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Preface

This volume contains the papers presented at the 18th International Conference
on Implementation and Application of Automata (CIAA 2013), which was held
at Saint Mary’s University in Halifax, Nova Scotia, Canada, during July 16–19
2013.

The CIAA conference series is a major international venue for the dissemina-
tion of new results in the implementation, application, and theory of automata.
The previous 17 conferences were held in the following locations: Porto (2012),
Blois (2011), Winnipeg (2010), Sydney (2009), San Francisco (2008), Prague
(2007), Taipei (2006), Nice (2005), Kingston (2004), Santa Barbara (2003), Tours
(2002), Pretoria (2001), London Ontario (2000), Potsdam (WIA 1999), Rouen
(WIA 1998), London Ontario (WIA 1997 and WIA 1996).

The topics of this volume include: complexity of automata, compressed au-
tomata, counter automata, dictionary matching, edit distance, homing sequences,
implementation, minimization of automata, model checking, parsing of regu-
lar expressions, partial word automata, picture languages, pushdown automata,
queue automata, reachability analysis for software verification, restarting au-
tomata, transducers, tree automata, weighted automata, XML streams.

The submission and refereeing process was supported by the EasyChair con-
ference system. In all, 43 papers were submitted by authors in 22 different
countries (from all six habitable continents), including Algeria, Bangladesh,
Canada, Czech Republic, Denmark, France, Germany, Italy, Japan, Korea Re-
public, Poland, Portugal, Russian Federation, Slovakia, and the USA. Each pa-
per was reviewed by at least three Program Committee members. The Program
Committee selected 25 regular papers and three short papers for presentation
at the conference and publication in this volume. There were three invited talks
by Cezar Câmpeanu, Helmut Jürgensen, and Margus Veanes.

We are very thankful to all invited speakers, contributing authors, Program
Committee members, and external referees for their valuable contributions to-
ward the realization of CIAA 2013.

We also thank Alfred Hofmann and Anna Kramer of Springer for their guid-
ance during the process of publishing this volume.

We are grateful to (a) the European Association for Theoretical Computer
Science (EATCS) for their scientific sponsorship, (b) to Microsoft Research, and
the Dean of Science and the Academic Vice President of Saint Mary’s Univer-
sity (SMU) for their financial support, and (c) to Destination Halifax for their
assistance in arranging the accommodation and excursion venues.



VI Preface

Finally, we are indebted to the Organizing Committee members Casey Mei-
jer and Rose Daurie, as well as to the research students of the department of
Mathematics and Computing Science at Saint Mary’s University, Halifax.

We are looking forward to the next CIAA in Giessen, Germany.

July 2013 Stavros Konstantinidis
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Cover Languages and Implementations

Cezar Câmpeanu

Department of Computer Science and Information Technology,
The University of Prince Edward Island, Canada

Abstract. A cover language is a superset of a given language. Deter-
ministic Finite Cover Automata (DFCA) are Deterministic Finite Au-
tomata (DFA) accepting finite languages and other words longer than
any word in the given language. Some papers from the 60’s were con-
structing DFCAs as a byproduct using ad-hoc procedures, but DFCAs
have never been defined until 1998. The notion of Deterministic Finite
Cover Automaton, which is based on the concept of similarity relations,
was introduced for the very first time at WIA’98, where the authors give
the first rigorous formal definition and a clear minimization algorithm.

We will present a survey of the most important results related to
cover automata, and will show the importance of the implementation in
obtaining, verifying, and solving new results.

A list of open problems related to cover automata, together with some
possible approaches will be presented.

Features of the software packages Grail, miniGrail, and Lisa will be
exposed. A list of open problems related to challenges and limitations en-
countered when using software packages implementing automata,
languages, and related objects will be shown.

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automata for Codes

Helmut Jürgensen

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada, N6A 5B7

helmut@uwo.ca

Abstract. We survey the actual and potential rôles of automata in the
modelling of information transmission systems and, in particular, in the
encoder, channel and decoder components of such systems. Our focus is
on applications of codes in such systems and on the relevance of automa-
ton theoretic methods to these applications. We discuss, for example, the
issues of error-detection, fault-tolerance and error-correction for variable-
length codes. Beyond reviewing known work in a possibly new setting,
we also present some recent results on fault-tolerant decoders for sys-
tems in which synchronization errors are likely. We conclude with a kind
of research programme, a list of rather general open problems requiring
solutions.

1 Information Transmission Systems

In this paper we attempt a survey of the actual and potential rôles of automata
in the modelling of information transmission systems and, in particular, in the
encoder, channel and decoder components of such systems. We refer the reader
to the following sources for general background and details: the books or book
chapters [1,3,4,16,45] for variable-length codes; [36,40,42] for block codes; [8,35]
for information theory; and [44,46] for automaton theory.

The focus of this paper is on applications of codes in information transmission
systems in which automaton theoretic considerations or tools play an essential
rôle. For example, we discuss the issues of error-correction, error-detection and
fault-tolerance for variable-length codes, issues which are hardly mentioned in
most of the literature on these codes, but which are crucial for the application
of codes in real-world systems. Beyond reviewing known work in a possibly new
setting, we also present some recent results on fault-tolerant decoders for systems
in which synchronization errors are likely.

Our survey is subjective and limited. Given the focus of this paper, a large
number of otherwise interesting results connecting automata and codes is com-
pletely irrelevant; only few results survive the test. We use this opportunity to
point out vast areas of research which would deserve attention, provided one
accepts that the primary task of codes is to facilitate communication. Occasion-
ally, we may have misjudged the relevance of a result. If so, a better explanation
might have helped. Our survey is limited, because we needed to exclude a large

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 2–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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part of the recent research on codes for modern channels – to explain the physical
details of such channels would have taken more space than allowed.

The literature on codes has two nearly disjoint branches originating from
the same task: to represent information in a formal or technical setting. Both
branches are called coding theory by the researchers in the respective field. One
of them focuses on codes applied in information transmission systems, while the
other one is mainly concerned with the combinatorial and algebraic structure of
codes when considered as special types of sets of words.

Consider an information transmission system as shown in Fig. 1. A source S
sends information to a receiver R. The information is transmitted through a
channel C. During the transmission noise may distort the information. Devices
γ and δ with various technical purposes are introduced to make the system
work. To keep the presentation simple, we refer to γ as encoding and to δ as
decoding, although other tasks like modulation and demodulation might also be
involved. The encoding γ may be homomorphic or sequential. We assume that
the system works in discrete time and with finitely many discrete signals. The
output of the source is a potentially bi-infinite sequence of symbols from the
source alphabet X. The channel transmits symbols from the channel alphabet Y,
which may be different from the source alphabet. The receiver expects to get
the information sent by the source, hence a sequence of symbols1 from X. We
also assume that the system is stationary, that is, that its behaviour is invariant
under time shifts.

source S .........................................................................................
.....................

.X

w
encoding γ .........................................................................................

.....................
.

γ(w)

Y noisy
channel C

....................................................................................
.....................

.Y

v
decoding δ ...............................................................................................

.....................
.X

δ(v)
receiver R

Fig. 1. The standard information transmission model

Before we continue, we introduce some notation. An alphabet is a finite non-
empty set, the elements of which are called symbols. To avoid trivial exceptions,
every alphabet considered in this paper is assumed to contain at least two distinct
symbols. For a given alphabet X , we consider the set X+ of finite non-empty
words, the set Xω of right-infinite words2 and the set Xζ of bi-infinite words
over X . For any alphabet, λ denotes the empty word over that alphabet. Let
X∗ = X+ ∪ {λ} and X� = X∗ ∪Xω ∪Xζ . For η ∈ {∗,+, ω, ζ,�}, an η-word is
an element of Xη. By word we mean a ∗-word. For a ∗-word w let lg(w) denote
its length. An η-message over X is an η-word over X . By message we mean an
η-message with η chosen as required by the context. The encoding γ transforms
1 It could be sufficient if the receiver gets ‘something equivalent’ to the message sent.

One could also consider additional alphabets for the receiver and the channel output.
Nothing essential is gained by such generalizations.

2 In [16] also left-infinite words are considered. Here they are not needed. There one
also distinguishes between word schemata, their instances and words, the latter being
equivalences of instances of word schemata. In the present context this distinction
is not needed as we consider only stationary systems.
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a message w into an encoded message u = γ(w). As output of the channel one
obtains the transmitted encoded message v. After decoding one has the received
message δ(v).

Requirements 1. The pair of encoding γ and decoding δ needs to satisfy certain
conditions for the system to function, including the following:

1. Without noise, there is perfect transmission: δ
(
γ(w)

)
= w for all mes-

sages w.
2. In the presence of noise, transmission is error-free with high probability:

Prob
(
δ(v) �= w

∣∣ w is the source output and v is the channel output
)
< ϑ

for some small ϑ > 0.
3. The channel is used to capacity: Let c be the capacity of the channel C and

let h be the average information contents of an output symbol of γ, both
measured in bits. Then c− ε ≤ h < c for some small ε > 0.

4. If errors cannot be corrected, they should at least be detected.
5. Errors should have local effects only: The effect of an error should not prop-

agate through a large part of the message.
6. The received message is obtained with little delay: Decoding can start suc-

cessfully when a bounded part of v is available.
7. γ and δ have efficient realizations.

These requirements form just a small part of a long wish list. They will guide
us through the considerations in the present paper.

In what follows, we need some additional notation. We denote finite deter-
ministic acceptors by Aq = (Q,X, δ, F ), where Q is the finite non-empty set
of states, X is the input alphabet, δ : Q × X → Q is the – possibly partial –
transition function, F ⊆ Q is the set of accepting states and q ∈ Q is the initial
state. The set L(Aq) = {w | δ(q, w) ∈ F} is the language accepted by A. When
q /∈ F , let L1(Aq) be the set of all those words w ∈ L(Aq) which have no proper
prefix in L(Aq), that is, L1(Aq) = L(Aq) \ L(Aq)X

+.
Using the requirements above as a reference, we examine the relevance of

automaton theoretic arguments to the usage of codes in information transmis-
sion systems from seven points of view: code design according to specifications
(Section 2); models for the realization of encodings (Section 3); models for
noisy channels (Section 4); error-detection during decoding (Section 5); fault-
tolerant decoding (Section 6); error-correcting codes and the realization of error-
correction (Section 7); models for the realization of decoding in the absence of
noise (Section 8). We conclude with a summary and a wish-list of issues to be
addressed in Section 9. Our list of references is extensive, but far from being
complete. To keep the survey focused, many relevant details had to be omitted,
the choice never being easy.

2 Code Design

Often automata are used to characterize code properties. Turning such charac-
terizations around, one can sometimes use automata to design codes according
to a given specification.
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For example, to obtain a code with decoding delay 0, a prefix code, one can
use the following characterization, which, by now, has become folklore.

Proposition 1. Let Aq = (Q,X, δ, q, F ) be a deterministic finite acceptor with
q /∈ F . Then L1(Aq) is a prefix code. Conversely, if L ⊆ X+ is a non-empty prefix
code then there is an deterministic finite acceptor Aq such that L = L1(Aq).

Similar, but less explicit characterizations exist also for hypercodes [47,48,49]
and code classes related to infix or outfix codes [10,12,41], typically in terms
of the syntactic monoid of such codes. In addition, many studies concern the
automaton theoretic characterization of the set of messages encoded using a
given code. To get a fairly comprehensive understanding of the situation we
refer to [4,16,45,50]. Further important early studies concerning the connection
between automata and codes include [7,30,31,33,38].

Not every characterization of a class of codes by automata lends itself readily
to the design and construction of codes according to a given specification. We
explain the issue using the example of solid codes.

Recall that a solid code over Y is a non-empty set C ⊆ Y + satisfying the
following two conditions (see [16]): (1) if xuy = v with u, v ∈ C and x, y ∈ Y ∗,
then x = y = λ; (2) if ux, xv ∈ C with u, v ∈ X+ then x = λ. The first condition
states that C is an infix code. The second one states that C is overlap-free. Solid
codes are revisited in Section 6 below.

Let Aq = (Q, Y, δ, F ) be a deterministic finite acceptor, every state of which
is useful and reachable, such that δ(f, a) is undefined for every f ∈ F and every
a ∈ Y. Consider the state-pair graph of Aq defined as follows (see [9]): (1) the
set of nodes is Q ×Q; (2) there is an edge labelled a ∈ Y from (p, r, ) to (p′, r′)
if and only if δ(p, a, p′) and δ(r, a, r′), where p, p′, r, r′ ∈ Q.

The following automaton theoretic characterization of the class of solid codes
is given in [9].

Proposition 2. ([9], Theorem 9) L(Aq) is a solid code, if and only if the state-
pair graph of Aq has the following two properties:

1. For p, r ∈ Q, there is no proper path from (q, p) to (f, r) with f ∈ F unless
p = q and r ∈ F .

2. For p, r ∈ Q, there is no proper path from (q, p) to (r, f) with f ∈ F unless
p = q and r ∈ F .

Like many such characterizations, this one of solid codes looks promising until
one attempts to apply it to the construction of such codes. Indeed, the automaton
theoretic descriptions of classes of codes often only serve as characterizations and
are as difficult to use in constructions as the original definitions.

In the case of solid codes, large classes of examples can be constructed by
other means than automata [13].

The construction implied by Proposition 1 is a notable exception. As is well-
known, it has a host of applications. Below, in Section 6, we present an automa-
ton construction for solid codes, which also meets the expectations expressed
above.
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3 Encoding

A homomorphic encoding of X requires a set3 C ⊆ Y + with |X | = |C| and
a mapping γ of X onto C, which is then extended to a homomorphism of X∗
into Y ∗. For unique decodability, the extension must be injective. When there
is no noise on the channel this suffices to achieve Requirement 1.1. To satisfy
Requirement 1.6, one needs a code with bounded decoding delay, ideally a prefix
code. The efficiency of the realization of the encoding depends on the definition
of γ. As a theoretical model, a single-state transducer suffices for the encoding.
The actual cost of practical realizations is hidden in this model4.

For sequential encoding, on the other hand, the encoder is a gsm mapping –
or (sub-)sequential tramsduction – from X∗ to Y ∗ (see [2, Chapter IV.2] and [4,
Chapter 4.3]). Sequential encodings are used in two situations: (1) the size of
the input ‘alphabet’ is unbounded, for example an infinite language5 over some
alphabet Z; (2) the channel has non-zero memory and the noise on the channel
depends on the symbols being transmitted. There are many practical situations
in which such encodings are used. Here we only mention convolution codes for
the second kind.

In summary, automata are a useful model for homomorphic encoding only in
the form of deterministic transducers. The single-state encoder is of little help.
However, as the codes likely to be used are at least prefix codes, an encoder
can be derived from the tree representation of the code. On the other hand, for
sequential encoding, automata are the natural model.

4 Channels

In a very general setting one defines a discrete channel in measure theoretic
terms (see [8], for instance). This approach allows one to derive profound results
concerning the information transmission properties, capabilities and limitations
of channels under extremely weak conditions. For practical applications one will
introduce restrictions which match the physical situation at hand and enable
technical solutions.

Sometimes it is convenient, to treat channels as stochastic automata [46] or
as stochastic transducers [27] with a finite number of states. Such a channel has
finite memory and may satisfy additional crucial assumptions, like stationarity
or ergodicity, depending on the transition structure of the underlying automaton.
3 As described, this works for finite codes only. For an infinite code C, one would

encode the words of an infinite language L ⊆ X+ with |C| = |L| using a mapping
γ of L onto C, again extended to a homomorphism. The language L may need to
meet certain conditions for such an encoding to be usable.

4 For block codes, which use words of some fixed length k as input symbols and words
of some length � with � > k as output words, typical realizations may involve shift
registers. This type of implementation relies on the choice of the code as a linear
space.

5 Of course, one could encode Z instead. However, encoding of the words in the lan-
guage may be more natural and more economical.
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In other situations, it is adequate to abstract even further by ignoring proba-
bilities. In this case, the channel could be modelled by a transduction [2] in the
following sense: v is an output of the transduction for input u if and only if the
probability of channel input u resulting in channel output v is significantly greater
than 0. This concept is used frequently in the usual theory of error-detecting
or error-correcting codes. In a more systematic and more rigorous way it is in-
troduced in [20] and [16, pp. 522–525 and 534] and explained in greater detail
in [15,21,22]. To show the connection between automata and channel models, we
sketch the idea: Consider some basic types of errors, which might occur during
information transmission. Such types could be, for instance6, substitution σ of a
symbol, insertion ι of a symbol, deletion δ of a symbol or a combination of these.
Moreover, constraints may be imposed to indicate that a certain error type can
only occur at most m times in L consecutive symbols where m < L. Channels
with such specifications are called7 SID channels. How to turn the specification
of an SID channel into a transducer is explained in [24]. In Fig. 2 we show a non-
deterministic transducer defined by the binary SID channel σ 	 δ(1, 2) in which
at most one substitution or deletion error occurs in every two symbols.

................................................................
.........
.......
.......
.......
.......
........
..........

............................................................ ................................................................
.........
.......
.......
.......
.......
........
..........

............................................................

.............
.........
.......
.......
.......
.......
........
..........

......................................................................................................... ........
........
................

x/x

..................................
...............................................................................................................................

x/λ, x/x̄
................ ..............

..

..................................................................................................................................................
...............

x/x

................................

....................................
.............................................................................. ................

Fig. 2. Transducer for the binary SID channel σ�δ(1, 2), where x ∈ {0, 1} and x̄ = 1−x

A stochastic transducer modelling the channel with insertions and deletions
of [51] is shown in [27].

5 Error-Detection

An error is detected when the transmitted encoded message v is different from
every possible encoded message. Equivalently, an encoding is error-detecting, if
and only if, for every encoded message u, the set of potential channel outputs
for u contains u and no other encoded message [16, Definition 4.1].

Let W ⊆ Xη be the set of potential (or highly likely) η-messages, with η as
above. The first of the criteria requires one to decide whether v ∈ γ(W ). This
may be very costly or even impossible, even when W = Xη.

The second criterion is a static condition on the encoding. It states when an
encoding is error-detecting, but does not help with the actual detection of an
error.
6 Which error types are to be considered depends on the physical properties of the

channel.
7 For brevity, we do not explain the full range of SID channels here. The SID channels

form a small, but important, subset of the set of P-channels [16].
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Systematic studies of the error-detection capabilities of languages with respect
to SID channels are presented in [25,26,28,29].

6 Fault-Tolerance

Informally, we say that an encoding is fault-tolerant when errors have only a
bounded effect. For example, consider the following situation: The transmitted
encoded message v has a decomposition v0x1v1x1 · · ·xnvn into stretches vi which
contain errors and cannot be decoded and error-free stretches xi which can be
decoded. If, in addition, the decoding of the xi is not affected by the errors
in the other parts, some degree of fault-tolerance is achieved. Solid codes can
be characterized as the class of codes which afford exactly this kind of fault-
tolerance [19]. Fault-tolerance for finite solid codes is realized by deterministic
state-invariant transducers without look-ahead. State-invariance means that the
transducer’s behaviour does not depend on the initial state; lack of look-ahead
means that the decoding is output only when a complete code word has been
read.

Proposition 3. [16,32,43] Let X and Y be alphabets and C ⊆ Y + with |C| =
|X |. Let γ be a bijection of X onto C. Then C is solid code if and only if there
is a state-invariant decoder without look-ahead for γ.

This characterization of solid codes by decoders has recently been strengthened
in two ways, both in the spirit of Proposition 1. Recall that a set C ⊆ Y + is a
p-infix code if Y ∗CY + ∩ C = ∅ and that the suffix root of C is the set Suff

√
C of

words y ∈ C such that no proper suffix of y is in C.

Proposition 4. [17,18] Let Aq be a deterministic, possibly infinite, acceptor.

1. L1(Aq) is a prefix code (Proposition 1).
2.
⋂

q′∈Q L1(Aq′ ) is an overlap-free p-infix code.

3. Suff

√⋂
q′∈Q L1(Aq′ ) is a solid code.

Thus, as for prefix codes, every deterministic acceptor defines a solid code. More-
over, the construction used by Levenshtein [32] and Romanov [43] in the proof
of Proposition 3 can be adapted to infinite, in particular regular, solid codes.

Proposition 5. [17,18] A non-empty set C ⊆ Y + is a solid code if and only if
there is a deterministic initially connected acceptor Aq such that

C = Suff

√ ⋂
q′∈Q
L1(Aq′ ).

Moreover, if C is a regular set then there is a finite acceptor with this property.

When C is regular, one can transform the acceptor built in the proof of Propo-
sition 5 into a transducer for fault-tolerant deoding [18].

In Propositions 4 and 5, taking the intersection corresponds to state-invariance
and taking the suffix root corresponds to lack of look-ahead in Proposition 3.
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7 Error-Correction

We now turn to the task of error-correction. A message w has been issued,
encoded as u = γ(w); u has been sent through the channel, and v has been
observed as the channel output. Because of noise, v can differ from u. There are
three cases:

1. u = v: Then v is correct.
2. u �= v, but v = γ(w′) for some message w′: Then v is incorrect; however, the

error is not detected.
3. v �= γ(w′) for any message w′: Then an error is detected.

Usually one assumes that errors are an exception8, that is,

Prob(output = u | input = u) >
1

2
.

As a first step, one attempts to recover u from v. In general, this may not be
possible with absolute certainty. As a compromise, one attempts to find a word
w satisfying the following two conditions:

• Prob(w | v) ≥ Prob(w′ | v) for all encoded messages w′.
• w is an encoded message.

Here Prob(w | v) and Prob(w′ | v) are the posterior probabilities of w and w′
having been the input of the channel when v has been observed as its output.
Thus, one attempts a maximum likelihood correction, leading ultimately to a
maximum likelihood decoding. In the first case above, this step results in u; in
the second case, it results in v; in the third case, the result of this step could be
u or another encoded message.

If the channel has been modelled by a stochastic transducer [27], maximum
likelihood correction can be achieved by an adaptation of the Viterbi algo-
rithm [6,35]. Examples of the application of variants of the Viterbi algorithm
to the decoding of variable-length codes or of convolution codes in the presence
of synchronization errors include [11,37,39].

In most of the usual theory of error-correcting codes one works with block
codes, and error-correction is performed by code words. Moreover, insertions
and deletions are not considered. Thus, a channel input and the resulting output
have the same lengths. Let Y = {0, 1, . . . , q − 1} be the channel alphabet, and
let C ⊆ Y � be the block code in use with � > 1 being the code word length.
One could build a table of the posterior probabilities Prob(u | v) for u ∈ C
and v ∈ Y �. Typical assumptions about the channel include that it is stationary
and memoryless and that Prob(x | x) = Prob(y | y) > 1

2 for all x, y ∈ Y . An
additional typical assumption states that there is a number p ∈ (0, 1) such that
p = Prob(x | y) for all x, y ∈ Y with x �= y. Clearly, (q− 1)p < 1

2 . Thus, if u ∈ C
differs from v ∈ Y � at r positions, then

Prob(u | v) =
(
1− (q − 1)p)�−r · pr,

8 In addition to this assumption some further, more technical conditions must be met for
the present explanation of maximum likelihood correction to be really correct. See [35].
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and this probability strictly decreases when r increases. The number r is called
the Hamming distance dH between u and v. One can now replace the maximum
likelihood correction as follows: Instead of looking for w ∈ C with Prob(w | v)
maximal, one determines w ∈ C for which dH(w, v) is minimal.

The set Y � is a metric space with respect to the Hamming distance. In essence,
a part of this space is covered with disjoint circles around the code words, each
circle having the same diameter, the diameter chosen maximal. A word inside
a circle is assumed to have resulted from the word at the centre. There may be
words outside the circles. For these no clear assignment is possible.

Instead of the Hamming distance other distance measures like the Lee distance
dL have been used for block codes. Which distance measure is adequate depends
on the probabilistic or physical characteristics of the channel. For details of this
connection see [16, pp. 595–597] and, in greater detail, [5, pp. 74–77]. In the usual
theory of error-correcting codes one then adds further mathematical structure
to simplify the calculation of the centres of these circles.

If the channel can delete or insert symbols, one can no longer rely on the
input and output having the same lengths. In that situation the distinction
between block codes or variable-length codes and even between homomorphic
and sequential encodings becomes blurred.

Still, under special assumptions about the physical or stochastic properties of
the channel, one can reduce maximum likelihood decoding to minimum distance
decoding. This can work, for example, when the Levenshtein distance reflects the
probabilities in the sense outlined above [34]. In [23], a distance measureDτ for SID
channels is introduced, which specializes to the Hamming distance or various kinds
of the Levenshtein distance, depending on the error type τ of the channel. As in the
cases of the Hamming distance for block codes, one can relate the error-correction
capability of a code C with the minimum distance between distinct code words9.

Proposition 6. [23,34] Let C be a finite, non-empty subset of Y + and let � =
max{lg(x) | x ∈ C}.
1. If C is a block code and the channel is of type τ(m,L) with L ≥ � then C is

error-correcting for this channel if and only if Dτ (C) > 2m [23].
2. C is error-correcting for the channel ι 	 δ(m,L) with L ≥ � if and only if
Dι�δ(C) > 2m [34].

3. C is error-correcting for the channel σ 	 ι	 δ(m,L) with L ≥ � if and only
if Dσ�ι�δ(C) > 2m [34].

Greater detail and further references are found in [23]. Proposition 6 expresses
the idea, mentioned before, of drawing disjoint circles of maximal diameter
around the code words. For error-correction, all words inside such a circle are
mapped onto its centre.

In the traditional context of block codes for the substitution channel, mini-
mum-distance decoding is aided by algebraic structure on the codes. For variable-
length codes of for channels with insertions and deletions such structure seems
9 Let C ⊆ Y + and let d be a distance on Y +. Define the minimum distance of C as
d(C) = min{d(x, y) | x, y ∈ C, x �= y}. In cases when d(x, y) is undefined, we use the
convention that d(x, y) =∞.
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not to help. In this situation, the specification of the channel as a transducer
could solve the problem. By definition, a code is error-correction for a channel if
no two distinct encoded messages can result in the same channel output (see [16]).
Thus, ideally, error-correction could be achieved by the inverse of the transduc-
tion defining the channel.

Regardless of whether the channel is modelled as a stochastic or a discrete
transducer, the delay resulting from the uncertainty about the most likely cor-
rection can be a serious problem.

In [14] the error-correction capabilities of solid codes and closely related codes
are analysed. The binary solid code {0011, 010111} corrects errors in finite
messages sent through a channel of type δ(1, 6), but not in infinite messages.
The ternary solid code {0022, 02122, 001122} corrects errors in ζ-messages sent
through the same channel [15,16].

