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Abstract—Weinvestigatetheproblem of designing pairs(p, s) of words
with theproperty that, if each word of a coded messageisprefixed by p and
suffixed by s, the resulting set of coded messages is error detecting with
finite delay. We consider (combinatorial) channels permitting any combi-
nation of the substitution, insertion, and deletion (SID) error types, and
address the cases of both scattered and burst errors. A pair (p, s) with
the above property isevaluated in terms of three parameters: redundancy,
delay of decoding, and frequency of thedetectableerrors. Inthecaseof SID
channels with burst errors, we provide a complete and explicit character-
ization of their error-detecting pairs (p, s), which involvesthe period of
theword sp.

Index Terms—Burst errors, decoding delay, deletion, error detection, in-
sertion, period of word.

|. INTRODUCTION AND BASIC NOTATION

Weinvestigate the problem of designing pairs (p, s) of words, called
separators, with the property that, if each word of a coded message
is prefixed by p and suffixed by s, the resulting coded language (set
of coded messages) is error detecting with finite delay. We consider
(combinatorial) channels allowing any combination of the substitution,
insertion, and deletion (SID) error types. Such channels were used by
Levenshtein in [1], where the method of separators was discussed for
correcting scattered SID errors in coded messages. This method was
first considered by Sellers Jr. [2] for a certain SID channel and, more
recently, by Ferreira et al. [3]. In the present correspondence, we use
the term uniform error-detector for a pair (p, s) of words satisfying
the above property, and we consider the cases of both scattered and
burst errors. In either case, a uniform error-detector (p, s) isevaluated
in terms of three parameters: the redundancy |p| + |s|, the delay of
decoding, and the frequency of the detectable errors. In the case of
burst SID errors, we provide a complete and explicit characterization
of al the uniform error-detectors (p, s), which involves the period of
the word sp [4], [5].

A. Notation About Alphabet, Words, and Coded Languages

We assume an alphabet X containing at least the two symbols 0
and 1. A word, or message, is any string of symbolsfrom X including
the empty word . For aword w, we denote by |w| thelength of w. For
example, [11001| = 5. 1f i = 1, ..., |w|, then w[i] denotes the ith
symbol of w and, for j = ¢, ..., |w]|, thenotation w[i - - - j] represents
theword wle]w[i + 1] - - - w(j]. If j < ¢, weagreethat w[i--- j] = A.
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For two words w; and w» the word w; w- is the concatenation of w,
and w-, . For aword w and anonnegativeinteger », w" denotestheword
that consists of n concatenated copies of w. A word p isaprefix of w if
w = ps,for somewords. Inthiscase, s isasuffixof w. If p # w,thenp
iscalled aproper prefix of w. Similarly, the suffix s isproper if s # w.
A word v isafactor of w if w can bewritten as zvy for somewords x
andy. Theset of all wordsisdenoted by X * and the set of all nonempty
words by X . Every subset of X* is called a language. If u, v are
wordsand L isalanguage, then u Lv isthe language {vwv | w € L}.
If F isafinite and nonempty language, then ¢, denotes the maximum
length of thewordsin F'. For two languages L and L', L L' denotesthe
language {ww' | w € L, w' € L'}.If n isanonnegativeinteger, then
L™ isthelanguage {w; - - - wy | w1, ..., wn, € L}, with L° = {A}.
Moreover, L* = |J2, L'.

A nonempty language C is called a uniquely decodable code or
simply acodeif, for all positive integers m and » and for al words

, Um € C

Vg evey Upy Uty ot

the equation

Viv2 ***Up = ULUL2* "+ Um

impliesm = n andu; = v; foreveryi = 1, ..., n. Inthis corre-
spondence, we assume that every code contains at least two words. If
al the words of alanguage C' have the same length, then C' is a code
andiscalled auniformcode. A language of theform C*, where C' isa
code, is called a coded language.

B. Structure of the Correspondence

This correspondence is organized as follows. In Section |1, we give
the basic terminology about (combinatorial) channels and error detec-
tion, and we define SID error types, error specifications, and the partic-
ular classof SID channelsthat permit burst errors. Moreover, we obtain
afew technical results pertaining to these concepts. In Section |11, we
define the method of uniform error-detector pairs, discuss the criteria
for choosing good pairs, and provide anecessary condition on the struc-
ture of such pairs. In Section |V, we focus on channelswith burst errors
and identify all uniform error-detectors for such channels, including all
the optimal ones. In Section V, we consider channels with scattered er-
rors and obtain a set of uniform error-detectors that work for any SID
error type. Then, for certain error types, we identify uniform error-de-
tectors with smaller redundancy at the cost of restricting to messages
over the binary alphabet. Finaly, Section VI containsafew concluding
remarks.

I. (COMBINATORIAL) CHANNELS AND ERROR DETECTION

A. Channels, Error Types, and Error Specifications

A (combinatorial) channel (over the alphabet X') isabinary relation
v C X™ x X™. For the elements of the channel v we prefer to write
(z «— w) asopposed to (z, w). Then, (z — w) € ~ means that the
message (word) z can be received from w through the channel ~. Note
that, in general, the channel is noisy, meaning that, for (z — w) € 7,
itispossiblethat = # w; that is, z isreceived from w with errors.

In this work, we consider channels that permit combinations of the
threebasic error types: substitution, insertion, and deletion, denoted by
thesymbolsa, ¢, and &, respectively. The set of error typesis

{o,1,6, (0 @1), (608, (1D, (c @1t}
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where the symbol © isalogic connective and is used to indicate which
combination of the basic error typesis permitted. The error types: and
6 are called synchronization error types. Each error type = can be used
to define a distance function D-. In particular, D, is the Hamming
distance and, for 7 € {(+ ® 6), (¢ ©® ¢ ® §)}, D, isthe Levenshtein
distance for errors of type 7 [6].

Definition 1: An error specification is an expression of the form
ma7 such that m is a nonnegative integer, = is an error type, and
@ is one of the symbols b and s indicating the terms burst and scat-
tered, respectively. For an error specification ma T we shall assumethat
m > 0, unless stated otherwise.

Intuitively, the expression mar specifies possible changes (errors)
that one can make in aword to obtain another word. For example, the
expression 3b6 specifiesasize 3 burst of deletion errors and the expres-
sion 4s(: @ 6) specifies four scattered insertion and deletion errors.
More specifically, let = and y be two words. We say that y obtains
from @ using ms, if it is possible to transform « to y using exactly
m (scattered) errors of type 7. We say that y obtains from « using
at most msr, if y obtains from = using ks7, for some integer % with
0 < k < m.Wesay that y obtainsfroma using (at most) mbr, if there
arewords p, s, u, v’ suchthat |u| < m,x = pus,y = pu's, and u’
obtains from « using at most m.s~. For example, theword 111111 ob-
tainsfrom 0111110 using 2s(¢ & 6), and the word 00010100 obtains
from 0011100 using 2b(c & ¢).

For an error type 7 and two integers m and ¢, with1 < m < ¢,
the expression 7, (m, () denotes an SD channel with scattered errors.
Specificaly, (= — w) isin the channel if it is possible to obtain =
from w using errors of type T such that no more than m errors can
be used in any factor of length ¢ (or less) of w. We note that channels
Te(m, {) with 7 € {¢, 6, (: ©® ), (0 ® ¢ ® 6)} are considered in
[1] in the context of error-correcting codes for such channels. As an
example, consider the channdl (o © 6)s(2, 5) that permits a total of
up to two substitutions and deletions in any factor of length 5 of the
message. As 101000 obtains from w = 0000000 by deleting w[7] and
substituting w[3] with 1 and w[1] with 1, it follows that (101000 —
w) € (6©6)s(2, 5).Ontheother hand, toobtain 101001 fromw using
errors of type (¢ @ §), one symbol of w must be deleted and three of
its symbols must be substituted. But it is not possible to choose four
such symbols, unless three of them occur in afactor of w of length 5.
Hence, (101001 «— w) isnot in the channel (o @ §)4(2, 5).

