since
Sk(v) has been added to v[1] during an eventual transition. Thus, v[1] can take two values (1 and 2), then the portion of
the vector v[2, . . . ,m− k] gives 3m−k−1 combinations, and there are at most k combinations of v[m− k+1, . . . ,m] that
ensure Sk(v) = 1.

4. Finally, at most 3m−k−1(3k − k − 1) states v with Sk(v) = 2 can be reached. Indeed, we have at most 3k − k − 1
combinations in v[m− k+ 1, . . . ,m] that ensure Sk(v) = 2. Then v[1]must be 2 (since Sk(v) has been added to it), and
there are 3m−k−1 combinations for v[2, . . . ,m−k]. However, some of these vectors aremergible into the sink state: those
with only 0’s and 2’s. There are exactly 2m−k−1(2k−1) such vectors v, since: v[1] = 2, there are (2k−1) combinations in
v[m− k+ 1, . . . ,m] (this portion cannot be all 0’s), and there are 2m−k−1 combinations of 0’s and 2’s in v[2, . . . ,m− k].
Combining these numbers, we obtain 3m−k−1(3k − k− 1)− 2m−k−1(2k − 1) states in this case.

It remains to add up the figures underlined in the above cases 1–4. �

The upper bound in Theorem 20 has been reached for k = 1 andm = 2, . . . , 8 by the generic examples in Fig. 4 (which are
good candidates for the worst-case in general), and we conjecture that this upper bound is sharp in both n and k. In Fig. 5
we plotted the histogram for all minimal DFAs with 5 states and one non-initial final state.
The case when ε ∈ L, and we are given a DFA for L, is proven similarly, and may lead to a slightly different upper bound.

In fact, we can immediately derive an upper bound by noticing that a DFA for L \ {ε} has one state more than the DFA for
L (thus, we just replace m by m + 1 in the above result). Nevertheless, a proof as in Theorem 20 may improve such upper
bound, and it merely involves a different state-indexing scheme. We leave this exercise to the reader.
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5. Decision problems

We consider two decision problems involving unireg expressions, and start with the membership problem:

Theorem 21. The membership problem for unireg expressions is in P.

Proof. Let R be a unireg expression overΣ , andw be a string inΣ∗. Ifw = ε, we can determine efficiently themembership,
by consulting the parse-tree for R. If w 6= ε, we proceed as follows. Let w = a1a2 . . . ak and let R′ be the regular
expression obtained from R by replacing the unique operations with the corresponding regular operations. We use the
algorithm of Glushkov to obtain an ε-free NFA M such that the set of strings accepted by M is the same as the set of
strings generated by R′ (with the possible exception of ε). It is known [4] that Glushkov’s algorithm preserves the degree of
ambiguity of representation, that is, the number of accepting computations in M for an input word w equals the number
of ways in which R′ generates w. Then, L(R) consists of those words that are accepted by M in an unique computation
or, we say, unambiguously. Thus, it now suffices to detect whether our word w is accepted unambiguously by M . We
consider that the states in M are numbered from 0 to m − 1, and denote {Ta}a∈Σ the set of incidence matrices of M . Let
S = [s(0), s(1), . . . , s(m− 1)]where s(i) = 1 if i is the start state, 0 otherwise. Similarly, let F = [f (0), f (1), . . . , f (m− 1)]
where f (j) = 1 if j is an accepting state of M , 0 otherwise. Then STa1Ta2 . . . TakF is the number of accepting paths for the
stringw inM . By computing the above matrix chain product, we can determine the number of accepting paths forw. If this
number is 1, thenw is accepted; otherwise it is rejected. This algorithm runs in time polynomial in |R|+|w|, where |R| is the
number of symbols in R. �

Theorem 22. The non-emptiness problem for unireg expressions is in PSPACE.

Proof. Let R be a unireg expression over Σ and R′ be the regular expression obtained from R by replacing the unique
operations with the standard regular operations. Let M be the NFA obtained by applying Glushkov’s algorithm to R′. Then
L(R) is non-empty if and only if there exists a word w accepted unambiguously byM . By Savitch’s theorem [26], it suffices
to give a non-deterministic polynomial space algorithm to test for the existence of such wordw.
For a ∈ Σ , let Ba denote the adjacency matrix of M with respect to the input a. By Lemma 11, if there is a word w

accepted unambiguously by M , there is such a w of length at most 3n, where n is the number of states of M . We thus non-
deterministically guess such a word w = w1w2 . . . wr , r ≤ 3n, symbol by symbol, and we compute the matrix product
Bw1Bw2 · · · Bwr = B, reusing space after each matrix multiplication. Here the matrix multiplication is again done with ⊕
and⊗ as component-wise operations. We maintain an O(n) bit counter to keep track of the length of the guessed stringw.
We verify that M accepts w unambiguously by looking at the row of B corresponding to the start state of M and summing
up the entries in the columns corresponding to the final states of M . This quantity is exactly 1 if and only if M accepts w
unambiguously.
The transformation of R to R′ and then to M can be done in polynomial space, and the non-deterministic algorithm

described above uses only polynomial space. It follows that the non-emptiness problem can be solved in polynomial
space. �

6. Application: 2-DFAs with a pebble

It is well-known that if M is a 2-DFA with a pebble [2], L(M) is regular. Here we revisit the following question, studied
in [10]:What is the worst-case blow-up in the number of states when a 2-DFA with a pebble is converted into a 1-DFA? Let f (n)
denote this function. Formally, f is defined by the following two conditions: (1) there is an n-state 2-DFA with a pebble
such that the minimum equivalent 1-DFA has f (n) states, and (2) for any n-state 2-DFA with a pebble, there is an equivalent
1-DFA with at most f (n) states. A lower-bound on f (n) can be obtained from the results of the previous section. Indeed, the
connection between the state complexity for converting 2-DFA with a pebble to a 1-DFA and the state complexity of unique
concatenation is provided by the following proposition.

Proposition 23. Let A and B be two DFAs, with m and n states. There exists a 2-DFA C with a pebble such that L(C) = L(A)◦ L(B)
and C has 2(m+ n)+ 2 states.

Proof (Sketch). The state set of C is given byQC = QA∪QB∪Q ′A∪Q
′

B, whereQ
′

A = {q
′
| q ∈ QA} andQ ′B = {q

′
| q ∈ QB}∪{r, r ′}.

On an input string $w#, C starts with the reading head on the left end-marker, in its start state sC —which is, by definition,
sA. The head moves to the right, and C simulates A until an accepting state is reached. At this point, C places a pebble on the
current tape square, enters sB and moves to the right simulating B, until the right end-marker is reached. If at this point an
accepting state of B is not reached, then C proceeds as in Step 1, else it proceeds as in Step 2, detailed as follows:
Step 1: C enters the state r and makes a right-to-left sweep until it reaches the left end-marker, and enters the state sA.

Then it simulates A as usual, with the difference thatwhen it reaches the pebble, it picks it up and continues the computation
to the right till another final state of A is reached. Then it drops the pebble and continues with the simulation of B, as in the
initial phase.
Step 2: C enters the state r ′ andmakes a right-to-left sweep until it reaches the left end-marker and enters state s′A. While

in a state of the form q′a ∈ Q
′

A, C simulates A, but uses the primed states and keeps moving to the right. More precisely,
if δA(qa, b) = qd, then C , on input b and in state q′a, changes its current state to q

′

d and moves to the right. It continues
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this phase until the square with a pebble is detected. Here, it picks up the pebble and moves to the right continuing the
simulation of A using the primed states. At this point there are two cases to consider. (a) As the simulation of A continues,
the right end-marker is reached without ever reaching an accepting state of A. In this case, C accepts the input and it halts.
(b) An accepting state of A is reached before the right end-marker is reached. When an accepting state of A is reached for the
first time, the pebble is dropped on the square that stores the last symbol that caused A to reach the accepting state, C enters
the state s′B and it starts the simulation of B using the primed states. The simulation continues until the right end-marker is
reached. At this point, if an accepting state of B is reached, C rejects the input and halts. If an accepting state is not reached,
then C enters the state r ′ and repeats Step 2.
It is clear that C accepts L(A) ◦ L(B) and the proof is complete. �

This result, together with Theorem 17 or Proposition 18, provides an exponential lower bound for f (n), whereas the lower
bound given in [10] is doubly-exponential.

7. Conclusion and further work

In this paper we studied unique rational operations and their state complexity. We drew connections between unireg
expressions and unambiguous regular expressions, and we studied the closure of DCF, CF and linear CF languages to unique
operations. We obtained a sharp bound of the state complexity for unique union, comparable with that of ‘‘plain’’ union.
For unique concatenation we gave a state complexity upper bound that we strongly believe to be sharp, for we provided
generic (parameterized) examples that reached the upper bound in all our extensive experiments. For the unique square, we
provided sharp upper bounds and a generic worst-case example, in the laborious proof of Proposition 18. Both bounds are
significantly higher than those for plain concatenation. For the non-deterministic state complexity of unique concatenation
we provided an exponential lower bound. In Theorem 20 we provided a curious upper bound for the unique star, that
we believe yet again to be sharp, based on empirical results. Finally, we studied the complexity of the membership and
non-emptiness problem for unireg expressions, and we drew a connection between 2-DFAs with a pebble and unique
concatenation. This work is in progress, and we feel that much more needs to be done. A list of open questions and further
directions can be found in the extended paper [21].
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