8 Decoding

In an information transmission system, the decoding δ can be divided into two
steps: (1) transformation of the channel output v into an encoded message u′;
(2) computation of γ−1(u′). The former concerns error-handling. The latter is
decoding in the absence of noise. For this, one relies primarily on the theory
of (sequential) transductions (see [4, Chapter 4]). Both in the noiseless and the
noisy case, the decoding (or deciphering) delay is an important issue. Definitions
of the decoding delay and the synchronization delay of codes used with noisy
channels can be found in [16, pp. 535–539].

9 Summary

With a focus on the usage of codes in information transmission systems, which
questions or results relating automata and codes are useful?

We have examined eight aspects: (1) general requirements; (2) code design;
(3) encoding; (4) channels; (5) error-detection; (6) fault-tolerance; (7) error-
correction; (8) decoding without noise. The general requirements provide the
framework for the investigation. In code design one attempts to construct a code
according to a given specification and to prove the correctness of the construc-
tion. For encoding a realization is needed, hence also a cost analysis; automata
look like the natural candidates to model encoders. For many modern informa-
tion transmission systems, SID channels seem to model the physical characteris-
tics of the channels involved adequately; in turn, SID channels can be described
as non-deterministic or stochastic transducers. Error-detection, fault-tolerance
and error-correction capabilities depend on the properties of the channel and of
the code; for error-correction one uses either a variant of the Viterbi algorithm
or the inverse of the transducer describing the channel; both are based on state-
transition models. After error-correction, standard decoding is required which
could use the inverse of the transducer implementing the encoding.

There are automata everywhere in an information transmission system!
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Research into all aspects of codes for modern noisy channels is still in its
early stages. Given the natural presence of automaton models in all parts of an
information transmission system, we believe that automaton theoretic methods
can be quite useful in addressing not only the theoretical issues concerning such
systems, but also the practical implementation problems. With this in mind, we
formulate the following wish-list or, rather, research programme:

1. Code properties with respect to errors: Many classes of codes below the prefix
codes, evenbelow the bifix codes, have distinct error-handling behaviours.This
concerns, for instance, the shuffle hierarchy, solid codes, semaphore codes and
types of codes derived from these. Precise descriptions of the error-handling
capabilities for these classes of code are needed with respect to SID channels.

2. Code design: ‘Useful’ characterizations of classes of codes by automata are
needed, useful from several points of view: (1) construction of codes accord-
ing to specification; (2) verification of code properties; (3) translation into
efficient implementations.

3. Encoding and decoding: Code-specific or code-class-specific transducer mod-
els for encoding and decoding (in the absence of noise) are needed to lead to
efficient implementations. Ideally, they would be derived from the code design.

4. Fault-tolerance: Provide a formal, possibly parameterized definition of fault-
tolerance. Characterize the codes which achieve fault-tolerance in this gen-
eral sense. How are these codes related to the solid codes?

5. Error-detection: Under which conditions can error-detection be guaranteed
at low cost? Such conditions would concern the SID channel, the message
space and the code.

6. Error-correction: Analyse correction strategies. How much of the channel
output suffices for the error-correction to succeed with high enough prob-
ability? This would determine when the Viterbi algorithm can be reset or
when the error-correcting transducer can produce the next output.

7. Correction strategies: Evaluate and compare the performance of error-cor-
rection strategies as outlined in Section 7, in particular the variants of the
Viterbi algorithm, for various classes of codes low in the code hierarchy and
various SID channels.

8. Decoding delay: Find criteria, similar to the ones for the noiseless case, by
which the decoding delay of a code with respect to a given SID channel is
characterized.

9. Distance measures: Determine methods by which to design codes satisfying
a bound on the minimum distance within a given class of codes or by which
to compute the minimum distance for a given code.

Partial solutions to some of these problems exist: some of them are mentioned
above. With our list we intend to exhibit some of the major problems concern-
ing codes for modern information transmission systems. In the traditional theory
of error-correcting codes it took several decades of research from the first for-
mulation of the task to efficient solutions. Regarding variable-length codes and
systems with synchronization errors, many similar steps must be made. Analy-
ses of concrete cases and simulations of systems could serve as further guidance.
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Given the nature of information transmission systems, automaton models seem
to be the natural tool.
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weniĭ. Dokl. Akad. Nauk. SSSR 141, 1320–1323 (1961); English translation: Self-
adaptive automata for decoding messages. Soviet Physics Dokl. 6, 1042–1045 (1962)

31. Levenshtein, V.I.: Ob obrawenii koneqnyh avtomatov. Dokl. Akad. Nauk.
SSSR 147, 1300–1303 (1962); English translation: The inversion of finite automata.
Soviet Physics Dokl. 7, 1081–1084 (1963)

32. Levenshtein, V.I.: Dekodiru�wie abtomaty, invariantnye otnositel�no
naqal�nogo sosto�ni�. Problemy Kibernet. 12, 125–136 (1964) (in Russian); De-
coding Automata, Invariant with Respect to the Initial State

33. Levenshtein, V.I.10: O nekotoryh sboĭstvah kodirovani� i samonas-
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Abstract. Symbolic automata theory lifts classical automata theory to
rich alphabet theories. It does so by replacing an explicit alphabet with
an alphabet described implicitly by a Boolean algebra. How does this
lifting affect the basic algorithms that lay the foundation for modern au-
tomata theory and what is the incentive for doing this? We investigate
these questions here. In our approach we use state-of-the-art constraint
solving techniques for automata analysis that are both expressive and ef-
ficient, even for very large and infinite alphabets. We show how symbolic
finite automata enable applications ranging from modern regex analy-
sis to advanced web security analysis, that were out of reach with prior
methods.

1 Introduction

Classical automata theory makes two basic assumptions: there is a finite state
space; and there is a finite alphabet. Here we challenge the second assumption
by looking at how we can relax it while still maintaining all or most of the
benefits of classical automata theory. One of the drawbacks of classical finite
state automata is that they do not scale well for large alphabets. Although
there are various techniques that address the scalability problem, such as, partial
transition functions to avoid irrelevant or unused characters [3,13], integer ranges
for succinct representation of contiguous ranges of characters [1], binary decision
diagrams for succinct representation of transition functions [7], as well as various
extensions with registers such as register automata [10,5] and extended finite
automata [12]. Extensions with registers in general lead to infinite state systems
or lack of closure properties. There is also research on register automata or
automata over data words that focuses on their expressive power and decidability
properties [11].

Our interest in this topic originates from the need to support regular expres-
sions in the context of program analysis [17]. Regular expressions or regexes
are stated over strings of basic Unicode characters. The runtime representation
of characters in modern runtimes like JVM and .NET, as well as in scripting
languages like JavaScript, uses the UTF16 encoding. From the point of view of
regexes, the alphabet is the set of unsigned integers less than 216 or in other
words 16-bit bitvectors. For example the regex character class [\u2639\u263A]
matches the symbols � and �. Regexes do not directly support symbols in
the supplementary Unicode planes (i.e. symbols that are formed from surrogate
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pairs and whose Unicode code point is ≥ 216). For example, the surrogate pair
\uD83D\uDE0A that also happens to encode a smiley symbol is treated as two
separate characters by a regex, and the regex ^(\uD83D[\uDE00-\uDE4F])*$

matches a string that encodes a sequence of Unicode emoticons [2].1

Symbolic Finite Automata or SFAs were introduced, as an extension of clas-
sical finite state automata that allows transitions to be labeled with predicates
defined in a separate alphabet algebra. The concept of automata with predicates
instead of concrete symbols was first mentioned in [19] and was first discussed
in [14] in the context of natural language processing. The alphabet theory in
SFAs is assumed to be an effective Boolean algebra. The main intuition is that
an SFA uses an alphabet as a plug-in through an API or interface. The only
requirement is that the interface supports operations of a Boolean algebra.

To illustrate the role of the alphabet algebra consider the last regex example
above. The predicate 0xDE00 ≤ x∧x ≤ 0xDE4F is an example of such a predicate
in a character theory that uses linear arithmetic (modulo-216, or bitvector arith-
metic) and one fixed variable x. We abbreviate it by [\uDE00-\uDE4F] using the
standard character class notation of regexes. The following SFA is equivalent to
the above regex of emoticons, say Memoticons:

q0 q1 q2[\uD83D]
[\DE00-\DE4F]

[\uD83D]

The regex character class [\uDE38-\uDE40]matches the set of low-surrogate
halves of a “cat face” emoticon. Suppose we want to construct an SFA that
accepts all strings of emoticons that contain no cat face emoticons. One way to
do this is to construct the SFA Memoticons×Mnocats, where Mnocats is the SFA:

p0 ¬[\uDE38-\uDE40]

There are many fundamental questions about if and how classical algorithms
and techniques can be lifted to SFAs. Some algorithms depend more on the al-
phabet than others. For example, union of SFAs uses only disjunctions of predi-
cates over characters while intersection uses only conjunctions. Determinization
on the other hand needs all Boolean operations. Satisfiability checking of pred-
icates is used to avoid infeasible transitions. Some tradeoffs of the algorithms,
when applied to string analysis, are studied in [9]. Minimization of SFAs is stud-
ied in [15]. It differs from the classical algorithms [4] with respect to how the
alphabet is being used.

1 Emoticons are symbols with code points between 0x1F600 and 0x1F64F. As an ex-
ample, the surrogate pair \uD83D\uDE0A encodes the Unicode code point 0x1F60A

that is the code of a smiley symbol similar to �.
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Here we discuss basic properties of SFAs, the role of the alphabet, and we
describe different applications of SFAs, with a focus on the role of the symbolic
alphabet. Two concrete applications are: regex processing and security analysis
of string sanitizers.

2 Effective Boolean Algebras and SFAs

An effective Boolean algebra A has components (D, Ψ, [[ ]],⊥,�,∨,∧,¬). D is an
r.e. (recursively enumerable) set of domain elements. Ψ is an r.e. set of predicates
closed under the Boolean connectives and ⊥,� ∈ Ψ. The denotation function
[[ ]] : Ψ → 2D is r.e. and is such that, [[⊥]] = ∅, [[�]] = D, for all ϕ, ψ ∈ Ψ,
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and [[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ, we
write IsSat(ϕ) when [[ϕ]] �= ∅ and say that ϕ is satisfiable. A is decidable if IsSat
is decidable.

The intuition is that such an algebra is represented programmatically as an
API with corresponding methods implementing the Boolean operations and the
denotation function. We are primarily going to use two such effective Boolean
algebras in the examples, but the techniques in the paper are fully generic.

2bvk is the powerset algebra whose domain is the finite set bvk, for some k >
0, consisting of all nonnegative integers less than 2k, or equivalently, all
k-bit bit-vectors. A predicate is represented by a BDD of depth k.2 The
Boolean operations correspond directly to the BDD operations, ⊥ is the
BDD representing the empty set. The denotation [[β]] of a BDD β is the
set of all integers n such that a binary representation of n corresponds to a
solution of β.

SMTσ is the decision procedure for a theory over some sort σ, say integers, such
as the theory of integer linear arithmetic. This algebra can be implemented
through an interface to an SMT solver. Ψ contains in this case the set of
all formulas ϕ(x) in that theory with one fixed free integer variable x. Here
[[ϕ]] is the set of all integers n such that ϕ(n) holds. For example, a formula
(x mod k) = 0, say divk, denotes the set of all numbers divisible by k. Then
div2 ∧ div3 denotes the set of numbers divisible by six.

Extending a given alphabet domain with new characters in the concrete (classi-
cal) case is more or less trivial, while in the symbolic case it may not be possible
at all or is difficult. We are using the following construct for alphabet extensions.

Definition 1. The disjoint union A+B of two effective Boolean algebras A and
B, is an effective Boolean algebra where,

2 The variable order of the BDD is the reverse bit order of the binary representation
of a number, in particular, the most significant bit has the lowest ordinal.
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DA+B
def
= (DA × {1}) ∪ (DB × {2});

ΨA+B
def
= ΨA × ΨB;

[[〈α, β〉]]A+B
def
= ([[α]]A × {1}) ∪ ([[β]]B × {2})

〈α, β〉 ∨A+B 〈α′, β′〉 def
= 〈α ∨A α′, β ∨B β′〉;

〈α, β〉 ∧A+B 〈α′, β′〉 def
= 〈α ∧A α′, β ∧B β′〉;

¬A+B〈α, β〉 def
= 〈¬Aα,¬Bβ〉;

⊥A+B
def
= 〈⊥A,⊥B〉;

�A+B
def
= 〈�A,�B〉.

It is straightforward to prove by using distributive laws of intersection and union
that the additional conditions of the denotation function hold for the above
definition, i.e., that A+B is indeed an effective Boolean algebra. In particular,
consider conjunction (we drop the indices of the algebras as they are clear from
the context)

[[〈α, β〉 ∧ 〈α′, β′〉]] = [[〈α ∧ α′, β ∧ β′〉]]
= [[α ∧ α′]] × {1} ∪ [[β ∧ β′]] × {2}
= ([[α]] ∩ [[α′]]) × {1} ∪ ([[β]] ∩ [[β′]])× {2}
= (([[α]] × {1}︸ ︷︷ ︸

A

) ∩ ([[α′]] × {1}︸ ︷︷ ︸
A′

)) ∪ (([[β]] × {2}︸ ︷︷ ︸
B

) ∩ ([[β′]] × {2}︸ ︷︷ ︸
B′

))

= (A ∩ A′) ∪ (B ∩B′) ∪ (A ∩B′︸ ︷︷ ︸
=∅

) ∪ (B ∩ A′︸ ︷︷ ︸
=∅

)

= (A ∪B) ∩ (A′ ∪B′)
= [[〈α, β〉]] ∩ [[〈α′, β′〉]]

Another useful construct when dealing with effective Boolean algebras is domain
restriction. In SFAs, domain restriction can be used to limit the alphabet to only
those characters that matter.

Definition 2. The domain restriction of an effective Boolean algebra A with
respect to a nonempty r.e. set V ⊆ DA, denoted A�V , is the same effective

Boolean algebra as A except that DA�V
def
= DA ∩ V and [[ψ]]A�V

def
= [[ψ]]A ∩ V .

It is easy to check that A�V is well-defined. In particular, consider disjunction:

[[ψ ∨ ϕ]]A�V = [[ψ ∨ ϕ]]A ∩ V = ([[ψ]]A ∪ [[ϕ]]A) ∩ V = ([[ψ]]A ∩ V ) ∪ ([[ϕ]]A ∩ V )
= [[ψ]]A�V ∪ [[ϕ]]A�V

and complement:

[[¬ψ]]A�V = [[¬ψ]]A ∩ V = (DA \ [[ψ]]A) ∩ V = (DA ∩ V ) \ ([[ψ]]A ∩ V )
= DA�V \ [[ψ]]A�V
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Definition 3. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,Δ)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
Δ ⊆ Q× ΨA ×Q is a finite set of moves or transitions.

Elements of DA are called characters and finite sequences of characters, elements
of D∗A , are called words ; ε denotes the empty word. A move ρ = (p, ϕ, q) ∈ Δ
is also denoted by p

ϕ−→M q (or p
ϕ−→ q when M is clear) where p is the source

state, denoted Src(ρ), q is the target state, denoted Tgt(ρ), and ϕ is the guard
or predicate of the move, denoted Grd(ρ). A move is feasible if its guard is

satisfiable. Given a character a ∈ DA, an a-move of M is a move p
ϕ−→ q such

that a ∈ [[ϕ]], also denoted p
a−→M q (or p

a−→ q when M is clear). In the following
let M = (A, Q, q0, F,Δ) be an SFA.

Definition 4. A word w = a1a2 · · · ak ∈ D∗A , is accepted at state p ofM , denoted

w ∈ Lp(M), if there exist pi−1
ai−→M pi for 1 ≤ i ≤ k where p0 = p and pk ∈ F .

The language accepted by M is L(M)
def
= Lq0(M).

For q ∈ Q, we use the definitions

−→
Δ(q)

def
= {ρ ∈ Δ | Src(ρ) = q}, ←−

Δ(q)
def
= {ρ ∈ Δ | Tgt(ρ) = q}.

The definitions are lifted to sets in the usual manner. The following terminology
is used to characterize various key properties of M . A state p of M is called
partial if there exists a character a such that there is no a-move from p.

– M is deterministic: for all p
ϕ−→ q, p ϕ′

−→ q′ ∈ Δ, if IsSat(ϕ ∧ ϕ′) then q = q′.
– M is complete: there are no partial states.

– M is clean: for all p
ϕ−→ q ∈ Δ, p is reachable from q0 and IsSat(ϕ),

– M is normalized : for all p, q ∈ Q, there is at most one move from p to q.
– M is minimal : M is deterministic, complete, clean, normalized, and for all
p, q ∈ Q, p = q if and only if Lp(M) = Lq(M).3

Determinization of SFAs is always possible and is studied in [16]. Completion is
straightforward: if M is not complete then add a new state q∅ and the self-loop

q∅
�−→ q∅ and for each partial state q add the move (q,

∧
ρ∈−→Δ(q)

¬Grd(ρ), q∅).

Observe that completion requires complementation of predicates.
Normalization is obvious: if there exist states p and q and two distinct transi-

tions p
ϕ−→ q and p ψ−→ q then replace these transitions with the single transition

p
ϕ∨ψ−−−→ q. This does clearly not affect Lp(M) for any p.
Cleaning amounts to running standard forward reachability that keeps only

reachable states, and eliminates infeasible moves. Observe that having infeasible

moves p
⊥−→ q is semantically useless and may cause unnecessary state space

explosion.

3 It is sometimes convenient to define minimality over incomplete SFAs, in which case
the dead-end state q (q �= q0 and Lq(M) = ∅) is eliminated if it is present.
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3 Applications

The development of the theory of symbolic automata has been driven by several
concrete practical problems. Here we discuss two such applications. In each case
we illustrate what kind of character theory we are working with, and focus on
the benefits of the symbolic representation.

3.1 Regex Processing

Practical applications of regular expressions or regexes is ubiquitous. What dis-
tinguishes practical regexes from schoolbook regular expressions (besides non-
regular features that go beyond capabilities of finite state automata represen-
tations) are certain constructs that make them appealing (more succinct) than
their classical counterparts such as bounded quantifiers and character classes.

The size of the alphabet is 216 due to the widely adopted UTF16 stan-
dard of Unicode characters, e.g., as a somewhat unusual example, the regex
^[\uFF10-\uFF19]$matches the set of digits in the so-called Wide Latin range
of Unicode. We let the alphabet algebra be 2bv16. Let the BDD β7w represent all
ASCII word characters (letters, digits, and underscore) as the set of character
codes {‘0’, . . . , ‘9’, ‘A’, . . . , ‘Z’, ‘ ’, ‘a’, . . . , ‘z’}. (We write ‘0’ for the code
48, ‘a’ for the code 97, etc.) Let also β7d represents the set of all decimal digits
{‘0’, . . . , ‘9’} and let β represent underscore {‘ ’}. By using the Boolean oper-
ations, e.g., β7w∧¬(β7d ∨β ) represents the set of all upper- and lower-case ASCII
letters. As a regex character class it is expressible as [\w-[\d_\x7F-\uFFFF]].

Regexes are used in many different contexts. A common use of regexes is as
a constraint language over strings for checking presence or absence of different
patterns, e.g., for security validation of packet headers in network protocols.
Another application, is the use of regexes for generating strings that match
certain criteria, e.g., for fuzz testing applications that use regexes. A further
application is password generation based on constraints given in form of regexes.
Here is a scenario:4

1. Length is k and characters are in visible ASCII range: ^[\x21-\x7E]{k}$
2. There are at least two letters: [a-zA-Z].*[a-zA-Z]

3. There is at least one digit: \d
4. There is at least one non-word character: \W

Consider SFAs for each case and build their product. The product is constructed
by using depth-first search. Unsatisfiable predicates are eliminated so that the
result is clean. Dead-end states are also eliminated. Random strings accepted by
the automaton can be generated uniformly from its minimized or determinized
form. Here the canonical structure of BDDs can be exploited to achieve uniformly
random selection of characters from predicates.

4 Recall the standard convention: a regex without the start-anchor ^ matches any
prefix and a regex without the end-anchor $ matches any suffix.
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3.2 Sanitizer Analysis

Sanitizers are string transformation routines (special purpose encoders) that
are extensively used in web applications, in particular as the first line of defense
against cross site scripting (XSS) attacks. There are at least three different string
sanitizers involved in a single web page (CssEncoder, UrlEncoder, HtmlEncoder)
that have very different semantics and sometimes use other basic encoders, e.g.,
UrlEncoder uses Utf8Encoder as the first step, while the raw input strings are in
fact Utf16 encoded during runtime. A large class of sanitizers (including all the
ones mentioned above) can be described and analyzed by using symbolic finite
state transducers (SFTs) [8]. SFAs are used in that context for certain operations
over SFTs, for example for checking domain equivalence of SFTs [18].

The character algebra here is modular integer linear arithmetic (or bitvector
arithmetic of an SMT solver, the SMT solver used in our implementation is
Z3 [6]). The main advantage of this choice is that it makes it possible to seam-
lessly combine the guards over characters with expressions over yields that are
the symbolic outputs of SFT moves. A concrete example of a yield is the follow-
ing transformation that takes a character and encodes it as a sequence of other
characters:

f : λx.[‘&’, ‘#’, (((x÷ 10) mod 10) + 48), ((x mod 10) + 48), ‘;’]

In general, a yield denotes a function from an input character to an output word
(of length that is independent of the input character). For example, a yield can
be a function λx.[x, x] that duplicates the input character. Thus, an image of an
SFTs is not necessarily SFA-recognizable, which is unlike the classical case where
the image of a finite state transducer is always regular. In the above example, for
example f(‘a’) is the sequence [‘&’, ‘#’, ‘9’, ‘7’, ‘;’] (or the string "&#97;").
A typical SFT move ρ looks like:

ρ : q
(λx.0<x<32)/λx.[‘&’, ‘#’, (((x÷10) mod 10)+48), ((x mod 10)+48), ‘;’]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

that is an HtmlEncoder rule for encoding control characters in state q and re-
maining in that state. For analyzing say idempotence of an encoder with such
rules, the encoder is composed with itself. As a result, this leads to more com-
plex guards and outputs of the resulting composed SFT (SFTs are closed under
such composition). Imagine for example composing the move ρ with itself, i.e.,
roughly speaking, feeding the five output characters as its inputs again five times
in a row. Then the guard of the composed rule will have subconditions such as
0 < (((x ÷ 10) mod 10) + 48) < 32 involving potentially nontrivial arithmetic
operations. (In this particular case the guard of the composed move will be in-
feasible.) One task of idempotence checking is domain equivalence of SFTs that
reduces to language equivalence of SFAs whose guards now involve arithmetic
operations of the above kind. Domain equivalence of SFTs essentially means
that they accept/reject the same input sequences. Note that not all inputs se-
quences are valid. Perhaps a bit surprising, but even raw input strings may
have misplaced characters (e.g. singleton occurrences of surrogates), assuming
the standard Utf16 encoding of characters.
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Abstract. This paper introduces an efficient weighted regognition al-
gorithm. It is based on a suitable tree structure called ZPC without
building the position automaton. The ZPC-structure results from the
compact language and the polynomial structure of weighted expressions.
We show that the time complexity of this algorithm is the best one
until now.

Keywords: (Partial) Conway semirings, formal power series, rational
weighted expressions, weighted recognition.

1 Introduction

Rational weighted expressions are finite representations for a class of formal
power series called rational [18,2]. The manipulation of these objects amounts
to work with weighted automata [17] by the equivalence between rational series
and series that are behaviours of finite state machines.

In this paper, we present a new efficient algorithm for computing weights
of words for rational weighted expressions. A classical algorithm consists to
build from a rational weighted expression E an equivalent weighted automa-
ton A = (λ, μ, γ) of dimension n whose the behaviour is the expression E, then
to evaluate the weight of a word w in A using the matrix product λμ(w) γ real-
ized in O(|w| × n2). This time complexity is due to the multiplication of a row
vector to a matrix for each letter of the word w. Recent research deals with the
conversion of rational weighted expressions into weighted automata [16,17]. In
[5], a step by step algorithm constructs a position automaton associated to a ra-
tional weighted expression in a cubic time w.r.t. the size of this expression. Next,
quadratic time algorithms have been proposed using either a generalization of
Thompson automata for multiplicities [15], or syntactic tree structures [7]. Thus,
the best time to recognize a word w including the construction of the weighted
automaton is O(|w| × |E|2). However the problem of the weighted recognition
is solved in O(|w| × |E|) by the use of a generalization of Thompson automata
without ε-transitions removal [15]. The purpose of this paper is to present a new
way to compute the weight of a word w for a rational weighted expression with-
out going through the construction of an equivalent weighted automaton. The
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best time complexity is preserved with a sharper tree structure [20,7] which is
really suited to rational weighted expressions. It generalizes the syntactic tree of
classical arithmetical expressions and stands halfway between rational weighted
expressions and associated weighted automata.

In the first part, some theoretical notions are reminded. A particular attention
is given to the definition of the star operation which must make possible the
weighted recognition. Section 3 is dedicated to the study of the compact language
which has been characterized for the first time in [7] under a different shape.
The polynomial structure of rational weighted expressions is also detailed. In
Section 4, a position automaton is constructed from the polynomial structure in
a quadratic time w.r.t. the size of the rational weighted expression. Next, the
ZPC-structure for multiplicities introduced in [7] is presented. The polynomial
structure is also used to build this tree structure in a linear time w.r.t. the size
of the rational weighted expression.

Before the conclusion, Section 6 is devoted to a new recognition algorithm in
O(|w|×|E|) of a word w for a rational weighted expression E. It assigns weights to
the nodes of the ZPC-structure by means of tree traversals. An overall description
of the whole process of computation is described. Proofs of the main results and
a detailed example are given in the appendix.