B. Channels With Burst Errors

Let m be a positive integer. A set B of m-burst errorsis a set that
consists of pairs (v’ « u) such that |u| < m. Of particular interest
are the SID sets of m-burst errors: For any error type 7, define

By (1) = {(v' «— u) | |u| < m and u’ obtains from u using
at most mbr}.

Given aset B of m-burst errors and an integer ¢ > ., we define the
channel ,[B] asfollows:. (z < w) isin~,[B] if and only if thereisan

integer n > 0 and words zo, ..., Ty, Uty ...y Un, W), ..., U, SUCH
that
W= LU X1 -+ Uply AN 2 = xouly UL Xy
efordli=1,....,n—1,|z;| > (-1,
e (u; — u;)isinBandu; # u;,forali=1, ..., n.

Informally, the above conditions mean that if ~ obtainsfromw through
v¢|B] then, in w, there are zero or more bursts of errors each of sizem
(or less) such that there is at most one burst (or part of a burst) in any
£ consecutive symbols of w. In case B = B,,,(7), we call the channel
ve| B+ (7)] an D channel with burst errors and we shall use the no-
tation 7, (m, () instead of v¢[ By (7)] which is consistent with the no-
tation we use for SID channels with scattered errors. For example, let
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w = 0%1107110%1 and let = = 0*1000700%010. Then (z « w) isin
the channel (o © ¢ ® §)(2, 8).

C. Error Detection With Finite Delay

Let v beachannel. A language L iscalled error detecting for v when
the following condition is satisfied: Assuming only wordsin L U {\}
aresentinto, if awordy isreceived through~ and y isin LU{\} then
y must be correct; that is, equal to the transmitted word. This condition
can be written more formally as follows [7]:

Foralwordsz € LU {\} andy € X,
if (y —x)€~vandy € LU{\}, theny = =.

Notethat the above condition ensuresthat anonempty word of L cannot
be received from the empty word, and the empty word cannot be re-
ceived from a nonempty word of L. The task of verifying that a lan-
guage is error detecting could require some effort even for apparently
simple languages and channels. We invite the reader to show that, for
K = {1011, 1101}, the coded language K * is error detecting for the
SID channel é,(1, 4) that allows up to one deletion in any four con-
secutive symbols of a message.

Although error detection is a basic property of a communications
language, the process of decoding a word of such a language might
reguire unbounded memory. This is because, in general, the decoder
needs to see the entire message in order to decide whether it is cor-
rect. For coded languages, however, it is possible to define the concept
of error detection with finite delay as follows. If a codeword v is ob-
served at the beginning of the received message, then v is correct—that
is, equal to the first codeword of the transmitted message—provided
that there are at least d codewords following v in the received message.
Moreover, once v is decoded, the rest of the received message can be
decoded in the same way. The number d is the delay of decoding. In
case the received message does not begin with 1 + d codewords, an
error is detected and what follows depends on the communication pro-
tocol—usually involving retransmission techniques. Moreformally, for
achannel v and anonnegativeinteger d, we say that the coded language
C™* iserror detecting for ~ with delay d, when the following condition
issatisfied for all v € C, z € C*X*, andw € C*:

if (vz+— w)e€~,thenw = vuand (z «— u) € v forsomeu € C*.

For any reasonable channel v~—an SID channdl, for instance—if C*
setisfiesthe above condition then C'* isindeed error detecting for ~ [7].
Moreover, if C™ satisfies the above then the code C' hasfinite decoding
(deciphering) delay at most d (in the sense of [8]).

Example 1: Consider again the code K’ = {1101, 1011} and re-
call that thelanguage K" is error detecting for 8,(1, 4). However, K*
isnot error detecting for that channel with any finite delay. Indeed, as-
sume that K™ is error detecting with delay d, for some nonnegative
integer d, and consider the words w = (1101)?*2, v = 1011, and
z = (1011)"101. By deleting thefirst 1 of w we have that (vz «— w)
isin the channel which impliesthat «» must start with the codeword v;
a contradiction.

Example 2: Consider the code C' = {001, 011} and the channel
&p(1, 4). Then, C™ iserror detecting for 65 (1, 4) with delay 0. Indeed,
suppose v € C,z € X*,andw € C* suchthat (vz — w) isin
85(1, 4). Note that w must start with a codeword of the form 0b1 for
some alphabet symbol . Then, w = 0b1u for somew € C™*. Suppose
that 001 resultsin some word z; and « results in some word z, such
that vz = z1 2. If thereisadeletionin 001, then |v| = |z1]| + 1 and
there can be no error on the symbol «[1] that follows0b1. Asu[1] = 0,
we havethat v = z,0, which contradicts the assumption v € C'. Thus,
there can be no deletion in 015, which impliesthat v = z; = 0bl
and z> = z and, therefore, (z «— u) € &(1, 4). The code C allows
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for the correct decoding of messages in C'* without delay as long as
no error occurs. For example, suppose that the concatenation of code-
words 001, 011, 001, 001, ... istransmitted and a deletion occursin
the third codeword, 001, so that we receive 001011010- - -. Then, the
codewords 001 and 011 can be decoded correctly and an error is de-
tected when 010 is observed.

D. Some Technical Results

We close this section with a few technical results concerning error
specifications and SID channels, which are needed in the sequel. The
proofs can be found in the Appendix.

Lemmal: Letmar bean error specification, other than ms(v © 6)
and ms(c ¢ & 6), containing at least two different error types and
let v and v’ be two words of the same length. Then, v’ obtains from v
using at most ma 7 if and only if »" obtainsfrom v using at most mzo .

Lemma 2. Let maT bean error specification and let p, v, v', s be
words such that v and v are of the same length. Then, pv's obtains
from puvs using at most mz 7 if and only if v’ obtains from v using at
most ma .

Next we establish certain relationships between sets of the form
B,,.(7) involving different error types.

Lemma3: Letm beapositiveinteger and let v and«’ betwo words
suchthat |u| < m and «’ obtainsfrom » using at most ms(s © 1 ©$§).

1) If |u'| < |u], thenu' obtainsfrom v using at most ms(a © 6).

2) If|u'| > |u|, thenw’ obtainsfromw using at most max{1, 2m—
2}8(o ©1).

3) If the alphabet X isbinary and |u'| = |u| + 1, then «" obtains
from « using at most ms(c @ ¢).

Proposition 1:  For al integers m > 2
an(a- [OFXO!] 6) g Bm(O' © 6) U BZ'm—Z (0‘ © L).
Proof: The claim follows easily from the previouslemma. [

A natural question that arises is whether Proposition 1 can be
strengthened by replacing Bzy,—2 (0 @ ¢) with By, (o @ ¢). It turns
out that thisis possible only when m < 5.

Proposition 2:  Consider the alphabet X and a positive integer m.
Then, By, (0 © ¢ @ 6) = Bm(o @ 6) U Bp(o @ ) if and only if
m € {1, 2},orm € {3,4} and X = {0, 1}.

The above considerations motivate us to define a new type of SID
channels with burst errors as follows. For two error types m and 7, let
(71 V 72)p(m, () bethe channel ~¢[B,.(71) U B,,,(72)]. Then, every
burst of errors in a transmitted message is of type mbr or mbr. By
Proposition 2, it follows that, for X = {0, 1} andm < 5, the channel
((e@)V(e®8))s(m, £) coincideswiththechannel (c©1©8)(m, £).

