
MySQL Quick Reference Card1.01

Copyright©, 2008 BrandsPatch LLC

http://www.explainth.at

Color key overleaf on Page 4

Introduction
Most websites are hosted on shared servers that already
run MySQL. The easiest development option for testing
new MySQL databases on Windows XP and Vista is to
use a preconfigured Apache for Windows package. We
recommend WampServer . This is a pain free way to
have a fully functional local Apache + MySQL + PHP
installation.

Wamp comes with a web-based MySQL GUI
administration module – just startup WampServer, click
on the Wamp tray icon and select phpMyAdmin
(henceforth called PMA) from the popup menu. This
PHP module is offered by most site hosts – either by
default or via a simple configuration setting. For local
testing an excellent, albeit slightly buggy, alternative to
PMA is HeidiSQL.

The user «root» used by PMA has no default password
assignment. In the interests of security, do the following

with the MySQL server running execute the command

d:\wamp\bin\mysql\mysqlver\bin\mysqladmin -u root
password password

With this done edit line 73 of the file
d:\wamp\apps\phpmyadinver\config.inc.php to read

$cfg['Servers'][$i]['password'] = 'password';

where d is the drive where WampServer was installed
and ver is the version of the application as installed.

PMA can be used to manipulate MySQL using SQL
commands. To do this simply click on the SQL icon on
the top l.h.s of the PMA index page. By default the
results on issuing SQL in PMA are displayed only

partially in a table. Click on ←T→←T→ at the top of the
table to view full details.

MySQL Privileges
MySQL identifies users using their username and their
location. Consequently, it is perfectly legal to have
multiple users with the same username. Hostnames can
be a domain name or an IP address. To connect to
MySQL from a PHP script running on the server the
hostname localhost is often – but not always - valid.
The correct hostname appears on the top l.h.s of the
white area of the PMA index/home page.

A user's right to access information in databases on a
MySQL is determined by privilege settings stored in the
database mysql.

The three most important tables in mysql are user, db
and host. Broadly speaking these tables contain columns
that help identify the user and others that establish the
privileges granted to that user.

User, Host & Password in user establish whether the user
should be allowed access to the MySQL server.
Privilege data in user is global in scope – i.e. privileges
assigned here apply to all the databases on the server.

If MySQL finds no privilege information for a user in user
it proceeds to examine db. If no match is found in User
and Host of db access is denied. A blank User in db
represents an anonymous user.

If User is matched and Host is found to be blank MySQL
proceeds to examine host. If a row in host contains
matching Db and Host the privileges available to the
user are established by AND'ing the privilege settings
from the relevant rows of db and host.

MySQL allows privilege management at the level of
individual stored procedures, tables and even individual

columns in tables. The relevant tables are procs_priv,
tables_priv and columns_priv. See here for further
details.

It should be noted that comparisons with the Host,
Column_name and Routine_name columns in the tables
discussed above are case insensitive. The columns in
these tables are, with some exceptions designed to store
64 characters. Th exceptions – Host (60), User (16) and
Password(16).

With the right privileges it is possible to issue SQL(e.g.
INSERT, DELETE) that directly alters the mysql grant
tables – e.g. user, db, procs_priv etc. Generally
speaking, this not advisable. The ADD USER, DROP
USER, GRANT and REVOKE statements make a better
job of ensuring synchronizing the various tables.
However, on occasion it may be necessary to do so to
clean up orphaned entries – e.g. tables_priv or
columns_priv entries after altering table or column
names.

To view the full set of privileges supported by MySQL
issue SQL SHOW PRIVILEGES;

Charsets & Collations
Charsets are a set of symbols and their encodings. They
can be specified at the server, database, table and
column level. Some of the more useful MySQL character
sets are tabulated below

Charset Description

latin1 cp1252 West European

latin2 ISO 8859-2 Central European

ascii US ASCII

utf8 UTF-8 Unicode

cp1250 Windows Central European

cp1251 Windows Cyrillic

cp1256 Windows Baltic

big5 Big5 Traditional Chinese

sjis Shift-JIS Japanese

SQL: SHOW CHARACTER SET; lists available charsets.

Collations are rules for comparing data in a charset. SQL:
SHOW COLLATION; lists available collations.