2 Theoretical Background

A semiring R = (R,+, ·, 0, 1) is a suitable set of weights for valued graphs
and finite state machines such that (R,+, 0) is a commutative monoid and
(R, ·, 1) is a monoid [11]. Moreover 0 is an absorbing element with respect
to multiplication and product distributes over sum. Conway semirings intro-
duced in [8] are equipped with an unary star operation ∗ : R → R satisfy-
ing the sum star identity (r1 + r2)

∗ = r∗1(r2r
∗
1)
∗ and the product star iden-

tity (r1r2)
∗ = 1 + r1(r2r1)

∗r2 for all r1, r2 ∈ R. Most important semirings
used in computer science and its applications are Conway semirings such that
the boolean semiring B = ({0, 1},+, ·, 0, 1) with 0∗ = 1∗ = 1, the semiring
N∞ = (N ∪ {∞},+, ·, 0, 1) with 0∗ = 1 and a∗ = ∞ for a �= 0, the semiring
R∞+ = (R+ ∪ {∞},+, ·, 0, 1) with a∗ = 1/(1− a) for 0 ≤ a < 1 and a∗ = ∞ for
a ≥ 1, and the tropical semiring (R+ ∪ {∞},min,+,∞, 0) with a∗ = 0 for all
a ∈ R. Explicit examples of non Conway semirings using the boolean semiring
can be found in [14]. For partial Conway semirings [4], the star operation is only
defined on an ideal of R. Furthermore, the sum star and product star identities
hold. The semiring Rp

+ = (R+,+, ·, 0, 1) with a∗ = 1/(1 − a) for 0 ≤ a < 1 is a
partial Conway semiring. It can be noticed that 0∗ = 1 for any (partial) Conway
semiring.

Let Σ be an alphabet. The empty word and the length of a word w in the free
monoid Σ∗ are symbolized respectively by ε and |w|. Mappings from Σ∗ into a
semiring R are called (formal) power series S and they are collected in the set
R〈〈Σ〉〉 [18]. A power series S can be written as S =

∑
w∈Σ∗ S(w)w. Polynomials

are power series whose the support {w ∈ Σ∗ : S(w) �= 0} is finite. The set of
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polynomials is denoted by R〈Σ〉. With the addition (S + T )(w) = S(w) + T (w)
and the Cauchy product ST (w) =

∑
w=uv S(u)T (v), the set R〈〈Σ〉〉 inherits the

structure of a semiring from R. Moreover, if R is a (partial) Conway semiring,
then the set R〈〈Σ〉〉 is again a (partial) Conway semiring [3,4] with the recursive
definition of the star operation:

S∗(ε) = S(ε)∗, S∗(w) = S∗(ε)
∑
uv=w
u
=ε

S(u)S∗(v) with w �= ε.

Weighted automata are finite-state machines encoded by linear representations
[9]. A linear representation A = (λ, μ, γ) with weights in a semiring R is given
by an alphabet Σ, a set Q of n states, a mapping μ from Σ into RQ×Q whose
the image of a letter is a transition matrix, the initial vector λ ∈ R1×Q, and the
final vector γ ∈ RQ×1. If we point out the nature of the weights, we just say R-
automaton. A state q ∈ Q is described as an initial (resp. final) state if (λ)1 q �= 0
(resp. (γ)q 1 �= 0). A transition labelled by the letter a ∈ Σ links the state p ∈ Q
to the state q ∈ Q if (μ(a))p q �= 0. The dimension of a weighted automaton A is
its number of states. The mapping μ can be extended as a morphism of monoids
from Σ∗ to RQ×Q. The behaviour ‖A‖ ∈ R〈〈A〉〉 of the weighted automaton A
is the power series defined by ‖A‖(w) = λμ(w) γ. The collection of power series
that are behaviours of weighted automata is denoted by REC(Σ,R). This set is
closed for rational laws: addition, Cauchy product, star, left and right exterior
products. Universal constructions are explained in details in [10]. A power series
is said rational [2] if it is in the closure of rational laws on letters in Σ and scalars
in R. The set of such power series is denoted by RAT(Σ,R). In [3] and more
recently in [4] is generalized the Kleene’s theorem [13] when R is respectively a
Conway semiring or a partial Conway semiring: RAT(Σ,R) = REC(Σ,R). For
any semiring R, as the recursive definition of the star operation remains valid in
the ideal of proper series S which verify S(ε) = 0, the Schützenberger’s theorem
holds [19].

The set RatEx(Σ,R) of weighted rational expressions, or again rational R-
expressions, over the alphabet Σ with weights in R is the universal free algebra
generated by Σ ∪ {0, 1} as constants, the binary operations “+” and “·”, the
unary operations “∗” and r ∈ R with left and right actions [6,17]. Depending on
the properties of the semiring R, the constant term function const of a rational
R-expression is inductively computed by:

const(0) = 0 const(1) = 1 const(a) = 0
const(F + G) = const(F) + const(G) const(F ·G) = const(F) const(G)

const(r F) = r const(F) const(F r) = const(F) r
const(F∗) = const(F)∗ if the right-hand side is defined in R

In the domain of the constant term function, a rational power series ‖E‖ is
recursively obtained by:

‖0‖ = 0 ‖1‖ = ε ‖a‖ = a
‖F + G‖ = ‖F‖+ ‖G‖ ‖F ·G‖ = ‖F‖ ‖G‖

‖r F‖ = r ‖F‖ ‖F r‖ = ‖F‖r
‖F∗‖ = ‖F‖∗
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A power series S belongs to RAT(Σ,R) if and only if there exits a rational R-
expression E in the domain of the constant term function such that S = ‖E‖ with
S(ε) = ‖E‖(ε) = const(E). The size and the alphabetical width of a rational R-
expression E, denoted by |E| and |E|Σ, are the number of nodes in the syntactic
tree of E and the number of all occurrences of letters in E. The alphabet ΣE ⊆ Σ
of E is composed of the letters appearing in E.

In the rest of this paper, from a rational R-expression E ∈ RatEx(Σ,R), we
want to construct a R-automaton whose the behaviour is ‖E‖. A Kleene theorem
must be verified. For this reason, we will consider three types of semirings:

(C) The semiring R is a Conway semiring
The construction will finish for any rational R-expression. The domain of the
constant term function is equal to RatEx(Σ,R) because the domain of the star
operation for the semiring R is R itself.

(PC) The semiring R is a partial Conway semiring
The construction will finish when rational R-expressions F such that F∗ is a
subexpression of E are taken in the domain of the constant term function. The
scalar ‖F‖(ε) must belong to the domain of the star operation for the semiring
R. Otherwise, an impracticable evaluation interrupts the process.

(NPC) The semiring R is not a (partial) Conway semiring
The construction will finish when the constant term of rational R-expressions
F such that F∗ is a subexpression of E is equal to 0. Otherwise the process is
interrupted.

Consequently one of the assumptions (C), (PC) or (NPC) is supposed until the
end of this paper. The weight of the word w ∈ Σ∗ for the rational R-expression
E ∈ RatEx(Σ,R) is then well-defined as the weight of w for the power series
‖E‖ which is the behaviour of a R-automaton.

3 Compact Language

In order to construct a R-automaton, the notion of compact language is intro-
duced. This structure is a set of terms retaining almost all the informations
encoded by rational R-expressions.

The linearized rational R-expression E
n

is deduced from the rational R-
expression E by ranking every letter occurrence with its position in E start-
ing from the non-negative integer n. In what follows, we denote E

1

more easily
by E. The letters of ΣE

n are called positions numbered from n of the rational
R-expression E. The letters of ΣE are merely called positions of the rational R-
expression E. Conversely the mapping h from Σ∞ = {ai : a ∈ Σ and i ∈ N} into
Σ associates the letter a to every position ai. It can be extended as a morphism
of algebras from RatEx(Σ∞, R) into RatEx(Σ,R) such that h(E

n

) = E. Let A
and B be two sets of items r1 ai1 r2 ai2 · · · aim−1 rm aim rm+1 where rj is a scalar
in R and aij is a position. Products A · B, r A and Ar are given respectively
by the set of items r1 ai1 · · · aim t bj1 · · · bjn sn+1 such that t is the evaluation
of rm+1 s1 for any terms r1 ai1 · · · aim rm+1 ∈ A and s1 bj1 · · · bjn sn+1 ∈ B,
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the set of items t ai1 · · · aim rm+1 such that t is the evaluation of r r1 for any
term r1 ai1 · · · aim rm+1 ∈ A, and the set of items r1 ai1 · · · aim t such that t
is the evaluation of rm+1 r for any term r1 ai1 · · · aim rm+1 ∈ A. The compact
language L(E

n

) over the alphabet ΣE is inductively defined as follows:

L(0
n
) = ∅ L(1

n
) = ∅ L(an) = {1 an 1}

L(F + G
n

) = L(F
n

) ∪ L(G|F|Σ+n

)

L(F ·Gn

) = L(F
n

) · L(G|F|Σ+n

) ∪ const(F)L(G
|F|Σ+n

) ∪ L(Fn

) const(G)

L(F∗
n

) = const(F)∗
(⋃

i≥1

(
L(F

n

) const(F)∗
)i)

L(rF
n

) = r L(F
n

) L(F r
n

) = L(F
n

) r

Terms in L(E
n

) are in the form α1 ai1 α2 ai2 · · · aim−1 αm aim αm+1 where aij ∈
ΣE and im+1 > · · · > i2 > i1 ≥ n. The compact language L(E

n

) is equivalent to
some polynomials First(E

n

), Last(E
n

) and Follow(E
n

, aij ):

First(E
n

) =
∑

α1 ai1∈Pref(L(E
n
))

α1 ai1

Last(E
n

) =
∑

aim αm+1∈Suff(L(E
n
))

αm+1 aim

Follow(E
n

, aij ) =
∑

αj+1aij+1
∈Fact(L(E

n
),aij

)

αj+1 aij+1 .

where Pref(L(E
n

)), Suff(L(E
n

)) and Fact(L(E
n

), aij ) are respectively the set of

prefix of terms in L(E
n

), the set of suffix, and the set of factors which follow the
position aij .

Example 1. With the partial Conway semiring Rp
+, let E = (13 a

∗ + 1
6 b
∗)
∗ · b be

a rational Rp
+-expression. The linearized version of E is E = (13 a1

∗ + 1
6 b2

∗)
∗ · b3.

The weight of the empty word for E is const(E) = (13 0
∗ + 1

6 0
∗)∗ 0 = 2 × 0 = 0.

From the compact language

L(E) = 2
⋃

i,j>0

{1
3
(1 a1 1)

i 2,
1

6
(1 b2 1)

i 2}j · {1 b3 1} ∪ {2 b3 1},

we deduce the First, Last and Follow polynomials:

First(E) = 2
3 a1 +

1
3 b2 + 2 b3 Last(E) = b3

Follow(E, a1) =
5
3 a1 +

1
3 b2 + 2 b3 Follow(E, b2) =

2
3 a1 +

4
3 b2 + 2 b3

Follow(E, b3) = 0

Recursive computations of First, Last and Follow polynomials are suggested:

First(0
n
) = 0 First(1

n
) = 0 First(an) = an

First(F + G
n

) = First(F
n

) + First(G
|F|Σ+n

)

First(F ·Gn

) = First(F
n

) + const(F)First(G
|F|Σ+n

)
First(F∗

n

) = const(F)
∗
First(F

n

)
First(r F

n

) = rFirst(F
n

) First(F r
n

) = First(F
n

)
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Last(0
n
) = 0 Last(1

n
) = 0 Last(an) = an

Last(F + G
n

) = Last(F
n

) + Last(G
|F|Σ+n

)

Last(F ·Gn

) = Last(F
n

) const(G) + Last(G
|F|Σ+n

)
Last(F∗

n

) = Last(F
n

) const(F)∗

Last(r F
n

) = Last(F
n

) Last(F r
n

) = Last(F
n

) r

Follow(0
n
, aj) = 0 Follow(1

n
, aj) = 0 Follow(an, aj) = 0

Follow(F + G
n

, aj) = Follow(F
n

, aj) + Follow(G
|F|Σ+n

, aj)

Follow(F ·Gn

, aj) = Follow(F
n

, aj) + Last(F
n

)(aj) First(G
|F|Σ+n

)

+Follow(G
|F|Σ+n

, aj)
Follow(F∗

n

, aj) = Follow(F
n

, aj) + Last(F∗
n

)(aj) First(F
n

)
Follow(r F

n

, aj) = Follow(F
n

, aj) Follow(F r
n

, aj) = Follow(F
n

, aj)

These recursive computations have been proved for rational weighted expressions
in [7] with slightly different definitions.

4 Position Automaton

It will be explained in the following sections how to avoid the conversion of a
rational R-expression into a R-automaton in order to speed up the weighted
recognition. However a specific construction proving the correctness of our new
algorithm is recalled.

Let E ∈ RatEx(Σ,R) be a rational R-expression. The family composed of
polynomials First(E), (Follow(E, aj))aj∈ΣE

and Last(E) is used to construct ef-

ficiently a weighted automaton AE = (λE, μE, γE) in a quadratic time w.r.t. the
size of E. It is called the position automaton [5,7] whose behaviour ‖AE‖ is the
rational power series ‖E‖. Let q0 /∈ ΣE and Q = ΣE ∪ {q0} be the set of states.
For each letter a ∈ Σ, we associate a transition matrix μE(a) ∈ RQ×Q given by:

(μE(a))p q =

⎧⎪⎨⎪⎩
First(E)(q) if p = q0 and h(q) = a,

Follow(E, p)(q) if h(p) ∈ Σ and h(q) = a,

0 otherwise.

In order to complete the definition of AE, we add:

(λE)1 q =

{
1 if q = q0,

0 otherwise,
(γE)q 1 =

{
const(E) if q = q0,

Last(E)(q) otherwise.

The dimension of the position automaton AE is |E|Σ + 1. The geometry is par-
ticular. Only the state q0 is initial with the weight 1. If const(E) �= 0, the state
q0 is also final with the weight const(E). From any state, we can not reach the
state q0. Finally, every incoming transition to a state q is indexed by the letter
h(q). The position automaton is then homogeneous. More precisely, the linear
representation of the position automaton AE is explicited by:
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1 01×ΣE

)
,

(
0 vE(a)

0ΣE×1 ME(a)

)
a∈A
,

(
const(E)
cE

))
where 01×ΣE

(respectively 0ΣE×1) is the row (respectively column) vector of size
|E|Σ composed only with the weight 0. The row vector vE(a) indicates either the
coefficients of all positions q in First(E) such that h(q) = a, or 0 otherwise. The
column vector cE encodes the coefficients of positions q in Last(E). Whereas,
the matrixME(a) associates at each pair of positions (p, q) such that h(q) = a the
scalar of q in the polynomial Follow(E, p), i.e. (ME(h(q)))p q = Follow(E, p)(q).
We set thatME(ε) is equal to the identity matrix in the matrix algebra RΣE×ΣE

and ME(w) = ME(w1) · · ·ME(wn) for any word w = w1 · · ·wn (wi ∈ Σ).
Moreover, we can easily observe that:

μE(w) =

(
0 vE(w1)ME(w2 · · ·wn)

0ΣE×1 ME(w)

)
.

Theorem 1 establishes the relation between the position automaton built from
a rational R-expression and its associated rational series.

Theorem 1. Let E ∈ RatEx(Σ,R) be a rational R-expression. The behaviour
of the position automaton AE is the rational series ‖E‖.

Let us mention that a detailed proof of the above theorem is given in [7]. The
position automaton is constructed in O(|E|2) from the rational R-expression E.
Consequently, the evaluation of the weight of a word for a rational R-expression
amounts to compute it for the corresponding position automaton.

Corollary 1. The weight of the word w ∈ ΣE
∗ for the rational R-expression

E ∈ RatEx(Σ,R) is: ‖E‖(w) = λE μE(w) γE.

The proof is straightforward from Theorem 1. The weight is obtained in three
steps. First, the rational R-expression is converted into the position automaton.
Next a row vector λ is produced by sequential multiplications of the initial vector
λE by the transition matrices μE(w1), . . . , μE(wn) if w = w1 · · ·wn (wi ∈ Σ). At
last, the weight results from the product λγE. The complexity of this algorithm
is O(|w| × |E|2).

The following example illustrates the construction of the position automaton
and the computation of a weight.

Example 2. We take the partial Conway semiring Rp
+ of Example 1 and the same

rational weighted expression E = (13 a
∗ + 1

6 b
∗)
∗ · b. According to the polynomial

structure First(E),(Follow(E, aj))aj∈ΣE
and Last(E), we obtain the following

position automaton:

λE =
(
1 0 0 0

)
μE(a) =

⎛⎜⎜⎝
0 2/3 0 0
0 5/3 0 0
0 2/3 0 0
0 0 0 0

⎞⎟⎟⎠ μE(b) =

⎛⎜⎜⎝
0 0 1/3 2
0 0 1/3 2
0 0 4/3 2
0 0 0 0

⎞⎟⎟⎠ γE =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .
where the weight of the word ab for the rational weighted expression E is 4

3 .
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Besides the construction of position automata, the polynomial structure consti-
tuted of First(E),(Follow(E, aj))aj∈ΣE

and Last(E) is also employed to build a

tree structure representing the rational R-expression E in a linear time w.r.t. the
size of E.

5 Tree Structure

In [20], the ZPC-structure was proposed to manipulate efficiently boolean ratio-
nal expressions, then extended to the multiplicity case in [7]. From a rational
R-expression E, this structure is based on two similar trees which are deduced
from the syntactic tree T(E) of E: the First tree TF(E) and the Last tree TL(E).
We present here a slightly different version of the ZPC-structure introduced in
[7]. Indeed, in our definition of the compact language, the scalars are considered
as unary functions rather than constants in order to reach a correct algebraic
formulation. The trees TF(E) and TL(E) encode respectively the First and
the Last polynomials. Some links representing the Follow polynomials connect
TL(E) to TF(E). By handling this structure, it turns out that the weight of a
non-empty word for a rational R-expression E can be computed faster.

A node in a syntactic tree will be written ν and the root will be denoted by
ν0. The nodes are indexed by either letters or positions, scalars and operators.
In the sequel, the node ν is identified with a position x when x is the label of
ν, knowing that x occurs only one time in the syntactic tree. If the arity of ν
is two, the nodes νl and νr represent respectively its left and right descendant.
When its arity is one, its unique descendant is νs. The relation of descendance
over the nodes of a tree is denoted �. It is the transitive closure of the relations
νl � ν, νr � ν or νs � ν according to the various cases. When the edges are
labelled by elements of the semiring R, we define the function of cost π. Suppose
that ν′ � ν. The cost π(ν, ν′) is the weight of the path from ν to ν′. Otherwise
π(ν, ν′) = 0. We set that π(ν, ν) = 1.

Let two rational R-expressions F,G ∈ RatEx(Σ,R), a scalar r ∈ R and a
letter (or a position) a ∈ Σ. We detail the inductive construction of the syntactic
tree of a rational R-expression:

T(0) = Ω T(1) = Ω T(a) = 〈 a , Ω 〉
T(F + G) = 〈+ , T(F) , T(G) 〉 T(F ·G) = 〈 · , T(F) , T(G) 〉

T(r F) = 〈 r , T(F) 〉 T(F r) = 〈 · , T(F) , T(r 1) 〉
T(F∗) = 〈 ∗ , T(F) 〉

The tree Ω is known as the empty tree appearing only when a node does not
have descendants or for the ZPC construction of the weighted expressions 0
and 1. For the construction of the tree T(F r), the rational R-expression F r
is seen as the expression F · (r 1). Nodes labelled by scalars and stars have
only one subtree while the other operations get two subtrees. For a node ν, the
rational R-expression Eν denotes the subexpression resulting from ν as root. An
external node indexed by a scalar r represents the rational R-expression r 1. The
coefficient const(ν) denotes the constant term const(Eν) of the subexpression Eν .
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The nodes of the First tree TF(E) are symbolized by ϕ and its edges are
directed from the root ϕ0 to the external nodes. The tree TF(E) is a copy of the
syntactic tree T(E) with the weight 1 for the edges except some of them. For
each non-external node ϕ labelled by the scalar “r”, the edge (ϕ, ϕs) is endowed
with the weight r. When a node ϕ is labelled by “·”, we associate the weight
const(ϕl) to the edge (ϕ, ϕr). If a node ϕ is labelled by “∗”, we assign the weight
const(ϕs)

∗ to the edge (ϕ, ϕs).
The Last tree TL(E) is also a copy of T(E) where each node is symbolized

with the greek letter ρ. Edges in TL(E) are directed from external nodes to the
root ρ0. Their weights are 1 except some of them. For each node ρ labelled by
“·”, we endow the weight const(ρr) to the edge (ρl, ρ). If a node ρ is labelled by
“∗”, the weight const(ρs)

∗ is assigned to the edge (ρs, ρ).
The Follow links connect the Last tree TL(E) to the First tree TF(E). Let

ρ be a node in TL(E) and ϕ its corresponding node in TF(E). For each node
ρ labelled by “·”, we set a link from ρl to ϕr. For any node ρ labelled by “∗”,
we create a link from ρs to ϕ. We denote by Δ the set of Follow links, and by
Δx = {(ρ, ϕ) ∈ Δ|x � ρ} the set of Follow links associated to the position x.

Lemma 1. Let E be a rational R-expression. At most one Follow link leaves a
node ρ of TL(E).

Example 3. Carrying on with Example 2, the ZPC-structure of the rational Rp
+-

expression E = (13 a
∗ + 1

6 b
∗)∗ · b is given in Fig. 1.

TF(E)

.

b3∗

+

1
3

1
6

∗ ∗

a1 b2

TL(E)

.

b3∗

+

1
3

1
6

∗ ∗

a1 b2

2

1 1

1
3

1
6

1 1

2

1 1

1 1

1 1

1 2 0 1

1 1

1

1

Fig. 1. The ZPC-structure of the rational Rp
+-expression E = ( 1

3
a∗ + 1

6
b∗)∗ · b.

The construction of the tree TF(E), the tree TL(E) and the Follow links is
made in O(E). The number of nodes in TF(E) (resp. TL(E)) is |E|. These results
appear in [7].



Computing Weights 33

The polynomial structure {First(E), (Follow(E, x))x∈ΣE
,Last(E)} can be ex-

pressed by means of paths in the trees of the ZPC-structure. We establish the
relations between the polynomial First(E) (resp. Last(E), Follow(E, x))) with
the tree TF(E) or the tree TL(E):

Proposition 1. Let E be a rational R-expression and x a position. The follow-
ing relations are verified:

First(E) =
∑

x∈ΣE
π(ϕ0, x)x Last(E) =

∑
x∈ΣE

π(ρ0, x)x

Follow(E, x) =
∑

y∈ΣE

∑
(ρ,ϕ)∈Δx

π(ρ, x)π(ϕ, y)y

In the following section, a new algorithm is introduced for computing the weight
of a word for a rational R-expression with the best time complexity known until
now. This time complexity is due to the geometry of the ZPC-structure and its
efficient tree traversals.

6 Recognition Algorithm

In order to compute efficiently the weight of a non-empty word w = w1 · · ·wn

(wi ∈ Σ) for a rational R-expression E, we use here the ZPC-structure of this

rational R-expression. The algorithm consists in assigning coefficients α
(i)
ϕ (resp.

β
(i)
ρ ) to each nodes of the tree TF(E) (resp. TL(E)). In this way, a top-down

traversal of TF(E) and a bottom-up traversal of TL(E) are performed for each
letter wi (i = 1, · · · , n) of the word w.

Let w = w1 · · ·wn ∈ Σ∗ \ {ε} such that wi ∈ Σ (0 < i ≤ n). At the beginning
of the recognition process, a particular traversal of TF(E) is done for the first

letter of the word w in order to produce the weights α
(1)
ϕ :

α(1)ϕ =

⎧⎪⎨⎪⎩
1 if ϕ = ϕ0,

0 if ϕ = x and h(x) �= w1,

α
(1)
ϕ′ π(ϕ′, ϕ) otherwise.

where ϕ′ is the predecessor of ϕ �= ϕ0 in the tree TF(E). Next the computation

of the weight α
(i)
ϕ is dependent on the weight α

(i)
ϕ′ and the weight β

(i−1)
ρ if there

exists a Follow link (ρ, ϕ) ∈ Δ:

α(i)ϕ0
=

{
β
(i−1)
ρ if (ρ, ϕ0) ∈ Δ,

0 otherwise,

α(i)ϕ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ϕ = x and h(x) �= wi,

α
(i)
ϕ′ π(ϕ′, ϕ) + β

(i−1)
ρ if there exists (ρ, ϕ) ∈ Δ,

α
(i)
ϕ′ π(ϕ′, ϕ) + β

(i−1)
ρ1 + β

(i−1)
ρ2 if there exists (ρ1, ϕ), (ρ2, ϕ) ∈ Δ,

α
(i)
ϕ′ π(ϕ′, ϕ) otherwise,
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where ϕ′ is the predecessor of ϕ �= ϕ0 in the tree TF(E). The computation of

the weight β
(i)
ρ is dependent on the weights β

(i)
ρ′ such that ρ′ is a descendant of

ρ in the tree TL(E), and the weights (α
(i)
ϕ ) if ϕ is an external node of TF(E):

β(i)x = α(i)x ,

β(i)ρ = 0 if ρ is an external node non labelled by a position,

β(i)ρ =

{
β
(i)
ρs π(ρs, ρ) if ρ has one descendant,

β
(i)
ρl π(ρl, ρ) + β

(i)
ρr otherwise.

From Proposition 1, the scalar α
(1)
x corresponds to the weight of the position x in

the polynomial First(E) if h(x) = w1. Moreover we can bring out the coefficients

α
(i)
x and the coefficients β

(i)
x (1 ≤ i ≤ n) where x is a position:

Lemma 2. The following relations are verified:

α(1)x =

{
First(E)(x) if h(x) = w1,

0 otherwise,

α(i)x =

⎧⎪⎪⎨⎪⎪⎩
0 if h(x) �= wi,∑
y∈ΣE

∑
x�ϕ,y�ρ
(ρ,ϕ)∈Δy

α(i−1)
y π(ρ, y)π(ϕ, x) otherwise,

β(i)x = α(i)x .

Lemma 2 and Proposition 2 allow to find the weight of a non-empty word for a
rational R-expression.

Proposition 2. The weight of the non-empty word w = w1 · · ·wn (wi ∈ Σ) for
the rational R-expression E is:

‖E‖(w) = β(n)ρ0
.

At this moment, the main result of this work using the ZPC-structure can be
expressed:

Theorem 2. The time complexity of the recognition of a word w ∈ Σ∗ for a
rational R-expression E is O(|w| × |E|).

7 Conclusion

In this paper, we have mentioned the efficiency of the ZPC-structure in or-
der to compute weights of words for rational weighted expressions. Indeed the
ZPC-structure can be seen as a convenient generalization of syntactic trees of
arithmetical expressions in order to manipulate weighted expressions where the
star operator appears. It is the internal structure in our toolbox dedicated
for symbolic manipulations of rational weighted expressions and weighted au-
tomata [1] which is included in the algebraic combinatorics open-source package
MuPAD-Combinat [12].



