
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 1

Correspondence__

On a Simple Method for Detecting Synchronization Errors
in Coded Messages

Stavros Konstantinidis, Member, IEEE, Steven Perron, and
L. Amber Wilcox-O’Hearn

Abstract—We investigate the problem of designing pairs () of words
with the property that, if each word of a coded message is prefixed by and
suffixed by , the resulting set of coded messages is error detecting with
finite delay. We consider (combinatorial) channels permitting any combi-
nation of the substitution, insertion, and deletion (SID) error types, and
address the cases of both scattered and burst errors. A pair () with
the above property is evaluated in terms of three parameters: redundancy,
delay of decoding, and frequency of the detectable errors. In the case of SID
channels with burst errors, we provide a complete and explicit character-
ization of their error-detecting pairs (), which involves the period of
the word .

Index Terms—Burst errors, decoding delay, deletion, error detection, in-
sertion, period of word.

I. INTRODUCTION AND BASIC NOTATION

We investigate the problem of designing pairs (p; s) of words, called
separators, with the property that, if each word of a coded message
is prefixed by p and suffixed by s, the resulting coded language (set
of coded messages) is error detecting with finite delay. We consider
(combinatorial) channels allowing any combination of the substitution,
insertion, and deletion (SID) error types. Such channels were used by
Levenshtein in [1], where the method of separators was discussed for
correcting scattered SID errors in coded messages. This method was
first considered by Sellers Jr. [2] for a certain SID channel and, more
recently, by Ferreira et al. [3]. In the present correspondence, we use
the term uniform error-detector for a pair (p; s) of words satisfying
the above property, and we consider the cases of both scattered and
burst errors. In either case, a uniform error-detector (p; s) is evaluated
in terms of three parameters: the redundancy jpj + jsj, the delay of
decoding, and the frequency of the detectable errors. In the case of
burst SID errors, we provide a complete and explicit characterization
of all the uniform error-detectors (p; s), which involves the period of
the word sp [4], [5].

A. Notation About Alphabet, Words, and Coded Languages

We assume an alphabet X containing at least the two symbols 0
and 1. A word, or message, is any string of symbols from X including
the empty word �. For a word w, we denote by jwj the length of w. For
example, j11001j = 5. If i = 1; . . . ; jwj, then w[i] denotes the ith
symbol of w and, for j = i; . . . ; jwj, the notation w[i � � � j] represents
the word w[i]w[i+ 1] � � �w[j]. If j < i, we agree that w[i � � � j] = �.

Manuscript received December 2, 2001; revised November 29, 2002. This
work was supported by the Natural Sciences and Engineering Research Council
of Canada under Grant R220259.

S. Konstantinidis and S. Perron are with the Department of Mathematics and
Computing Science, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
(e-mail: s.konstantinidis@stmarys.ca; steven_perron@hotmail.com).

L. A. Wilcox-O’Hearn is with the Department of Computer Science, Uni-
versity of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: amber@cs.toronto.
edu).

Communicated by C. Carlet, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.810665

For two words w1 and w2 the word w1w2 is the concatenation of w1

andw2. For a wordw and a nonnegative integern,wn denotes the word
that consists of n concatenated copies of w. A word p is a prefix of w if
w = ps, for some word s. In this case, s is a suffix ofw. If p 6= w, then p
is called a proper prefix of w. Similarly, the suffix s is proper if s 6= w.
A word v is a factor of w if w can be written as xvy for some words x
and y. The set of all words is denoted byX� and the set of all nonempty
words by X+. Every subset of X� is called a language. If u; v are
words and L is a language, then uLv is the language fuwv j w 2 Lg.
If F is a finite and nonempty language, then `F denotes the maximum
length of the words in F . For two languages L and L0,LL0 denotes the
language fww0 j w 2 L; w0 2 L0g. If n is a nonnegative integer, then
Ln is the language fw1 � � �wn j w1; . . . ; wn 2 Lg, with L0 = f�g.
Moreover, L� = 1

i=0
Li.

A nonempty language C is called a uniquely decodable code or
simply a code if, for all positive integers m and n and for all words

v1; . . . ; vn; u1; . . . ; um 2 C

the equation

v1v2 � � � vn = u1u2 � � �um

implies m = n and ui = vi for every i = 1; . . . ; n. In this corre-
spondence, we assume that every code contains at least two words. If
all the words of a language C have the same length, then C is a code
and is called a uniform code. A language of the form C�, where C is a
code, is called a coded language.

B. Structure of the Correspondence

This correspondence is organized as follows. In Section II, we give
the basic terminology about (combinatorial) channels and error detec-
tion, and we define SID error types, error specifications, and the partic-
ular class of SID channels that permit burst errors. Moreover, we obtain
a few technical results pertaining to these concepts. In Section III, we
define the method of uniform error-detector pairs, discuss the criteria
for choosing good pairs, and provide a necessary condition on the struc-
ture of such pairs. In Section IV, we focus on channels with burst errors
and identify all uniform error-detectors for such channels, including all
the optimal ones. In Section V, we consider channels with scattered er-
rors and obtain a set of uniform error-detectors that work for any SID
error type. Then, for certain error types, we identify uniform error-de-
tectors with smaller redundancy at the cost of restricting to messages
over the binary alphabet. Finally, Section VI contains a few concluding
remarks.

II. (COMBINATORIAL) CHANNELS AND ERROR DETECTION

A. Channels, Error Types, and Error Specifications

A (combinatorial) channel (over the alphabet X) is a binary relation
 � X� � X�. For the elements of the channel we prefer to write
(z w) as opposed to (z; w). Then, (z w) 2 means that the
message (word) z can be received from w through the channel . Note
that, in general, the channel is noisy, meaning that, for (z w) 2 ,
it is possible that z 6= w; that is, z is received from w with errors.

In this work, we consider channels that permit combinations of the
three basic error types: substitution, insertion, and deletion, denoted by
the symbols �, �, and �, respectively. The set of error types is

f�; �; �; (� � �); (� � �); (�� �); (� � � � �)g

0018-9448/03$17.00 © 2003 IEEE

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

where the symbol� is a logic connective and is used to indicate which
combination of the basic error types is permitted. The error types � and
� are called synchronization error types. Each error type � can be used
to define a distance function D� . In particular, D� is the Hamming
distance and, for � 2 f(� � �); (� � � � �)g, D� is the Levenshtein
distance for errors of type � [6].

Definition 1: An error specification is an expression of the form
mxxx� such that m is a nonnegative integer, � is an error type, and
xxx is one of the symbols bbb and sss indicating the terms burst and scat-
tered, respectively. For an error specificationmxxx� we shall assume that
m > 0, unless stated otherwise.

Intuitively, the expression mxxx� specifies possible changes (errors)
that one can make in a word to obtain another word. For example, the
expression 3bbb� specifies a size 3 burst of deletion errors and the expres-
sion 4sss(� � �) specifies four scattered insertion and deletion errors.
More specifically, let x and y be two words. We say that y obtains
from x using msss� , if it is possible to transform x to y using exactly
m (scattered) errors of type � . We say that y obtains from x using
at most msss� , if y obtains from x using ksss� , for some integer k with
0 � k � m. We say that y obtains from x using (at most)mbbb� , if there
are words p; s; u; u0 such that juj � m, x = pus, y = pu0s, and u0

obtains from u using at most msss� . For example, the word 111111 ob-
tains from 0111110 using 2sss(� � �), and the word 00010100 obtains
from 0011100 using 2bbb(� � �).

For an error type � and two integers m and `, with 1 � m < `,
the expression �sss(m; `) denotes an SID channel with scattered errors.
Specifically, (z w) is in the channel if it is possible to obtain z

from w using errors of type � such that no more than m errors can
be used in any factor of length ` (or less) of w. We note that channels
�sss(m; `) with � 2 f�; �; (� � �); (� � � � �)g are considered in
[1] in the context of error-correcting codes for such channels. As an
example, consider the channel (� � �)sss(2; 5) that permits a total of
up to two substitutions and deletions in any factor of length 5 of the
message. As 101000 obtains from w = 0000000 by deleting w[7] and
substituting w[3] with 1 and w[1] with 1, it follows that (101000
w) 2 (���)sss(2; 5). On the other hand, to obtain 101001 fromw using
errors of type (� � �), one symbol of w must be deleted and three of
its symbols must be substituted. But it is not possible to choose four
such symbols, unless three of them occur in a factor of w of length 5.
Hence, (101001 w) is not in the channel (� � �)sss(2; 5).