Charsets are associated with one or more collations.
The default collation for each charset can be viewed by
running SQL: SHOW CHARACTER SET. Typically
collation names consist of the charset followed by a
language specification (_lang) and terminating with
_ci(case insensitive), _cs(case sensitive) or _bin(binary).
As a general rule the charset_general_ci|cs collations
make no distinction between related characters – e.g. Á
& Â, or s and ß. The _bin collations perform binary
comparisons – i.e. they are wholly unaware of concepts
such as character case and phonetic similarity. An
injudicious choice of collation can have an adverse
impact on the speed of SQL execution.

Wamp and most shared Apache site hosts have MySQL
set up to use UTF-8 Unicode as the character set with
the default collation utf8_unicode_ci.

SQL for creating and altering databases and tables can
optionally specify the charset, X, and/or collation, Y, to
be used. This information is used as follows

With both specified the charset X and the collation Y
are used. Invalid combinations of X and Y result in an
error being reported.

With X specified the default collation for X is used.
With Y specified the charset associated with Y is

used.
If neither are specified the charset and collation are

inherited from the previous level – i.e. the parent
server, the database or the table.

Adding/Removing Users
MySQL constrains usernames and passwords to a
maximum of 16 characters. The commonly used default
MySQL charset of UTF-8 Unicode; shown on the PMA
index page; allows the use a wide range of characters in

usernames and passwords. User names containing
quotation marks, spaces and arithmetic operators can
be defined by wrapping them in quotes. However, as a
general rule, this should be avoided.

Defining New Users
CREATE USER user[@host] [IDENTIFIED BY 'password']
USE mysql;
INSERT INTO user(Host,User,Password)
VALUES('host','user',PASSWORD('password'));
FLUSH PRIVILEGES;

The user entry created for user in user has all privileges
disabled – i.e. set to 'N'. If no host is specified the
wildcard % is assumed thereby enabling user to access
the server from any location.

Removing Users
DROP USER user@host;
USE mysql;
DELETE FROM user WHERE User ='user' AND Host
='host';
FLUSH PRIVILEGES;

FLUSH PRIVILEGES instructs MySQL to reload privilege
data. Login as a user with adequate privileges in order to
issue these SQL commands.

Renaming Users

RENAME USER user_old[@host_old] TO
user_new[@host_new] - % is assumed if host_* is not
specified.

Changing Passwords

SET PASSWORD [FOR user@host] =
PASSWORD('password');

An error is reported if no such user exists. A user with
UPDATE privileges on mysql can change his/her own
password by omitting the FOR clause.

It should be noted that the loopback address,
127.0.0.1,is not a synonym for localhost.

Privilege Management
Global Privileges - these settings alter rows in user.
Certain privileges, see below, can only be global in
scope.

GRANT|REVOKE [privs] ON *.* TO|FROM user[@host]
[IDENTIFIED BY 'password'];

Database Privileges - these settings affect rows in db
and may alter rows in user. They apply to all the tables in
the database.

GRANT|REVOKE [privs] ON dbname.* TO|FROM
user[@host] [IDENTIFIED BY 'password'];

Table Privileges – these settings affect rows in
tables_priv and may alter rows in user.

GRANT|REVOKE [privs] ON dbname.tblname TO|
FROM user[@host] [IDENTIFIED BY 'password'];

Table_name in tables_priv is NOT UPDATED when a
table is altered.

Table Column Privileges – these settings affect rows in
columns_priv and may alter rows in user. Here each
privilege must be followed by a parenthesized, comma
separated list of column names.

GRANT|REVOKE [priv([cols])] ON dbname.tblname
TO|FROM user[@host] [IDENTIFIED BY 'password'];

Column_name and Table_name in columns_priv are NOT
UPDATED when a table is altered.

Routine Privileges – depending on the nature of the
instruction these settings affect rows in user, db or
procs_priv.

GRANT|REVOKE CREATE|ALTER ROUTINE ON *.*
TO|FROM user[@host] [IDENTIFIED BY 'password']; -
alters user.

GRANT|REVOKE CREATE|ALTER ROUTINE ON
dbname.* TO|FROM user[@host] [IDENTIFIED BY
'password']; - alters db.