Computing Weights 35

Acknowledgements. We would like to thank Jacques Sakarovitch who put
this work in the right way.

References
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Abstract. Recently, Dassow et al. connected partial words and regular
languages. Partial words are sequences in which some positions may be
undefined, represented with a “hole” symbol 
. If we restrict what the
symbol 
 can represent, we can use partial words to compress the repre-
sentation of regular languages. Doing so allows the creation of so-called

-DFAs which are smaller than the DFAs recognizing the original lan-
guage L, which recognize the compressed language. However, the 
-DFAs
may be larger than the NFAs recognizing L. In this paper, we investigate
a question of Dassow et al. as to how these sizes are related.

1 Introduction

The study of regular languages dates back to McCulloch and Pitts’ investigation
of neuron nets (1943) and has been extensively developing since (for a survey see,
e.g., [7]). Regular languages can be represented by deterministic finite automata,
DFAs, by non-deterministic finite automata, NFAs, and by regular expressions.
They have found a number of important applications such as compiler design.
There are well-known algorithms to convert a given NFA to an equivalent DFA
and to minimize a given DFA, i.e., find an equivalent DFA with as few states as
possible (see, e.g., [6]). It turns out that there are languages accepted by DFAs
that have 2n states while their equivalent NFAs only have n states.

Recently, Dassow et al. [4] connected regular languages and partial words.
Partial words first appeared in 1974 and are also known under the name of
strings with don’t cares [5]. In 1999, Berstel and Boasson [2] initiated their
combinatorics under the name of partial words. Since then, many combinatorial
properties and algorithms have been developed (see, e.g., [3]). One of Dassow et
al.’s motivations was to compress DFAs into smaller machines, called �-DFAs.
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under Grant No. DMS–1060775.
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More precisely, let Σ be a finite alphabet of letters. A (full) word over Σ is
a sequence of letters from Σ. We denote by Σ∗ the set of all words over Σ, the
free monoid generated by Σ under the concatenation of words where the empty
word ε serves as the identity. A language L over Σ is a subset of Σ∗. It is regular
if it is recognized by a DFA or an NFA. A DFA is a 5-tupleM = (Q,Σ, δ, q0, F ),
where Q is a set of states, δ : Q × Σ → Q is the transition function, q0 ∈ Q is
the start state, and F ⊆ Q is the set of final or accepting states. In an NFA, δ
maps Q × Σ to 2Q. We call |Q| the state complexity of the automaton. Many
languages are classified by this property.

Setting Σ� = Σ ∪ {�}, where � �∈ Σ represents undefined positions or holes,
a partial word over Σ is a sequence of symbols from Σ�. Denoting the set of
all partial words over Σ by Σ∗� , a partial language L′ over Σ is a subset of Σ∗� .
It is regular if it is regular when being considered over Σ�. In other words, we
define languages of partial words, or partial languages, by treating � as a letter.
They can be transformed to languages by using �-substitutions over Σ. A �-
substitution σ : Σ∗� → 2Σ

∗
satisfies σ(a) = {a} for all a ∈ Σ, σ(�) ⊆ Σ, and

σ(uv) = σ(u)σ(v) for u, v ∈ Σ∗� . As a result, σ is fully defined by σ(�), e.g., if
σ(�) = {a, b} and L′ = {�b, �c} then σ(L′) = {ab, bb, ac, bc}. If we consider this
process in reverse, we can “compress” languages into partial languages.

We consider the following question from Dassow et al. [4]: Are there regular
languages L ⊆ Σ∗, L′ ⊆ Σ∗� and a �-substitution σ with σ(L′) = L such that
the minimal state complexity of a DFA accepting L′ or the minimal state com-
plexity of a �-DFA accepting L, denoted by min�-DFA(L), is (strictly) less than
the minimal state complexity of a DFA accepting L, denoted by minDFA(L)?
Reference [4, Theorem 4] states that for every regular language L, we have
minDFA(L) ≥ min�-DFA(L) ≥ minNFA(L), where minNFA(L) denotes the mini-
mal state complexity of an NFA accepting L, and there exist regular languages L
such that minDFA(L) > min�-DFA(L) > minNFA(L). On the other hand, [4, The-
orem 5] states that if n ≥ 3 is an integer, regular languages L and L′ exist such
that min�-DFA(L) ≤ n+ 1, minDFA(L) = 2n − 2n−2, minNFA(L

′) ≤ 2n+ 1, and
min�-DFA(L

′) ≥ 2n − 2n−2. This was the first step towards analyzing the sets:

Dn = {m | there exists L such that min�-DFA(L) = n and minDFA(L) = m},
Nn = {m | there exists L such that min�-DFA(L) = n and minNFA(L) = m}.

Our paper, whose focus is the analysis of Dn and Nn, is organized as follows.
We obtain in Section 2 values belonging to Dn by looking at specific types
of regular languages, followed by values belonging to Nn in Section 3. Due to
the nature of NFAs, generating a sequence of minimal NFAs from a �-DFA is
difficult. However, in the case minDFA(L) > min�-DFA(L) = minNFA(L), we
show how to use concatenation of languages to create an L′ with systematic
differences between min�-DFA(L

′) and minNFA(L
′). We also develop a way of

applying integer partitions to obtain such values. We conclude with some remarks
in Section 4.
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2 Constructs for Dn

This section provides some values for Dn by analyzing several classes of regular
languages. In the description of the transition function of our DFAs and �-DFAs,
all the transitions lead to the error state (a sink non-final state) unless otherwise
stated. Also, in our figures, the error state and transitions leading to it have
been removed for clarity. We will often refer to the following algorithm.

Given a �-DFA M ′ = (Q′, Σ�, δ
′, q′0, F

′) and a �-substitution σ, Algorithm 1
gives a minimal DFA that accepts σ(L(M ′)):

– Build an NFA N = (Q′, Σ, δ, q′0, F
′) that accepts σ(L(M ′)), where δ(q, a) =

{δ′(q, a)} if a ∈ Σ \ σ(�) and δ(q, a) = {δ′(q, a), δ′(q, �)} if a ∈ σ(�).
– Convert N to an equivalent minimal DFA.

First, we look at languages of words of equal length. We give three constructs.
The first two both use an alphabet of variable size, while our third one restricts
this to a constant k. We prove the second construct which is illustrated in Fig. 1.

Theorem 1. For n ≥ 1,
⌊
n−1
3

⌋2
+
⌊
n−1
3

⌋
+ 2 + (n− 1) mod 3 ∈ Dn.

Theorem 2. For n ≥ 1, if x =

⌊√
1+8(n−1)−1

2

⌋
then 2x + n − 1 − x(x+1)

2 ∈ Dn

for languages of words of equal length.

Proof. We start by writing n as n = r+
∑x

i=1 i such that 1 ≤ r ≤ x+1 (from the
online encyclopedia of integer sequences, x is as stated). LetM = (Q,Σ, δ, q0, F )
be the DFA defined as follows:

–
{
(i, j) | 0 ≤ i < x, 0 ≤ j < 2i, (i, j) �= (x − 1, 0)

}
∪{(i, 0) | x ≤ i ≤ x+ r} =

Q, q0 = (0, 0), F = {(x+ r − 1, 0)}, and (x+ r, 0) is the error state;
– Σ = {a0, a1, c} ∪ {bi | 1 ≤ i < x};
– δ is defined as follows:

• δ((i, j), ak) = (i + 1, 2j + k) for all (i, j), (i + 1, 2j + k) ∈ Q, ak ∈ Σ,
i �= x− 1, with the exception of δ((x− 2, 0), a0) = (x+ r, 0),

• δ((x− 1, i), bj) = (x, 0) for all (x− 1, i) ∈ Q, bj ∈ Σ where the jth digit
from the right in the binary representation of i is a 1,

• δ((i, 0), c) = (i+ 1, 0) for x ≤ i < x+ r.

Each word accepted by M can be written in the form w = ubic
r−1, where u is a

word of length x−1 over {a0, a1} except for ax−1
0 , and bi belongs to some subset

of Σ unique for each u. This implies that M is minimal with 2x+n− 1− x(x+1)
2

states. We can build the minimal equivalent �-DFA for σ(�) = {a0, a1}, giving
M ′ = (Q′, Σ�, δ

′, q′0, F
′) with n states as follows:

– {(i, j) | 0 ≤ i < x, 0 ≤ j ≤ i, (i, j) �= (x− 1, 0)} ∪ {(i, 0) | x ≤ i ≤ x+ r} =
Q′, q′0 = (0, 0), F ′ = {(x+ r − 1, 0)}, and (x+ r, 0) is the error state;

– δ′ is defined as follows:
• δ′((i, 0), a1) = (i + 1, i+ 1) for 0 ≤ i < x− 1,
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• δ′((i, j), �)=(i + 1, j) for all (i, j)∈Q′\{(x− 2, 0)} where i < x− 1,
• δ′((x − 1, i), bx−i) = (x, 0) for 1 ≤ i < x,
• δ′((x + i, 0), c) = (x+ i+ 1, 0) for 0 ≤ i < r − 1.

Observe that L(M ′) = {�x−i−1a1�i−1bic
r−1 | 1 ≤ i < x}, so σ(L(M ′)) = L(M).

Each accepted word consists of a unique prefix of length x − 1 paired with a
unique bi ∈ Σ, and r states are needed for the suffix cr−1, which implies that
M ′ is minimal over all �-substitutions. Note that |Q′| = (

∑x
i=1 i) + r = n. ��

Fig. 1. M (left) and M ′ (right) from Theorem 2, n = 11, x = 4

Theorem 3. For k > 1 and l, r ≥ 0, let n = k(k+2l+3)
2 + r + 2. Then

2k+1 + l(2k − 1) + r ∈ Dn,

for languages of words of equal length.

Next, we look at languages of words of bounded length. The following theorem
is illustrated in Fig. 2.

Theorem 4. For n ≥ 3, [n, n+ (n−2)(n−3)
2 ] ⊆ Dn.

Proof. Write m = n+ r +
∑n−3

i=l i for the lowest value of l ≥ 1 such that r ≥ 0.
Let M = (Q,Σ, δ, q0, F ) be defined as follows:

– Σ = {a0, ar} ∪ {ai | l ≤ i ≤ n− 3};
– Q = {(i, 0) | 0 ≤ i < n} ∪ {(i, j) | aj ∈ Σ and 1 ≤ i ≤ j}, q0 = (0, 0), F =
{(n− 2, 0)} ∪ {(i, i) | i �= 0, (i, i) ∈ Q}, and (n− 1, 0) is the error state;

– δ is defined by δ((0, 0), ai) = (1, i) for all ai ∈ Σ where i > 0, δ((i, j), a0) =
(i+1, j) for all (i, j) ∈ Q, i �= j, and δ((i, i), a0) = (i+1, 0) for all (i, i) ∈ Q.

Then L(M) = {aian−3
0 | ai ∈ Σ} ∪ {aiai−1

0 | ai ∈ Σ, i �= 0}. For each ai, i �= 0,
M requires i states. These are added to the error state and n− 1 states needed
for an−2

0 . Thus,M is minimal with m states. LetM ′ = (Q′, Σ�, δ
′, q′0, F

′), where
Q′ = {i | 0 ≤ i < n}, q′0 = 0, F ′ = {n − 2}, and n − 1 is the error state;
δ′ is defined by δ′(0, �) = 1, δ′(0, ai) = n − 1 − i for all ai ∈ Σ, i > 0, and
δ′(i, a0) = i + 1 for 1 ≤ i < n − 1. For σ(�) = Σ, we have σ(L(M ′)) = L(M).
Furthermore, M ′ needs n− 1 states to accept �an−3

0 ∈ L(M ′), so M ′ is minimal
with n states. ��
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Fig. 2. M (top) and M ′ (bottom) from Theorem 4, n = 7 and m = 15 (l = 3, r = 1)

Theorem 4 gives elements of Dn close to its lower bound. To find an upper
bound, we look at a specific class of machines. Let n ≥ 2 and let

Rn = ({0, . . . , n− 1}, {a0} ∪ {(αi)j | 2 ≤ i+2 ≤ j ≤ n− 2}�, δ′, 0, {n− 2}) (1)

be the �-DFA where n− 1 is the error state, and δ′ is defined by δ′(i, �) = i+ 1
for 0 ≤ i < n− 2 and δ′(i, (αi)j) = j for all (αi)j . Fig. 3 gives an example when
n = 7. Set Ln = σ(L(Rn)), where σ is the �-substitution that maps � to the
alphabet. Note that Rn is minimal for L(Rn), since we need at least n− 1 states
to accept words of length n− 2 without accepting longer strings. Furthermore,
Rn is minimal for σ, as each letter (αi)j encodes a transition between a unique
pair of states (i, j). This also implies that Rn is minimal for any �-substitution.
The next two theorems look at the minimal DFA that accepts Ln. We refer the
reader to Fig. 3 to visualize the ideas behind the proofs.

Referring to Fig. 3, in the DFA, each explicitly labelled transition is for the
indicated letters. From each state, there is one transition that is not labelled -
this represents the transition for each letter not explicitly labelled in a different
transition from that state. (For example, from state 0, a3 transitions to {1, 3},
a2 transitions to {1, 2}, a4 transitions to {1, 4}, a5 transitions to {1, 5}, and all
other letters a0, b3, b4, b5, c4, c5, d5 transition to {1}). The idea behind the proof
of Theorem 6 is that we start with this DFA. We introduce a new letter, “e”,
into the alphabet and add a new state, {2, 3, 4, 5}, along with a transition from
{1, 3} to {2, 3, 4, 5} for e. We want to alter the �-DFA to accommodate this. So
we add a transition for e from 1 to 3 and from 3 to 5 (represented by dashed
edges). All other states transition to the error state for e. Now consider the string
a3e. We get four strings that correspond to some partial word that produces a3e
after substitution: a3e, a3�, �e, and ��. When the �-DFA reads the first, it halts
in state 5; on the second, it halts in 4; on the third, it halts in 3; and for the
fourth, it halts in 2, which matches the added state {2, 3, 4, 5}. Finally, we need
to consider the effect of adding e and the described transitions to the �-DFA -
does it change the corresponding minimal DFA in other ways? To show that it
does not, all transitions with dashed edges in the DFA represent the transitions
for e. For example, from state {2, 3}, an e transitions to {3, 4, 5}.
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Fig. 3. 
-DFA R7 (top if the dashed edges are seen as solid) and minimal DFA for
σ(L7) (bottom if the dotted element is ignored and the dashed edges are seen as solid)
where α0 = a, α1 = b, α2 = c, α3 = d and σ(
) = {a0, a2, a3, a4, a5, b3, b4, b5, c4, c5, d5}.

Theorem 5. Let Fib be the Fibonacci sequence defined by Fib(1) = Fib(2) = 1
and for n ≥ 2, Fib(n+1) = Fib(n)+Fib(n−1). Then for n ≥ 1, Fib(n+1) ∈ Dn.

Proof. For n ≥ 2, applying Algorithm 1, convert M ′ = Rn to a minimal DFA
M = (Q,Σ, δ, q0, F ) that accepts Ln, where Q ⊆ 2{0,...,n−1}. For each state
{i} ∈ Q for 0 ≤ i ≤ n − 2, M requires additional states to represent each
possible subset of one or more states of {i + 1, . . . , n− 2} that M ′ could reach
in i transitions. Thus M is minimal with number of states

1 +

n−2∑
i=0

min{i,n−2−i}∑
j=0

(
n− 2− i
j

)
= Fib(n+ 1),

where the 1 refers to the error state and where the inside sum refers to the
number of states with minimal element i. ��

Theorem 6. For n ≥ 3, the following is the least upper bound for m ∈ Dn in
the case of languages of words of bounded length:

n−1∑
i=0

(
n− 1− �log2 i�

i

)
.

Our next result restricts the alphabet size to two.

Theorem 7. For n ≥ 1,
�n

2 �(�n
2 �+1)+�n−1

2 �(�n−1
2 �+1)

2 + 1 ∈ Dn.

Finally, we look at languages with some arbitrarily long words.
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Theorem 8. For n ≥ 1, 2n − 1 is the least upper bound for m ∈ Dn.

Proof. First, let M ′ be a minimal �-DFA with �-substitution σ. If we convert
this to a minimal DFA accepting σ(L(M ′)) using Algorithm 1, the resulting DFA
has at most 2n − 1 states, one for each non-empty subset of the set of states in
M ′. Thus an upper bound for m ∈ Dn is 2n − 1.

Now we show that there exists a regular language L such that min�-DFA(L) =
n and minDFA(L) = 2n−1. LetM ′ = (Q′, Σ�, δ

′, q′0, F
′) with Q′ = {0, . . . , n−1},

Σ = {a, b}, q′0 = 0, F ′ = {n− 1}, and δ′ defined by δ′(i, α) = i + 1 for 0 ≤ i <
n− 1, α ∈ {�, a}; δ′(n− 1, α) = 0 for α ∈ {�, a}; and δ′(i, b) = 0 for 0 ≤ i < n.
Then M ′ is minimal, since �n−1 ∈ L(M ′) but �i /∈ L(M ′) for 0 ≤ i < n − 1.
After constructing the minimal DFA M = (Q,Σ, δ, q0, F ) using Algorithm 1
for σ(�) = {a, b}, we claim that all non-empty subsets of Q′ are states in Q. To
show this, we construct a word that ends in any non-empty subset P of Q′. Let
P = {p0, . . . , px} with p0 < · · · < px. We start with apx . Then create the word
w by replacing the a in each position px − pi − 1, 0 ≤ i < x, with b.

We show that w ends in state P by first showing that for each pi ∈ P , some
partial word w′ exists such that w ∈ σ(w′) and M ′ halts in pi when reading w′.
First, suppose pi = px. Since |w| = px, let w′ = �px . For w′, M ′ halts in px.
Now, suppose pi �= px. Let w′ = �px−pi−1b�pi . After reading �px−pi−1, M ′ is in
state px − pi − 1, then in state 0 for b, and then in state pi after reading �pi .

Now suppose a partial word w′ exists such that w ∈ σ(w′) where M ′ halts
in p for p /∈ P . Suppose p > px. Each state i ∈ Q′ is only reachable after i
transitions and |w′| = px, so M ′ cannot reach p after reading w′. Now suppose
p < px. Then M

′ needs to be in state 0 after reading px− p symbols to end in p,
so we must have w′[px− p− 1] = b. However, w[px − p− 1] = a, a contradiction.

Furthermore, no states of Q are equivalent, as each word w ends in a unique
state of Q. Therefore, M has 2n − 1 states, and 2n − 1 ∈ Dn. ��

To further study intervals in Dn, we look at the following class of �-DFAs.
For n ≥ 2 and 0 ≤ r < n, let

Rn,r{s1, . . . , sk} = ({0, . . . , n− 1}, {a0, a1, . . . , ak}�, δ′, 0, {n− 1}) (2)

be the �-DFA where {s1, . . . , sk} is a set of tuples whose first member is a letter
ai, distinct from a0, followed by one or more states in ascending order, and
where δ′(q, ai) = 0 for all (q, ai) that occur in the same tuple, δ′(i, �) = i+1 for
0 ≤ i ≤ n− 2, δ′(n− 1, �) = r, and δ′(q, ai) = δ′(q, �) for all other (q, ai). Since
Rn,r{} is minimal for any �-substitution, and since � and non-� transitions from
any state end in the same state, Algorithm 1 converts Rn,r{} to a minimal DFA
with exactly n states. The next result looks at �-DFAs of the form Rn,r{(a1, 0)}.

Theorem 9. For n ≥ 2 and 0 ≤ i < n, n+ (n− 1)i ∈ Dn.

Proof. Let a0 = a and a1 = b, let r = n − i − 1, let σ(�) = Σ = {a, b}, and let
M ′ = Rn,r{(b, 0)}. Using Algorithm 1, let M = (Q,Σ, δ, {0}, F ) be the minimal
DFA accepting σ(L(M ′)). For all words overΣ of length less than n,M must halt
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in some state P ∈ Q, a subset of consecutive states of {0, . . . , n− 1}. Moreover,
any state P ∈ Q of consecutive states of {0, . . . , n− 1}, with minimal element p,
is reached by M when reading bqap for some q ≥ 0. Also, any accepting states
in Q that are subsets of {0, . . . , n − 1} of size n − r or greater are equivalent,
as are any non-accept states that are subsets of size n− r or greater such that
the n− r greatest values in each set are identical. This implies that M requires∑n

j=n−i j states for words of length less than n.
For words of length n or greater, M may halt in a state P ∈ Q that is not a

subset of consecutive states of {0, . . . , n − 1}, as for some r < p < n − 1, it is
possible to have r, n− 1 ∈ P but p /∈ P . This only occurs when a transition from
a state P with n−1 ∈ P occurs, in which case,M moves to a state P ′ containing
r, corresponding to δ′(n−1, α) for all α ∈ Σ�. Thus, all states can be considered
subsets of consecutive values if we consider r consecutive to n − 1 or, in other
words, if we allow values from n− 1 to r to “wrap” around to each other. This
means thatM requires

∑i−1
j=1 j states for words of length n or greater. Therefore,∑n

j=n−i j +
∑i−1

j=1 j = n+ (n− 1)i ∈ Dn. ��

3 Constructs for Nn

Let Σ be an alphabet, and let Σi = {ai | a ∈ Σ} for all integers i, i > 0. Let
σi : Σ → Σi such that a �→ ai, and let #j be a symbol in no Σi, for all i and
j. Given a language L over Σ, the ith product of L and the ith #-product of L
are, respectively, the languages

πi(L) =

i∏
j=1

σj(L), π
′
i(L) = σ1(L)

i∏
j=2

{#j−1}σj(L).

In general, we call any construct of this form, languages over different alphabets
concatenated with # symbols, a #-concatenation. With these definitions in hand,
we obtain our first bound for Nn.

Theorem 10. For n > 0,
[
n−

⌊
n−1
3

⌋
, n
]
⊆ Nn.

Proof. Let L = {aa, ba, b} be a language over Σ = {a, b}. A minimal NFA
recognizing πi(L) is defined as having 2i + 1 states, q0, . . . , q2i, with accepting
state q2i, starting state q0, and transition function δ defined by δ(q2j , bj+1) =
{q2j+1, q2(j+1)}, δ(q2j , aj+1) = {q2j+1}, and δ(q2j+1, aj+1) = {q2(j+1)} for j < i.
It is easy to see this is minimal: the number of states is equal to the maximal
length of the words plus one. A minimal �-DFA recognizing πi(L) is defined as
having 3i+1 states, q0, . . . , q3i−1 and qerr, with accepting states q3i−1 and q3i−2,
starting state q0, and transition function δ defined as follows:

– δ(q0, b1) = q2, δ(q0, �) = q1, and δ(q1, a1) = q2;
– δ(q3j−1, aj+1) = q3j , δ(q3j−1, bj+1) = q3j+1, δ(q3j , aj+1) = q3(j+1)−1, and
δ(q3j+1, aj+1) = q3(j+1)−1 for 0 < j < i;
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– δ(q3j+1, aj+2) = δ(q3(j+1)−1, aj+2) and δ(q3j+1, bj+2) = δ(q3(j+1)−1, bj+2)
for 0 < j < i− 1.

The �-substitution corresponds to Σ1 = {a1, b1} here. This is minimal.
Now, fix n; take any i ≤ �n−1

3 �. We can write n = 3i+ r + 1, for some r ≥ 0.
Let {αj}0≤j≤r be a set of symbols not in the alphabet of πi(L). Minimal NFA
and �-DFA recognizing πi(L) ∪ {α0 · · ·αr} can clearly be obtained by adding
to each a series of states q′0 = q0, q

′
1, . . . , q

′
r, and q

′
r+1 = q2i and q′r+1 = q3i−1

respectively, with δ(q′j , αj) = q′j+1 for 0 ≤ j ≤ r. Hence, for i ≤ �n−1
3 �, we

can produce a �-DFA of size n = 3i + r + 1 which reduces to an NFA of size
2i+ r + 1 = n− i. ��

Our general interval is based on π′i(L), where no �-substitutions exist over
multiple Σi’s. We need the following lemma.

Lemma 1. Let L,L′ be languages recognized by minimal NFAs N = (Q,Σ, δ,
q0, F ) and N ′ = (Q′, Σ′, δ′, q′0, F

′), where Σ ∩Σ′ = ∅. Moreover, let # /∈ Σ,Σ′.
Then L′′ = L{#}L′ is recognized by the minimal NFA N ′′ = (Q∪Q′, Σ ∪Σ′, δ′′,
q0, F

′), where δ′′(q, a) = δ(q, a) if q ∈ Q and a ∈ Σ; δ′′(q, a) = δ′(q, a) if q ∈ Q′
and a ∈ Σ′; δ′′(q,#) = {q′0} if q ∈ F ; and δ′′(q, a) = ∅ otherwise. Consequently,
the following hold:

1. For any L, minNFA(π
′
i(L)) = iminNFA(L);

2. Let L1, . . . , Ln be languages whose minimal DFAs have no error states and
whose alphabets are pairwise disjoint, and without loss of generality, let
minDFA(L1)−min�-DFA(L1) ≥ · · · ≥ minDFA(Ln)−min�-DFA(Ln). Then

min
�-DFA

(L1{#1}L2{#2} · · ·Ln) = 1 + min
�-DFA

(L1) +

n∑
i=2

min
DFA

(Li).

Theorem 11. Let L be a language whose minimal DFA has no error state.
Moreover, assume min�-DFA(L) = minNFA(L). Fix some n and j, 0 < j ≤⌊
n−min�-DFA(L)−1

minDFA(L)

⌋
. Then n− j (minDFA(L)−min�-DFA(L))− 1 ∈ Nn.

Proof. Since 0 < j ≤
⌊
n−min�-DFA(L)−1

minDFA(L)

⌋
, we can write n = 1 + min�-DFA(L) +

jminDFA(L) + r for some r. Then, by Lemma 1(2), this corresponds to n =
min�-DFA(π

′
j+1(L)∪{w}), where w is a word corresponding to an r-length chain

of states, as we used in the proof of Theorem 10. We also have minNFA(π
′
j+1(L)∪

{w}) = (j + 1)min�-DFA(L) + r using Lemma 1(1) and our assumption that
min�-DFA(L) = minNFA(L). Alternatively,

min
NFA

(π′j+1(L) ∪ {w}) = n− j
(
min
DFA

(L)− min
�-DFA

(L)
)
− 1.