B. Channels With Burst Errors

Let m be a positive integer. A set B of m-burst errors is a set that
consists of pairs (u0 u) such that juj � m. Of particular interest
are the SID sets of m-burst errors: For any error type � , define

Bm(�) = f(u0 u) j juj � m and u0 obtains from u using

at most mbbb�g:

Given a set B of m-burst errors and an integer ` > m, we define the
channel `[B] as follows: (z w) is in `[B] if and only if there is an
integer n � 0 and words x0; . . . ; xn, u1; . . . ; un, u0

1; . . . ; u
0

n such
that

• w = x0u1x1 � � � unxn and z = x0u
0

1x1 � � �u
0

nxn;
• for all i = 1; . . . ; n � 1, jxij � ` � 1;
• (u0

i ui) is in B and u0

i 6= ui, for all i = 1; . . . ; n.
Informally, the above conditions mean that if z obtains fromw through
`[B] then, in w, there are zero or more bursts of errors each of size m
(or less) such that there is at most one burst (or part of a burst) in any
` consecutive symbols of w. In case B = Bm(�), we call the channel
`[Bm(�)] an SID channel with burst errors and we shall use the no-
tation �bbb(m; `) instead of `[Bm(�)] which is consistent with the no-
tation we use for SID channels with scattered errors. For example, let

w = 02110711081 and let z = 0210007008010. Then (z w) is in
the channel (� � � � �)bbb(2; 8).

C. Error Detection With Finite Delay

Let be a channel. A languageL is called error detecting for when
the following condition is satisfied: Assuming only words in L [f�g
are sent into , if a word y is received through and y is inL[f�g then
y must be correct; that is, equal to the transmitted word. This condition
can be written more formally as follows [7]:

For all words x 2 L [f�g and y 2 X�

;

if (y x) 2 and y 2 L [f�g, then y = x:

Note that the above condition ensures that a nonempty word ofL cannot
be received from the empty word, and the empty word cannot be re-
ceived from a nonempty word of L. The task of verifying that a lan-
guage is error detecting could require some effort even for apparently
simple languages and channels. We invite the reader to show that, for
K = f1011; 1101g, the coded language K� is error detecting for the
SID channel �bbb(1; 4) that allows up to one deletion in any four con-
secutive symbols of a message.

Although error detection is a basic property of a communications
language, the process of decoding a word of such a language might
require unbounded memory. This is because, in general, the decoder
needs to see the entire message in order to decide whether it is cor-
rect. For coded languages, however, it is possible to define the concept
of error detection with finite delay as follows. If a codeword v is ob-
served at the beginning of the received message, then v is correct—that
is, equal to the first codeword of the transmitted message—provided
that there are at least d codewords following v in the received message.
Moreover, once v is decoded, the rest of the received message can be
decoded in the same way. The number d is the delay of decoding. In
case the received message does not begin with 1 + d codewords, an
error is detected and what follows depends on the communication pro-
tocol—usually involving retransmission techniques. More formally, for
a channel and a nonnegative integer d, we say that the coded language
C� is error detecting for with delay d, when the following condition
is satisfied for all v 2 C , z 2 CdX�, and w 2 C�:

if (vz w) 2 , then w = vu and (z u) 2 for some u 2 C�

:

For any reasonable channel —an SID channel, for instance—if C�

satisfies the above condition thenC� is indeed error detecting for [7].
Moreover, ifC� satisfies the above then the codeC has finite decoding
(deciphering) delay at most d (in the sense of [8]).

Example 1: Consider again the code K = f1101; 1011g and re-
call that the language K� is error detecting for �bbb(1; 4). However, K�

is not error detecting for that channel with any finite delay. Indeed, as-
sume that K� is error detecting with delay d, for some nonnegative
integer d, and consider the words w = (1101)d+2, v = 1011, and
z = (1011)d101. By deleting the first 1 of w we have that (vz w)
is in the channel which implies that w must start with the codeword v;
a contradiction.

Example 2: Consider the code C = f001; 011g and the channel
�bbb(1; 4). Then, C� is error detecting for �bbb(1; 4) with delay 0. Indeed,
suppose v 2 C , z 2 X�, and w 2 C� such that (vz w) is in
�bbb(1; 4). Note that w must start with a codeword of the form 0b1 for
some alphabet symbol b. Then, w = 0b1u for some u 2 C�. Suppose
that 0b1 results in some word z1 and u results in some word z2 such
that vz = z1z2. If there is a deletion in 0b1, then jvj = jz1j + 1 and
there can be no error on the symbol u[1] that follows 0b1. As u[1] = 0,
we have that v = z10, which contradicts the assumption v 2 C . Thus,
there can be no deletion in 01b, which implies that v = z1 = 0b1
and z2 = z and, therefore, (z u) 2 �bbb(1; 4). The code C allows

IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 3

for the correct decoding of messages in C� without delay as long as
no error occurs. For example, suppose that the concatenation of code-
words 001; 011; 001; 001; . . . is transmitted and a deletion occurs in
the third codeword, 001, so that we receive 001011010 � � �. Then, the
codewords 001 and 011 can be decoded correctly and an error is de-
tected when 010 is observed.

D. Some Technical Results

We close this section with a few technical results concerning error
specifications and SID channels, which are needed in the sequel. The
proofs can be found in the Appendix.

Lemma 1: Let mxxx� be an error specification, other than msss(�� �)
and msss(� � � � �), containing at least two different error types and
let v and v0 be two words of the same length. Then, v0 obtains from v
using at most mxxx� if and only if v0 obtains from v using at most mxxx�.

Lemma 2: Let mxxx� be an error specification and let p; v; v0; s be
words such that v and v0 are of the same length. Then, pv0s obtains
from pvs using at most mxxx� if and only if v0 obtains from v using at
most mxxx� .

Next we establish certain relationships between sets of the form
Bm(�) involving different error types.

Lemma 3: Letm be a positive integer and let u and u0 be two words
such that juj � m and u0 obtains from u using at most msss(�� �� �).

1) If ju0j � juj, then u0 obtains from u using at most msss(� � �).

2) If ju0j > juj, then u0 obtains from u using at mostmaxf1; 2m�
2gsss(� � �).

3) If the alphabet X is binary and ju0j = juj + 1, then u0 obtains
from u using at most msss(� � �).

Proposition 1: For all integers m � 2

Bm(� � �� �) � Bm(� � �) [B2m�2(�� �):

Proof: The claim follows easily from the previous lemma.

A natural question that arises is whether Proposition 1 can be
strengthened by replacing B2m�2(� � �) with Bm(� � �). It turns
out that this is possible only when m < 5.

Proposition 2: Consider the alphabet X and a positive integer m.
Then, Bm(� � � � �) = Bm(� � �) [Bm(� � �) if and only if
m 2 f1; 2g, or m 2 f3; 4g and X = f0; 1g.

The above considerations motivate us to define a new type of SID
channels with burst errors as follows. For two error types �1 and �2, let
(�1 _ �2)bbb(m; `) be the channel `[Bm(�1) [Bm(�2)]. Then, every
burst of errors in a transmitted message is of type mbbb�1 or mbbb�2. By
Proposition 2, it follows that, for X = f0; 1g and m < 5, the channel
((���)_(���))bbb(m; `) coincides with the channel (�����)bbb(m; `).

III. THE METHOD OF SEPARATORS FOR DETECTING SID ERRORS

In [1], Levenshtein briefly discusses the method of separators for
correcting certain scattered SID errors in messages, with finite delay.
Loosely speaking, if a coded language K� is error correcting for a
channel with finite delay then, for every received message w, it is
possible to determine the first codeword of the original message by
looking only at a prefix of w of bounded length. The method of sepa-
rators involves choosing an appropriate pair of words (p; s) such that
(pCs)� is error correcting for with finite delay, for any uniform code
C that is error correcting for . In this section, we use the above idea
to define a formal method for obtaining coded languages of the form

(pCs)� that are error detecting with finite delay for SID channels with
scattered errors or with burst errors.