GRANT|REVOKE ALTER ROUTINE ON PROCEDURE

http://www.explainth.at/
http://dev.mysql.com/doc/refman/5.0/en/privileges.html
http://www.heidisql.com/
http://www.wampserver.com/

MySQL Quick Reference Card1.01

dbname.procname TO|FROM user[@host] [IDENTIFIED
BY 'password']; - alters procs_priv.

GRANT|REVOKE EXECUTE ON PROCEDURE
dbname.procname TO|FROM user[@host] [IDENTIFIED
BY 'password']; - alters procs_priv.

MySQL makes no attempt to verify that procname
actually exists. However dropping procname does
remove the procs_priv rows with matching Routine_name
entries.

In all of the above statements, specifying the optional
IDENTIFIED BY clause results in Password in the
matching row of user being altered. GRANT statements
that specify a non-existent user[@host] cause a new row
to be added to user. However, doing so in a REVOKE
statement causes MySQL to report that no such grant is
defined. Revoking privileges does not remove entries
from user. This must be done by issuing a DROP USER
command.

The creation of a new MySQL user via the IDENTIFIED
BY clause of the GRANT statement can be blocked by
using the appropriate sql_mode setting.

The following privileges can only be granted globally –
i.e. ON *.*

Privilege Meaning

FILE Enables use of SELECT ... INTO OUTFILE &
LOAD DATA INFILE

PROCESS Enables use of SHOW PROCESSLIST

RELOAD Enables use of FLUSH

SHOW
DATABASES

Guess?

CREATE
USER

Enables use of CREATE USER

The following privileges can be granted at all levels

Privilege Meaning

ALL All relevant privileges except GRANT
OPTION

ALTER Enables ALTER TABLE

ALTER
ROUTINE

Enables stored routines to be modified
or dropped.

CREATE Enables CREATE TABLE

CREATE
ROUTINE

Enables stored routines to be defined

CREATE
TEMPORARY
TABLE

Guess?

CREATE VIEW Enables views to be created

DELETE Allows use of DELETE

DROP Enables use of DROP TABLE

EXECUTE Enables user to run stored procedures

INDEX Enables use of CREATE|DROP INDEX

INSERT Allows use of INSERT

LOCK TABLES Enables LOCK TABLES on tables with
SELECT privilege.

SELECT Allows use of SELECT

SHOW VIEW Enables use of SHOW CREATE VIEW

UPDATE Allows use of UPDATE

USAGE NO PRIVILEGES

GRANT
OPTION

Allows privileges to be granted

Granting GRANT OPTION privileges requires the
special syntax GRANT... WITH GRANT OPTION; For
instance,

GRANT SELECT ON *.* TO webmaster @ localhost
WITH GRANT OPTION;

The GRANT OPTION privilege conferred on a user gives
him/her the right to grant all his/her privileges to another
user. For instance if webmaster @ localhost has INSERT
privileges (granted either before or after the above
statement was executed) the GRANT OPTION would
enable him/her to confer both INSERT and SELECT
privileges on other users. Users with this privilege can
club together to boost one another's privileges.

SHOW GRANTS [FOR user @ host] displays the
privileges granted to the user. If the user clause is
omitted the privileges for the current user are displayed.

Limiting Connections
GRANT statements can be followed by optional clauses
that impose limits on how often the user can connect to
the MySQL server.

GRANT...[IDENTIFIED BY 'password'] WITH MAX_?
n...;

WITH can be followed by one or more of the following.

LIMIT

MAX_QUERIES_PER_HOUR n

MAX_UPDATES_PER_HOUR n

MAX_CONNECTIONS_PER_HOUR n

MAX_USER_CONNECTIONS n

Do not use a comma to separate multiple MAX_ settings.
For the first three settings a value of 0 implies no limits.
For MAX_USER_CONNECTIONS 0 implies that the
user should be constrained to the system setting.

It is also possible to impose limits on the nature of the
connection.

GRANT...[IDENTIFIED BY 'password'] REQUIRE
require where

require Meaning

SSL Require SSL encrypted connection

X509 Require a valid certificate

CIPHER 'cipher' Require SSL with encryption with
specified cipher

ISSUER 'issuer' Valid certificate from specified issuer.