Our result follows. ��

The above linear bounds can be improved, albeit with a loss of clarity in the
overall construct. Consider the interval of values obtained in Theorem 4. Fix
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an integer x. The minimal integer y such that x ≤ y + (y−2)(y−3)
2 is clearly

nx =
⌈
3+
√
8x−15
2

⌉
, for x ≥ 4. Associate with x and nx the corresponding DFAs

and �-DFAs used in the proof of Theorem 4, i.e., let Ln,m be the language in
the proof with minimal �-DFA size n and minimal DFA size m. If we replace
each �-transition in the minimal �-DFA and remove the error state, we get a
minimal NFA of size n − 1 accepting Ln,m (this NFA must be minimal since
the maximal length of a word in Ln,m is n − 2). Noting that all determinis-
tic automata in question have error states, we get, using Lemma 1(1), that
min�-DFA(π

′
i(Lnx,x)) = nx + (i− 1)(x − 1) and minNFA(π

′
i(Lnx,x)) = i(nx − 1).

This allows us to obtain the following linear bound.

Theorem 12. For n > nx ≥ 4,
[
n− (x− nx)

⌊
n−nx

x−1

⌋
− 1, n

]
⊆ Nn.

Proof. For any n and fixed x, write n = nx + (i − 1)(x − 1) + r, for some
0 ≤ r < x − 1, which is realizable as a minimal �-DFA by appending to the
minimal �-DFA accepting π′i(Lnx,x) an arbitrary chain of states of length r,
using letters not in the alphabet of π′i(Lnx,x), similar to what we did in the
proof of Theorem 10. This leads to a minimal NFA of size i(nx − 1) + r, giving

the lower bound n− (x−nx)
⌊
n−nx

x−1

⌋
− 1 if we solve for i. Anything in the upper

bound can be obtained by decreasing i or replacing occurrences of Lnx,x with
Lnx,x−j (for some j) and in turn adding additional chains of states of length r,
to maintain the size of the �-DFA. ��

We can obtain even lower bounds by considering the sequence of DFAs defined
in Theorem 8. Recall that for any n ≥ 1, we have a minimal DFA, which we
callMn, of size 2

n− 1; the equivalent minimal �-DFA, M ′
n, has size n. Applying

Algorithm 1 to M ′
n, the resulting NFA of size n is also minimal. Let n0 ≥ n1 ≥

· · · ≥ nk be a sequence of integers and consider

min
�-DFA

(L(Mn0){#1}L(Mn1) · · · {#k}L(Mnk
)) = 1 + n0 +

k∑
i=1

(2ni − 1) , (3)

where the equality comes from Lemma 1(2). Iteratively applying Lemma 1 gives

min
NFA

(L(Mn0){#1}L(Mn1) · · · {#k}L(Mnk
)) =

k∑
i=0

ni. (4)

To understand the difference between (3) and (4) in greater depth, let us view
(n1, . . . , nk) as an integer partition, λ, or as a Young Diagram and assign each
cell a value (see, e.g., [1]). In this case, the ith column of λ has each cell valued
at 2i−1. Transposing about y = −x gives the diagram corresponding to the
transpose of λ, λT = (m1, . . . ,mn1), in which the ith row has each cell valued
at 2i−1. Note that m1 = k and there are, for each i, mi terms of 2i−1. Fig. 4
gives an example of an integer partition and its transpose. Define Π(λT ) =∑n1

i=1 2
i−1mi =

∑k
i=1(2

ni − 1) and Σ(λ) =
∑k

i=1 ni.
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Fig. 4. λ = (6, 4, 1, 1) (left) and λT = (4, 2, 2, 2, 1, 1) (right)

Given this, we can view the language L described in (3) and (4), i.e, L =
L(Mn0){#1}L(Mn1) · · · {#k}L(Mnk

), as being defined by the integer n0 and
the partition of integers λ = (n1, . . . , nk) with n0 ≥ n1. This gives

min
�-DFA

(L) = 1 + n0 +Π(λT ) and min
NFA

(L) = n0 +Σ(λ).

To further understand this, we must consider the following sub-problem: let
Π(λ) = n. What are the possible values of Σ(λ)? To proceed here, we define the
sequence pn recursively as follows: if n = 2k − 1 for some k, pn = k; otherwise,
letting n = m+(2k− 1) for k maximal, pn = k+pm. This serves as the minimal
bound for the possible values of Σ(λ).

Theorem 13. If Π(λ) = n, then Σ(λ) ≥ pn. Consequently, for all n and k =
�log2(n+ 1)�, k + pn ∈ N1+k+n.

Proof. To show that pn is obtainable, we prove that the following partition, λn,
satisfies Σ(λ) ≥ pn: if n = 2k − 1 for some k, λn = (1k); otherwise, letting
n = m + (2k − 1) for k maximal, λn = λ2k−1 + λm. Here, the sum of two
partitions is the partition obtained by adding the summands term by term; (1k)
is the k-tuple of ones. Clearly, for partitions λ and λ′, Π(λ+λ′) = Π(λ)+Π(λ′)
and Σ(λ + λ′) = Σ(λ) + Σ(λ′). By construction, Π(λn) = n and Σ(λn) = pn.
To see this, if n = 2k − 1 for some k, Π(λn) = Π((1k)) = Π((k)T ) = 2k − 1 = n

and Σ(λn) = Σ((1
k)) =

∑k
i=1 1 = k = pn. Otherwise,

Π(λn) = Π(λ2k−1) +Π(λm) = Π((1k)) +Π(λm) = 2k − 1 +m = n,

Σ(λn) = Σ(λ2k−1) +Σ(λm) = Σ((1k)) +Σ(λm) = k + pm = pn.

To show that pn, or λn, is minimal, we can proceed inductively.
From the above, each pn is obtainable by a partition of size k, where k is the

maximal integer with n ≥ 2k − 1. Alternatively, k = �log2(n+ 1)�. Fixing n, we
get k + pn ∈ N1+k+n. ��

4 Conclusion

For languages of words of equal length, Theorem 2 gives the maximum element in
Dn found so far and Theorem 3 gives that maximum element when we restrict to
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a constant alphabet size. For languages with words of bounded length, Theorem 6
gives the least upper bound for elements in Dn based on minimal �-DFAs of
the form (1) and Theorem 7 gives the maximum element found so far when
we restrict to a binary alphabet. For languages with words of arbitrary length,
Theorem 8 gives the least upper bound of 2n − 1 for elements in Dn, bound
that can be achieved over a binary alphabet. We conjecture that for n ≥ 1,
[n, 2n− 1] ⊆ Dn. This conjecture has been verified for all 1 ≤ n ≤ 7 based on all
our constructs from Section 2.

In Section 3, via products, Theorem 10 gives an interval for Nn. If we replace
products with #-concatenations, Theorem 12 increases the interval further. The-
orem 13 does not give an interval, but an isolated point not previously achieved.
With the exception of this latter result, all of our bounds are linear. Some of
our constructs satisfy min�-DFA(L) = minNFA(L), ignoring error states. As noted
earlier, this is a requirement for #-concatenations to produce meaningful bounds.
Constructs without this restriction are often too large to be useful.
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Abstract. Model-based testing involves formal models for test generation. This 
paper suggests regular grammars for event-based modeling. This model, 
represented in BNF, will then be systematically modified by well-defined  
mutation operators in order to generate fault models, called mutants. Specific 
algorithms apply to both the model of the system under consideration and the 
mutants to generate test cases. While existing methods focus on single events 
the approach introduced in this paper suggests considering event sequences of 
length k≥1, that is, k-sequences. The approach also enables to cope with a tough 
problem encountered in mutation-oriented testing: the elimination of mutants 
that are equivalent to the original model, and mutants that model the same faults 
multiple times. These mutants lead to unproductive test suites that cause  
wasting of resources. The approach proposed devises strategies to exclude the 
mentioned mutants in that they will not be generated at all. 

Keywords: model-based mutation testing, event-based, mutant selection. 

1 Introduction and Related Work 

Testing is a user-centric technique for quality assurance based on test cases that con-
sist of test inputs and expected test outputs. A test invokes the execution, or training 
of the system under consideration (SUC) using a test case. SUC succeeds the test if, 
upon a test input, the expected test output is produced; otherwise, SUC fails the test, 
which entails the tough oracle problem for deriving the expected output. A set of test 
cases, also called test set/suite, is generated and executed in the target environment of 
SUC or an environment which closely resembles the target environment. A coverage 
criterion [16] is used as a stopping condition for testing to provide a measure of test 
quality of a test suite. This paper prefers the term SUC to “system under test (SUT)” 
because the approach introduced applies both to a model and an implementation  
whereas SUT applies to an implementation. 

Model-based testing is based on the creation of an abstraction, called model, and 
operating on this model for testing [4]. The use of models has various advantages, 
such as increased effectiveness and efficiency in terms of fault detection and costs by 
avoiding the oracle problem if the model is formal in the sense that it can be used to 
determine the expected test outputs [15]. 

Model-based mutation testing [9][2][8] includes the additional use of fault models 
in test generation. Fault models are also called mutants because they are generated 
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from the original model using mutation operators. Some mutants can be equivalent to 
the original model. This is a major problem because these mutants do not describe any 
different behaviors and cause wasting of testing resources [1]; for example, Grün, 
Schuler and Zeller [10] report that up to 40% of the generated mutants can be equiva-
lent. By using mutants, model-based mutation testing approaches aim to generate test 
cases which distinguish or discriminate the mutants from the original model, that is, 
they kill the mutants. When such a test case is executed, SUC can be tested as to 
whether it contains the fault modeled by the mutant or not. 

Tests based on the model of SUC form positive testing to check whether or not 
SUC comply with the user expectations, while negative testing is based on mutants, or 
fault models, to check whether or not SUC does not behave as the user does not wish. 

Grammar-based testing [14] has already attracted some interest. Mostly, they are 
used for testing of software termed as grammarware, such as compilers, debuggers, 
code generators, documentation generators [13]. The approaches entail the use of 
context-free grammars and generation of well-formed inputs to the programs. 

In this paper, adopting a model-based mutation testing methodology, a new event-
based [7] regular grammar model using event sequences of length k≥1 (k-sequences) 
is proposed and related mutation operators to generate fault models are defined. Most 
importantly, based on certain assumptions about the testing process, mutant selection 
strategies are devised to exclude mutants that are equivalent to the original model and 
multiple mutants that model the same faults. The significance of these strategies lies 
in the fact that we exclude these mutant without even generating them, as opposed to 
other model-based mutation testing approaches, such as the ones based on [2] or [3], 
which compare each generated mutant to the original model to determine whether the 
mutant is equivalent or not. Furthermore, these approaches do not discuss how to 
avoid the generation of multiple mutants modeling the same faults. 

The paper is organized as follows: Section 2 introduces our event-based grammar 
model and related terminology using examples, Section 3 discusses the mutant selec-
tion strategies, Section 4 performs an evaluation, and Section 5 concludes the paper. 

2 Formal Grammars for Event-Based Modeling 

Basically, an event is an externally observable phenomenon, such as an environmental 
stimulus or a system response, punctuating different stages of the system activity. It is 
clear that testing activity often disregards the detailed internal behavior of SUC and, 
hence, can be satisfied by relatively more abstract and simpler representations com-
pared to system development [7]. This is the reason why the approach introduced in 
this paper chooses formal grammars the elements of which refer to events that are 
perceivable to the tester to enable him or her to unambiguously decide whether or not 
SUC passes the test (Oracle problem, see Section 1). 

Example 1 (Running Example). Suppose we have 3 events 
c: copy, x: cut and p: paste. 

At the beginning, one can perform either c or x. c can be followed by either c, x or p, 
and x can be followed by either c, x or p. If p is performed after c, it can be followed 
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by either c, x or p. However, if p is performed after x, it can only be followed by ei-
ther c or x, that is, after cutting and pasting an object, it is not possible to paste it 
again. One can stop after a p. 

Fig. 1a represents an event-based directed graph model for Example 1. Such models 
are popular in testing community [7] and have the same expressiveness as FSA (or 
FSA with outputs, if output events are also included). Since events are the observable 
entities in model-based testing and states generally represent the internals of the sys-
tem, we focus on events and refrain from visualizing states. Therefore, events are 
placed at the nodes, and the follows relation between the events is described using 
arcs. Pseudo-events [ and ] are used to mark start and finish events, respectively. [5] 
 

 

S → c1 c(c1) | x1 c(x1) 
c(c1) → c1 c(c1) | x1 c(x1) | p1 c(p1) 
c(x1) → c1 c(c1) | x1 c(x1) | p2 c(p2) 
c(p1) → c1 c(c1) | x1 c(x1) | p1 c(p1) | ε 
c(p2) → c1 c(c1) | x1 c(x1) | ε 

(a) Model with ambiguity. (b) Model with contexted 
events (No ambiguity). 

(c) Grammar which makes use of 1-
sequences. 

Fig. 1. Event-based models for Example 1 

 

The model in Fig. 1a causes a severe problem: When we say “event p in the mod-
el,” one cannot differentiate which p event is referred to. To avoid such ambiguities, 
we use two types of events. We distinguish events from each other using the contexts 
they reside in, and use contexted events, such as {c1, x1, p1, p2}, as shown in Fig. 1b. 
We also keep the events as they are visible to the user, that is, basis events, such as {c, 
x, p}. Thus, contexted events can be viewed as different instances of basis events. 
 

S → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) |  
 x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 
c(c1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 
c(c1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 
c(c1 p1) → p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) | ε
c(x1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 
c(x1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 
c(x1 p2) → p2 c1 c(p2 c1) | p2 x1 c(p2 x1) | ε 
c(p1 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 
c(p1 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 
c(p1 p1) → p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) | ε
c(p2 c1) → c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 
c(p2 x1) → x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2)  

(a) Productions. (b) Directed graph visualization. 

Fig. 2. A grammar model for Example 1 which makes use of 2-sequences 

 

Such a model considers the relation between only single events. To define an 
event-based abstraction which models the occurrences of single events with respect to 
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event sequences of length k≥1 (k-sequences), we use grammars [12], because a 
grammar allows use of multiple events in their productions. 

Fig. 1c shows the productions of a grammar model which describe Example 1 us-
ing 1-sequences where c(r) represents the context of r. Also, productions can be visua-
lized via directed graphs (See Fig. 1b). 

To model Example 1 using 2-sequences, we can make use of the grammar model 
whose productions are given in Fig. 2. Using the following semantics for productions 
in Fig. 2, we can say that grammars in Fig. 1c and Fig. 2 model the same system. 
• Production S → a b c(a b) (or arc ([, a b)) means that a b is a start 2-sequence. 
• Production c(a b) → ε (or arc (a b, ])) means that a b is a finish 2-sequence. 
• Production c(a e) → e b c(e b) (or arc (a e, e b)) means that b follows a. 

Having outlined the intuitive background for our event-based grammar model which 
makes use of k-sequences, now we can give its formal definition. 

Definition 1 (k-Sequence Right Regular Grammar (k-Reg)). A k-sequence right 
RG (k-Reg) (integer k ≥ 1) is a 6-tuple G = (E, B; K; C; S; P) where: 
• E is a finite set of events (or contexted events). 
• B is a finite set of basis events, which is the set of all visible events under consider-

ation. For e ∈ E, d(e) ∈ B is the corresponding basis event, and d(.) is the decon-
texting function. 

• K ⊆ Ek is a finite set of k-sequences (or terminals). For r ∈ K, r = r1…rk and d(r) = 
d(r1)…d(rk) ∈ Bk is the corresponding basis k-sequence. 

• C is a finite set of contexts (or nonterminals). 
• S is the start context (or start symbol). 
• P is a finite set of productions of the form  

Q → ε or Q → r c(r) 
where Q ∈ C is a context, r ∈ K is a k-sequence, c(r) ∈ C\{S} is the unique context 
of r, and ε is the empty string. If k ≥ 2, for each c(q) → r c(r) ∈ P  

q2…qk = r1…rk-1. 

The semantics of the productions is as follows: For each c(q) → r c(r) ∈ P, we say 
that rk follows q in the system modeled by grammar G, that is, q rk is a (k+1)-sequence 
in the system. Also, for each S → r c(r) ∈ P, r is a start k-sequence, and, for each c(q) 
→ ε ∈ P, q is a finish k-sequence. 

Productions of a k-Reg are used to derive strings. A derivation, denoted by G
*, is 

a sequence of derivation steps each of which is of the form xQy G xRy where x,y ∈ 
(C∪K)* and Q → R ∈ P (We use * and  when there is no confusion). Also, the 
language defined by grammar G is the set of strings L(G) = {w| S * w (w ∈ K*)}. 

k-Reg Productions can be visualized using directed graphs by labeling the nodes 
using the k-sequences, and [ and ]. Arcs of the form “([, r)”, “(r, ])” and “(q, 
r)”correspond to the productions of the form “S → r c(r)”, “c(r) → ε” and “c(q) → r 
c(r)”, respectively. We often use such visualizations to refer to our grammar models. 

To associate (contexted) sequences with basis sequences, we extend function d(.) 
given in Definition 1. 

Definition 2 (Decontexting Function). Given a k-Reg G = (E, B; K; C; S; P). Let  
s = s1 s2 … ∈ E* be an event sequence and X be a set of event sequences. The  
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corresponding basis event sequence of s is d(s) = d(s1) d(s2) … ∈ B* if s ≠ ε, and d(ε) 
= ε. The corresponding set of basis event sequences of X is d(X) = {d(s)| s ∈ X}. 

Example 2 (Decontexted Event Sequences). Consider the 1-Reg in Fig. 1c. for set of 
event sequences X = {c1, c1 p1, c1 x1 p2}, d(X) = {c, c p, c x p}. 

For testing, we distinguish between event sequences that can and cannot be obtained 
using k-Reg productions. 

Definition 3 (Event Sequences in a k-Reg). Given a k-Reg G = (E, B; K; C; S; P). 
Event sequence s is in grammar G, if there is a derivation of the form Q * xsy for 
some Q ∈ C and x,y ∈ (C∪E)*. A nonempty event sequence s in G is a start [or 
finish] sequence, if there is a derivation of the form S * s Q (Q ∈ C) [or Q * s (Q 
∈ C)]. An event sequence which is not in G is also called a faulty event sequence. 

Example 3 (Event Sequences in a 1-Reg). For the 1-Reg in Fig. 1c: 
• 2-sequences in {c1 x1, x1 p2, p1 p1} are in the grammar, whereas 2-sequences in 

{p2 p1, p2 p2} are not. 
• {c1, x1, c1 c1, x1 x1 p2, c1 p1 x1} is a set of start sequences, and {p1, p2, p1 p1, x1 

p2} is a set of finish sequences. 

Since we use k-Regs in testing, we often refer to test cases of a k-Reg. 

Definition 4 (Test Cases). Given a k-Reg G = (E, B; K; C; S; P). 
• An event sequence is a positive test case, if it is a start sequence in G, or it is ε. 

TP(G) denotes the set of all positive test cases. A complete event sequence (CES) is 
a positive test case which is both a start and a finish sequence in G, or it is ε if ε ∈ 
L(G). TCES(G) = L(G) ⊆ TP(G) denotes the set of all CESs. 

• An event sequence is a negative test case, if the first event in it is a non-start event 
or it contains at least one 2-sequence which is not in G. TN(G) denotes the set of all 
negative test cases. A faulty complete event sequence (FCES) is a negative test 
case which either is composed of only a non-start event, or contains only a single 
2-sequence which is not in G and it ends with this 2-sequence. TFCES(G) ⊆ TN(G) 
denotes the set of all FCESs. 

• A set of test cases is also called a test set. 

Example 4 (Test Cases of a 1-Reg). For the 1-Reg in Fig. 1c: 
• {c1, x1 x1, c1 p1 p1 x1} is a set of positive test cases, and {x1 p2, x1 x1 p2, c1 p1 

p1 p1} is a set of CESs. 
• {p1, x1 p2 p1 c1, c1 x1 p2 p2} is a set of negative test cases, and {x1 p2 p2, c1 x1 

p2 p2} is a set of FCESs. 

Each event in a given k-Reg is contexted. However, system behaviors are based on 
basis events, since they correspond to system events as they are visible to the user 
(Definition 1). Thus, we define the equivalence of two k-Regs as follows. 

Definition 5 (Equivalence). Two k-Regs G and H are equivalent, if d(TCES(G)) = 
d(TCES(H)). 

In practice, it is important that all k-sequences in a k-Reg are utilized. 
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Definition 6 (Usefulness). Given a k-Reg G = (E, B; K; C; S; P). A string z ∈ (C∪E)* 
is useful in grammar G, if S * xzy * w for some x,y ∈ (C∪E)* and w ∈ E*. Gram-
mar G is useful, if all k-sequences in K are useful in G. 

Example 5 (A Useful and a Non-useful 1-Reg). k-Regs in Fig. 1c and Fig. 2 are all 
useful. To obtain a non-useful 1-Reg from Fig. 1c, one can remove c(p1) → ε and 
c(p2) → ε. The resulting grammar does not have any finish events anymore and, 
therefore, TCES(G) is empty, but it still describes the follows relation correctly. 

Deterministic system models help to exclude redundant event sequences. 

Definition 7 (Determinism). A k-Reg G = (E, B; K; C; S; P) is deterministic, if, for 
each Q ∈ C, there are no two productions Q → q c(q) ∈ P and Q → r c(r) ∈ P such 
that r ≠ q and d(r) = d(q). 

Example 6 (Test Cases of a Deterministic 1-Reg). 1-Reg obtained from Fig. 1c by 
including c(c1) → p2 c(p2) is nondeterministic. Positive test cases s = c1 c1 p1 and t 
= c1 c1 p2 are redundant, because d(s) = d(t) = c c p. 

Unless noted otherwise, all grammars under our consideration are useful and  
deterministic k-Regs. 

3 Mutant Selection 

Event-based fault types can be classified as missing event and extra event. In missing 
event faults, an event cannot occur after or before a (possibly empty) sequence of 
events. In extra event faults, an event can occur after or before a (possibly empty) 
sequence of events. To model such faults, marking (mark start, mark finish, mark 
non-start and mark non-finish), insertion (insert sequence, insert terminal) and omis-
sion (omit sequence and omit terminal) operators can be defined by extending the 
operators in [8]. These operators also enable to perform small changes or changes 
local to specific parts of the model so that different mutants do not model many com-
mon faults and a modeled fault does not interfere with one another. We use only some 
of these operators in test generation due to the following assumptions, which are 
commonly used in event-based testing (See [7] and the references therein). 

A1. Events in a test case are executed in the given order; execution of a test case stops 
when a failure is observed. 

A2. A test case can end with any event; it needs not be a finish event. 

Thus, for a given k-Reg G, we have the following: 

P1. Missing and extra event faults are limited by considering the k-sequences which 
precede the missing or extra events, ignoring the succeeding k-sequences. Thus, 
by exercising all (k+1)-sequences in the k-Reg, one can test whether an event is 
missing after some k-sequence, and, by exercising all relevant faulty k-sequences, 
one can test whether an event is extra after some k-sequence. (by A1) 

P2. Mark non-start, mark non-finish, omit sequence and omit terminal mutants are 
discarded; they do not contain any (k+1)-sequence that is not in the original mod-
el. (due to P1) 
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P3. Mark finish and mark non-finish mutants do not really correspond to fault models, 
because every event can be considered as a finish or non-finish event during the 
testing process. (by A2) 

P4. Extra event faults modeled using insert sequence mutants can be modeled using 
insert terminal mutants. 

P5. All negative test cases are FCES. (by A1) 

Consequently, for test generation, we do not need to use all types of mutants; we can 
use the original k-Reg to cover (k+1)-sequences to reveal missing event faults, and 
mark start and insert terminal mutants to cover faulty (k+1)-sequences to reveal extra 
event faults. Thus, below, we study only mark start and insert terminal operators to 
propose related mutant selection strategies. 

In the discussion, we consider G = (E, B; K; C; S; P) as the original k-Reg model 
and G’ as a mark start or an insert terminal mutant of G, unless noted otherwise.  
 

(a) Mark Start (b) Insert Terminal 

Fig. 3. Mutants of the 1-Reg in Fig. 1c (Mutations are drawn in bold) 
 

3.1 Mark Start Mutants 

Mark start mutation operators are used to mark k-sequences as start k-sequences. 
Therefore, mark start mutants are used to model extra start event faults. 

Definition 8 (Mark Start). A mark start (Ms) mutant of G is defined as G’ = Ms(G, 
e) = (E, B; K; C; S; P ∪ {S → e c(e)}) for some e ∈ K such that S → e c(e) ∉ P. 

Example 7 (A Mark Start Mutant). Let G be the 1-Reg in Fig. 1c. Fig. 3a shows 
Ms(G, p1). 

The set of all CESs is extended due to the mutation. 

Lemma 1 (Set of All CESs of a Mark Start Mutant). The set of all CESs of G’ is 
given by TCES(G’) = TCES(G) ∪ {e x| c(e) G

* x (x ∈ E*)}. 

Proof: The proof follows from Definition 8.                                                                 

Below, we discuss the equivalence of a mark start mutant to the original k-Reg. 

Lemma 2 (Equivalence of a Mark Start Mutant). G’ is not equivalent to G if and 
only if d(X) \ d(Y) ≠ ∅ where 
• X = {e x| c(e) G

* x (x ∈ E*)} and 
• Y = {e’ y| S G

* e’ y (e’ ∈ K, y ∈ E*) where e’ ≠ e and d(e’) = d(e)} ⊆ TCES(G). 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 1). By Definition 5, we have d(TCES(G’)) 
= d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)), which completes the proof.     
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Sufficient conditions for usefulness, determinism and nonequivalence of a mark start 
mutant are outlined in the following. 

Theorem 1 (Usefulness of a Mark Start Mutant). G’ is useful, if G is useful. 
Proof: The proof follows from Definition 6 and Definition 8.                                     

Theorem 2 (Determinism of a Mark Start Mutant). G’ is deterministic, if G is 
deterministic and there is no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

Proof: The proof follows from Definition 7 and Definition 8.                                      

Theorem 3 (Nonequivalence of a Mark Start Mutant). G’ is not equivalent to G, if 
G is useful and there is no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

Proof: Let X and Y be the sets from Lemma 2. We have: 

• TCES(G) ≠ ∅ and X ≠ ∅, since G is useful. 
• Y = ∅, since there is no S → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 
Thus, d(X) ∩ d(Y) = ∅, and G’ is not equivalent to G (Lemma 2).                              

Now, we give the mutant selection strategy devised for mark start mutants. 

Mark Start Mutant Selection. For each G’ = Ms(G, e), k-sequence e is selected as a 
mutation parameter if the following hold: 
1. There is no start k-sequence x such that d(x1) = d(e1). 
1. There is no previously selected parameter y such that d(y1) = d(e1). 