Let m be a positive integer. The symbol Um denotes the class of
all uniform codes of length greater than m. For an error specification
mxxx� , we write Umxxx� for the class of all uniform codes C such that
C is error detecting for �xxx(m; `C)—recall, `C is the word length of
the code C . By the definition of error detection and by Lemma 1, the
following obtains.

Lemma 4: Let mxxx� be an error specification.

• If � 2 f�; �g, then Umxxx� = Um.

• If � =2 f�; �g and xxx = bbb, then Umxxx� = Umbbb� .

• If � 2 f�; (� � �); (� � �)g and xxx = sss, then Umxxx� = Umsss� .

It follows also that

Umsss(�����) � Umsss� � Umbbb� � Um:

Codes in the classes Umsss� and Umbbb� have been studied extensively—
see [9], for instance. On the other hand, at a first glance, it appears that
codes in the classes Umsss(�����) and Umsss(���) have not been consid-
ered in the past. By the results of [1], however, the following obtains.

Remark 1: Let � 2 f(�� �); (� � �� �)g and let m be a positive
integer. A uniform codeC is error correcting for �sss(m; `C) if and only
if it is error detecting for �sss(2m; `C).

The above follows when we note that i) a code C is error correcting
for �sss(m; `C) if and only if D� (C) > 2m, and ii) a code C is error
detecting for �sss(m; `C) if and only if D�(C) > m. We also note that,
to our knowledge, only very few general construction methods exist for
codes that are error correcting for (�� �)sss(m; `C)—see, for instance,
[10]–[12].

Definition 2: Let mxxx� be an error specification. A pair of words
(p; s) is called a uniform error-detector for mxxx� (or simply an mxxx� -
detector) if there are two nonnegative integers d and t such that, for
every code C in Umxxx� , the coded language (pCs)� is error detecting
for �xxx(m; `C + jpsj + t) with delay d. Then, we say that (p; s) has
redundancy jpj + jsj, delay d, and offset t.

For a given error specification mxxx� , the design of a uniform
mxxx� -detector should consider the following criteria.

1) Low redundancy of the encoding C 7! pCs: This is achieved by
choosing a pair (p; s) with small redundancy jpj + jsj.

2) High frequency of the errors detectable by (pCs)�: This is
achieved by choosing a pair (p; s) with small offset t. Indeed,
an mxxx� -detector (p; s) with offset t ensures the detection of m
errors of type � in any `C + jpsj+ t symbols of the transmitted
message. Thus, the smaller is the value of t the higher is the
ratio m=(`C + jpsj + t).

3) Small amount of memory for decoding words in (pCs)�: This is
achieved by choosing a pair (p; s) with small delay d.

Our primary criterion will be the optimization of the redundancy of
a uniform error-detector (p; s). With this constraint, we shall attempt
to define error-detectors with minimal delay and minimal offset.

The first result gives a necessary condition on the structure of uni-
form error-detectors that involves the notion of period of a word. A
positive integer k is called a period of a nonempty word w, if w[i] =
w[k + i] for every i 2 fj j 1 � j and j � jwj � kg—note that this
condition is vacuously true when k � jwj and, in this case, the number
k is a period of w. The smallest k satisfying this condition is called the
period of the word w and we denote it by per(w). It should be clear
that 1 � per(w) � jwj. This concept is important in various domains

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

including pattern matching algorithms and game theory, [13], and word
combinatorics [4].

Lemma 5:

1) For any nonempty word w there are words u; x; y such that
w = ux = yu and jxj = jyj = per(w).

2) For every nonempty words u1; x1; u2; x2 with ju1j = ju2j and
u1x1 = x2u2, if per(u1x1) > jx1j then u1 6= u2.

Proof: The statements follow easily if we note that k is a period
of w if and only if, either k � jwj or w = xu = uy for some u 2 X+

and x; y 2 Xk.

Proposition 3: Let mxxx� be an error specification not in
fmxxx�; msss(� � � � �); msss(� � �)g. If a pair of words (p; s) is a
uniform error-detector for mxxx� , then per(sp) > m and, therefore,
the redundancy of (p; s) is greater than m.

Proof: Assume (p; s) is a uniform mxxx� -detector and consider
first the case where jspj > 0. Then, sp = ux = yu for some words
u; x; y with jxj = jyj = per(sp). Suppose per(sp) � m. We
shall obtain a contradiction by constructing a uniform code C that
is error detecting for the channel �sss(m; `C) but the coded language
(pCs)� is not error detecting for �xxx(m; `C + jpsj + t) with finite
delay, for any xxx 2 fbbb; sssg and for any nonnegative integer t. Let
v = (1jxj0jxj)1+dm=(2jxj)e. Then, the words xv and vy are of the
same length and they differ in at least m + 1 positions; therefore,
the code C = fxv; vyg is error detecting for �sss(m; `C). Now
assume (pCs)� is error detecting for �xxx(m; `C + jpsj + t) with
delay d, for some nonnegative integers t and d. Let w be the word
(pxvs)d+3 = pxvyuxv(yuxv)d+1s if � contains �, or (pvys)d+2

otherwise. Consider also the word

z =
pxvuxv(yuxv)d+1s; if � contains �

pxvys(pvys)d+1; otherwise.

In the first case, z obtains from w by deleting the word y. In the second
case, z obtains from w by inserting the word x. Moreover, as the word
z can be written as

(pxvs)(pvys)(pvys)dpvs; if � contains �

pxvs(pxvs)dpxvys; otherwise

the assumption about (pCs)� implies that pxvs = pvys which in turn
implies that xv = vy; a contradiction.

Finally, consider the case where jspj = 0. Define the code C =
f0m1m; 1m0mg which is error detecting for the channel �sss(m; `C).
Then, depending on � , one can choose words y and u such that

0m1m(0m1m)dy (1m0m)d+1u 2 �xxx(m; `C)

for any nonnegative integer d. Hence, C� is not error detecting for
�xxx(m; `C + t) with finite delay, for any offset t.

IV. THE CASE OF BURST ERRORS

In this section, we provide a detailed analysis on the structure of uni-
form error-detectors for SID channels with burst errors. The analysis
allows us to identify all such error-detectors, including all the ones that
are optimal in terms of redundancy, delay, and offset.

Proposition 4: Let mbbb� be a burst-error specification and let (p; s)
be a pair of words with jspj > 0. If per(sp) > m, then (p; s) is a
uniform error-detector for mbbb� with offset 1 and delay 2. Moreover, if
p is empty then (p; s) has delay 1.

Proof: Suppose per(sp) > m and let C be any code in Umbbb� .
We show that (pCs)� is error detecting for = �bbb(m; `C+ jspj+1)
with delay d 2 f1; 2g, where d = 1 if jpj = 0. For this, assume

(pv0s � � � pvdsy pw0spw1su)2 where w0; w1; v0; . . . ; vd 2C;
y 2 X� and u 2 (pCs)�. We need to show that v0 = w0 and
(pv1s � � � pvdsy pw1su) 2 . If there are no errors in pw0s, then
we are done. So assume there is a burst (x0 x) 2 Bm(�), with
x 6= x0, that affects pw0s; that is, there are words z1; z2; z3; z03 with
jz1j < jpw0sj and jz2j � `C + jspj such that pw0spw1su = z1xz2z3
and pv0s � � � pvdsy = z1x

0z2z
0
3 and (z03 z3) 2 . Obviously, this is

the only burst that affects pw0s. Let q = jx0j�jxj. Then, 0 � jqj � m.
We distinguish six cases about the sign of q and the position of the burst
(x0 x) in pw0spw1su.

Case 1: q = 0 and the burst occurs before the factor w1 of
pw0spw1su; that is, jz1xj � jpw0spj and pw0sp results in pv0sp,
which implies that v0=w0, as pCsp is in Umbbb� , and

(v1s � � � pvdsy w1su)2:

Hence, also (pv1s � � � pvdsy pw1su)2, as required.
Case 2: q = 0 and the burst affects the factor w1 of pw0spw1su;

that is, jz1xj > jpw0spj. Moreover, as jxj � m and jz1j < jpw0sj and
jspj > m, we have that x is of the form s2px1 and x0 is of the form
s2py1, for some prefix x1 of w1 and for some prefix y1 of v1 and for
some suffix s2 of s. Now as there are no errors in z2, it follows that the
codewords v1 and w1 differ in at most jx1j symbols. Hence, w1 = v1
which implies that x1 = y1. This, however, contradicts the fact that
x 6= x0.