I11. THE METHOD OF SEPARATORS FOR DETECTING SID ERRORS

In [1], Levenshtein briefly discusses the method of separators for
correcting certain scattered SID errors in messages, with finite delay.
Loosely speaking, if a coded language K™ is error correcting for a
channel ~ with finite delay then, for every received message w, it is
possible to determine the first codeword of the original message by
looking only at a prefix of w of bounded length. The method of sepa-
rators involves choosing an appropriate pair of words (p, s) such that
(pC's)* iserror correcting for v with finite delay, for any uniform code
C that is error correcting for ~. In this section, we use the above idea
to define a formal method for obtaining coded languages of the form

(pC's)™ that are error detecting with finite delay for SID channelswith
scattered errors or with burst errors.

Let m be a positive integer. The symbol /™ denotes the class of
al uniform codes of length greater than .. For an error specification
maT, we write U~ for the class of al uniform codes C' such that
C' is error detecting for 7.(m, {c)—recdl, (¢ is the word length of
the code C'. By the definition of error detection and by Lemma 1, the
following obtains.

Lemma 4: Let maT be an error specification.

e If r € {1, 6}, thenUpper = U™.

elfr ¢ {i,6}ande = b, thenlyor = Usnpo -

clfr€{o, (6 ®6), (6 ®r)}ande = s, thenUor = Unnso-

It follows also that
UWLS(U‘LELG)S) g Z/[nzsn' g Z/{nzbo' <_: Z/{”L'

Codes in the classes U s and U5, have been studied extensively—
see [9], for instance. On the other hand, at afirst glance, it appears that
codes in the classesums(,;wb) and ums(l@ﬁ) have not been consid-
ered in the past. By the results of [1], however, the following obtains.

Remark1: Let7 € {(: ©®6), (¢ ©® ¢ © §)} and let m be apositive
integer. A uniform code C' iserror correcting for 7s(m, £¢) if and only
if itis error detecting for 7, (2m, {c).

The above follows when we note that i) acode C' is error correcting
for 7s(m, {¢) if and only if D, (C) > 2m, and ii) acode C' is error
detecting for 74 (m, €¢) if and only if D-(C') > m. Weaso notethat,
to our knowledge, only very few general construction methods exist for
codes that are error correcting for (¢ ® é)s(m, {<)—Ssee, for instance,

[10{12].

Definition 2. Let ma7 be an error specification. A pair of words
(p, s) iscaled auniform error-detector for ma7 (or smply an ma-
detector) if there are two nonnegative integers d and ¢ such that, for
every code C' inU,..-, the coded language (pC's)™ is error detecting
for 7z(m, {c: + |ps| + t) with delay d. Then, we say that (p, s) has
redundancy |p| + |s|, delay d, and offset ¢.

For a given error specification ma7, the design of a uniform
rma7-detector should consider the following criteria

1) Low redundancy of theencoding C' — pC's: Thisisachieved by
choosing apair (p, s) with small redundancy |p| + |s|.

2) High frequency of the errors detectable by (pC's)*: This is
achieved by choosing a pair (p, s) with small offset ¢. Indeed,
an ma7-detector (p, s) with offset ¢ ensures the detection of m
errors of type 7 inany {c + |ps| 4+ t symbols of the transmitted
message. Thus, the smaller is the value of ¢ the higher is the
ratiom/({c + |ps| + t).

3) Small amount of memory for decoding wordsin (pC's)™: Thisis
achieved by choosing apair (p, s) with small delay d.

Our primary criterion will be the optimization of the redundancy of
auniform error-detector (p. s). With this constraint, we shall attempt
to define error-detectors with minimal delay and minimal offset.

The first result gives a necessary condition on the structure of uni-
form error-detectors that involves the notion of period of a word. A
positive integer % is called a period of a nonempty word w, if w[i] =
wlk+ i foreveryi € {j |1 < jandj < |w| — k}—note that this
conditionisvacuously truewhen & > |w| and, in this case, the number
k isaperiod of w. The smallest k satisfying this condition is called the
period of the word w and we denote it by per(w). It should be clear
that 1 < per(w) < |w|. This concept isimportant in various domains



including pattern matching algorithms and gametheory, [13], and word
combinatorics [4].

Lemma 5:
1) For any nonempty word w there are words u, «, y such that
w = ux = yu and |z| = |y| = per(w).

2) For every nonempty wordsu1, x1, wz, x2 With |ui| = |uz| and
upry = asug, if per(uirr) > |r1| then uy # .

Proof: The statements follow easily if we note that % isa period

of w if and only if, either & > |w| of w = zu = uy for somew € X+

andz, y € X*. O

Proposition 3: Let mar be an error specification not in
{meos, ms(c © ¢ §), ms(r @ 6)}. If apair of words (p, s) isa
uniform error-detector for mar, then per(sp) > m and, therefore,
the redundancy of (p, s) is greater than m.

Proof: Assume (p, s) is a uniform ma7-detector and consider
first the case where |sp| > 0. Then, sp = ux = yu for some words
w, =, y with |#| = |y| = per(sp). Suppose per(sp) < m. We
shall obtain a contradiction by constructing a uniform code C' that
is error detecting for the channel os(m, {¢) but the coded language
(pC's)" is not error detecting for 7.(m, {c + |ps| + t) with finite
delay, for any # € {b, s} and for any nonnegative integer ¢. Let
v = (1/#lpl=lyt*+Im/Clzh] Then, the words wv and vy are of the
same length and they differ in at least m + 1 positions; therefore,
the code C = {zwv, vy} is error detecting for o5(m, {c). Now
assume (pC's)* is error detecting for 7(m, ¢ + |ps| + t) with
delay d, for some nonnegative integers ¢ and d. Let w be the word
(prvs)™* = prvyuzv(yuzv)?T's if 7 contains §, or (pvys)?t?
otherwise. Consider also the word

{ prvuzv(yuzv)s, if 7 contains §

Z =
d+1

prvys(pvys) otherwise.

Inthefirst case, z obtainsfrom « by deleting theword y. In the second
case, z obtains from w by inserting the word =. Moreover, as the word
z can be written as

if 7 contains é

otherwise

(prvs)(pvys)(pvys)'pos,
prus(prvs)iproys,

the assumption about (pC's)™ impliesthat pxvs = pvys whichinturn
implies that zv = wvy; a contradiction.

Finally, consider the case where |sp| = 0. Define the code C' =
{0™1™, 1™0™ } which is error detecting for the channel o, (m, £c).
Then, depending on 7, one can choose words y and « such that

(Omlm(omlvn)dy — (1m07n)d+1u) € Tx(T)'l, (’C')

for any nonnegative integer d. Hence, C™ is not error detecting for
T=(m, £ + t) with finite delay, for any offset ¢. a

IV. THE CASE OF BURST ERRORS

In this section, we provide adetailed analysis on the structure of uni-
form error-detectors for SID channels with burst errors. The anaysis
allowsustoidentify all such error-detectors, including all the onesthat
are optimal in terms of redundancy, delay, and offset.

Proposition 4: Let mbr beaburst-error specification and let (p, s)
be a pair of words with |sp| > 0. If per(sp) > m, then (p, s) isa
uniform error-detector for mbr with offset 1 and delay 2. Moreover, if
p isempty then (p, s) hasdelay 1.