Let G be a useful and deterministic k-Reg. By Theorem 1, Theorem 2, and Theorem 
3, mutants generated from G using the above strategy are useful, deterministic and 
non-equivalent to G. Also, each of these mutants models a different fault located at 
the point of mutation: For each Ms(G, e), e1 (also d(e1)) is an extra start event. 

 
 

 

The left-out mark start mutants are useful. However, they are either nondeterminis-
tic or model previously modeled faults. Some nondeterministic mutants do not model 
any faults. If they do, these faults are not extra start event faults. Therefore, they can 
be modeled using insert terminal mutants. 

Algorithm 1 generates all mark start mutants using the above strategy. Its runtime 
complexity is given by O(|B| |P|): (1) The number of mutants generated is bounded 
by |B|, because each mutant represents a different extra start event fault. (2) Each 
mutant Ms(G, e) can be generated in O(|P|+|B|) = O(|P|) time by checking if there 
are no start k-sequence x such that d(x1) = d(e1) and previously selected mutation 
parameter y such that d(y1) = d(e1), and copying G to modify it. 

Algorithm 1. Mark Start Mutant Selection 
 Input: G = (E, B; K; C; S; P) – the k-Reg  
 Output: M – set of selected mark start mutants 
  M =∅, N = ∅ 
  for each b ∈ B do 
   if there is no S → x c(x) ∈ P such that d(x1) = b and  
      there is no y∈ N such that d(y1) = b then 
    Select a k-sequence e ∈ K such that d(e1) = b 
    G’ = G, M = M ∪ {Ms(G’, e)}, N = N∪ {e} 
   endif 
  endfor 
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Example 8 (Mark Start Mutant Selection). Let G be the 1-Reg in Fig. 1c. The only 
mark start mutant we select is Ms(G, p1). We do not select Ms(G, c1) and Ms(G, x1), 
because c1 and x1 are already start events. Furthermore, we do not select Ms(G, p2), 
because it models the same fault as Ms(G, p1). 

3.2 Insert Terminal Mutants 

Insert terminal mutation operators are used to add new terminals (k-sequences) by 
(possibly) connecting them to the existing k-sequences. Therefore, insert terminal 
mutants are used to model extra event fault where an event follows some k-sequence. 

Definition 9 (Insert Terminal). An insert terminal (It) mutant of G is defined as G’= 
It(G, e, U, V) = (E, B; K’; C’; S; P’) for some e ∉ K with d(e) ∈ Bk, U = {(a, e)| a ∈ 
{a1, …, am} ⊆ K} and V = {(e, b)| b ∈ {b1, …, bn} ⊆ K∪{e}}, where K’ = K ∪ {e}, C’ 
= C ∪ {c(e)}, and P’ = P ∪ {c(e) → a c(a)| (a, e) ∈ U} ∪ {c(b) → e c(e)| (e, b) ∈ V}. 

Since we want to generate mutants which contain small number of changes, we limit 
|U| = 1, that is, U = {(a, e)}. Furthermore, since we use only FCESs in testing, we fix 
V=∅ and insert production c(e) → ε  for usefulness of k-sequence e. 

Example 9 (An Insert Terminal Mutant). Let G be the 1-Reg in Fig. 1c. Fig. 3b 
shows It(G, p3, {(p2, p3)}, ∅) where p3 is a new contexted p event. Since V = ∅, 
c(p3) → ε is additionally inserted to preserve usefulness of p3. 

Lemma 3 (Set of All CESs of an Insert Terminal Mutant). The set of all CESs of 
G’ is given by TCES(G’) = TCES(G) ∪ {x e| S G

* x c(a) (x ∈ E*)}. 

Proof: The proof follows from Definition 9 considering that c(e) → ε is inserted.      

The following discusses the equivalence of an insert terminal to the original k-Reg. 

Lemma 4 (Equivalence of an Insert Terminal Mutant). G’ is not equivalent to G if 
and only if d(X) \ d(Y) ≠ ∅ where 
• X = {x e| S G

* x c(a) (x ∈ E*)} and 
• Y = {w| w ∈ TCES(G) and w contains e’, e’∈ K, e’ ≠ e and d(e’) = d(e)} ⊆ TCES(G). 

Proof: TCES(G’) = TCES(G) ∪ X (by Lemma 3). By Definition 5, we have d(TCES(G’)) 
= d(TCES(G)) if and only if d(X) ⊆ d(Y) ⊆ d(TCES(G)). This completes the proof.        

The following give sufficient conditions for usefulness, determinism and nonequiva-
lence of an insert terminal mutant. 

Theorem 4 (Usefulness of an Insert Terminal Mutant). G’ is useful, if G is useful. 

Proof: The proof follows from Definition 6, and Definition 9 considering that c(e) → 
ε is inserted.                                                                                                                  

Theorem 5 (Determinism of an Insert Terminal Mutant). G’ is deterministic, if G 
is deterministic and there is no c(a) → e’ c(e’) ∈ P such that e’ ≠ e and d(e’) = d(e). 

Proof: The proof follows from Definition 7 and Definition 9 considering that c(e) → ε 
is also inserted.                                                                                                              

Theorem 6 (Nonequivalence of an Insert Terminal Mutant). G’ is not equivalent 
to G, if G is useful and deterministic, and there is no c(a) → e’ c(e’) ∈ P such that e’ 
≠ e and d(e’) = d(e). 
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Proof: Let X and Y be the sets from Lemma 4. We have  
• TCES(G) ≠ ∅, since G is useful. 
• X ≠ ∅, since G is useful, U ≠ ∅ and c(e) → ε is inserted. 
• d(X) ∩ d(Y) = ∅, because each start sequence in deterministic G derived using 

m≥1 productions has a unique basis and there is no c(a) → e’ c(e’) ∈ P such that e’ 
≠ e and d(e’) = d(e). 

Thus, G’ is not equivalent to G (Lemma 4).                                                                  

Now, we give the strategy to select insert terminal mutants. 

Insert Terminal Mutant Selection. For each G’ = It(G, e, {(a, e)}, ∅), 3-tuple (e, 
{(a, e)}, ∅) is selected as a mutation parameter if the following hold: 
1. There is no c(a) → x c(x) ∈ P such that d(xk) = d(ek). 
2. There is no previously selected parameter (y, {(a, y)}, ∅) such that d(yk) = d(ek). 

Let G be a useful and deterministic k-Reg. By Theorem 4, Theorem 5 and Theorem 6, 
mutants generated from G using the above strategy are useful, deterministic and not 
equivalent to G. Furthermore, each of these mutants models a different fault located at 
the point of mutation, that is, for each It(G, e, {(a, e)}, ∅), ek (also d(ek)) is an extra 
event that follows k-sequence a. 
 

Algorithm 2. Insert Terminal Mutant Selection 
 Input: G = (E, B; K; C; S; P) – the k-Reg  
 Output: M – set of selected insert terminal mutants 
  M =∅ 
  for each a ∈ K do 
   N = ∅ 
   for each b ∈ B do 
    if there is no c(a) → x c(x) ∈ P such that d(xk) = b and  
       there is no (y, (a, y), ∅) ∈ N such that d(yk) = b then 
     b’ = a new contexted version of b, e = a2 … ak b’ 
     G’ = G, M = M ∪ {It(G’, e, {(a, e)}, ∅)}, N = N∪ {e} 
    endif 
   endfor 
  endfor 

 

The excluded insert terminal mutants are useful. However, they are either nonde-
terministic or model previously modeled faults. Some nondeterministic mutants may 
not model any faults at all. If they do, these faults are not located at the points of mu-
tation. Thus, they are modeled by some other insert terminal mutants that we select. 

Algorithm 2 generates all insert terminal mutants using the above strategy. Its run-
time complexity is given by O(|K| |B| |P|): (1) The number of mutants generated is 
bounded by |K| |B|, because each mutant represents a different extra event fault. (2) 
Each mutant It(G, e, {(a, e)}, ∅) can be generated in O(|P|+|B|+k) = O(|P|) time by 
checking if there are no c(a) → x c(x) ∈ P such that d(xk) = d(ek) and previously  
selected mutation parameter (y, {(a, y)}, ∅) such that d(yk) = d(ek), preparing e by 
copying a2 … ak to append b’, and copying G to modify it. 

Example 10 (Insert Terminal Mutant Selection). Let G be the 1-Reg in Fig. 1c. We 
can only use basis terminal p, because c and x can follow all events. The only mutant 
we select is It(G, p3,{(p2, p3}, ∅), because only p2 is not followed by a p event. 
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4 Evaluation 

To evaluate the proposed mutant selection strategies, we compare the numbers of 
mutants generated using our approach, grammar-based mutation operators in [14] and 
graph-based mutation operators in [11] using Specials facility of ISELTA as our 
SUC. ISELTA is a commercial web-portal for marketing touristic services and Spe-
cials provides addition, editing and deletion of special prices of the marketed ser-
vices (See [6] for more information on ISELTA and Specials). For comparisons, 
we use k-Reg models of Specials for k=1,2,3,4. 
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Fig. 4 shows that the number of generated mutants can be reduced significantly us-
ing the k-Reg-based mutant selection strategies proposed in this paper. Briefly, our 
results suggest that one can generate ~99% fewer number of mutants. 

Threats to Validity. Note that the above evaluation does not consider test genera-
tion and execution aspects; therefore, to gain more insight about the effects of mutant 
selection strategies on the actual performance of the whole testing process, one needs 
to perform a full-fledged case study including testing simulations. Still, assuming that 
a similar method is used to generate test cases from each mutant, we can elaborate 
that the size of the test set generated using our strategies will be significantly smaller. 

5 Conclusion 

This paper proposes an event-based grammar model to explicitly model the relation 
between event sequences of length k≥1 and single events, and concentrates on only 
mutant selection aspects. More precisely, we devise mutant selection strategies to 
exclude generation of mutant which are equivalent to the original model and multiple 
mutants which model the same faults based on certain assumptions. Considering that 
other model-based mutation testing approaches compare each mutant to the original 
model to determine the equivalence and do not exclude generation of multiple mu-
tants which model the same faults, our results have clear practical benefits, such as 
increasing the performance by cutting back the number of mutants generated. 
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For the future work, we plan to consider the way the test execution is performed in 
a more precise manner or relax the assumptions in Section 3 to propose additional 
mutant selection strategies and also strategies for other types of mutants. 
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Abstract. We present new algorithms for producing greedy parses for
regular expressions (REs) in a semi-streaming fashion. Our lean-log al-
gorithm executes in time O(mn) for REs of size m and input strings of
size n and outputs a compact bit-coded parse tree representation. It im-
proves on previous algorithms by: operating in only 2 passes; using only
O(m) words of random-access memory (independent of n); requiring only
kn bits of sequentially written and read log storage, where k < 1

3
m is

the number of alternatives and Kleene stars in the RE; processing the
input string as a symbol stream and not requiring it to be stored at all.
Previous RE parsing algorithms do not scale linearly with input size, or
require substantially more log storage and employ 3 passes where the first
consists of reversing the input, or do not or are not known to produce
a greedy parse. The performance of our unoptimized C-based prototype
indicates that our lean-log algorithm has also in practice superior per-
formance and is surprisingly competitive with RE tools not performing
full parsing, such as Grep.

1 Introduction

Regular expression (RE) parsing is the problem of producing a parse tree for
an input string under a given RE. In contrast to most regular-expression based
tools for programming such as Grep, RE2 and Perl, RE parsing returns not only
whether the input is accepted, where a substring matching the RE and/or sub-
REs are matched, but a full parse tree. In particular, for Kleene stars it returns
a list of all matches, where each match again can contain such lists depending
on the star depth of the RE.

An RE parser can be built using Perl-style backtracking or general context-
free parsing techniques. What the backtracking parser produces is the greedy
parse amongst potentially many parses. General context-free parsing and back-
tracking parsing are not scalable since they have cubic, respectively exponential
worst-case running times. REs can be and often are grammatically ambiguous
and can require arbitrary much look-ahead, making limited look-ahead context-
free parsing techniques inapplicable. Kearns [1] describes the first linear-time
algorithm for RE parsing. In a streaming context it consists of 3 passes: reverse
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the input, perform backward NFA-simulation, and construct parse tree. Frisch
and Cardelli [2] formalize greedy parsing and use the same strategy to pro-
duce a greedy parse. Dubé and Feeley [3] and Nielsen and Henglein [4] produce
parse trees in linear time for fixed RE, the former producing internal data struc-
tures and their serialized forms, the latter parse trees in bit-coded form; neither
produces a greedy parse.

In this paper we make the following contributions:

1. Specification and construction of symmetric nondeterministic finite automata
(NFA) with maximum in- and out-degree 2, whose paths from initial to final
state are in one-to-one correspondence with the parse trees of the under-
lying RE; in particular, the greedy parse for a string corresponds to the
lexicographically least path accepting the string.

2. NFA simulation with ordered state sets, which gives rise to a 2-pass greedy
parse algorithm using �m lgm� bits per input symbol and the original input
string, with m the size of the underlying RE. No input reversal is required.

3. NFA simulation optimized to require only k ≤ �1/3m� bits per input symbol,
where the input string need not be stored at all and the 2nd pass is simplified.
Remarkably, this lean-log algorithm requires fewest log bits, and neither state
set nor even the input string need to be stored.

4. An empirical evaluation, which indicates that our prototype implementation
of the optimized 2-pass algorithm outperforms also in practice previous RE
parsing tools and is sometimes even competitive with RE tools performing
limited forms of RE matching.

In the remainder, we introduce REs as types to represent parse trees, define
greedy parses and their bit-coding, introduce NFAs with bit-labeled transitions,
describe NFA simulation with ordered sets for greedy parsing and finally the
optimized algorithm, which only logs join state bits. We conclude with an em-
pirical evaluation of a straightforward prototype to gauge the competitiveness of
full greedy parsing with regular-expression based tools yielding less information
for Kleene-stars.

2 Symmetric NFA Representation of Parse Trees

REs are finite terms of the form 0, 1, a, E1 × E2, E1 + E2 or E∗1 , where E1, E2

are REs.

Proviso. For simplicity and brevity we henceforth assume REs that do not con-
tain sub-REs of the form E∗, where E is nullable (can generate the empty string).
All results reported here can be and have been extended to such problematic
REs in the style of Frisch and Cardelli [2]. In particular, our implementation
BitC handles problematic REs.

REs can be interpreted as types built from singleton, product, sum, and list
type constructors [2,5]; see Figure 1. Its structured values T [[E]] represent the
parse trees for E such that the regular language L[[E]] coincides with the strings
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T [[0]] = ∅
T [[1]] = {()},
T [[a]] = {a},

T [[E1 × E2]] = {(V1, V2) | V1 ∈ T [[E1]], V2 ∈ T [[E2]]},
T [[E1 + E2]] = {inl V1 | V1 ∈ T [[E1]]}

∪ {inr V2 | V2 ∈ T [[E2]]},
T [[E�

0 ]] = {[V1, . . . , Vn] | n ≥ 0∧
∀1 ≤ i ≤ n.Vi ∈ T [[E0]]}

(a) Regular expressions as types.

flat(()) = ε
flat(a) = a

flat((V1, V2)) = flat(V1)flat(V2)
flat(inl V1) = flat(V1)
flat(inr V2) = flat(V2)

flat([V1, . . . , Vn]) = flat(V1) . . . flat(Vn)

(b) Tree flattening.

code(()) = ε code(a) = ε
code((V1, V2)) = code(V1) code(V2) code([V1, . . . , Vn]) = 0 code(V1) . . . 0 code(Vn) 1

code(inl V1) = 0 code(V1) code(inr V2) = 1 code(V2)

(c) Bit-coding.

Fig. 1. The type interpretation of regular expressions and bit-coding of parses
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1
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Fig. 2. aNFA construction schema

obtained by flattening the parse trees:

L[[E]] = {flat(V ) | V ∈ T [[E]]}.

We recall bit-coding from Nielsen and Henglein [4]. The bit code code(V ) of
a parse tree V ∈ T [[E]] is a sequence of bits uniquely identifying V within
T [[E]]; that is, there exists a function decodeE such that decodeE(code(V )) = V .
See Figure 1 for the definition of code; the definition of decodeE is omitted for
brevity, but is straightforward. We write B[[. . .]] instead of T [[. . .]] whenever we
want to refer to the bit codings, rather than the parse trees. We use subscripts to
discriminate parses with a specific flattening: Ts[[E]] = {V ∈ T [[E]] | flat(V ) = s}.
We extend the notation Bs[[. . .]] similarly.

Note that a bit string by itself does not carry enough information to deduce
which parse tree it represents. Indeed this is what makes bit strings a compact
representation of strings where the underlying RE is statically known.

The set B[[E]] for an RE E can be compactly represented by augmented non-
deterministic finite automaton (aNFA), a variant of enhanced NFAs [4] that has
in- and outdegree at most 2 and carries a label on each transition.
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Definition 1 (Augmented NFA) An augmented NFA (aNFA) is a 5-tuple
M = (Q,Σ,Δ, qs, qf ) where Q is the set of states, Σ is the input alphabet, and
qs, qf are the starting states. The transition relationΔ ⊆ Q×(Σ ∪ {0, 1, 0, 1})×Q
contains directed, labeled transitions: (q, γ, q′) ∈ Δ is a transition from q to q′

with label γ, written q
γ−→ q′.

We call transition labels in Σ input labels ; labels in {0, 1} output labels ; and
labels in {0, 1} log labels.

We write q
p� q′ if there is a path labeled p from q to q′. The sequences

read(p), write(p) and log(p) are the subsequences of input labels, output labels,
and log labels of p, respectively.

We write: JM for the join states {q ∈ Q | ∃q1, q2. (q1, 0, q), (q2, 1, q) ∈ Δ}; SM
for the symbol sources {q ∈ Q | ∃q′ ∈ Q, a ∈ Σ. (q, a, q′)}; and CM for the choice
states {q ∈ Q | ∃q1, q2. (q, 0, q1), (q, 1, q2) ∈ Δ}.

If M is an aNFA, then M is the aNFA obtained by flipping all transitions
and exchanging the start and finishing states, that is reverse all transitions and
interchange output labels with the corresponding log labels. ��

Our algorithm for constructing an aNFA from an RE is a standard Thompson-
style NFA generation algorithm modified to accomodate output and log labels:

Definition 2 (aNFA construction) We write M = N〈E, qs, qf 〉 when M is
an aNFA constructed according to the rules in Figure 2.

Augmented NFAs are dual under reversal; that is, flipping produces the aug-
mented NFA for the reverse of the regular language.

Proposition 2.1. Let E be canonically constructed from E to denote the reverse
of L[[E]]. Let M = N〈E, qs, qf 〉. Then M = N〈E, qf , qs〉.

This is useful since we will be running aNFAs in both forward and backward
(reverse) directions.

Well-formed aNFAs—and Thompson-style NFAs in general—are canonical
representations of REs in the sense that they not only represent their language
interpretation, but their type interpretation:

Theorem 2.1 (Representation). Given an aNFA M = N〈E, qs, qf 〉, M out-
puts the bit-codings of E:

Bs[[E]] = {write(p) | qs p� qf ∧ read(p) = s}.

3 Greedy Parsing

The greedy parse of a string s under an RE E is what a backtracking parser
returns that tries the left operand of an alternative first and backtracks to try
the right alternative only if the left alternative does not yield a successful parse.
The name comes from treating the Kleene star E� as E×E�+1, which “greed-
ily” matches E against the input as many times as possible. A “lazy” matching
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interpretation of E� corresponds to treating E� as 1+E×E�. (In practice, mul-
tiple Kleene-star operators are allowed to make both interpretations available;
e.g. E� and E�� in PCRE.)

Greedy parsing can be formalized by an order � on parse trees, where V1�V2
means that V1 is “more greedy” than V2. The following is adapted from Frisch
and Cardelli [2].

Definition 3 (Greedy order) The binary relation � is defined inductively on
the structure of values as follows:

(V1, V2) � (V ′1 , V
′
2) if V1 � V ′1 ∨ (V1 = V ′1 ∧ V2 � V ′2)

inl V0 � inl V ′0 if V0 � V ′0
inr V0 � inr V ′0 if V0 � V ′0
inl V0 � inr V ′0

[] � [V1, . . .]
[V1, . . .] � [V ′1 , . . .] if V1 � V ′1

[V1, V2, . . .] � [V1, V
′
2 , . . .] if [V2, . . .]� [V ′2 , . . .]

The relation � is not a total order; consider for example the incomparable ele-
ments (a, inl ()) and (b, inr ()). The parse trees of any particular RE are totally
ordered, however:

Proposition 3.1. For each E, the order � is a strict total order on T [[E]].

In the following, we will show that there is a correspondence between the struc-
tural order on values and the lexicographic order on their bit codings.

Definition 4 For bit sequences d, d′ ∈ {0, 1}� we write d ≺ d′ if d is lexico-
graphically strictly less than d′; that is, ≺ is the least relation satisfying

1. ε ≺ d if d �= ε
2. b d ≺ b′ d′ if b < b′ or b = b′ and d ≺ d′.
Theorem 3.1. For all REs E and values V, V ′ ∈ T [[E]] we have V � V ′ iff
code(V ) ≺ code(V ′).

Corollary 3.1. For any RE E with aNFAM = N〈E, qs, qf 〉, and for any string
s, min� Ts[[E]] exists and

min
�

Ts[[E]] = decodeE(min
≺

{write(p) | qs p� qf ∧ read(p) = s}).

Proof. Follows from Theorems 2.1 and 3.1. ��
We can now characterize greedy RE parsing as follows: Given an RE E and string
s, find bit sequence b such that there exists a path p from start to finishing state
in the aNFA for E such that:

1. read(p) = s,
2. write(p) = b,
3. b is lexicographically least among all paths satisfying 1 and 2.

This is easily done by a backtracking algorithm that tries 0-labeled transi-
tions before 1-labeled ones. It is atrociously slow in the worst case, however:
exponential time. How to do it faster?
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4 NFA-Simulation with Ordered State Sets

Our first algorithm is basically an NFA-simulation. For reasons of space we only
sketch its key idea, which is the basis for the more efficient algorithm in the
following section.

A standard NFA-simulation consists of computing Reach∗(S, s) where

Reach∗(S, ε) = S

Reach∗(S, a s′) = Reach∗(Reach(S, a), s′)

Reach(S, a) = Close(Step(S, a))

Step(S, a) = {q′ | q ∈ S, q a−→ q′}
Close(S′) = {q′′ | q′ ∈ S′, q′ p� q′′,write(p) = ε}

Checking qf ∈ Reach∗({qs}, s) determines whether s is accepted or not. But how
to construct an accepting path and in particular the one corresponding to the
greedy parse?

We can log the set of states reached after each symbol during the NFA-
simulation. After forward NFA-simulation, let Si be the NFA-states reached after
processing the first i symbols of input s = a1 . . . an. Given a list of logged state
sets, the input string s and the final state qf , the nondeterministic algorithm
Path∗ constructs a path from qs to qf through the state sets:

Path(Si, q) = (q′, p) where q′ ∈ Si, q′
p� q, read(p) = ai

Path∗(S0, q) = p
′ · p where (q′, p) = Path(S0, q), q

s p′
� q′, read(p′) = ε

Path∗(Si, q) = p
′ · p where (q′, p) = Path(Si, q), p

′ = Path∗(Si−1, q
′)

Calling write(Path∗(Sn, q
f )) gives a bit-coded parse tree, though not necessarily

the lexicographically least.
We can adapt the NFA-simulation by keeping each state set Si in a particular

order: If Reach∗({qs}, a1 . . . ai) = {qi1, . . . qiji} then order the qij according to the
lexicographic order of the paths reaching them. Intuitively, the highest ranked
state in Si is on the greedy path if the remaining input is accepted from this
state; if not, the second-highest ranked is on the greedy path, if the remaining
input is accepted; and so on.

The NFA-simulation can be refined to construct properly ordered state se-
quences instead of sets without asymptotic slow-down. The log, however, is ad-
versely affected by this. We need �m lgm� bits per input symbol, for a total of
�mn lgm� bits.

The key property for allowing us to list a state at most once in an order state
squence is this:

Lemma 4.1. Let s, t1, t2, and t be states in an aNFAM , and let p1, p2, q1, q2 be

paths in M such that s
p1� t1, s

p2� t2, and t1
q1� t, t2

q2� t. If write(p1) ≺ write(p2)
then write(p1q1) ≺ write(p2q2)

Proof. Application of the lexicographical ordering on paths. ��
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5 Lean-Log Algorithm

After the ordered forward NFA-simulation with logging, the algorithm Path
above can be refined to always yield the greedy parse whend traversing the
aNFA in backwards direction. Since the join states JM of an aNFA M become
the choice states CM of the reverse aNFA M we only need to construct one “di-
rection” bit for each join state at each input string position. It is not necessary
to record any states in the log at all, and we do not even have to store the input
string. This results in an algorithm that requires only k bits per input symbol
for the log, where k is the number of Kleene-stars and alternatives occurring in
the RE. It can be shown that k ≤ 1

3m; in practice we can observe k << m.
Our optimized algorithm is described in Figure 3 below. The forward pass

keeps the aNFA and the current character in memory, requiring a O(m) words
of random access memory, writing nk bits to the log, and discarding the input
string. Finally, the backward pass also requires O(m) words of random access
memory and reads from the log in reverse write order. The log is thus a 2-phase
stack: In the first pass it is only pushed to, in the second pass popped from.

Both LClose and LStep run in time O(m) per input symbol, hence the forward
pass requires time O(mn). Likewise, the backward pass requires time O(mn).

LClose keeps track of visited states and returns the states reached ordered
lexicographically according to the paths reaching them. Hence, the following
theorem can be proved:

Theorem 5.1. For any regular expression E and symbol sequence s, if Ll =
LSim(s), and d = LTrace(Ll, q

f ), then decodeE(d) = min� Ts[[E]].

6 Evaluation

We have implemented the optimized algorithms in C and in Haskell, and we
compare the performance of the C implementation with the following existing
RE tools:

RE2: Google’s RE implementation, available from [6].
Tcl: The scripting language Tcl [7].
Perl: The scripting language Perl [8].
Grep: The UNIX tool grep.
Rcp: The implementation of the algorithm “DFASIM ” from [4]. It is based on

Dubé and Feeley’s method [3], but altered to produce a bit-coded parse tree.
FrCa: The implementation of the algorithm“FrCa” algorithm used in [4]. It is

based on Frisch and Cardelli’s method from [2].

In the subsequent plots, our implementation of the lean-log algorithm is referred
to as BitC.