In the next four cases we assume jqj 6= 0. Then, sp = x1u1 = u2x2
for some words x1; x2; u1; u2 such that jx1j = jx2j = jqj and ju1j =
ju2j = jspj � jqj. As per(sp) > jqj, it follows that u1 6= u2. Let k be
the largest position of u1 and u2 such that u1[k] 6= u2[k].

Case 3: q < 0 and the burst occurs before the position jqj + k of
the factor sp = x1u1 of pw0spw1su; that is,

jz1xj � jpw0x1u1[1 � � � k � 1]j:

In this case, pw0x1u1[1 � � � k�1] results in the prefix pv0u2[1 � � � k�1]
of pv0s � � � pvdsy and the next symbol u1[k] results in u2[k] with no
errors. This contradicts the fact that u1[k] 6= u2[k].

Case 4: q < 0 and the burst contains the position jqj + k of the
factor sp = x1u1 of pw0spw1su; that is,

jz1xj � jpw0x1u1[1 � � � k]j:

In this case, there can be no error in the prefix x1u1[1 � � � k] of the
second sp in pw0spw1sp. Then, pw0spw1x1 results in pv0spv1 and
the next k symbols u1[1 � � � k] result in the prefix u2[1 � � � k] of spwith
no errors. This contradicts the fact that u1[k] 6= u2[k].

Case 5: q > 0 and the burst occurs before the position k of sp =
u2x2; that is,

jz1xj � jpw0u2[1 � � � k � 1]j:

In this case, pw0u2[1 � � � k�1] results in the prefix pv0x1u1[1 � � � k�1]
of pv0s � � � pvdsy and the next symbol u2[k] results in u1[k] with no
errors. This contradicts the fact that u1[k] 6= u2[k].

Case 6: q > 0 and the burst contains the position k of the factor
sp = u2x2 of pw0spw1su; that is,

jz1xj � jpw0u2[1 � � � k]j:

In this case, there can be no error in the prefix u2[1 � � � k] of the second
sp in pw0spw1sp. Then, pw0spw1 results in pv0spv1x1 and the next k
symbols u2[1 � � � k] result in the suffix u1[1 � � � k] of sp with no errors.
This contradicts the fact that u1[k] 6= u2[k].

For burst-error specifications, Propositions 3 and 4 provide a com-
plete characterization of the structure of their uniform error-detectors.
Moreover, it is possible to characterize precisely all such error-detec-
tors (p; s) having optimal redundancy. Indeed, Proposition 3 implies

IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 5

that m+ 1 is the smallest value of jpj + jsj and this value is possible
when per(sp) � m+ 1. But, as per(sp) � jspj, it follows that (p; s)
is an error-detector with optimal redundancy when jspj = per(sp).
This condition is equivalent to the constraint that the word sp is unbor-
dered [4] (or self-uncorrelated [14]): no proper and nonempty prefix
of sp is also a suffix of sp. It turns out that there are many unbordered
words even for binary alphabets: about 27% of all binary words are un-
bordered, and this quantity increases for larger alphabets [13]. For ex-
ample, the words 071 and 02120101 are unbordered and, therefore, the
pairs (1; 07) and (120101; 02) are uniform 7bbb� -detectors with delay
at most 2 and offset 1 for every error type � . We summarize the pre-
ceding remarks as follows.

Corollary 1: Letmbbb� be a burst-error specification. A pair of words
(p; s) is a uniform mbbb� -detector with optimal redundancy if and only
if jspj = m+ 1 and the word sp is unbordered.

The next result concerns the question of whether an error-detector
with optimal redundancy can have offset 0—the proof can be found in
the Appendix.

Proposition 5: Let mbbb� be a burst-error specification containing at
least two different basic error types and such that mbbb� 6= 1bbb(�� �). If
(p; s) is an error-detector for mbbb� with redundancy m+1, then (p; s)
has offset greater than zero.

Consider an error type � that permits insertion errors. In [7], it is
shown that there exists no coded language that is error-detecting with
delay 0 for any SID channel of the form �sss(m; `). The argument used
for proving this statement can also be repeated for channels of the form
�bbb(m; `). On the other hand, for an error type � in f�; (� � �)g it is
possible to define mbbb� -detectors with delay 0. In fact, we obtain a pre-
cise characterization of all those error-detectors which shows that the
process of choosing a pair (p; s) from a word w = sp is important
when it comes to the delay of (p; s) as an error-detector. This obser-
vation follows also from Proposition 4, where an empty p ensures that
(p; s) has delay 1.

Lemma 6: Let mbbb� be a burst-error specification and let ` be an
integer greater than m. For every (z w) in the channel �bbb(m; `)
one has that

jwj � jzj � mbjwj=(`� 1 +m)c+minfm; jwj%(`� 1 +m)g

where jwj%(` � 1 + m) is the remainder of the integer division
jwj=(` � 1 + m).

Proposition 6: Let � be an error type in f�; (� � �)g. A pair of
words (p; s) is a uniform error-detector formbbb� with delay 0 and offset
1 if and only if s 2 X�a and p 2 (X n fag)mX� for some symbol
a 2 X .

Proof: First we consider the “if” part. Assume that s 2 X�a and
p 2 (X n fag)mX�, and consider a code C in Umbbb� and the channel
 = �bbb(m; `C + jspj + 1). We show that (pCs)� is error detecting
for with delay 0. For this, suppose (pv0sy pw0su) 2 , where
v0; w0 2 C , y 2 X�, and u 2 (pCs)�. Then, pw0s results in a prefix
z0 of pv0sy and u results in the word z with z0z = pv0sy; therefore,
(z u) 2 . If jz0j = jpw0sj, then z = y and z0 = pv0s which
implies that (y u) is in and that pv0s = pw0s as C is in Umbbb� . In
this case, we are done. Now assume that jz0j < jpw0sj. Then a burst of
errors affects pw0s and there are d = jpw0sj� jz0j deletions in pw0s.
Moreover, u = pw1su

0 for some w1 in C and u0 2 (pCs)�. Now
pv0s can be written as z0z1 such that jz1j = d and z1 obtains from
some prefix of pw1s. In particular, z1[d], the last symbol of z1, obtains
from some symbol p[i] 2 X n fag of p for some i in f1; . . . ; mg.
Moreover, it follows that z1 obtains from p[1 � � � i] through . If � = �,

then z1[d] = p[i] which is impossible and the “if” part is complete for
the case where � = �. So suppose that � = (� � �) and that p[i] is
substituted with a = z1[d].

First we argue that there is only one burst of errors in pw0sp[1 � � � i].
Indeed, if there are two bursts then there will be at least `C + jspj
symbols of pw0sp[1 � � � i] between the bursts and, therefore, the first
burst would occur in some prefix p[1 � � � i1] of p, where i > i1 � d.
Moreover, the second burst would occur after the prefix p[1 � � � i1] of
p[1 � � � i]. But then the last symbol a of pv0s would be equal to the
symbol p[d] of p[1 � � � i1] which is impossible. Hence, only one burst
of (���) errors in pw0sp[1 � � � i] such that the last symbol of p[1 � � � i]
is substituted with a = z1[d]. The beginning of the burst will be at or
after the position jpj+`C�m+2 of pw0 which implies that v0 differs
fromw0 in at mostm�2 consecutive symbols. Hence, asC is inUmbbb� ,
it follows that pw0s = pv0s. It remains to show that (y u) is in .

Consider in more detail the first burst, say

(u01z1u
0
2 u1p[1 � � � i]u2)

that occurs in pw0spw1su
0 to get z0z1y, such that pw0s = xu1

for some word x, z0 = xu01, p[i + 1 � � � jpj]w1su
0 = u2x2 for

some word x2, and y 2 u02X
� with (y u2x2) 2 . Then, also

(y p[1 � � � i]u2x2) is in by deleting the prefix p[1 � � � i] of
p[1 � � � i]u2x2 and keeping the rest of the error bursts that existed
in u2x2. Note that this is possible since the i deletions required for
that already existed in the part (u01z1 u1p[1 � � � i]) of the burst
(u01z1u

0
2 u1p[1 � � � i]u2)—recall the d deletions in u1 and the

jp[1 � � � i]j � jz1j deletions in p[1 � � � i] to obtain z1. Hence, the “if”
part is complete when we recall that u = p[1 � � � i]u2x2.