Proof: Suppose per(sp) > m and let C' be any code in 4,5 -
We show that (pC's)™ is error detecting for v = 5 (m, €c+|sp|+1)
with delay d € {1, 2}, where d = 1 if |p| = 0. For this, assume
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(puvos -+ - pvasy < pwospwi su) € vy where wo, w1, vo, ..., vqa € C,
y € X" andu € (pCs)*. We need to show that vo = wo and
(pvis---pvasy — pwisu) € 7. If there are no errorsin pwos, then
we are done. So assume thereisa burst (¢’ «— 2) € B (7), with
x # 2!, that affects pwo s; that is, there arewords z1, 22, z3, z5 with
|z1] < |pwos| and |z2| > le + |sp| such that pwo spwisu = z122223
andpugs - - - pugsy = z12’ 2oz and (:é «— z3) € ~v.Obvioudly, thisis
theonly burst that affectspwos. Letg = |z'| —|z|. Then,0 < |g| < m.
We distinguish six cases about the sign of ¢ and the position of the burst
(2" — 2) in pwospwi su.

Case 1. ¢ = 0 and the burst occurs before the factor wy of
pwospwysu; that is, |z1z| < |pwesp| and pwesp results in pugsp,
which impliesthat vo = wo, aspC'sp iSinUpms-, and

(V18 pVISY — w1 su) E.

Hence, also (pu1s - - - puasy < pwisu) €, asrequired.

Case 2. ¢ = 0 and the burst affects the factor w+ of pwospwq su;
thatis, |z1 2| > |pwosp|. Moreover, as|z| < m and|z| < |pwos|and
|sp| > m, we have that « is of the form s.paq and 2 is of the form
sapy1, for some prefix x4 of wy and for some prefix y¢ of vy and for
some suffix so of s. Now asthereareno errorsin zs, it follows that the
codewords v; and w; differ in at most || symbols. Hence, w; = v;
which implies that 1 = y;. This, however, contradicts the fact that
x# .

Inthe next four casesweassume |¢| # 0. Then, sp = x1u1 = uss
for somewords 1, 22, w1, ue suchthat |z1| = |x2| = |¢| and Ju1| =
|uz| = |sp| — |q|. Asper(sp) > |q|, it followsthat w, # u..Letk be
the largest position of «; and w; such that u; [k] # u2[k].

Case 3: ¢ < 0 and the burst occurs before the position |¢| + & of
the factor sp = @y uy of pwospwi su; that is,

|z12] < |pwoxiua[l-- -k — 1]|.

Inthiscase, pwoziui[l- - - k—1] resultsintheprefix pvouz[1- - - k—1]
of pugs - - - puasy and the next symbol «, [k] resultsin u,[k] with no
errors. This contradicts the fact that wq [k] # us[k].

Case 4: ¢ < 0 and the burst contains the position |¢| + & of the
factor sp = x1u1 Of pwospwisu; thatis,

|z12) > |pwoxius[l--- k]|

In this case, there can be no error in the prefix z u [1--- k] of the
second sp iN pwospwi sp. Then, pwe spwq a1 results in puvgspv, and
thenext k& symbolswu, [1--- k] resultintheprefix uz[1 - - - k] of sp with
no errors. This contradicts the fact that w1 [k] # u2[k].

Case 5: ¢ > 0 and the burst occurs before the position % of sp =
usx2; that is,

|z1z| < |pwous[l---k —1]].

Inthiscase, pwous[l- - - k—1] resultsintheprefix pvoww[1- - - k—1]
of pugs - - - pugsy and the next symbol w2 [k] resultsin uq[k] with no
errors. This contradicts the fact that w1 [k] # us[k].

Case 6: ¢ > 0 and the burst contains the position % of the factor
sp = u2x2 Of pwospwisu; thatis,

ziz| > |pwous|l--- k]|

In this case, there can be no error in the prefix u2[1 - - - k] of the second
sp inpwo spws sp. Then, pwg spw; resultsin pvg spvzq andthenext k
symbolsusz[1--- k] result in the suffix ui[1 - - - k] of sp with no errors.
This contradicts the fact that wy [k] # u2[k]. O

For burst-error specifications, Propositions 3 and 4 provide a com-
plete characterization of the structure of their uniform error-detectors.
Moreover, it is possible to characterize precisely all such error-detec-
tors (p, s) having optimal redundancy. Indeed, Proposition 3 implies
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that m + 1 isthe smallest value of |p| + |s| and this value is possible
when per(sp) > m + 1. But, asper(sp) < |sp|, it followsthat (p, s)
is an error-detector with optimal redundancy when |sp| = per(sp).
This condition is equivalent to the constraint that the word sp isunbor-
dered [4] (or self-uncorrelated [14]): no proper and nonempty prefix
of sp isalso asuffix of sp. It turns out that there are many unbordered
words even for binary a phabets: about 27% of all binary words are un-
bordered, and this quantity increases for larger alphabets [13]. For ex-
ample, thewords 0”1 and 02120101 are unbordered and, therefore, the
pairs (1, 07) and (120101, 0?) are uniform 7hr-detectors with delay
at most 2 and offset 1 for every error type 7. We summarize the pre-
ceding remarks as follows.

Corollary1: Letmbt beaburst-error specification. A pair of words
(p, s) isauniform mbr-detector with optimal redundancy if and only
if |sp| = m + 1 and theword sp is unbordered.

The next result concerns the question of whether an error-detector
with optimal redundancy can have offset 0—the proof can be found in
the Appendix.

Proposition 5: Let mbr be aburst-error specification containing at
least two different basic error types and such that mbr # 1b(« @ 6). If
(p, s) isan error-detector for mbr with redundancy m + 1, then (p, s)
has offset greater than zero.

Consider an error type 7 that permits insertion errors. In [7], it is
shown that there exists no coded language that is error-detecting with
delay 0 for any SID channel of the form 7, (m, (). The argument used
for proving this statement can also be repeated for channels of theform
7s(m, £). On the other hand, for an error type 7 in {6, (¢ @ é)} itis
possibleto define mbr-detectorswith delay 0. Infact, we obtain apre-
cise characterization of al those error-detectors which shows that the
process of choosing a pair (p, s) from aword w = sp is important
when it comes to the delay of (p, s) as an error-detector. This obser-
vation follows also from Proposition 4, where an empty p ensures that
(p, s) hasdelay 1.

Lemma 6: Let mbr be a burst-error specification and let ¢ be an
integer greater than m. For every (= «— w) in the channel 7,(mn, ()
one has that

|w| = |z]| < m||w]/({ =1+ m)|+ min{m, |w|%({—1+m)}

where |w|% (¢ — 1 + m) is the remainder of the integer division
|w]/(€ =14 m).

Proposition 6: Let 7 be an error type in {6, (¢ @ 6)}. A pair of
words(p, s) isauniform error-detector for mbr with delay 0 and offset
lifandonlyif s € X*aandp € (X \ {a})™ X" for some symbol
a € X.

Proof: First we consider the“if” part. Assumethat s € X *a and
p € (X \ {a})™ X", and consider acode C' inl4,,5, and the channel
v = m(m, {c + |sp| + 1). We show that (pC's)™ is error detecting
for ~ with delay 0. For this, suppose (pvosy — pwosu) € ~, where
vo, wo € C,y € X*,andu € (pC's)*. Then, pwos resultsin aprefix
zp Of puosy and u results in the word z with zyz = pugsy; therefore,
(z — u) € v.If |z0]| = |pwos|, then z = y and zo = pvos which
impliesthat (y < u) isin~ and that pvos = pwos asC iSiNUpps. IN
this case, we aredone. Now assumethat |zy| < |pwos|. Then aburst of
errors affects pwo s and thereare d = |pwo s| — |z0| deletionsin pwos.
Moreover, u = pwisu’ for some w; in C and v’ € (pC's)*. Now
pugs can be written as zyz; such that |z1| = d and z; obtains from
some prefix of pwy s. In particular, z([d], the last symbol of =, obtains
from some symbol p[i] € X \ {a} of p for someiin {1, ..., m}.
Moreover, it followsthat z; obtainsfromp[1 - - - ] through . If 7 = 6,

then z; [d] = p[i] which isimpossible and the “if” part is complete for
the case where 7 = §. So suppose that 7 = (¢ @ §) and that p[i] is
substituted with @ = z,[d].