SUBJECT 'subj' Valid certificate with specified subject

NONE No SSL or certificate requirements

REQUIRE CIPHER implies SSL.. Similarly, REQUIRE
ISSUER and REQUIRE SUBJECT imply X503. The
assignments can be combined. For instance

GRANT...[IDENTIFIED BY 'password']

REQUIRE CIPHER 'cipher' AND ISSUER 'issuer' ;

would require an SSL encrypted connection with a valid
certificate emanating from issuer. The REQUIRE
attribute must precede the WITH MAX_? attribute if the
latter is used.

Data Types
MySQL offers a bewildering range of data types many of
which have no equivalent in programming languages
such as PHP, Delphi etc.

Integer Types

Type Bytes Range
(Range Unsigned)

TINYINT 1 -128..127
(0..255)

SMALLINT 2 -32768..32767
(0..65535)

MEDIUMINT 3 -8388608..8388607
(0..16777215)

INT 4 -2147483648..2147483647
(0..4294967295)

BIGINT 8 -9223372036854775808..

9223372036854775807
(0..18446744073709551615)

INTEGER is a synonym for INT.

An unusual, and confusing, feature of MySQL is the
ability to specify the display width of integer data types.
For instance INT(3) defines a 4 byte integer with a width
of 3. If the value 99 is stored in an INT(3) it will be
displayed padded to the left with one space character.
However, this does not alter the intrinsic ability of such
an INT column/variable to store integer values far bigger
than 999.

Integer column types in CREATE TABLE statements
and integer local variables in stored procedures can both
be given the optional attributes UNSIGNED and
ZEROFILL. Zero-filled columns/variables are
automatically unsigned and when displayed use, where
relevant, 0 as the padding character.

Floating Point Types

Type Bytes Range

FLOAT 4 ±1.175494351E-38..
 ±3.402823466E+38

DOUBLE 8 ±2.2250738585072014E-308..
 ±1.7976931348623157E+308

It is possible to define the width and precision of MySQL
floating point types by using the syntax FLOAT|
DOUBLE(m,d) where m is the total number of digits
(width) and d is the number of digits after the decimal
point. The constraint m ≥ d must be respected.

However it is best to avoid such usage – MySQL
performs rounding on such column/variable values
before storage which can lead to unexpected
consequences. For instance, storing the value 1.8987 in
the column/variable declared as FLOAT(3,3) would
actually store 0.999 (the closest possible 3 digit value
with a precision of 3).

Floating point types can be given the optional attribute
UNSIGNED. Negative number assignments to such
columns/variables are silently changed to 0.

Both integer and floating point columns can have the
additional attribute AUTO_INCREMENT. When NULL or
0 are inserted into an AUTO_INCREMENT column it is
automatically assigned the next sequential integer value
starting from 1. LAST_INSERT_ID reports the most
recent AUTO_INCREMENT value.

The DECIMAL (NUMERIC) data type should be used
when it is necessary to store floating point values without
any roundoff error – e.g. monetary data. This
column/variable type is usually specified with a width an
precision specifier, e.g. DECIMAL(m,d) with m ≥ d. Here
too, unexpected rounding can occur. For instance,
storing 100.0097 in a column/variable declared as
DECIMAL(3,2) would store 9.99 – the closest value with
2 decimal digits and 3 digits in total.

The BIT(M), M = 1..64, datatype provides storage for
bitfields. Assignments to bit columns/variables can be
made as integers or using the format b'ddd' where d is 0
or 1. Strings 'ddd' is shorter than the bitfield length are
left padded with 0s. This datatype requires (M + 7)/8
bytes (rounded up) of storage.