We turn now to the “only if” part. Assume that (p; s) is a uniform
error-detector for mbbb� with delay 0 and offset 1. Then, jspj > m
by Proposition 3. Suppose it is not the case that s 2 X�a and p 2
(Xnfag)mX�. We distinguish three cases. In the first case, s = �. Let
y = p[1 � � �m] and letC = fyz; zyg, where z is any word of lengthm
differing from y in all positions; then C is in Umbbb� . Now it is the case
that (pzyp[m + 1 � � � jpj]yz pyzpyz) is in �bbb(m; `C + jspj + 1)
by deleting the word y in pyzpyz, which implies that pyz = pzy; a
contradiction.

In the second case, s = s1a, for some word s1, and jpj � m,
but p is of the form p1ap2 with jp1j < m. Let C be any code
in Umbbb� with `C = 2mjspj � jspj + m + jp1j, and let v be
any word in C . The word (pvs)2jspj+3 is in (pCs)� and can be
written as (pvs1a)(p1ap2vs)p1z, where z = ap2vs(pvs)

2jspj.
Then, z can be written as z1 � � � z2jspjy such that jyj = m
and each zi is of length m + `C + jspj. Now consider the
word (pvs1a)p2vsp1z

0 such that (pvs1a)p2vsp1 obtains from
(pvs1a)(p1ap2vs)p1 by deleting the word ap1 and z0 obtains
from z1 � � � z2jspjy by deleting the suffix y and the prefix of length
m of every zi. Then, jzj � jz0j = (2jspj + 1)m. Moreover, it
follows that ((pvs1a)p2vsp1z

0 (pvs1a)(p1ap2vs)p1z) is in
the channel �bbb(m; `C + jspj + 1) and the assumption about (p; s)
implies that (p2vsp1z0 p1ap2vsp1z) is also in the channel. Let
w = p1ap2vsp1z. By Lemma 6

jwj � jp2vsp1z
0j

� mbjwj=(`C + jspj+m)c+minfm; jwj%(`C + jspj+m)g

which gives

1 + jp1j+ jzj � jz
0j � m(2jspj+ 1) + jp1j:

This is impossible, however, when we recall that jzj�jz0j=m(2jspj+1).
In the third case, s = s1a, for some word s1, and jpj < m. This

case can be eliminated by considering the code

C = fa` ; a` �(m+1)bm+1g

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

in Umbbb� , with `C = 2jsjm+m� jsj and b 2 X n fag, and the word
(pa` s)2jsj+3 and then continuing as in the second case. We leave the
details to the reader.

V. THE CASE OF SCATTERED ERRORS

Our first result gives a set of error-detectors for msss� , for any error
type � . Then, we show that, for � 2 f�; �; (���); (�� �)g, the result
can be improved in terms of the redundancy of the error-detectors.

Proposition 7: Let msss� be a scattered-error specification and
let (p; s) be a pair of words. If p 2 umX�, for some word u with
per(u) > m, then (p; s) is a uniform error-detector for msss� with
delay 1 and offset mjuj.

Proof: Assume p = umx for some word x and consider a code
C in Umsss� . Let

 = �sss(m; `C + jspj+mjuj)

and take any (pv1su
mxv2sy pw1su

mxw2su) in , where v1; v2;
w1; w2 2 C and y 2 X� and u 2 (pCs)�. We need to show that
v1 = w1 and (umxv2sy umxw2su) 2 . We agree to write ui
for the ith factor u of um, where i 2 f1; . . . ; mg. Suppose that pw1s
results in some word z1, each ui results in some word u0i, and xw2su
results in some word z2 such that z1u01 � � �u

0
mz2 = pv1su

mxv2sy. If
jz1j = jpv1sj, then z1 = pv1s and we are done. So assume that d � 1,
where d = kz1j � jpv1sk; then, at least d errors occur in pw1s and,
therefore, d � m. Moreover, there is k 2 f1; . . . ; mg such that there
is no error in uk , namely, u0k = uk , and there are at mostm�d errors in
u1 � � �uk�1. Then, z1u01 � � �u

0
k�1u

0
k obtains from pw1su1 � � �uk�1uk

and

jpw1su1 � � �uk�1ukj �m � jz1u
0
1 � � �u

0
k�1u

0
kj

� jpw1su1 � � �uk�1ukj+m:

At the same time, as the word z1u
0
1 � � �u

0
k�1u

0
k is a prefix of

the word pv1su1 � � �ukxv2sy, it follows that u0k is a factor of
pv1su1 � � � ukxv2sy such that, either u0k begins in the factor uk
of the word pv1su1 � � �ukxv2sy (when jz1u01 � � �u

0
k�1u

0
kj �

jpw1su1 � � � uk�1ukj), or u0k ends in the factor uk of the
word pv1su1 � � �ukxv2sy (when jz1u

0
1 � � �u

0
k�1u

0
kj �

jpw1su1 � � � uk�1ukj). In either case, as u0k = uk = u and the
period of u is greater than m, it follows that the factor u0k coincides
with the factor uk; therefore,

jz1u
0
1 � � �u

0
k�1u

0
kj = jpv1su1 � � � uk�1ukj:

This implies that

(uk+1 � � �umxv2sy uk+1 � � �umxw2su) 2

and

(pv1su1 � � �uk pw1su1 � � � uk) 2 :

The former relation gives (umxv2sy umxw2su) 2 and the latter
one implies that pv1su1 � � � uk obtains from pw1su1 � � �uk using at
most msss� . Moreover, Lemma 2 implies that v1 obtains from w1 using
at most msss� and, therefore, v1 = w1.

The preceding statement allows us to define various error-detectors
for any scattered-error specification. The most efficient error-detectors
based on this method are those of the form (um; �), where u is an
unbordered word of length m + 1.

In [7], it is shown that the coded language (0mX`�2m�11)� is error
detecting for �sss(m; `) with delay 0, and for �sss(m; `) with delay 1.
With the terminology of the present correspondence, it follows that the
pair (0m; 1) is a uniformmsss�-detector with delay 0 and offsetm, and a

uniform msss�-detector with delay 1 and offset m. Moreover, by Propo-
sition 3, (0m; 1) is an error-detector with optimal redundancy. Unlike
the case of burst error-detectors, where the offset can be independent
of m, the offset m of (0m; 1) cannot be improved.

Proposition 8: If the pair (0m; 1) is a uniform msss�-detector with
delay 0 and offset t, then t � m.

Proof: For the sake of contradiction assume that the offset t < m
and consider the code C = fw1; w2; w3g, where w1 = 0m(10)k,
w2=0m�1(10)k1,w3=12k+m, k=1+bm=2c. Then, C2Um. Now
consider the words 0mw110

mw31 and 0m�1w11w31. Then,

(0m�1w11w31 0mw110
mw31) 2 �sss(m; `C +m+ 1 + t):

Moreover, as 0m�1w11w31 2 0mw21X
� and (0m; 1) has delay 0, it

follows that w2 = w1 which is impossible.

Before we present uniform error-detectors for (� � �) and (� � �),
we establish certain notation and utility results some of which are of
interest in their own right.

Every nonempty word w can be written in the form an1 an2 � � � a
n

r ,
where r and n1; . . . ; nr are positive integers, a1; . . . ; ar 2 X , and
ai 6= ai+1 for all i 2 f1; . . . ; r � 1g. In this case, each factor an

i

of w is called a run. We use the symbol whii to denote the ith run of
w. Now let r; n be positive integers with r � 2. An (r; n)-alternating
word is a word w of the form an1a

n

2 � � � a
n

r , where whii = ani for all
i 2 f1; . . . ; rg. In the sequel, when we use the term (r; n)-alternating
word we assume without mention that r andn are positive integers with
r � 2.