The tests have been performed on an Intel Xeon 2.5 GHz machine running
GNU/Linux 2.6.
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(Q,L)⊕ (Q′, L′) = (Q ·Q′, L ∪ L′)

LClose(q, L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

([q], L) q
a−→ q′, a ∈ Σ

LClose(q0, L)⊕ LClose(q1, L) q
0−→ q0, q

1−→ q1

LClose(q′, L ∪ {q′ �→ t}) q
t−→ q′, t ∈ {0, 1}, q′ 
∈ dom(L)

([], L) otherwise

LStep([], a, (Q,L)) = (Q,L)

LStep(q · qs, a, (Q,L)) =

{
LStep(qs, a, (Q, L)⊕ LClose(q, L)) q

a−→ q′

LStep(qs, a, (Q, L)) otherwise

LSim′([],Q,L) =

{
L if qs ∈ Q

⊥ otherwise

LSim′(a · s′, Q,L) =

{
LSim(s′, Q′, L · L) if (Q′, L) = LStep(Q, a, ([], ∅)), Q′ 
= []

⊥ otherwise

LSim(s) = let (Q0, L0) = LClose(qs, []) in LSim′(s,Q0, [L])

(a) Forward pass.

LTrace(L · L, q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[] if q = qs

LTrace(L · L, q′) · γ if q
γ−→ q′, γ ∈ {0, 1}

LTrace(L, q′) if q
γ−→ q′, γ ∈ Σ

LTrace(L · L, q′) if q
L[q]−→ q′, L[q] ∈ {0, 1}

(b) Backward pass.

Fig. 3. Forward and backward pass algorithm

6.1 Pathological Expressions

To get an indication of the “raw” throughput for each tool, a� was run on
sequences of as (Figure 4a). (Note that the plots use log scales on both axes, so
as to accommodate the dramatically varying running times.) Perl outperforms
the rest, likely due to a strategy where it falls back on a simple scan of the input
instead. FrCa stores each position in the input string from which a match can
be made, which in this case is every position. As a result, FrCa uses significantly
more memory than the rest, causing a dramatic slowdown.

The expression (a|b)�a(a|b)n with the input (ab)n/2 is a worst-case for DFA-
based methods, as it results in a number of states exponential in n. Perl has
been omitted from the plots, as it was prohibitively slow. Tcl, Rcp, and Grep
all perform orders of magnitude slower than FrCa, RE2, and BitC (Figure 4b),
indicating that Tcl and Grep also use a DFA for this expression. If we fix n to
25, it becomes clear that FrCa is slower than the rest, likely due to high memory
consumption as a result of its storing all positions in the input string (Figure 4c).
The asymptotic running times of the others appear to be similar to each other,
but with greatly varying constants.
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Fig. 6. Comparison using various e-mail expressions. The numbers in the captions refer
to the regexes in [9, Table 1].

For the backtracking worst-case expression (a?)nan in Figure 5a, BitC per-
forms roughly like RE2.1 In contrast to Rcp and FrCa, which are both highly
sensitive to the direction of non-determinism, BitC has the same performance
for both (a?)nan and an(a?)n (Figure 5b).

6.2 Practical Examples

We have run the comparisons with various “real-life” examples of REs taken
from [9], all of which deal with expressions matching e-mail addresses. In Fig. 6b,
BitC is significantly slower than in the other examples. This can likely be ascribed
to heavy use of bounded repetitions in this expression, as they are currently just
rewritten into concatenations and Kleene stars in our implementation.

1 The expression parser in BitC failed for the largest expressions, which is why they
are not on the plot.
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In the other two cases, BitC’s performance is roughly like that of Grep. This
is promising for BitC since Grep performs only RE matching, not full parsing.
RE2 is consistently ranked as the fastest program in our benchmarks, presumably
due to its aggressive optimizations and ability to dynamically choose between
several strategies. Recall that RE2 performs greedy leftmost subgroup matching,
not full parsing. Our present prototype of BitC is coded in less than 1000 lines
of C. It uses only standard libraries and performs no optimizations such as NFA-
minimization, DFA-construction, cached or parallel NFA-simulation, etc. This is
future work.

7 Related Work

The known RE parsing algorithms can be divided into four categories. The
first category is Perl-style backtracking used in many tools and libraries for
RE subgroup matching [10]; it has an exponential worst case running time, but
always produces the greedy parse and enables some extensions to REs such
as backreferences. Another category consists of context-free parsing methods,
where the RE is first translated to a context-free grammar, before a general
context-free parsing algorithm such as Earleys [11] using cubic time is applied.
An interesting CFG method is derivatives-based parsing [12]. While efficient
parsers exist for subsets of unambiguous context-free languages, this restriction
propagates to REs, and thus these parsers can only be applied for subsets of
unambiguous REs. The third category contains RE scalable parsing algorithms
that do not always produce the greedy parse. This includes NFA and DFA based
algorithms provided by Dubé and Feeley [3] and Nielsen and Henglein [4], where
the RE is first converted to an NFA with additional information used to parse
strings or to create a DFA preserving the additional information for parsing.
This category also includes the algorithm by Fischer, Huch and Wilke [13]; it
is left out of our tests since its Haskell-based implementation often was not
competitive with the other tools. The last category consists of the algorithms
that scale well and always produce greedy parse trees. Kearns [1] and Frisch and
Cardelli [2] reverse the input; perform backwards NFA-simulation, building a log
of NFA-states reached at each input position; and construct the greedy parse tree
in a final forward pass over the input. They require storing the input symbol
plus m bits per input symbol for the log. This can be optimized to storing bits
proportional to the number of NFA-states reached at a given input position [4],
although the worst case remains the same. Our lean log algorithm uses only 2
passes, does not require storing the input symbols and stores only k < 1

3m bits
per input symbol in the string.
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Abstract. We study the state complexity of boolean operations, con-
catenation, and star, with one or two of the argument languages reversed.
We derive tight upper bounds for the symmetric differences and differ-
ences of such languages. We prove that the previously discovered bounds
for union, intersection, concatenation and star of such languages can all
be met by the recently introduced universal witness and its variants.
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1 Introduction

For background on state complexity see [2,3,11]. The state complexity of a regular
language is the number of states in the minimal deterministic finite automaton
(DFA) recognizing the language. The state complexity of an operation on regular
languages is the maximal state complexity of the result of the operation as a
function of the state complexities of the arguments. We refer to state complexity
simply as complexity.

The state complexity of basic operations combined with reversal was studied in
2008 by Liu, Martin-Vide, A. Salomaa, and Yu [9]. For regular languages K,L ⊆
Σ∗ with state complexities m and n, the basic operations considered in [9] were
union (K∪L), intersection (K∩L), product (catenation or concatenation) (KL),
and star (L∗), combined with reversal (LR). It was shown that (2m−1)(2n−1)+1
is a tight upper bound for (K∪L)R = KR∪LR and (K∩L)R = KR∩LR. Gao and
Yu [8] found the tight upper boundm2n−(m−1) for K∪LR and K∩LR. It was
also proved in [9] that 3·2m+n−2−(2n−1) is an upper bound for (KL)R = LRKR,
but the question of tightness was left open. Cui, Gao, Kari and Yu [5] answered
this question positively, and also showed that 3 · 2m+n−2 is an upper bound for
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Fig. 1. DFA Un(a, b, c) of a complex language Un(a, b, c)

KRL. In another paper [6], they proved that (m − 1)2n + 2n−1 − (m − 1) is a
tight upper bound for KLR. Gao, K. Salomaa, and Yu [7] demonstrated that
2n is a tight upper bound for (L∗)R = (LR)∗. Thus eight basic operations with
reversal added have been considered so far.

There are two usual steps in finding the state complexity of an operation.
First, establish an upper bound; then, find a stream (Ln | n � k) of languages,
where k is some small positive integer, to act as witnesses to show that the bound
is tight. In the literature witnesses for binary operations have usually been two
distinct streams.

The family of DFAs Un(a, b, c) = (Q,Σ, δ, q0, F ) for n � 3 illustrated in Fig. 1
and the corresponding language stream (Un(a, b, c) | n � 3) were proposed in [3]
as the “universal witness.”

Throughout this paper we use the notation w :D t to indicate that the map
δ(·, w) corresponding to word w ∈ Σ∗ causes the transformation t on the set of
states of the DFA D, omitting the D if it is clear from the context. The inputs
to Un(a, b, c) perform the following transformations on Q = {0, . . . , n − 1}: the
cycle of all n states, a : (0, . . . , n−1); the transposition of 0 and 1 (leaving other
states unchanged), b : (0, 1); and the singular transformation sending state n−1
to state 0 (and not affecting any other states), c : (n− 1 → 0). It is well known
that the inputs of Un(a, b, c) perform all nn possible transformations of states,
and also that the state complexity of the reverse of Un(a, b, c) is 2n; the latter
result follows by a theorem from [10].

In [3] Brzozowski defined two languagesK and L over Σ to be permutationally
equivalent if one can be obtained from the other by permuting the letters of the
alphabet. The permutationally equivalent language of Un(a, b, c) obtained by
interchanging a and b is denoted by Un(b, a, c). The restriction of the language
to alphabet {a, b} is denoted by Un(a, b). These definitions and notation are
extended to DFAs in the natural way.

It was proved in [3] that the bound mn for union, intersection, difference
(K \ L) and symmetric difference (K ⊕ L) is met by (Um(a, b, c) | m � 3) and
(Un(b, a, c) | n � 3). The bound 2n−1 +2n−2 for star is met by Un(a, b), and the
bound (m− 1)2n + 2n−1 for product, by Um(a, b, c)Un(a, b, c). This justifies the
use of Un(a, b, c) as a “universal witness” for the basic operations.

For some operations we require extensions of the universal witness stream. A
dialect of Un(a, b, c) is the language of any DFA with three inputs a, b, and c,
where a is a cycle as above, b is the transposition of any two states (p, q), and c
is a singular transformation (r → s) sending any state r to any state s �= r. The
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corresponding dialect DFAs of Un(a, b, c) always have the initial state 0, but an
arbitrary set of final states, as long as the DFA is minimal. The universal witness
has also been extended to quaternary alphabets [3], by adding a fourth input
d which performs the identity permutation, denoted by d : 1Q. The concepts
of permutational equivalence and dialect are extended in the obvious way to
quaternary languages and DFAs.

In this paper, we extend the notion of basic operations from [9] by including
difference and symmetric difference. Altogether, we study the following 13 oper-
ations with these basic operations and reversal:

K ∪ LR, K ∩ LR, K \ LR, LR \K, K ⊕ LR,
KR ∪ LR, KR ∩ LR, KR \ LR, KR ⊕ LR,
KLR, KRL, KRLR and (KR)∗.

Our contributions are as follows:

1. We derive the boundsm2n−(m−1) forKm\LRn and LRn \Km and the bound
m2n for Km ⊕ LRn , and show that these and the known bounds for Km ∪ LRn
and Km ∩ LRn are met by the two identical streams Um(a, b, c) and Un(a, b, c).
This reduces the size of the alphabet for union and intersection from four in [8]
to three.

2. We derive the bounds (2m − 1)(2n − 1) + 1 for KR
m \ LRn and 2m+n−1

for KR
m ⊕ LRn , and show that these and the known bounds for KR

m ∪ LRn and
KR

m ∩ LRn are met by two streams, U{0,2},m(a, b, c) and U{1,3},n(b, a, c), where
the set of final states in U{0,2},m(a, b, c) (respectively U{1,3},n(b, a, c)) is {0, 2}
(respectively {1, 3}).

3. We prove that the known bound for KmL
R
n is met by two identical streams

of languages Um(a, b, c) and Un(a, b, c). As a reviewer pointed out, this result
shows that Um(a, b, c) can be used as a witness for the language LLR, which to
our knowledge has not been explicitly studied before.

4. We show that the known bound for KR
mLn is met by two permutationally

equivalent dialects of Un(a, b, c, d).
5. We prove that the known bound for (KmLn)

R = LRnK
R
m is met by two

permutationally equivalent streams Um(a, b, c, d) and Un(d, c, b, a). Our proof is
considerably simpler than the one in [5].

6. We note that the original proof in [7] for the bound on (KR)∗ uses a dialect
of Un(a, b, c), and point out that the known bound is met by Un(a, b, c) with
final state 0.

In obtaining the results above, we prove Conjectures 1–4, 8, 11, and 14 of [3].
Boolean operations with one and two reversed arguments are considered in

Sections 2 and 3. Product and star are examined in Section 4, and Section 5
concludes the paper. Omitted proofs can be found in [4].

2 Boolean Operations with One Reversed Argument

Gao and Yu [8] showed using quaternary witnesses that the complexities of
Km∪LRn and Km∩LRn are both m2n− (m− 1). These results are improved and
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extended here as follows: (1) ternary alphabets suffice, (2) the same language
stream can be used for Km and Ln for both union and intersection, (3) the same
language stream is also a witness for two difference operations and symmetric
difference, and (4) the bound for symmetric difference is m2n.

First we derive upper bounds for two differences and for symmetric difference.

Proposition 1. Let Km and Ln be two regular languages with complexities m
and n. Then the complexities of Km\LRn and LRn \Km are at most m2n−(m−1),
and that of Km ⊕ LRn is at most m2n.

Proof. Let D1 = (Q1, Σ, δ1, q1, F1) and D2 = (Q2, Σ, δ2, q2, F2) be the minimal
DFAs of Km and Ln. Let N2 = DR

2 be the NFA obtained by interchanging
the sets of initial and final states and reversing all transitions in D2. Then N2

accepts the reversed language LRn . Let R2 be the DFA obtained from N2 by the
subset construction; since the reverse of N2 is deterministic, R2 is minimal, by
a theorem from [1]. Finally, let P be the direct product DFA of D1 and R2. The
states of P are of the form (i, S) where i ∈ Q1 and S ⊆ Q2, and hence there
are at most m2n reachable states. With appropriate assignments of final states,
P can accept the languages Km \ LRn , LRn \Km, and Km ⊕ LRn . This proves the
bound for Km ⊕ LRn .

For any input x ∈ Σ, any state (i, ∅) is mapped to (j, ∅) for some j; similarly
(i, Q2) is mapped to (j,Q2) for some j, because δ2(q, x) is defined for all q ∈ Q2

and x ∈ Σ. So for Km \ LRn , all m states of the form (i, Q2) are non-final and
indistinguishable, and the same is true for LRn \Km with the states (i, ∅). So for
Km\LRn and LRn \Km there are at most m2n− (m−1) distinguishable states. ��

We now prove that these bounds and the corresponding ones for union and
intersection are met by the universal witness streams. For states i and j of a
DFA and w ∈ Σ∗, we use the notation i

w−→ j to denote that state j is reached
from state i by word w. Let K ◦ L denote any one of the boolean operations
K ∪ L, K ∩ L, K \ L and K ⊕ L.

Theorem 1 (K ◦ LR). For m,n � 3, the complexities of the four languages
Um(a, b, c)∪ (Un(a, b, c))

R, Um(a, b, c)∩ (Un(a, b, c))
R, Um(a, b, c)\ (Un(a, b, c))R,

and (Un(a, b, c))
R \ Um(a, b, c) are all m2n − (m − 1), and that of Um(a, b, c)⊕

(Un(a, b, c))
R is m2n.

Proof. Let D1 = Um(a, b, c) and D2 = Un(a, b, c); the various related automata
are defined as in the proof of Proposition 1. The problem is illustrated in Fig. 2

3
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a, b a
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ccb, cb, cb
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b0 1 2

Fig. 2. DFA D1 = U4(a, b, c) and NFA N2 = DR
2 = (U5(a, b, c))

R
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for m = 4 and n = 5. We show that all m2n states of P of the form (i, S) with
i ∈ Q1 and S ⊆ Q2 are reachable.

The initial state is (0, {n − 1}), and (0, {n − 1}) c−→ (0, ∅) ai

−→ (i, ∅) for all
0 � i � m − 1. The word ab sends 0 to 0 in D1 and acts as ab :N2 (n − 1, n −
2, . . . , 2, 0). Therefore all states (0, {j}), j �= 1 are reachable from (0, {n − 1})
by repeated applications of ab. If n � m, then (0, {1+m (mod n)}) am

−−→ (0, {1}).
If n | m, then (0, {0}) am−1

−−−→ (m− 1, {1}) c−→ (0, {1}). For i > 0, (0, {i + j
(mod n)}) ai

−→ (i, {j}). Hence all states (i, S), |S| � 1, are reachable.
Consider the reachability of a state (i, S) with |S| = k for some k � 2. The

words in {a, b}∗ can perform all permutations of states in D1 andN2. Therefore it
suffices to show the reachability of all states (i, S), where |S| = k and 0, n−1 ∈ S.
Fix such a state (i, S). If i < m− 1, then (i, S \ {n− 1}) c−→ (i, S). For (m− 1, S)
there are three cases:

1. m � n. (m− 1− n (mod m), S)
an

−−→ (m− 1, S).
2. m = n = 3. Since a2ba :D1 (1, 2) and a2ba :N2 (0, 2) and 0, 2 ∈ S, we have

(1, S)
a2ba−−−→ (2, S).

3. m | n, n � 4. Consider the transposition a2ban−2 :N2 (2, 3), and define

S′ ⊆ Q2 such that S \ {n − 1} ca2ban−1

−−−−−−→ S′. Since 0 ∈ S, S′ contains 0; hence
applying c adds n− 1. Moreover, since m | n, this word also acts as a2ban−2 :D1

(m− 2,m− 1). It follows that (m− 2, S′)
ca2ban−2

−−−−−−→ (m− 1, S).
Therefore by induction on |S|, all m2n states are reachable, and it remains to

find the number of pairwise indistinguishable states for each operation.
We claim that if S, T ⊆ Q2 are distinct states of R2, then there is an input

which takes this pair of states to Q2 and ∅. Without loss of generality, let
k ∈ S \ T ; by applying a cyclic shift ak we may assume that 0 ∈ S \ T . Then
applying can−1 results in two states S1 and T1 with 0, 1 ∈ S1 \ T1. Repeating
this transformation n− 1 times maps S to Q2 and T to ∅.

Sets Q2 and ∅ are mapped to themselves under all inputs. Also, Q2 is final
and ∅ non-final in R2. Therefore the states (i, Q2) and (j, ∅) are distinguishable
for the boolean operations as follows:

1. Km ∪ LRn , LRn \Km, and Km ⊕ LRn : apply ak, k /∈ {m− 1 − i,m− 1 − j},
to send i and j to non-final states.

2. Km ∩ LRn : apply am−1−i so that i gets mapped to a final state.
3. Km \ LRn : apply am−1−j so that j gets mapped to a final state.
Thus any two states (i, S) and (j, T ) with S �= T are distinguishable for all

five boolean operations. Now consider states of the form (i, S) and (j, S), i < j.

Case 1. S = ∅. All states (i, ∅) are non-final and indistinguishable for Km ∩LRn
and LRn \Km. For the other three boolean operations, apply am−1−j to get the
distinguishable states (k, ∅), (m− 1, ∅), k �= m− 1.

Case 2. S �= ∅, 0 /∈ S. Note that ba :D1 (0, 2, 3, . . . ,m− 1) and ba :N2 (n −
1, n− 2, . . . , 1). Since i �= j, at least one of i and j is not equal to 1. Therefore
we can apply (ba)d for some d so that the states become (m− 1, S′), (k, S′)
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where S′ is non-final, and k �= m− 1. This distinguishes the states for Km ∪LRn ,
Km⊕LRn , and Km \LRn . For the other two operations, apply a cyclic shift ar so
that S is mapped to some S′′ and 0 ∈ S′′, and the pair of states is now in Case 3.

Case 3. S �= Q2, 0 ∈ S. Again, apply (ba)p for some p so that the states become
(m− 1, S′), (k, S′), S′ is final, and k �= m− 1. This distinguishes the states for
Km ∩ LRn and LRn \Km. For the other three operations, apply a cyclic shift ar

so that S is mapped to S′′, and 0 /∈ S′′, so that Case 2 now applies.

Case 4. S = Q2. All states (i, Q2) are final for Km ∪LRn and non-final for Km \
LRn , and indistinguishable in either case. For the other three boolean operations,
apply am−1−j to get the states (k,Q2), (m− 1, Q2), k �= m−1. This distinguishes
the states.

For symmetric difference, all m2n states are distinguishable. For the other
operations, exactly m states are indistinguishable. ��

3 Boolean Operations with Two Reversed Arguments

Note that (K ◦L)R = KR ◦LR for all four boolean operations. Liu, Martin-Vide,
A. Salomaa, and Yu [9] showed that (2m− 1)(2n− 1)+ 1 is a tight upper bound
for KR ∪LR and KR ∩LR, and that the bound is met by ternary witnesses. We
first derive upper bounds for difference and symmetric difference.

Proposition 2. Let Km and Ln be two regular languages with complexities m
and n. Then the complexity of KR

m \LRn is at most (2m− 1)(2n− 1)+ 1, and the
complexity of KR

m ⊕ LRn is at most 2m+n−1.

Proof. Let D1 = (Q1, Σ, δ1, q1, F1) and D2 = (Q2, Σ, δ2, q2, F2) be the minimal
DFAs of Km and Ln. As in Proposition 1, we apply the standard subset con-
struction to the NFAs N1 and N2 obtained by reversing D1 and D2, and then
construct their direct product DFA P . The states of P are of the form (S, T )
where S ⊆ Q1 and T ⊆ Q2; hence P has at most 2m+n states.

For KR
m \LRn , all states of the form (∅, T ) and (S,Q2) are non-final. Moreover,

because D2 is complete, every input leads to a state of the same form. Therefore
these states are indistinguishable. As there are (2m − 1)(2n − 1) states not of
this form, P has at most (2m − 1)(2n − 1) + 1 distinguishable states.

For KR
m ⊕ LRn , we note that (S, T ) is final if and only if (S, T ) is final, where

S = Q1 \ S and T = Q2 \ T . Let S ⊆ Q1 be a subset of states of N1; apply
x ∈ Σ to get a state S′. Then i ∈ S′ if and only if δ1(i, x) ∈ S. It follows that

S and S are mapped to a pair S′, S
′
, i.e., complementary states are mapped

to complementary states in N1 and N2. Therefore complementary states are
indistinguishable, so P has at most 2m+n−1 distinguishable states. ��

Next, we require a result concerning Um(a, b, c) and Un(b, a, c). The NFAs N1 =
(U4(a, b, c))

R and N2 = (U5(b, a, c))
R are shown in Fig. 3.

Theorem 2. For m,n � 3, the complexities of (Um(a, b, c))R ∪ (Un(b, a, c))
R,

(Um(a, b, c))R ∩ (Un(b, a, c))
R and (Um(a, b, c))R \ (Un(b, a, c))

R are (2m − 1) ·
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Fig. 3. NFAs N1 = (U4(a, b, c))
R and N2 = (U5(b, a, c))

R

(2n − 1) + 1, whereas that of (Um(a, b, c))R ⊕ (Un(b, a, c))
R is 2m+n−1, except

when m = n = 4; then the first three complexities are 202 and the fourth is 116.

Proof. Let D1 = (Q1, Σ, δ1, 0, {m−1}) = Um(a, b, c) and D2 = (Q2, Σ, δ2, 0, {n−
1}) = Un(b, a, c), and define the related automata as in Proposition 2.

We show that all 2m+n states of P are reachable unless m = n = 4. The
initial state is ({m− 1}, {n− 1}). From this state, (∅, ∅) is reached by c. Also,

({m− 1}, {n− 1}) bc−→ (∅, {n− 2}) bn−2−j (mod n)

−−−−−−−−−−→ (∅, {j}). Similarly, ({m− 1},
{n− 1}) acam−2−i (mod m)

−−−−−−−−−−−−→ ({i}, ∅). For i, j � 2, ({m− 1}, {n− 1}) am−1−ibn−1−j

−−−−−−−−−−→
({i}, {j}). For the other four states, we have the transformations ({2}, {2}) a2b−−→
({1}, {1}) a−→ ({0}, {0}) and ({2}, {2}) ab2−−→ ({1}, {0}) a−→ ({0}, {1}). So all states
(S, T ) with |S|, |T | � 1 are reachable.

Consider state ({i}, T ) with |T | = k, k � 2. As in the proof of Theorem 1, to
prove reachability of all such states we need only consider the case 0, n− 1 ∈ T .
For 1 � i � m− 1, ({i}, T \ {n− 1}) c−→ ({i}, T ), while ({1}, T ) a2

−→ ({m− 1}, T )
and ({2}, T ) a2

−→ ({0}, T ). By induction on k, all states ({i}, T ) are reachable.
Now suppose all states of the form (S, T ) are reachable for |S| = k, for some

k � 1. We want to show how to reach all states (S, T ) where |S| = k+1. Again, it

suffices to consider only the case where 0,m−1 ∈ S. As before, S \{m−1} c−→ S.
If 0 and n− 1 are both in T or both not in T , then (S′, T )

c−→ (S, T ). Moreover,
using arguments symmetric to the ones above, (S, T ) is reachable for all |T | � 1.
For the other T , we divide the problem into two cases.

Case 1. m is odd. Let w ∈ {a, b}∗ be a permutation of states on N1 and N2. We
show how to construct another word which performs the same transformation
as w on N2, but maps S to itself in N1. To do this, make three changes to w:

(i) Add am−1 to the beginning of w.
(ii) Replace all instances of a in w by am.
(iii) Add am+1 to the end of w.
Call the resulting word w′. Because m is odd and a2 :N2 1Q2 , w

′ is the same
transformation as w on N2. Consider applying w′ to S. Change (i) maps S to
some S′ with 0, 1 ∈ S′ (as we assume 0,m − 1 ∈ S). Both am and b map S′

to itself; so the transformation caused by change (ii) maps S′ to itself. Finally,
change (iii) is the inverse of (i), mapping S′ back to S.
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For any state T ⊆ Q2, with |T | � 2, there is a permutation word w ∈ {a, b}∗
which maps some T ′ to T , where 0, n − 1 ∈ T ′. Using the above construction,

(S′, T ′)
w′
−→ (S, T ). Therefore all 2m+n states are reachable for odd m. Since

the two NFAs are symmetric, if n is odd we can repeat the argument above,
interchanging the roles of N1 and N2.

Case 2.m and n are both even. Let T = {0, t1, . . . , tl}, 0 < t1 < · · · < tl < n−1.
Let j = n − 1 − tl, T ′ = {0, t1 + j, . . . , tl−1 + j, n − 1}, and w = (ab)j . Since

ab :N2 (n− 1, n− 2, . . . , 1), we have T ′
w−→ T . We may assume that j is even, as

if j is odd, the same transformation can be caused by w = (ab)j+n−1 (as ab is
a cycle of length n − 1). Define the words tri = a

ibam−i as the transpositions
tri :N1 (i, i+ 1). In N2, they are equivalent to b if i is even, and aba if i is odd.