First we argue that thereisonly one burst of errorsin pwosp[l - - - 4.
Indeed, if there are two bursts then there will be at least (¢ + |sp|
symbols of pwqosp[l---i] between the bursts and, therefore, the first
burst would occur in some prefix p[L---i1] of p, wherei > i; > d.
Moreover, the second burst would occur after the prefix p[1--- 1] of
p[1---]. But then the last symbol a of pvgs would be equal to the
symbol p[d] of p[1---i1] which isimpossible. Hence, only one burst
of (¢ ®&) errorsinpwqsp[l - - - 7] such that thelast symbol of p[1 - - - 7]
is substituted with « = = [d]. The beginning of the burst will be at or
after the position |p| + fc — 42 of pwe whichimpliesthat vy differs
fromwg inat most m — 2 consecutive symbols. Hence, asC' isini, b0,
it follows that pwos = pugs. It remainsto show that (y < u) isin~.

Consider in more detail the first burst, say

(u) z1ub — uip[l---iusz)

that occurs in pwospwsu’ 10 get zoz1y, such that pwos = zu;
for some word z, zo = azul, pli + 1---|plJlwisu’ = wszs for
some word x», and y € ubX* with (y < wusa2) € ~. Then, also
(y «— p[l---iusze) isin v by deleting the prefix p[1---i] of
p[l-+-i]uszs and keeping the rest of the error bursts that existed
in‘uyay. Note that this is possible since the ¢ deletions required for
that already existed in the part (u}z1 < wip[l---i]) of the burst
(uyziuy — wip[l---i]us)—recall the d deletions in u; and the
[p[1---4]| — |=1| deletionsin p[1-- -] to obtain z;. Hence, the “if”
part is complete when we recall that u = p[1 -« - i]uszs.

We turn now to the “only if” part. Assume that (p, s) isauniform
error-detector for mbr with delay 0 and offset 1. Then, |sp| > m
by Proposition 3. Suppose it is not the case that s € X*a and p €
(X\{a})"™ X" . Wedistinguish three cases. Inthefirst case, s = A. Let
y=p[l---m]andletC = {yz, zy}, wherez isany word of length m.
differing from y in all positions; then C isinif,.;,. Now it isthe case
that (pzyp[m + 1---|p|lyz < pyzpyz)isin p(m, Lc + |sp| + 1)
by deleting the word y in pyzpyz, which implies that pyz = pzy; a
contradiction.

In the second case, s = sia, for some word sq, and |p| > m,
but p is of the form piap. with |p1| < m. Let C' be any code

in Uppe With lc = 2m|sp| — |sp| + m + |p1|, and let v be
any word in C'. The word (pus)?*?I** is in (pC's)* and can be
written as (pusia)(prapavs)prz, where = = apyvs(pvs)?IePl,

Then, z can be written as zi:-- 254y such that |y| = m
and each z; is of length m + (¢ + |sp|. Now consider the
word (pvsia)pevsprz’ such that (pvsia)pavsp; obtains from
(pvsia)(prapvs)pr by deleting the word ap: and =’ obtains
from zy - -+ 2,5y by deleting the suffix y and the prefix of length
m of every z;. Then, |z| — = (2|sp| + 1)m. Moreover, it
follows that ((pvsia)pavspiz’ — (pvsia)(piapavs)piz) is in
the channel 7,(m, (¢ + |sp| + 1) and the assumption about (p, s)
implies that (povsp1z’ «— prapavsprz) is aso in the channel. Let
w = piapzvspz. By Lemma6

Z!

[w| — |p2vspr 2’
<m||lw|/(bc + |sp| + m)| + min{m, |w|%(lc + |sp| + m)}
which gives

L4 pil+ 2] = 1] < m(2]sp| + 1) + |p1].

z

Thisisimpossible, however, whenwerecall that | z|Hz'| = (2|spHL).
In the third case, s = s;a, for some word s;, and [p| < m. This
case can be eliminated by considering the code

C = {afc a’/c—(7n+1)b7n+1 }



iNUpmpo, With (e = 2|s|m +m — |s] andb € X \ {a}, and the word
(pa‘c 5)21*1+3 and then continuing asin the second case. We leave the
details to the reader. O

V. THE CASE OF SCATTERED ERRORS

Our first result gives a set of error-detectors for m s, for any error
type 7. Then, we show that, for 7 € {¢, 6, (¢ @ 6), (¢ @)}, theresult
can be improved in terms of the redundancy of the error-detectors.

Proposition 7: Let mst be a scattered-error specification and
let (p, s) be apair of words. If p € «™X™, for some word « with
per(u) > m, then (p, s) is a uniform error-detector for ms7 with
delay 1 and offset m|u|.

Proof: Assumep = «™x for some word = and consider a code
Cinlpsr-. Let

v = 1s(m, Lo + |sp| + m|u|)

and take any (pvisu” zvasy — pwisu™ zwasu) in vy, wherevy, va,
wi,wey € Candy € X" andu € (pC's)*. We need to show that
vy = wy and (v rvasy — uTxwasu) € . We agree to write u;
for theith factor w of ™, wherei € {1, ..., m}. Supposethat pw s
results in some word z;, each u; resultsin some word ), and xws su
resultsin someword z> such that zyuf - - - ul, 2o = pvisu” zvasy. If
|z1] = |pvis|,then z; = pvis andwearedone. Soassumethat d > 1,
where d = ||z1]| — |pv1s||; then, at least d errors occur in pws s and,
therefore, d < m. Moreover, thereisk € {1, ..., m} such that there
isnoerrorinuy, namely, u}, = uy, andthereareat most m —d errorsin
Wy - Up_y. Then, zyul - - uj_ u) obtainsfrompws suy - - - wp_ 1 ug
and

! ! !
21Uy e Wy U

|pwisuy - up_qug| —m <

< |pwisuy - up_1ug| + m.

At the same time, as the word zju} ---uj_,u) is a prefix of
the word puvisui ---upzvesy, it follows that u} is a factor of
puisuy -+ - uprvesy such that, either uj, begins in the factor wuy
of the word puvisup---ugrvesy (When |ziuf---uj_jup| >
|[pwisuy -+ up_1ug|), or uj ends in the factor u; of the
word  puisug---uravesy  (When |ziuf - - up_ g ugl <
[pwisuy -+ ug_1ug]). In either case, as u, = u, = u and the
period of u is greater than m, it follows that the factor «}, coincides
with the factor u,.; therefore,

I I /
|z1uy - - up_qup| = |prisur - - - up—1ukl.
This implies that
(Upg1 =+ - U TV2SY — Whp1 =~ Ury@W2SU) €

and

(prisuy « - up — pwisuy -« up) € .

Theformer relation gives (v zvo sy «— u™ zwasu) € v and thelatter
one implies that pv,suy - - - u; obtains from pwsu, - - - uy using at
most ms7. Moreover, Lemma2 impliesthat v, obtainsfromw; using
at most msT and, therefore, v1 = wy . d

The preceding statement allows us to define various error-detectors
for any scattered-error specification. The most efficient error-detectors
based on this method are those of the form (u'™, A), where v is an
unbordered word of length m + 1.