Lemma 7: Assume that X = f0; 1g and an1 � � � a
n

r is an (r; n)-al-
ternating word. Consider the word w = an�t1 an2 � � � a

n

r , where t is a
positive integer with t < n, and suppose that a prefix p of an1 � � � a

n

r

obtains from w using k1sss� and k2sss�, for some nonnegative integers
k1 and k2. Then, in obtaining p from w, the following statements hold
true about k1sss� and k2sss�.

1) If fewer than jwhiij errors are used in whii for every
i = 1; . . . ; r, then k1 � r � 1.

2) If there is an i 2 f1; . . . ; r�1g such that jwhiij errors are used
in whii, then k1 + k2 � 2n � t.

Proposition 9: Assume X = f0; 1g and let k be a nonnegative
integer. Let u be an (r; n)-alternating word and let v be a proper and
nonempty suffix of u.

1) If a prefix ofu obtains from v using ksss(���), then k � minfr�
1; 2n � (juj � jvj)g:

2) If v obtains from a prefix ofu using ksss(���), then k � minfr�
1; 2n � (juj � jvj)g:

Proposition 10: Assume X = f0; 1g and let k be a nonnegative
integer. Let v be a nonempty word and let u be an (r; n)-alternating
word.

1) If a prefix of vu obtains from u using ksss(� � �), then k �
minfr � 1; 2n � jvjg.

2) If u obtains from a prefix of vu using ksss(� � �), then k �
minfr � 1; 2n � jvjg.

Proposition 11: Let m be a positive integer, let n = bm=2c + 1,
and assume X = f0; 1g. For any (r; n)-alternating word an1 � � � a

n

r

the following statements hold true.

1) If r � m+1, then (�; an1 � � � a
n

r) is a uniform error-detector for
msss(� � �) with delay 1 and offset 2n2.

2) If r � 2n + 1, then (�; an1 � � � a
n

r) is a uniform error-detector
for msss(� � �) with delay 1 and offset 0.

IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 7

Proof: We prove both statements simultaneously. Moreover, we
only consider the case where m � 2 and, therefore, n � 2. One can
verify that the claim also holds for m = 1. Let C be any code in
Umsss� , let s = an1 � � � a

n

r , and let = (� � �)sss(m; `C + jsj + t),
where t = 2n2 if r = 2n, and t = 0 if r � 2n + 1. Suppose
(v1sv2sy w1sw2su) 2 for some words v1; v2; w1; w2 2 C
and y 2 X� and u 2 (Cs)�. We need to show that v1 = w1 and
(v2sy w2su) 2 . If there are no errors in w1s, then we are done.
If there are only substitution errors in w1s, then they all occur in w1

and, therefore, v1 obtains from w1 using up to m substitutions which
contradicts the fact that C 2 Umsss� . Now assume there is at least one
deletion in w1s. In particular let d1 be the number of deletions in w1,
let d2 be the number of deletions in the first s of w1sw2s, and let d3
be the number of deletions in w2. Then d1 + d2 � 1.

If d1 � 1, then w1 results in a prefix of length `C � d1 of v1 and s
results in a prefix of xs, where x is the suffix of length d1 of v1. Then
there are at least minfr�1; 2n�jxjg � minfm; 2n�d1g errors in s
and, therefore, at least d1+minfm; 2n�d1g errors inw1swhich is of
length `C+ jsj. This is a contradiction, however, as 2n > m. So in the
rest of the proof we assume that d1 = 0 and d2 � 1; then, d2+d3 � m.
Also, w1sw2 results in a prefix of length `C + jsj + `C � (d2 + d3)
of v1sv2 and the second s of w1sw2s results in a prefix of xs, where
x is the suffix of length d2 + d3 of v1sv2. Then, there are at least
2n � jxj = 2n � (d2 + d3) errors in the second s which gives at
least m + 1 errors in sw2s whose length is `C + jsj + jsj. Then a
contradiction arises when r = 2n and t = 2n2, and the first statement
is proved. So in the sequel we assume that r � 2n+ 1 and t = 0; that
is, the channel is (�� �)sss(m; `C+ jsj). Consider the run shii = ani
of s containing the first of the d2 deletions.

Letw be the word ani a
n

i+1 � � � a
n

rw2a
n

1 � � � a
n

i�1; then jwj = `C+jsj
and w results in a prefix of the word ani a

n

i+1 � � � a
n

r v2a
n

1 � � � a
n

i�1 using
ksss(� � �), for some integer k with d2 + d3 � k < 2n. We shall
show that our assumptions lead to a contradiction. First note that the
word z = an�1

i
ani+1 � � � a

n

rw2a
n

1 � � � a
n

i�1 obtains from w using the
first deletion in ani and then a prefix of ani � � � a

n

r v2a
n

1 � � � a
n

i�1 obtains
from z using (k � 1)sss(� � �). Hence, if i � r � 1 then there are at
least minfr � i; 2n � 1g errors in the prefix an�1

i
ani+1 � � � a

n

r of z.
Also, note that an1 � � � a

n

i�1 results in a prefix of van1 � � � a
n

i�1, where v
is the suffix of length d2 + d3 of v2; that is, jvj = d2 + d3. Hence,
if i � 3, there are at least minfi � 2; 2n � (d2 + d3)g errors in the
suffix an1 � � � a

n

i�1 of z.
If i � 2, then k � 1 � minfr � 2; 2n � 1g which implies that

k � 2n; a contradiction. If i � 3 and i � 2 � 2n � (d2 + d3), then
k � (d2+d3)+2n�(d2+d3)which is a contradiction. Finally, if i � 3
and i�2 < 2n�(d2+d3), then k�1 � minfr�i; 2n+1g+(i�2)
which implies that k � 2n; a contradiction.

Using similar arguments as above, one can verify that also the fol-
lowing statement holds true.

Proposition 12: Let m be a positive integer, let n = bm=2c + 1,
and assume X = f0; 1g. For any (r; n)-alternating word an1 � � � a

n

r ,
we have the following statements.

1) If r � m+1, then (�; an1 � � � a
n

r) is a uniform error-detector for
msss(� � �) with delay 1 and offset 2n2.

2) If r � 2n + 1, then (�; an1 � � � a
n

r) is a uniform error-detector
for msss(� � �) with delay 1 and offset 0.

VI. DISCUSSION

We have presented an analysis of the method of separators for de-
tecting synchronization (and substitution) errors in the messages of a
coded language. For the case of burst errors, we were able to obtain a

simple necessary and sufficient condition on the structure of the sep-
arators. It would be interesting to find such a condition on separators
that detect scattered errors as well. This would allow us to evaluate the
various separators for scattered errors designed in the correspondence.
We note that this question is related to the problem of frame synchro-
nization in the presence of scattered substitution errors—see [15] for
details.

Regarding separators for error correction [1], it is straightforward to
define the parameters of redundancy and offset as in this correspon-
dence. On the other hand, the parameter of delay should be defined
with some care as the definition of “error correction with finite delay”
given in [1] involves automata with output (finite-state machines). If
we ignore that parameter for now, the results of [1] on “error-correc-
tors” (separators for error correction) can be rephrased as follows.

1) The pair (0m; 1m) is a uniform error-corrector for msss� with
redundancy 2m and offset 1.

2) The pair (�; 1m0m) is a uniform error-corrector for msss� with
redundancy 2m and offset 2m.

3) The pair (�; (1m+10m+1)m+11m) is a uniform error-corrector
for msss(� � � � �) and for msss(� � �) with redundancy
2(m+ 1)2 +m and offset 2(m+ 1)2 +m.

If we ignore lower order terms, it follows that, for the same error spec-
ification, Levenshtein’s error-correctors are twice as long as the error-
detectors designed here. Intuitively, this observation is consistent with
the view that the amount of redundancy for error correction is (roughly)
twice the amount for error detection.

APPENDIX

This appendix contains the proofs of several lemmas and proposi-
tions.

Proof of Lemma 1: The “only if” part is obvious. For the “if” part,
first assume that � 2 f(� � �); (� � �)g. Then the statement follows
easily when we note that, if v0 obtains from v using at most mxxx� , only
substitution errors can occur in v. Now assume that � 2 f(���); (��
� � �)g; then xxx = bbb and v = pus and v0 = pu0s such that (u0 u)
is in Bm(�). As jvj = jv0j, one has that juj = ju0j which implies
that D�(v; v

0) � m and, therefore, (u0 u) is in Bm(�). Hence, v0

obtains from v using at most mxxx�.