Date & Time Types

Type Bytes Description

DATE 3 Date as YYYY-MM-DD

DATETIME 8 Date & Time as
YYYY-MM-DD HH:MM:SS

TIMESTAMP 4 Date & Time as
YYYY-MM-DD HH:MM:SS

TIME 3 Time as HH:MM:SS

YEAR[(2|4)] 1 Year as YY or YYYY (Default)

The valid ranges for each of these data types are
tabulated below

mailto:user@host
mailto:webmaster@explainth.at
mailto:webmaster@explainth.at

MySQL Quick Reference Card1.01

Type Range

DATE 1000-01-01 to 9999-12-31

DATETIME 1000-01-01 00:00:00 to
9999-12-31 23:59:59

TIMESTAMP 1970-01-01 00:00:01 UTC to
2038-01-09 03:14:07 UTC

TIME -838:59:59 to 838:59:59

YEAR YYYY:1901 to 2155
YY:70(1970) to 69(2069)

Assigning 0 or '0' to any of these data types yields the
following

Type Contents

DATE 0000-00-00

DATETIME/TIMESTAMP 0000-00-00 00:00:00

TIME 00:00:00

YEAR 0000

Out of range TIME assignment result in the closest
possible (±838:59:59) value being used. With all other
date/time types out of range assignments get converted
to the corresponding zero values. Zero assignments
trigger a warning If sql_mode contains
NO_ZERO_DATE.

Assignments to these datatypes can be made in a
number of different formats

Example Result

DATE

'70111'1 1970-11-01

'070609' 2007-06-09

17760404 1776-04-04

'2001.09.11' 2001-09-11

19450806 1945-08-06

'1945@08.08' 1945-08-08

DATETIME & TIMESTAMP2

19450808081500 1945-08-08 08:15:00

'1945.08/08 08+15*00' 1945-08-08 08:15:00

20070609143100 2007-06-09 14:31:00

810511233100 1981-05-11 23:31:00

TIME3

'1 02:02:02' 26:02:02

'01:30:45' 01:30:45

'2 06:05' 54:05:00

'3 01' 73:00:00

16:15 16:15:00

43 00:00:43

YEAR4

23 2023

79 1979

'1901' 1901

0 0000

'00' 2000
1 Not recommended.
2 Time part shown in bold
3 TIME can be used to store time differences, not just the time of
the day. The most generic format is 'D HH:MM:SS' 0 ≤ D ≤ 34.
Some superior or inferior parts can be left out if the resulting string
makes temporal sense.
4 Two digit year assignments, both string and integer, are
interpreted in a special way. '00' to '69' are treated as additions to

the year 2000. '70' to '99' are treated as years from 1970 to 1999.
A 2 digit assignment for the year 2000 can only be made as a
string.

String Types

The CHARACTER SET and COLLATION attributes are
often specified with string columns/variables. Failing this,
the string inherits this information from a prior level –
table, database or server. The storage requirements for
strings depend both on the precise data type and the
CHARACTER SET used.

Type Width (Bytes)

CHAR(M), 0 ≤ M ≤ 255 M x w5

VARCHAR(M), 0 ≤ M ≤ 65535 L + 1|26,7

TEXT[(M)]8 L + 2

MEDIUMTEXT L + 3

LONGTEXT L + 4
5 w is maximum bytes required by the charset.
6 L is actual byte length of the string. One additional byte is
required only if M ≤ 255.
7 MySQL imposes a maximum length of 65535 on table rows.
VARCHAR fields have to share this space.
8 If M is specified, MySQL uses the smallest datatype that can
hold the string.

TEXT, MEDIUMTEXT and LONGTEXT types can store
a maximum of 2n – 1 characters (n = 16|24|32). The
actual number depends on the charset used.

Enumerations

ENUM('val1','val2'..NULL) [CHARACTER SET charset]
[COLLATION collation]

MySQL enumerations are strings which can be assigned
one of the specified values. Internally, they are stored as
integers. An enumeration can have up to 65535 distinct
values.

Sets

SET('val1','val2'..) [CHARACTER SET charset]
[COLLATION collation]

MySQL sets can be assigned zero or more values from
the range specified. Internally they are stored as an
integer.

Blobs

BLOB stands for Binary Large Object. In, MySQL there
is a matching BLOB type for each TEXT type – e.g.
LONGBLOB - with precisely the same storage
requirements However, no charset or collation
information is associated with blobs. Sorting and
comparison of blobs is performed based simply on the
value of the byte sequences they store.

The assignment behavior of the data types discussed
here depends on the sql_mode setting.