In[7], it is shown that the coded language (0™ X *~2™~11)* iserror
detecting for 6s(m, () with delay 0, and for «s(m, () with delay 1.
With the terminology of the present correspondence, it follows that the
pair (0™, 1) isauniformmsé-detector withdelay 0 and offset m,anda
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uniform ms:-detector with delay 1 and offset m:. Moreover, by Propo-
sition 3, (0™, 1) isan error-detector with optimal redundancy. Unlike
the case of burst error-detectors, where the offset can be independent
of m, the offset m of (0™, 1) cannot be improved.

Proposition 8: If the pair (0™, 1) is a uniform msé§-detector with
delay 0 and offset ¢, thent > m.

Proof: For the sake of contradiction assumethat theoffset t < m
and consider the code C' = {w:, we, w3}, where w = 0™(10)%,
wo =0""1(10)* 1, wy =12 k=1+|m/2]. Then, C €™ Now
consider the words 0™ w1 10™ w31 and 0™~ Lw; Lws1. Then,

(0" My lwsl — 0™ w1 10™w31) € 6s(m, le +m+14+1).

Moreover, as 0™~ tw 1wzl € 0™ w2 1X* and (0™, 1) hasdelay 0, it
followsthat ws = w; which isimpossible. g

Before we present uniform error-detectors for (o © ¢) and (o © 6),
we establish certain notation and utility results some of which are of
interest in their own right.

Every nonempty word w can bewrittenintheformay a2 ---alr,
wherer and ny, ..., n, are positive integers, ai, ..., ar € X, and
a; # a4 forali e {1, ..., r — 1}. In this case, each factor '’
of w iscalled arun. We use the symbol w({i) to denote the ith run of
w.Now let r, n bepositiveintegerswith» > 2. An (7, n)-alternating
word is aword w of the form af a3 - - - a7, where w{i) = a7 for dl
i €{1, ..., r}.Inthesequel, when weusetheterm (r, n)-alternating
word we assumewithout mention that » and . are positiveintegerswith
r > 2.

Lemma 7: Assumethat X = {0, 1} andaf --:a} isan (r, n)-a-
ternating word. Consider the word w = a7 ‘aj} ---a”, wheret isa
positive integer with ¢t < », and suppose that a prefix p of af - - - a
obtains from w using kyso and k286, for some nonnegative integers
k1 and k5. Then, in obtaining p from w, the following statements hold
true about %1 8o and k2 s86.

1) If fewer than |w(i)| errors are used in w(i) for every

i=1,...,r,thenk; >» — 1.
2) Ifthereisani € {1, ..., r— 1} suchthat |w(i)| errorsare used
in u’(i), then ky + ko > 2n — t.

Proposition 9: Assume X = {0, 1} and let k£ be a nonnegative
integer. Let u be an (r, n)-aternating word and let v be a proper and
nonempty suffix of «.

1) If aprefix of w obtainsfromv using ks(c®4),thenk > min{r—

1, 2n — (Ju| — |v])}-
2) If v obtainsfromaprefix of v using ks(c @), thenk > min{r—
1, 2n — (Ju| — |v])}-

Proposition 10: Assume X = {0, 1} and let & be a nonnegative
integer. Let v be a nonempty word and let v be an (r, n)-aternating
word.

1) If aprefix of vu obtains from « using ks(c © 6), then k >

min{r — 1, 2n — |v|}.

2) If u obtains from a prefix of vu using ks(o @ ¢), then & >

min{r — 1, 2n — |v|}.

Proposition 11: Let m be a positive integer, let n = [m /2] + 1,
and assume X = {0, 1}. For any (r, n)-alternating word a7 -- - a}
the following statements hold true.

1) Ifr > m—+1,then(), af ---a}) isauniform error-detector for

ms(o @ 6) with delay 1 and offset 2n.°.

2) If r > 2n + 1, then (A, af ---a}) isauniform error-detector

for ms(o @ é) with delay 1 and offset 0.
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Proof: We prove both statements simultaneously. Moreover, we
only consider the case where m > 2 and, therefore, n > 2. One can
verify that the claim aso holds for m = 1. Let C' be any code in
Umso, let s = af ---a},andlet v = (0 ©® 6)s(m, lc + |s| + 1),
wheret = 2n% ifr = 2n,andt = 0 if »r > 2n 4+ 1. Suppose
('Uls'vgsy — 'wl.s"wgsu) € v for some words v, V2, Wi, W2 € C
andy € X" andu € (Cs)". We need to show that v; = w; and
(vesy «— wosu) € . If there are no errorsin w s, then we are done.
If there are only substitution errorsin w s, then they all occur in w,
and, therefore, vy obtains from w4 using up to m substitutions which
contradicts the fact that C' € U/,.s-. Now assume there is at least one
deletion inwy s. In particular let d; be the number of deletionsin w,
let d> be the number of deletions in the first s of wyswss, and let dg
be the number of deletionsin ws. Then d; + d» > 1.

If di > 1, thenw; resultsin aprefix of length { — dy of vy and s
resultsin aprefix of «s, where @ isthe suffix of length d; of v;. Then
thereareat least min{r — 1, 2n—|z|} > min{m, 2n—d; } errorsins
and, therefore, at least d1 +min{m, 2n—d; } errorsinw; s whichisof
length (¢ + |s|. Thisisacontradiction, however, as2n > m. Sointhe
rest of theproof weassumethat d; = 0 andd, > 1;then, dz+ds < m.
Also, wi swo resultsin aprefix of length (¢ + |s| + fe — (d2 + d3)
of vy svy and the second s of wy swa s resultsin a prefix of zs, where
x is the suffix of length d; + ds of visvs. Then, there are at least
2n — |2| = 2n — (d2 + ds) errors in the second s which gives at
least m + 1 errorsin swys whose length is (c + |s| + |s|. Then a
contradiction ariseswhen r = 2n andt = 2n?, and the first statement
isproved. So inthe sequel weassumethat » > 2n + 1 and ¢ = 0; that
is, thechannel v is(o @ 6)s(m, (o +|s|). Consider therun s(i) = a;
of s containing the first of the d. deletions.

Letw bethewordaaly; - - - aywaal ---al_q;then|w| = Lo +|s|
and w resultsin aprefix of theword aj ajy, - - - ayveay - - - a_; USing
ks(o © 6), for some integer k with dz + d3s < k < 2n. We shall
show that our assumptions lead to a contradiction. First note that the
word =z = a? talyy - atwaal ---a?_, obtains from w using the
first deletionin ) andthenaprefix of a; - - - ajvsal - - - aj_, obtains
from z using (k — 1)s(o © 6). Hence, if i < r — 1 then there are at
least min{r — i, 2n — 1} errorsin the prefix o taly, ---a? of 2.
Also, notethat af - - - ai_; resultsin aprefix of vay ---a;_,, wherev
is the suffix of length d> + ds of ve; that is, |[v| = d2 + ds. Hence,
if i > 3,thereareat least min{i — 2, 2n — (d2 + d3)} errorsin the
suffix af -+ -aj_; of z.

Ifi < 2,thenk — 1 > min{r — 2, 2n — 1} which implies that
k > 2n; acontradiction. If i > 3andi — 2 > 2n — (d2 + d3), then
k > (da+ds)+2n—(d2+ds)whichisacontradiction. Finaly, ifi > 3
andi—2 < 2n—(ds+ds),thenk—1 > min{r—¢, 2n+1}+(i—2)
which impliesthat & > 2n; a contradiction. O

Using similar arguments as above, one can verify that also the fol-
lowing statement holds true.