Proof of Lemma 2: If v = v0 then the statement is obvious. So
assume v 6= v0; then � =2 f�; �g and, either � = � or � contains at
least two different error types. If mxxx� is other than msss(� � �) and
msss(� � � � �), then the statement follows easily from Lemma 1. If
mxxx� is either of msss(� � �) and msss(� � � � �), then the statement
follows from the fact that D� (v; v

0) = D� (pvs; pv
0s) [1].

Proof of Lemma 3: For the first claim, we write u in the form xy for
some words x and y with jxj = ju0j. Then the claim follows when we
note that u0 obtains from u by deleting y and substituting D�(u

0; x)
symbols in x. For the second claim, if no deletions are used to obtain
u0 from u then we are done. If at least one deletion is used then there
must be at least two insertions in u—so that ju0j > juj—and, therefore,
ju0j� juj � m�2. In this case, u0 can be written as xy with jxj = juj
and jyj � m�2. Then the claim follows when we note that u0 obtains
from u by substituting D�(u; x) symbols in u and then inserting y at
the end.

For the last claim, let X = f0; 1g and let k � m be such that u0

obtains from u using ksss(�����). Without loss of generality, suppose
u[1] = 0. First assume that, for all i = 1; . . . ; juj, u0[i] 6= u[i] and
u0[i + 1] 6= u[i]. Then it follows that u = 0juj and u0 = 1juj+1.

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

In this case, to obtain u0 from u, all symbols of u must be deleted
or substituted and at least a 1 must be inserted. Hence, k � juj + 1
which implies juj < m. Then, u0 obtains from u by substituting u with
1juj and inserting a 1 at the end. Therefore, u0 obtains from u using at
most msss(�� �). Now assume that there is i 2 f1; . . . ; jujg such that
u0[i] = u[i] or u0[i + 1] = u[i]. In the former case, suppose i is the
smallest with this property. Then, u0 can be written as u01u[i]u

0
2 and u

as u1u[i]u2 such that ju01j = ju1j and D�(u
0
1; u1) = ju1j. In the latter

case, suppose i is the largest with the property u0[i+ 1] = u[i]. Then,
u0 can be written as u01u[i]u

0
2 and u as u1u[i]u2 such that ju02j = ju2j

andD�(u
0
2; u2) = ju2j. In either case, u0 obtains from u using at most

(ju1j+ ju2j)sss� and then 1sss�, which proves the claim.

Proof of Proposition 2: Assume that

Bm(� � �� �) = Bm(� � �) [Bm(� � �):

First, we show that m � 4. Indeed, suppose m � 5. Then there are
positive integers q and r such that m = 3q + r and r � 2q (for
example, q = 1 and r = m� 3). Consider the words u = 0q+r1q0q

and u0 = 12q+r0q+r1q. Then, juj = m, ju0j = juj + q + r, and
u0 obtains from u using (2q + r)sss� and qsss�; therefore, (u0 u) 2
Bm(�� �� �). Suppose now that u0 obtains from u using ksss(�� �),
for some integer k with q + r � k � m. Then also u obtains from
u0 using ksss(� � �) which implies that there is a word z such that z
obtains from u0 using (q + r)sss� and u obtains from z using (k � q �
r)sss�—see [6] for instance. Then, z is of the form 12q+r�i0q+r�j1q�t

for some nonnegative integers i; j; t with t � q and i + j + t =
q + r. By distinguishing two cases depending on whether j1q0qj �
j0q+r�j1q�tj, it follows that D�(z; u) > 2q; therefore, k > q + r +
2q = m which is a contradiction. Hence, m � 4. To complete the
“only if” part we need to show that, if m 2 f3; 4g, then X must be
f0; 1g. For the sake of contradiction, suppose there is a symbol a 2
X n f0; 1g and consider the words u = 01am�2 and u0 = 1a0m�1,
with m 2 f3; 4g. Then, u0 obtains from u using msss(�� �� �) but u
cannot obtain from u0 using at most msss(� � �); therefore, u0 cannot
obtain from u using at most msss(� � �).

For the converse, we note first that, obviously

Bm(� � �) [Bm(� � �) � Bm(� � �� �):

For the reverse inclusion, let (u0 u) 2 Bm(�� �� �) and consider
the following cases.

Case 1: m = 1. One verifies by inspection that (u0 u) 2
B1(� � �) [B1(� � �).

Case 2: m = 2. In this case, 2m � 2 = 2 and it follows from
Proposition 1 that (u0 u) 2 B2(� � �) [B2(� � �).

Case 3: m = 3 and X = f0; 1g. We use Lemma 3. If ju0j � juj
then (u0 u) 2 Bm(� � �). If ju0j > juj there are two subcases.
If no deletions are used to obtain u0 from u then clearly (u0 u) 2
Bm(� � �). If a deletion is used in obtaining u0 from u then ju0j =
juj + 1 and, therefore, (u0 u) 2 Bm(� � �).

Case 4: m = 4 and X = f0; 1g. We use again Lemma 3. If ju0j �
juj then (u0 u) 2 Bm(���). So assume ju0j > juj. If ju0j = juj+1
then we are done as in Case 3. If ju0j > juj+ 1 then, as juj � m = 4,
it follows that ju0j = juj + 2. If no deletion is used in u then we are
done. If a deletion is used in u then it is the only one and there are also
exactly three insertions to obtain u0. Hence, u0 obtains from u using
3sss� and 1sss�. Then, using a long case distinction, one can verify that
again (u0 u) 2 Bm(� � �).

Proof of Proposition 5: The assumptions about mbbb� imply that �
is in f(� � �); (� � �); (� � �); (� � � � �)g. Assume that (p; s)
is an mbbb� -detector with redundancy m+ 1, offset 0, and delay d, for
some nonnegative integer d. We shall obtain a contradiction by con-
structing a code C 2 Umbbb� such that (pCs)� is not error detecting for

�bbb(m; `C + jpsj) with delay d. First, write the word sp in the form
axb, for some a; b 2 X and x 2 X�, and let C = fxby; yaxg, where
y = 1m0m1m. Then, C is error detecting for �bbb(m; `C) and, there-
fore, C 2 Umbbb� . Now let w be the word (pxbys)d+3 if � contains �,
or (pyaxs)d+3 otherwise; then

w = pxby(axb)xby(axb)(xby(axb))dxbys

or

w = pyax(axb)yax(axb)(yax(axb))dyaxs:

Consider also the word z =

pxby(a)xby(axa)(xby(axa))dxbys; if � contains �

pyax(axbxb)yax(bxb)(yax(bxb))dyaxs; otherwise.

Then, z is equal to either

(pxbys)(pyaxs)(pyaxs)dpys

or

(pyaxs)(pxbys)(pxbys)dpxbyaxs:

If � contains �, then z obtains from w by deleting the suffix xb in the
prefix pxbyaxb of w, and then by transforming d + 1 b’s in w to a’s
using the errors permitted. If � does not contain �, then z obtains from
w by inserting the word xb at the end of the prefix pyaxa of w, and
then by transforming d + 1a’s in w to b’s using the errors permitted.
In either case, it follows that (z w) 2 �bbb(m; `C +m + 1) which
implies that pyaxs = pxbys; a contradiction.

Proof of Lemma 6: Let q = bjwj=(` � 1 + m)c. Then w can be
written as w1 � � �wqx with jxj = jwj%(` � 1 +m) and jwij = ` �
1 +m. Also z can be written as w0

1 � � �w
0
qx

0 such that (x0 x) and
every (w0

i wi) are in the channel. As jwij = `� 1+m and ` > m,
in each wi either there are at most two bursts of errors, or three bursts
of errors that involve only insertions—the latter case is possible only
when ` = m + 1. It follows then that the number of deleted symbols
in the burst(s) is at most m and, therefore, jwij � jw

0
ij � m. Now for

the word x we have two cases. If jxj � m then at most jxj symbols
can be deleted in x and, therefore, jxj � jx0j � jxj. If jxj > m then,
as jxj < `� 1 +m, one can use the same argument as above to infer
that jxj � jx0j � m. In either case, jxj � jx0j � minfjxj; mg. Hence,
jwj � jzj � qm+minfjxj; mg as required.