SQL_MODE
sql_mode determines the SQL syntax MySQL supports
and the data validation it performs. MySQL understands
two kinds of modes – global and session. Both settings
are in effect a set of options. The current settings can be
viewed by issuing SQL

SELECT @@[session|global].sql_mode;

To assign sql_mode issue SQL

SET [session|global] sql_mode= [modes];

The session setting affects only the current user.
However, it would be incorrect to assume that setting the
session level mode will ensure use of the specified data
validation rules at all times throughout the duration of the
session. Stored procedures and triggers use the mode
that was in effect at the time they were defined. This
information is stored in
information_schema. routines .sql_mode and
information_schema.triggers .sql_mode
The modes assignment above takes the form of a string
containing a comma separated list of one or more of the
following options

ALLOW_INVALID_DATES – Constrains date/time

data type checking to valid month and day numbers.
Invalid dates, e.g. 2008-04-31 are accepted.

ANSI_QUOTES – Treat the double quote, “, as an
identifier quote character – i.e. used to quote identifiers
containing special characters or SQL keywords. The
default identifier quote ' (ALT + 96) can always be used

ERROR_FOR_DIVISION_BY_ZERO – trigger error
rather than warning for such errors in INSERT and
UPDATE operations. If the IGNORE clause is specified
a warning is generated.

HIGH_NOT_PRECEDENCE – Gives NOT a higher
precedence. With this setting NOT 1 BETWEEN -5
AND 5 is treated as NOT(1) BETWEEN -5 AND 5

IGNORE_SPACE – allow spaces between function
name and (. With this setting identifiers that are SQL
functions must be quoted - using backticks ` or double
quotes if ANSI_QUOTES is set.

NO_AUTO_CREATE_USER – Limits GRANT
statements to changing user privileges.

NO_AUTO_VALUE_ON_ZERO – Blocks 0 entries
into AUTO_INCREMENT columns being converted into
next sequential auto value.

NO_BACKSLASH_ESCAPES – \ in strings is not
treated as escape sequence indicator.

NO_DIR_IN_CREATE – Ignore INDEX|DATA
DIRECTORY in CREATE TABLE statements.

NO_ENGINE_SUBSTITUTION – prevents use of the
default storage engine if the specified one is not
available.

NO_FIELD|KEY|TABLE_OPTIONS – MySQL specific
options not displayed in SHOW CREATE TABLE
output.

NO_UNSIGNED_SUBTRACTION – subtraction result
is always signed.

NO_ZERO_DATE – 0000-00-00 is not a valid date.
Can be overridden locally by using IGNORE.

NO_ZERO_IN_DATE – Block date entries where
day/month parts are zero. When used with IGNORE
the value is converted to a zero date.

ONLY_FULL_GROUP_BY – All SELECT columns
must be specified in GROUP BY clause.

PIPES_AS_CONCAT - || is treated as a synonym for
CONCAT.

REAL_AS_FLOAT – treats REAL as synonym for
FLOAT not DOUBLE.

STRICT_ALL_TABLES – Strict data validation for all
tables. INSERT and UPDATE operations are
abandoned as soon as an error is encountered. This
can result in partial updates.

STRICT_TRANS_TABLES – Strict data validation for
tables using transactional storage. Invalid values are
adjusted. Missing values are replaced with the default
for the column type. In both cases MySQL issues a
warning and continues.

Strict modes block invalid dates, e.g. 1987-02-29 but
allow zero dates and zero values in the date/month
parts. The NO_ZERO_? modes should be included to
prevent this. The effects of strict modes can be
overridden locally by using INSERT|UPDATE IGNORE.

MySQL provides short hand notation for specifying some
of the more commonly used mode combinations.

ANSI = REAL_AS_FLOAT, PIPES_AS_CONCAT,
ANSI_QUOTES, IGNORE_SPACE

DB2 = PIPES_AS_CONCAT, ANSI_QUOTES,
IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS

MSSQL = PIPES_AS_CONCAT, ANSI_QUOTES,
IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS

ORACLE = PIPES_AS_CONCAT, ANSI_QUOTES,
IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS,
NO_AUTO_CREATE_USER

POSTGRESSQL = PIPES_AS_CONCAT,
ANSI_QUOTES, IGNORE_SPACE,
NO_KEY_OPTIONS, NO_TABLE_OPTIONS,
NO_FIELD_OPTIONS

TRADITIONAL = STRICT_TRANS_TABLES,
STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE,

MySQL Quick Reference Card1.01

ERROR_FOR_DIVISION_BY_ZERO,
NO_AUTO_CREATE_USER

Storage Engines
Storage engine refers to the software layer MySQL
handles INSERT, SELECT, UPDATE and DELETE
operations1.