Proposition 12: Let m be a positive integer, let n = [m /2| + 1,
and assume X = {0, 1}. For any (r, n)-alternating word af - - - a},
we have the following statements.

1) Ifr > m+1,then(), af ---a}) isauniform error-detector for
ms(o & 1) with delay 1 and offset 2n2.

2) If r > 2n + 1, then (X, af ---a7) isauniform error-detector
for ms(o @ ) with delay 1 and offset 0.

VI. DiscussiON

We have presented an analysis of the method of separators for de-
tecting synchronization (and substitution) errors in the messages of a
coded language. For the case of burst errors, we were able to obtain a

simple necessary and sufficient condition on the structure of the sep-
arators. It would be interesting to find such a condition on separators
that detect scattered errors aswell. Thiswould allow usto evaluate the
various separators for scattered errors designed in the correspondence.
We note that this question is related to the problem of frame synchro-
nization in the presence of scattered substitution errors—see [15] for
details.

Regarding separatorsfor error correction [1], it is straightforward to
define the parameters of redundancy and offset as in this correspon-
dence. On the other hand, the parameter of delay should be defined
with some care as the definition of “error correction with finite delay”
given in [1] involves automata with output (finite-state machines). If
we ignore that parameter for now, the results of [1] on “error-correc-
tors’ (separators for error correction) can be rephrased as follows.

1) The pair (0™, 1™) is a uniform error-corrector for msé with
redundancy 2m and offset 1.

2) Thepair (A, 1™0™) is a uniform error-corrector for ms: with
redundancy 2m and offset 2.

3) Thepair (), (1™F'g™*+" )+ 1™) jsauniform error-corrector
for ms(c @ ¢ ® 6) and for ms(: © 6) with redundancy
2(m + 1)* + m and offset 2(m + 1) + m.

If weignore lower order terms, it follows that, for the same error spec-
ification, Levenshtein’'s error-correctors are twice as long as the error-
detectors designed here. Intuitively, this observation is consistent with
theview that the amount of redundancy for error correctionis (roughly)
twice the amount for error detection.

APPENDIX

This appendix contains the proofs of several lemmas and proposi-
tions.

Proof of Lemma 1: The“only if” part is obvious. For the “if” part,
first assumethat 7 € {(¢ @ 1), (¢ @ §)}. Then the statement follows
easily when we note that, if v obtainsfrom v using at most ma: 7, only
substitution errors can occur inv. Now assumethat 7 € {(: ©6), (6 ©
t®8)};thenz = bandv = pus andv’' = pu's suchthat (v’ — u)

isin By (7). As [v| = |v|, one has that [u| = |u’| which implies
that D, (v, v') < m and, therefore, (v’ «— u) isin B, (o). Hence, v’
obtains from v using at most mao . O

Proof of Lemma 2: If v = v’ then the statement is obvious. So
assumev # v';then 7 ¢ {u, 6} and, either 7 = ¢ or 7 contains at
least two different error types. If ma7 is other than ms(. ® §) and
ms(o © ¢ @ 6), then the statement follows easily from Lemma 1. If
maT is either of ms(+ © é) and ms(s @ ¢+ @ §), then the statement
follows from the fact that D (v, v') = D.(pvs, pv's) [1]. O

Proof of Lemma 3: For thefirst claim, wewritew intheform xy for
somewords z and y with |z| = |«'|. Then the claim follows when we
note that «' obtains from » by deleting y and substituting D, (v’, z)
symbolsin «. For the second claim, if no deletions are used to obtain
u' from u then we are done. If at least one deletion is used then there
must be at least two insertionsinu—sothat |u'| > |u|—and, therefore,
|u'| = Ju| < m —2.Inthiscase, v’ canbewritten aszy with |z| = |u]
and |y| < m — 2. Then the claim follows when we note that «” obtains
from w by substituting D, (u, «) symbolsin « and then inserting y at
the end.

For the last claim, let X = {0, 1} and let & < m be such that «’
obtainsfrom« using ks(a ¢ §&). Without loss of generality, suppose
u[1] = 0. First assumethat, foral 7 = 1, ..., |ul, v'[{] # w[i] and
u'[i + 1] # wf[i]. Then it follows that « = 0! and o’ = 111,



In this case, to obtain u" from w, all symbols of « must be deleted
or substituted and at least a 1 must be inserted. Hence, & > |u| + 1
whichimplies|u| < m. Then, v’ obtainsfrom« by substituting « with
1'*l and inserting a1 at the end. Therefore, v’ obtains from  using at
most ms(a © ¢). Now assumethat thereis: € {1, ..., |u|} suchthat
u'[i] = wli] or w'[i + 1] = w[i]. In the former case, suppose i isthe
smallest with this property. Then, v’ can be written as«} u[]u5 and u
asujufilus suchthat |uf| = |u(| and Dy (uy, wi) = |u]. Inthelatter
case, suppose i isthe largest with the property «'[i + 1] = u[i]. Then,
u' can bewritten as v/ u[i]Jub and u aswyufi]us suchthat |ub| = |us|
and D, (uj, u2) = |uz|. Ineither case, v’ obtainsfromu using at most
(Ju1] + |uz])so and then 1s:, which provesthe claim. O

Proof of Proposition 2:  Assume that
B0 ©1©8)=B,.(c ®8)UB,.(c®1).

First, we show that /. < 4. Indeed, suppose . > 5. Then there are
positive integers ¢ and » such that m = 3¢ + r and r > 2¢ (for
example, ¢ = 1 and r = m — 3). Consider thewords u = 0777140
and v’ = 1247707714, Then, |u| = m, [v/| = |u| + ¢ + =, and
u' obtains from u using (2¢ + r)s: and ¢sé; therefore, (v’ «— u) €
B, (0 ©¢®§). Suppose now that «" obtainsfrom « using ks(o ¢ ¢),
for some integer & with ¢ + » < k& < m. Then aso « obtains from
u' using ks(o © ) which implies that there is aword = such that =
obtainsfrom «' using (¢ + )86 and u obtains from = using (k — ¢ —
r)soc—see[6] for instance. Then, z isof theform 122+ "¢t r—s19-
for some nonnegative integers i, j, t witht < gandi + j + ¢t =
q + r. By distinguishing two cases depending on whether [1707] <
[07+7=7 127 it followsthat D, (z, u) > 2¢; therefore, k > ¢ + 7 +
2¢ = m which is a contradiction. Hence, m < 4. To complete the
“only if” part we need to show that, if m € {3, 4}, then X must be
{0, 1}. For the sake of contradiction, suppose there is asymbol a €
X\ {0, 1} and consider thewordsu = 01a¢™ 2 and v’ = 1a0™ ",
withm € {3, 4}. Then, v’ obtainsfrom u using ms(s @ ¢ §) but u
cannot obtain from «' using at most ms(o © §); therefore, v’ cannot
obtain from « using at most ms(a © ¢).
For the converse, we note first that, obviously

A

By(c ©6)UBm(c ®1t) C Bm(oc ®e®6).

For thereverseinclusion, let (v’ «— ) € B (0 @ ¢ 6) and consider
the following cases.

Case 1: m = 1. One verifies by inspection that (v’ «— u) €
Bi(c ®8§)U Bi(d ®).
Case2: m = 2.Inthiscase, 2m — 2 = 2 and it follows from

Proposition 1 that (u' « u) € Ba(o @& §) U B2(a ©1).

Case3: m=3andX = {0, 1}. WeuseLemma 3. If [u'| < |u|
then (v — u) € By (o @ §). If [u'| > |u| there are two subcases.
If no deletions are used to obtain ' from u then clearly (v’ « u) €
B,.(c ® ). If adeletion is used in obtaining «’ from « then |«/| =
|| + 1 and, therefore, (v’ «— u) € B (o & ¢).