Proof of Lemma 7: For the first statement, note first that there is a
word y such that y obtains from w using k2sss� and p obtains from y
using k1sss�. Then, y is of the form an�s1 an�s

2 � � � an�s
r , where each

si is a nonnegative integer with si < n and n � s1 � n � t. Then,
to get p from y using k1sss�, consider the fact that at least one symbol
from each run of y will appear in p with no error. It follows then that
at least the first symbol of each run yhii, with i 2 f2; . . . ; rg, will be
substituted. Hence, k1 � r � 1.

For the second statement, there is a word y such that y obtains from
w using jwhiij errors in whii and p obtains from y using (k1+k2�
jwhiij)sss(� � �). If i = 1, then whii = an�t

1 results in as2, for some
s2f0; . . . ; n�tg; therefore, y begins with a prefix of the form as2a

n
2 .

As a1 6= a2, obtaining p from y requires at least n errors in as2a
n
2 .

Hence, k1+k2�(n�t)+n=2n�t. If i�2 then whii=ani and y will
contain a factor of the form an�t

i�1 a
s
i�1a

n
i�1, where asi�1 results from

whii and s2f0; . . . ; ng. Thus, to get p from y at least n�t+s errors
are needed in the factor a2n�t+s

i�1 of y. Hence, k1+k2�2n�t.

Proof of Proposition 9: Assume u = pv with p; v 6= �. For the
first part, suppose that v results in a prefix of u using ksss(� � �). If
2n � juj � jvj we are done. So assume juj � jvj < 2n. If juj � jvj =
n + t, for some integer t with 0 � t < n, then v = an�t

2 an3 � � � a
n
r

IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 9

results in a prefix of an1 � � � a
n

r using ksss(� � �). But, as a1 6= a2,
there must be n� t errors in the prefix an�t

2
of v. Hence, k � n� t =

2n�(n+t) as required. Now assume juj�jvj = twith t < n; then v =
a
n�t

1
an2 � � � a

n

r results in a prefix of an1 � � � a
n

r using k1sss� and k2sss�,
where k1 + k2 = k. We consider three cases. In the first case, no run
vhii of v has jvhiij errors. Then, k1 � r�1which implies k � r�1 as
required. In the second case, some run vhii, with i 2 f1; . . . ; r� 1g,
has jvhiij errors. Then, k � 2n� t as required. In the third case, there
are jvhnij errors in the last run anr of v and, therefore, k � n. If r = 2
we are done. If r � 3 then note that the word a

n�t

1
an2 � � � a

n

r�1 results
in a prefix of an1a

n

2 � � � a
n

r�1 using (k�n)sss(���) and, by Lemma 7, it
follows that k�n � minfr�2; n�tg. Hence, k � minfr�1; 2n�tg
as required.

For the second part, assume that v results from a prefix of u using
ksss(�� �). Then the prefix of u results from v using ksss(�� �) and the
claim follows from the first part.

Proof of Proposition 10: We only show the first part; the second part
follows easily as in the previous proposition. If u results in a prefix of
v then at least juj � jvj deletions must be used in u; therefore, k �
2n � jvj as required. So assume that u results in vp, where p is a
nonempty prefix of u. Then, there is a prefix x of u, with jxj � jvj,
such that v obtains from x using k1sss(���), and p obtains from y using
k2sss(� � �), where k1 + k2 = k and y is such that u = xy. As there
must be exactly jxj � jvj deletions in jxj, we have that k1 � jxj � jvj.
If jxj � 2n then we are done. So assume jxj < 2n. If jxj = n + t

with 0 � t < n then x = an1a
t

2 and y = a
n�t

2
an3 � � � a

n

r which
results in a prefix of an1 � � � a

n

r . Then, as a1 6= a2, there must be n� t

errors in the prefix an�t

2
of y and, therefore, k2 � n � t. Hence,

k1+k2 � 2n�jvj as required. Now assume jxj < n. Then, x = a
jxj
1

,
y = a

n�jxj
1

an2 � � � a
n

r , and a prefix of an1 � � � a
n

r obtains from y using
k2sss(� � �). This implies that k2 � minfr � 1; 2n� jxjg, which, in
turn, implies that k1 + k2 � minfr � 1; 2n� jvjg as required.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referees for suggesting
references [12] and [15].

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Sov. Phys.–Dokl.: Cybern. Contr. Theory, vol. 10,
pp. 707–710, 1966.

[2] F. F. Sellers, Jr., “Bit loss and gain correction code,” IEEE Trans. Inform.
Theory, vol. IT–8, pp. 35–38, Jan. 1962.

[3] H. C. Ferreira, W. A. Clarke, A. S. J. Helberg, K. A. S. Abdel-Ghaffar,
and A. J. H. Vinck, “Insertion/deletion correction with spectral nulls,”
IEEE Trans. Inform. Theory, vol. 43, pp. 722–732, Mar. 1997.

[4] M. Lothaire, Algebraic Combinatorics on Words. Cambridge, U.K.:
Cambridge Univ. Press, 2002.

[5] L. J. Guibas and A. Odzylko, “Periods in strings,” J. Combin. Theory,
Ser. A, vol. 30, pp. 19–42, 1981.

[6] S. Konstantinidis, “Relationships between different error-correcting
capabilities of a code,” IEEE Trans. Inform. Theory, vol. 47, pp.
2065–2069, July 2001.

[7] S. Konstantinidis and A. O’Hearn, “Error-detecting properties of lan-
guages,” Theor. Comput. Sci., vol. 276, pp. 355–375, 2002.

[8] J. Berstel and D. Perrin, Theory of Codes. Orlando, FL: Academic,
1985.

[9] W. W. Peterson and E. J. Weldon, Error Correcting Codes, 2nd
ed. Cambridge, MA: MIT Press, 1972.

[10] V. I. Levenshtein, “On perfect codes in the deletion/insertion metric,”
Discr. Math. and Appl., vol. 2, pp. 241–258, 1992.

[11] G. Tenengolts, “Nonbinary codes correcting single deletion or inser-
tion,” IEEE Trans. Inform. Theory, vol. IT–30, pp. 766–769, Sept. 1984.

[12] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion cor-
recting codes,” IEEE Trans. Inform. Theory, vol. 48, pp. 305–308, Jan.
2002.

[13] L. J. Guibas and A. Odzylko, “String overlaps, pattern matching, and
nontransitive games,” J. Combin. Theory, Ser. A, vol. 30, pp. 183–208,
1981.

[14] H. Morita, A. J. van Wijngaarden, and A. J. H. Vinck, “On the con-
struction of maximal prefix-synchronized codes,” IEEE Trans. Inform.
Theory, vol. 42, pp. 2158–2166, Nov. 1996.

[15] P. Bylanski and D. G. W. Ingram, Digital Transmission Systems. Herts,
U.K.: Peter Peregrinus Ltd., 1976.

Stavros Konstantinidis (M’02) received the B.Sc. degree in mathematics from
the University of Athens, Athens, Greece, in 1988 and the M.Sc. and Ph.D.
degrees in computer science from the University of Western Ontario, London,
ON, Canada, in 1992 and 1996, respectively.

From 1996 to 1998, he was an Assistant Professor of Computer Science at
the University of Lethbridge, Lethbridge, AB, Canada. In 1998, he joined the
Department of Mathematics and Computing Science at Saint Mary’s University,
Halifax, NS, Canada, where he currently is an Associate Professor. His research
interests include automata, formal languages, and coding theory.

Steven Perron is an undergraduate student at Saint Mary’s University, Halifax,
NS, Canada. He expects to receive the B.Sc. degree in May 2003. He plans to
go to graduate school and study computer science.

His research interests include complexity theory, coding theory, and algo-
rithms.

L. Amber Wilcox-O’Hearn received the B.A. degree (with honors) in Russian
language from the University of Waterloo, Waterloo, ON, Canada in 1997, and
the B.Sc. degree in computing science from Saint Mary’s University, Halifax,
NS, Canada, in 2002, and is currently a graduate student in the Department of
Computer Science at the University of Toronto, Toronto, ON, Canada.

Her research interests include computational linguistics, especially semantics
and its relations to information theory and the theory of codes.