Engine Description

MyISAM Non-transactional (NT), high speed with
fulltext search capabilities

Memory NT engine for in-memory tables

MERGE NT engine to handle identical MyISAM
tables as a single table

InnoDB Storage engine for transaction safe tables

EXAMPLE A stub engine with no data
storage/retrieval capabilities

FEDERATED Engine for CRUD operations on remote
tables – i.e. stored in remote databases,
not local tables

ARCHIVE Used for space efficient storage of large
amounts of data without indexing

BLACKHOLE A “no-op” engine useful for verifying dump
file syntax and identifying bottlenecks not
related to the storage engine

CSV For data storage in CSV format text files.
Data are stored in tablename.csv.
Indexing is not supported

MySQL databases may contain tables that use different
storage engines. Transaction safe tables offer the ability
to have a number of CRUD operations executed at the
same time. The changes can be rolled back if necessary.
Their contents are easier to retrieve in the event of
software or hardware failure. NT tables offer faster
access, consume lesser disk space and have lower
memory requirements during updates.
1 These are the SQL equivalents of the classical persistent
storage operations of Create, Retrieve, Update and Delete
(CRUD)

SHOW Statements
MySQL supports an extensive range of SHOW
statements that provide useful information for database
administrators.

Statement1 Shows

CHARACTER SET2 Available charsets

COLLATION2 Available collations

[FULL] COLUMNS
FROM tblname [FROM
dbname]

Column information. FULL
displays comments,
collation and current user
privileges for each column.

CREATE DATABASE
dbname

SQL required to create
dbname

CREATE PROCEDURE|
FUNCTION
dbname.procname

SQL required to create
procname.

CREATE VIEW
viewname

SQL required to create
viewname

DATABASES2 databases on server. User
must have some privileges
on the database or have the
global SHOW
DATABASES privilege.

ENGINE engine LOGS|
STATUS

Information on engine.
LOGS is not supported by
all versions.

ENGINES Engine name, comment
and support information.
The support column reads
YES, NO, DEFAULT or
DISABLED.

ERRORS [LIMIT
[offset,]rows]

Errors from last SQL that
generated messages.
Optionally, rows errors
optionally starting from
offset'th message.

GRANTS [user] Grants current user if no
user specified.

INDEX FROM tblname
[FROM dbname]

Index information

OPEN TABLES [FROM
dbname]2

Tables currently open in the
table cache. Optionally,
only those in dbname

PROCEDURE|
FUNCTION CODE
procname

Internal implementation of
procname. Only available if
server was built with
debugging support.

PROCEDURE|
FUNCTION STATUS2

Routine information –
database, name etc.

[SESSION|GLOBAL]
STATUS2

Server status

TABLE STATUS [FROM
dbname]2

Detailed table information
from dbname or current
database.

TABLES [FROM
dbname]2

Lists tables in dbname or
current database.

TRIGGERS [FROM
dbname]2

Triggers defined for tables
in dbname or current
database.

[SESSION|GLOBAL]
VARIABLES2

Session or global MySQL
system variables.

WARNINGS [LIMIT
[offset,]rows]

Like SHOW ERRORS but
displays warnings, notes
and errors.

1 All statements should begin with SHOW
2 Optionally with LIKE 'pattern' or WHERE expr.

Statements that allow dbname may report an error if no
database has been selected and dbname is not
specified.. Issue a USE dbname to avoid this.

Color Key
PMA - Identifier for phpMyAdmin
SQL - Structured Query Language
ver - Server installation dependent placeholder text
text - Placeholder text
$cfg - PHP variable.
'password' - PHP array index
database - Database name
table - Table name
Column - Column name
INSERT – SQL keyword
A|B – A or B. A is the default.
A|B...C|D – Paired options. A and C or B and D.
[...] - Optional clause
m – number in SQL statement.
[...] – set of options. e,g, red,blue..green.
sql_mode – global MySQL variable
IGNORE_SPACE – set element.
«root» MySQL user