Case4: m =4and X = {0, 1}. WeuseagainLemma3. If ['| <
|u| then (w’ + u) € B,.(0®68).Soassume|u’| > |u|. If |u'| = |u|+1
thenwe aredoneasin Case 3. If |u/| > |u| + 1 then, as|u] < m = 4,
it follows that |u’| = |u| + 2. If no deletion is used in u then we are
done. If adeletion isused in « then it isthe only one and there are also
exactly three insertions to obtain «'. Hence, u’ obtains from « using
3s: and 1s6. Then, using a long case distinction, one can verify that
again (v’ «— u) € B,,(c ®1). |

Proof of Proposition 5:  The assumptions about mb7 imply that 7
isin{(c ®8), (60 @), 1L ®6), (6 ®1®6)}. Assume that (p, s)
is an mbr-detector with redundancy m + 1, offset 0, and delay d, for
some nonnegative integer d. We shall obtain a contradiction by con-
structing acode C' € U,,.»- such that (pC's)" isnot error detecting for
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To(m, Lo + |ps|) with delay d. First, write the word sp in the form
azb,forsomea, b € X andxr € X*,andlet C' = {zby, yax}, where
y = 1™0™1™. Then, C is error detecting for 7 (m, () and, there-
fore, C' € Uy,p.. Now let w be the word (pabys)*** if 7 contains &,
or (pyaxs)™** otherwise; then

w = paby(axb)wby(axb)(zby(axb)) abys
or

w = pyax(axb)yaxr(azb) (yaw(awb))dyawg.

Consider also theword z =

peby(a)xby(ara)(xby(azxa)) zbys,
pyax(azbrb)yax(bab)(yax(bab)) yars,

if 7 contains§

otherwise.

Then, = is equal to either

(pxbys)(pyaxs)(pyaxs) pys
or
(pyaxs)(prbys) (pmbys)dp,rbyams.

If 7 contains 8, then = obtains from w by deleting the suffix zb in the
prefix pabyaxb of w, and then by transforming d + 1b'sinw toa’s
using the errors permitted. If 7 does not contain 6, then = obtains from
w by inserting the word xb at the end of the prefix pyaxa of w, and
then by transforming d + 1 a’sin w to b’s using the errors permitted.
In either casg, it followsthat (z «— w) € m(m, c + m + 1) which
impliesthat pyaxzs = pxbys; acontradiction. O

Proof of Lemma 6: Let¢ = ||w|/({ — 1+ m)]. Then w can be
written aswy -+ - wqx with || = |w|%( — 1+ m) and |w;| = £ —
1+ m. Also z can be written as w; - - - wq @’ such that (z' « =) and
every (w; «— w;) areinthechannel. As|w;| = { = 1+m and £ > m,
in each w; either there are at most two bursts of errors, or three bursts
of errors that involve only insertions—the latter case is possible only
when ¢ = m + 1. It follows then that the number of deleted symbols
in the burst(s) is at most m and, therefore, |w;| — |w;| < m. Now for
the word = we have two cases. If |z| < m then at most || symbols
can be deleted in « and, therefore, |«| — |2'| < || If |&| > m then,
as|z| < £ — 1+ m, one can use the same argument as above to infer
that || — |2| < m. Ineither case, |z| — |2'| < min{|z|, m}. Hence,
|w] —|z] < g + min{|x|, m} asrequired. O

Proof of Lemma 7: For the first statement, note first that thereis a
word y such that y obtains from w using k286 and p obtains from y
using k1 8c. Then, y isof theformal ™ *ta) ™ *2 .- a7 ~°", whereeach
s; isanonnegative integer with s; < nandn — s1 < n — t. Then,
to get p from y using k1 80, consider the fact that at least one symbol
from each run of y will appear in p with no error. It follows then that
at least the first symbol of each run y (i}, withi € {2, ..., r}, will be
substituted. Hence, k1 > r — 1.

For the second statement, there isaword y such that y obtains from
w using |w(:)| errorsin w{(i) and p obtains from y using (k1 + k2 —
[w{i}|)s(o @ 6). 1f i = 1, then w{i) = a7 ™" resultsin 3, for some
s€{0, ..., n—t}; therefore, y beginswith aprefix of theform a3as .
As a, # as, obtaining p from y requires at least n errorsin asay .
Hence, k1 +k2 > (n—t)+n=2n—t. If i >2 then w (i) =ay and y will
contain a factor of the form a* ~‘a_;al 1, where ai_; results from
w(iyands€{0, ..., n}. Thus, toget p fromy at least n—t+s errors
are needed in the factor a3” 71" of y. Hence, k1 + k2 >2n—t. O

Proof of Proposition 9: Assume v = pv with p, v # A. For the
first part, suppose that v resultsin a prefix of « using ks(o @ 6). If
2n < |u| — |v| wearedone. So assume |u| — |v| < 2n. If |u| — |v| =

n

n + t, for someinteger ¢t with0 < ¢ < n,thenv = aj) ‘aj ---al
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results in a prefix of af - --ay using ks(c © 6). But, asa; # as,
there must be n — t errorsin the prefix a ~* of v. Hence, k > n —t =
2n—(n+t) asrequired. Now assume|u|—|v| = t witht < n;thenv =
al"'al - a? resultsin aprefix of af ---a? using kys0 and k.86,
where k1 + k2 = k. We consider three cases. In the first case, no run
v(i) of v has|v(i)| errors. Then, k; > r—1whichimpliesk > r—1as
required. In the second case, somerun v (i), with: € {1, ..., r — 1},
has |v(i)| errors. Then, k > 2n — ¢ asrequired. In thethird case, there
are [v{n)| errorsinthelast run ;' of v and, therefore, k > n. If r = 2
we are done. If » > 3 then note that theword af ‘a5 - - - a?_, results
inaprefix of alab ---a}_, using (k—n)s(c ®§) and, by Lemma?7, it
followsthat k—n > min{r—2, n—t}.Hence, k¥ > min{r—1, 2n—t}
as required.

For the second part, assume that v results from a prefix of « using
ks(o ©¢). Thenthe prefix of u resultsfrom v using ks(o © 6) and the
claim follows from the first part. O

Proof of Proposition 10:  Weonly show thefirst part; the second part
follows easily asin the previous proposition. If « resultsin a prefix of
v then at least |u| — |v| deletions must be used in «; therefore, k& >
2n — |v| as reguired. So assume that « results in vp, where p is a
nonempty prefix of «. Then, there is a prefix « of u, with |z| > |v],
suchthat v obtainsfrom = using k1 s(a ©6), and p obtainsfromy using
k2s(o © 6), wherek, + k2 = k and y issuch that v = xy. Asthere
must be exactly |x| — |v| deletionsin |z|, we havethat k1 > || — |v].
If |#| > 2n then we are done. So assume || < 2n. If |[2] = n + ¢
Witho < t < nthenz = afal andy = ay 'ay - a’ which
resultsin aprefix of af -- - ai'. Then, asay # a2, theremust bern — ¢
errors in the prefix a{j" of y and, therefore, k, > n — t. Hence,
ki + ko > 2n— |v| asrequired. Now assume |x| < n. Then, z = a,‘f',
y = a{"_"'ag -+-a}, and aprefix of af ---a} obtains fromy using
kos(o @ §). Thisimpliesthat k2 > min{r — 1, 2n — |z|}, which, in
turn, impliesthat k1 + k2 > min{r — 1, 2n — |v|} asrequired. O
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