First suppose k � 3, so that S\{0,m−1} �= ∅, and let i be the minimal element
of this set. If i = 1, then define w′ = (trm−1tr0)

j/2; this word is equivalent to w

in N2, and maps S to itself (since 0, 1,m− 1 ∈ S). Therefore (S, T ′)
w′
−→ (S, T ),

and since 0, n−1 ∈ T ′, (S, T ′) and (S, T ) are reachable. From states of this form
where 0 ∈ T , any T can be reached by applying cyclic shifts bj, which map S
to itself, as 0, 1 ∈ S. Now suppose i > 1. If i is even, let w = tri−1(trm−1)

n−1.

Then there exists S′ with 0, i− 1,m− 1 ∈ S′ and |S′| = |S| such that S′
w−→ S.

Moreover, w acts as (aba)n : 1Q2 on N2, so (S′, T )
w−→ (S, T ) for all T ⊆ Q2. If

i is odd, let w = tri−1tri−2tri−1(trm−1)
n−1, which acts as the transformation

(i− 2, i)(0,m− 1) on N1 and (ab)2 in N2. Since n − 1 is odd, applying wn−1

is equivalent to w on N1, while w
n−1 :N2 1Q2 (as ab causes a cycle of length

n − 1). Then (S′, T )
wn−1

−−−→ (S, T ) for some S′ containing 0, i− 2, and m− 1.
We apply an inductive argument on i to show the reachability of states (S, T )
where |S| � 3.

To complete the induction on k = |S|, we need to now handle the case k = 2.
Suppose S = {0,m− 1}. If m � 6, applying a2 does not change T , but maps

S
a2

−→ S′ = {m− 2,m − 3}; thus 0, 1,m− 1 /∈ S′. Reachability for all states of
the form S′ ∪ T uses the same argument as the case 0, 1,m− 1 ∈ S. Since n
is even, (S′, T )

am−2

−−−→ (S, T ), and all of these states are reachable as well. By
symmetry, all of the above arguments apply when n � 6.

This completes the reachability proof of all cases except m = n = 4. Compu-
tation shows that only 232 of the possible 256 states are reachable.

Next we examine the distinguishability of the reachable states. Let (S1, T1)
and (S2, T2) be two distinct states of P , with S1 �= S2. We may apply a cyclic
shift bk if necessary so that for each i = 1, 2, either (1) Ti ∈ {∅, Q2}, or (2)
Ti �= {n− 1} and Ti �= Q2 \ {n− 1}. Applying a cyclic shift al if necessary, we
may assume that 0 ∈ S1 \ S2. As in Theorem 1, we map S1 to Q1 and S2 to ∅
by applying (cam−1)m−2.

If the Ti are ∅ or Q2, this transformation leaves them unchanged. Otherwise,
by the above condition, they are mapped neither to ∅ nor to Q2. Therefore we
can map any pair of states (S1, T1) and (S2, T2), S1 �= S2, to (Q1, T

′
1), (∅, T ′2)
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with T ′i ∈ {∅, Q2} ⇐⇒ Ti ∈ {∅, Q2} for i = 1, 2. A similar claim holds for the
case T1 �= T2 by switching the a’s and b’s.

We now consider each of the boolean operations separately.

Union. States (Q1, T ) and (S,Q2) are final and indistinguishable for all possible
S and T . Now consider the (2m− 1)(2n− 1) states not containing Q1 or Q2. By
the claim above, and since the two DFAs are symmetric, we can reduce all pairs
to the form (Q1, T1), (∅, T2), where T1, T2 �= Q2. These states are distinguishable
by applying a cyclic shift bk mapping T2 to a non-final state.

Intersection. The states (∅, T ) and (S, ∅) are non-final and indistinguishable
for all possible S and T . By the above claim again, all other states (not contain-
ing a ∅) can be reduced to the case (Q1, T1), (∅, T2), T1, T2 �= ∅. Mapping T1 to
a final state using a cyclic shift will distinguish the states.

Difference. We consider the operation Um(a, b, c)R \Un(b, a, c)R. The indistin-
guishable states are those of the form (∅, T ) and (S,Q2), which are all non-final.
States (Q1, T1) and (∅, T2) (T1, T2 �= Q2) are distinguished by shifting T1 to a
non-final state, and (S1, Q2), (S2, ∅) (S1, S2 �= ∅) are distinguished by shifting
S2 to a final state.

Symmetric Difference. We note that (S, T ) is final if and only if (S, T ) is
final, where the bar denotes complementation. Moreover, if two states are com-
plementary, then they are mapped to complementary states under any input.
Therefore (S, T ) and (S, T ) are indistinguishable. This leads to a maximum of
2n+m−1 distinguishable states.

For any state (S, T ), either S or S contains 0. To complete the proof, we only
need to show that all states of the form (S, T ) with 0 ∈ S are distinguishable.
Let (S1, T1) and (S2, T2) be two such states. If T1 = T2, then S1 �= S2, there
exists k ∈ S1⊕S2, and hence ak distinguishes the states. If T1 �= T2, by applying
b2 if necessary, we may assume that there exists k ∈ {0, . . . , n − 2} such that
k ∈ T1 ⊕ T2. By applying cam−1, we may assume that 0, 1 ∈ S1 ∩ S2. This does
not change the fact that T1 and T2 are distinct, by the above assumption on k.
Applying bk for k ∈ T1 ⊕ T2 distinguishes the two states. ��

Theorem 2 shows that Um(a, b, c) and Un(b, a, c) are witnesses for every case
except m = n = 4. We show next that this result can be improved if the initial
states of the witnesses are modified. For m � 3, let U{0,2},m(a, b, c) be the DFA
obtained from Um(a, b, c) by changing the set of final states to {0, 2}. For n � 4,
let U{1,3},n(b, a, c) be the DFA obtained from Un(b, a, c) by changing the set of
final states to {1, 3}, and for n = 3, use U{1},n(b, a, c) with final state 1.

Theorem 3 (KR ◦ LR). Let Km = U{0,2},m(a, b, c) and Ln = U{1,3},n(b, a, c)
for n � 4 and let L3 = U{1},3(b, a, c). For m,n � 3, the complexities of KR

m∪LRn ,
KR

m∩LRn , and KR
m \LRn are (2m−1)(2n−1)+1, but that of KR

m⊕LRn is 2m+n−1.

Proof. If it is not the case m = n = 4, then by Theorem 2, it suffices to show
that state ({m − 1}, {n− 1}) is reachable from the initial state of the NFA. If

n = 3, the initial state is ({0, 2}, {1}), and ({0, 2}, {1}) ab2c−−−→ ({1}, {1}) a2b2−−−→
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({m− 1}, {n− 1}). Suppose n � 4. The initial state is ({0, 2}, {1, 3}). Apply the

following: ({0, 2}, {1, 3}) ac−→ ({1}, {0, 3, n−1}) a3

−→ ({m−2}, {1, 3, n−1}). If n =

4, then n− 1 = 3, and we can apply ({m− 2}, {1, 3}) c−→ ({m− 2}, {1}) b2am−1

−−−−−→
({m − 1}, {n − 1}). If n > 4, then apply ({m − 2}, {1, 3, n − 1}) cb2c−−→ ({m −
2}, {1}) b2am−1

−−−−−→ ({m− 1}, {n− 1}).
For every case except m = n = 4, this shows that all states are reachable.

When m = n = 4, one can verify through explicit enumeration that the states
unreachable from ({3}, {3}) are exactly the states reached from ({0, 2}, {1, 3})
by words in {a, b}∗. Therefore in this case all states are reachable as well. Finally,
distinguishability follows from the proof of Theorem 2. ��

4 Product and Star

4.1 The Language KLR

Cui, Gao, Kari and Yu showed in [6] that the complexity of KLR is (m− 1)2n+
2n−1 − (m− 1), with ternary witnesses. We now prove that the bound can also
be met by one stream. As a corollary to this theorem, we get that the universal
witness Un(a, b, c) acts as a witness for the operation LLR.

Theorem 4. For m,n� 3, the complexity of the product Um(a, b, c)(Un(a, b, c))
R

is (m− 1)2n + 2n−1 − (m− 1).

Proof. Let D1 = (Q1, Σ, δ1, q0, {qm−1}) and D2 = (Q2, Σ, δ2, 0, {n− 1}) be the
minimal DFAs of Um(a, b, c) and Un(a, b, c), where Q1 = {q0, . . . , qm−1} and
Q2 = {0, . . . , n − 1}. Let N2 be DR

2 , and let N be the NFA for the product of
D1 and N2, obtained by adding an ε-transition from qm−1 to n− 1, where ε is
the empty word, and making qm−1 non-final. This is illustrated in Fig. 4.

Use the subset construction on N to get a DFA P with states of the form
{qi} ∪ S, where qi ∈ Q1 and S ⊆ Q2. Any state must either not contain qm−1,
or contain both qm−1 and n− 1. There are (m− 1)2n states of the former type,
and 2n−1 states of the latter. We will show that all of these states are reachable.

Set {q0} is initial, {q0} ai

−→ {qi} for i ≤ m−2, and {qm−2} a−→ {qm−1}∪{n−1}.
Also, {qm−1} ∪ {n − 1} a−→ {q0} ∪ {n − 2}, and from there all other states
{q0}∪{j} are reached by repeated applications of ab, except j = 1. If n � m, then

{q0}∪{1+m (mod n)} am

−−→ {q0}∪{1}. If n | m, then {q0}∪{0} am−1c−−−−→ {q0}∪{1}.

ε
q0 q1 q2

c

a, c

a

b

c b, c

q3

a, b a

2

a a

34 1 0

b, c
a

b b, c

a, b

b

a, c

c cb

Fig. 4. NFA N for U4(a, b, c)(U5(a, b, c))
R
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Finally, {qi, j} is reached from {q0, i+ j (mod n)} by ai. So all states {qi} ∪ S,
where i < m− 1 and |S| � 1 are reachable.

States {qm−1} ∪ S with |S| = k � 2 and n− 1 ∈ S can be reached by a from
some state {qm−1} ∪ S′, with |S′| = k− 1. From these states, all states {q0} ∪ S
with |S| = k, n − 2 ∈ S are reached by a. Since k � 2, repeated applications
of the cycle ab :N2 (n − 1, n − 2, . . . , 2, 0) reaches all states {q0} ∪ S, |S| = k.
From these states, repeated applications of a reach all states {qi} ∪ S, |S| = k
and i < m− 1. By induction, all of the required states are reachable.

For distinguishability, note that all m states of the form {qi} ∪ Q2 are final
and indistinguishable. Consider {qi}∪S and {qj}∪ T with S �= T . If k ∈ S⊕T ,
then ak distinguishes the two states. Now consider the pair {qi} ∪ S, {qj} ∪ S,
S �= Q2. Let k /∈ S, and apply ak to get {qi′} ∪ S′, {qj′} ∪ T ′. If S′ �= T ′, then
by the previous argument the states are distinguishable. Otherwise, S′ = T ′

and 0 /∈ S′. Note that ba :D1 (q0, q2, q3, . . . , qm−1), and maps only 0 to 0 in N2.
Since i �= j, at least one of i, j is not equal to 1. Then by applying some (ba)d

if necessary, we may assume that i < m − 2, j = m − 2. Apply a to get states
{qi+1} ∪ T , {qm−1} ∪ T ∪ {n− 1}, where n− 1 /∈ T . Since these states contain
different subsets of Q2, they are distinguishable by the previous argument. ��

4.2 The Language KRL

Let Vn(a, b, c, d) = (QV , Σ, δV , 0, {n− 1}), where Q = {0, . . . , n− 1}, a : (0, . . . ,
n − 1), b : (n − 2, n − 1), c : (n − 1 → n − 2), and d : 1Qn . Let Vn(a, b, c, d) be
the language of Vn(a, b, c, d).

It was shown in [5] by Cui, Gao, Kari and Yu that 3 ·2m+n−2 is a tight bound
forKR

mLn. The permutationally equivalent dialects Vm(a, b, c, d) and Vn(d, c, b, a)
work here:

Theorem 5 (KR
mLn). The complexity of the product (Vm(a, b, c, d))RVn(d, c, b, a)

is 3 · 2m+n−2 for m,n � 3.

4.3 The Language (KL)R = LRKR

Let Un(a, b, c, d) = (Q,Σ, δU , 0, {n − 1}), where a : (0, . . . , n − 1), b : (0, 1),
c : (n− 1 → 0), and d : 1Q. Let Un(a, b, c, d) be the language of Un(a, b, c, d).

It was shown by Cui, Gao, Kari, and Yu [5] that quaternary witnesses meet
the bound 3 · 2m+n−2 − 2n + 1 for (KmLn)

R. The languages Um(a, b, c, d) and
Un(d, c, b, a) work here:

Theorem 6 (LRnK
R
m). The complexity of (Un(d, c, b, a))

R(Um(a, b, c, d))R is 3 ·
2m+n−2 − (2n − 1), for m,n � 3.

4.4 Reverse of Star

Note that (L∗)R = (LR)∗. The star of the reverse was studied by Gao, K.
Salomaa, and Yu [7], who showed that the complexity of this operation is 2n.
The witness U{0},n(a, b, c), which is Un(a, b, c) with final state set changed to {0}
works here. The proof is the same as that in [7].
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Theorem 7 ((L∗)R). For n � 3, the complexity of ((U{0},n(a, b, c))
∗)R is 2n.

5 Conclusions

We have proved that the universal witnesses Un(a, b, c) and Un(a, b, c, d), along
with their permutational equivalents Un(b, a, c) and Un(d, c, b, a), and dialects
U{0,2},m(a, b, c), U{1,3},n(a, b, c), U{0},n(a, b, c), Vm(a, b, c, d) and Vn(d, c, b, a) suf-
fice to act as witnesses for all the state complexity bounds involving binary
boolean operations, product, star and reversal. We have shown that it is efficient
to consider all four boolean operations together. Lastly, the use of universal wit-
nesses and their dialects simplified many proofs, and allowed us to utilize the
similarities in the witnesses.

Acknowledgment. We thank Baiyu Li for careful proofreading. We thank
our reviewers for their helpful feedback and corrections, and pointing out the
extension of the universal witness to the operation LLR.
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Abstract. We study the problem of trimming visibly pushdown automata (VPA).
We first describe a polynomial time procedure which, given a visibly pushdown
automaton that accepts only well-nested words, returns an equivalent visibly
pushdown automaton that is trimmed. We then show how this procedure can be
lifted to the setting of arbitrary VPA. Furthermore, we present a way of building,
given a VPA, an equivalent VPA which is both deterministic and trimmed.

1 Introduction

Visibly pushdown automata (VPA) are a particular class of pushdown automata defined
over an alphabet split into call, internal and return symbols [2,3]1. In VPA, the stack be-
havior is driven by the input word: when reading a call symbol, a symbol is pushed onto
the stack, for a return symbol, the top symbol of the stack is popped, and for an internal
symbol, the stack remains unchanged. VPA have been applied in research areas such as
software verification (VPA allow one to model function calls and returns, thus avoiding
the study of data flows along invalid paths) and XML documents processing (VPA can
be used to model properties over words satisfying a matching property between opening
and closing tags).

Languages defined by visibly pushdown automata enjoy many properties of regular
languages such as (effective) closure by Boolean operations and these languages can al-
ways be defined by a deterministic visibly pushdown automaton. However, VPA do not
have a unique minimal form [1]. Instead of minimization, one may consider trimming as
a way to deal with smaller automata. Trimming a finite state automaton amounts to re-
moving useless states, i.e. states that do not occur in some accepting computation of the
automaton: every state of the automaton should be both reachable from an initial state,
and co-reachable from a final state. This property is important from both a practical and
a theoretical point of view. Indeed, most of the algorithmic operations performed on
an automaton will only be relevant on the trimmed part of that automaton. Removing
useless states may thus avoid the study of irrelevant paths in the automaton, and speed
up the analysis. From a theoretical aspect, there are several results holding for automata
provided they are trimmed. For instance, the boundedness of finite-state automata with
multiplicities can be characterized by means of simple patterns for trimmed automata
(see [13,9]). Similarly, Choffrut introduced in [8] the twinning property to character-
ize sequentiality of (trimmed) finite-state transducers. This result was later extended to
weighted finite-state automata in [5]. Both of these results have been extended to visibly

1 These automata were first introduced in [4] as “input-driven automata”.

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 84–96, 2013.
© Springer-Verlag Berlin Heidelberg 2013



Trimming Visibly Pushdown Automata 85

pushdown automata and transducers in [6] and [11] respectively, requiring these objects
to be trimmed.

While trimming finite state automata can be done easily in linear time by solving two
reachability problems in the graph representing the automaton, the problem is much
more involved for VPA (and for pushdown automata in general). Indeed, in this setting,
the current state of a computation (called a configuration) is given by both a ”control”
state and a stack content. A procedure has been presented in [12] for pushdown au-
tomata. It consists in computing, for each state, the regular language of stack contents
that are both reachable and co-reachable, and use this information to constrain the be-
haviors of the pushdown automaton in order to trim it. This approach has however an
exponential time complexity.

Contributions. In this work, we present a procedure for trimming visibly pushdown
automata. The running time of this procedure is bounded by a polynomial in the size
of the input VPA. We first tackle the case of VPA that do only recognize so-called
well-nested words, i.e. words which have no unmatched call or return symbols. This
class of VPA is called well-nested VPA, and denoted by wnVPA. We actually present
a construction for reducing wnVPA, i.e ensuring that every run starting from an initial
configuration can be completed into an accepting run. As we consider well-nested VPA,
one can consider the ”dual” of the automaton (reads the word from right to left), and
apply the reduction procedure on it, yielding a trimming procedure. In a second step, we
address the general case. To do so, we present a construction which modifies a VPA in
order to obtain a wnVPA. This construction has to be reversible, in order to recover the
original language, and to be compatible with the trimming procedure. In addition, we
also design this construction in such a way that it allows to prove the following result:
given a VPA, we can effectively build an equivalent VPA which is both deterministic
and trimmed.

Organization of the paper. In Section 2 we introduce useful definitions. We address the
case of well-nested VPA in Section 3 and the general case in Section 4. We consider the
issue of determinization in Section 5. Due to lack of space, some proofs are omitted but
can be found in [7].

Related models. VPA are tightly connected to several models:
Context-free grammars: it is well-known that pushdown automata are equivalent to

context-free grammars. This observation yields the following procedure for trimming
pushdown automata 2. One can first translate the automaton into an equivalent context-
free grammar, then eliminate from this grammar variables generating the empty lan-
guage or not reachable from the start symbol, and third convert the resulting grammar
into the pushdown automaton performing its top-down analysis. This construction has a
polynomial time complexity but, in this form, it does not apply to VPA. Indeed, the re-
sulting pushdown automaton may not satisfy the condition of visibility as the third step
may not always produce rules respecting the constraints on push and pop operations
associated with call and return symbols.

2 We thank Géraud Sénizergues for pointing us this construction.
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Tree automata: by the standard interpretation of XML documents as unranked trees,
VPA can be understood as acceptors of unranked tree languages. It is shown in [2] that
they actually do recognize precisely the set of regular (ranked) tree languages, using the
encoding of so-called stack-trees, which is similar to the first-child next-sibling encod-
ing (fcns for short). Trimming ranked tree automata is standard (and can be performed
in linear time), and one can wonder whether this approach could yield a polynomial time
trimming procedure for VPA. Actually, going through tree automata would not ease the
construction of a trimmed VPA. Indeed, trimming the fcns encoding of a wnVPA, and
then translating back the result into a wnVPA yields an automaton which is reduced
but not trimmed (this is intuitively due to the fact that the fcns encoding realizes a left-
to-right traversal of the tree). Moreover, this construction does not ensure a bijection
between accepting runs, a property that is useful when moving to weighted VPA.

Nested word automata [3]: this model is equivalent to that of VPA. One could thus
rephrase our constructions in this context, and obtain the same results.

2 Definitions

Words and well-nested words. A structured alphabet Σ is a finite set partitioned into
three disjoint sets Σc, Σr and Σι, denoting respectively the call, return and internal
alphabets. We denote by Σ∗ the set of words overΣ and by ε the empty word.

The set of well-nested words Σ∗wn is the smallest subset of Σ∗ such that ε ∈ Σ∗wn,
Σι ⊆ Σ∗wn and for all c ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗wn, cur ∈ Σ∗wn and uv ∈ Σ∗wn.

Given a family of elements e1, e2, . . . , en, we denote by Πn
i=1ei the concatenation

e1e2 . . . en. The length of a word u is denoted by |u|.

Visibly pushdown automata (VPA). Visibly pushdown automata are a restriction of
pushdown automata in which the stack behavior is imposed by the input word. On a
call symbol, the VPA pushes a symbol onto the stack, on a return symbol, it must pop
the top symbol of the stack, and on an internal symbol, the stack remains unchanged.
The only exception is that some return symbols may operate on the empty stack

Definition 1 (Visibly pushdown automata). A visibly pushdown automaton (VPA) on
finite words overΣ is a tupleA = (Q, I, F, Γ, δ) whereQ is a finite set of states, I ⊆ Q
is the set of initial states, F ⊆ Q the set of final states, Γ is a finite stack alphabet,
δ = δc & δr & δ⊥r & δι the (finite) transition relation, with δc ⊆ Q × Σc × Γ × Q,
δr ⊆ Q×Σr × Γ ×Q, δ⊥r ⊆ Q×Σr × {⊥} ×Q, and δι ⊆ Q×Σι ×Q.

For a transition t = (q, a, x, q′) from δc, δr or δ⊥r or t = (q, a, q′) in δι, we denote by
source(t) and target(t) the states q and q′ respectively, and by letter(t) the symbol a.

A stack is a word from Γ ∗ and we denote by⊥ the empty word on Γ . A configuration
of a VPA is a pair (q, σ) ∈ Q× Γ ∗.

Definition 2. A run of A on a word w = a1 . . . al ∈ Σ∗ over a sequence of transitions
(tk)1≤k≤l from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence of
symbols and configurations ρ = (q0, σ0)Π

l
k=1(ak(qk, σk)) such that (q, σ) = (q0, σ0),

(q′, σ′) = (ql, σl), and, for each 1 ≤ k ≤ l, there exists γk ∈ Γ such that either:
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– tk = (qk−1, ak, γk, qk) ∈ δc and σk = σk−1γk, or
– tk = (qk−1, ak, γk, qk) ∈ δr and σk−1 = σkγk, or
– tk = (qk−1, ak,⊥, qk) ∈ δ⊥r , σk−1 = σk = ⊥, or
– tk = (qk−1, ak, qk) ∈ δι and σk = σk−1.

We denote by Runw(A) the set of runs of A over the word w. Note that a run for the
empty word is simply any configuration. We write (q, σ)

w−→ (q′, σ′) when there exists
a run over w from (q, σ) to (q′, σ′). We may omit the superscript w when irrelevant.

Given two runs ρi = (qi0, σ
i
0)Π

�i
k=1(a

i
k(q

i
k, σ

i
k)) for i ∈ {1, 2}, we can consider

the concatenation ρ1ρ2 of these runs, provided that (q1�1 , σ
1
�1
) = (q20 , σ

2
0), defined as

ρ1ρ2 = (q10 , σ
1
0)Π

�1
k=1(a

1
k(q

1
k, σ

1
k))Π

�2
k=1(a

2
k(q

2
k, σ

2
k)),

Initial (resp. final) configurations are configurations of the form (q,⊥), with q ∈ I
(resp. (q, σ) with q ∈ F ). A run is initialized if it starts in an initial configuration and it
is accepting if it is initialized and ends in a final configuration. We denote byARunw(A)
the set of accepting runs of A over the word w. The set of all accepting runs of A is
denoted ARun(A). A word is accepted byA iff there exists an accepting run of A on it.
The language of A, denoted by L(A), is the set of words accepted by A.

Definition 3. A VPA A = (Q, I, F, Γ, δ) is

– deterministic if I is a singleton and for all q inQ, for all c in Σc, for all i inΣι, for
all r in Σr,
• there exists at most one rule of the form (q, c, γ, q′) in δc, of the form (q, i, q′)

in δι and of the form (q, r,⊥, q′) in δ⊥r ,
• for all γ in Γ , there exists at most one rule of the form (q, r, γ, q′) in δr

– co-deterministic if F is a singleton and for all q′ in Q, for all c in Σc, for all i in
Σι, for all r in Σr,
• for all γ in Γ , there exists at most one rule of the form (q, c, γ, q′) in δc.
• there exists at most one rule of the form (q, r, γ, q′) in δr, of the form (q, i, q′)

in δι and of the form (q, c,⊥, q′) in δ⊥ι .

(Co)-reduced and trimmed VPA. A configuration (q, σ) is reachable from a configura-
tion (q′, σ′) if there exists a word u in Σ∗ such that (q′, σ′)

u−→ (q, σ).
We say that a configuration (q, σ) is reachable (resp. co-reachable) if there exists

an initial (resp. a final) configuration κ such that (q, σ) is reachable from κ (resp. κ is
reachable from (q, σ)).

Definition 4. Let A be a VPA. Let us consider the three following conditions :

(i) every reachable configuration is co-reachable.
(ii) for every configuration (p, σ) and every reachable and final configuration κ′ of A

such that κ′ is reachable from (p, σ), then (p, σ) is reachable.
(iii) for every state q, there exists an accepting run going through a configuration

(q, σ).

We say that the automatonA is reduced (resp. co-reduced) if it fulfills conditions (i) and
(iii) (resp. (ii) and (iii)), trimmed if it is both reduced and co-reduced, and weakly
reduced if it fulfills condition (i).
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Observe that condition (ii) looks more complicated than the property stating that
every co-reachable configuration is reachable. Indeed, unlike in finite state-automata,
the presence of a stack requires one to focus on reachable final configurations, and not
to consider arbitrary final configuration. However, we will see that for VPA accepting
only well-nested words, this condition is equivalent to the simpler one.

Observe that condition (iii) simply corresponds to the removal of states that are
useless, which can easily be done in polynomial time.3

2.1 Well-Nested VPA (wnVPA)

A VPA A is said to be well-nested if L(A) ⊆ Σ∗wn. The class of well-nested VPA is
denoted by wnVPA. Well-nested VPA enjoy some good properties; we describe some
of them here.

Remark 1. If A is well-nested then its final configurations (f, σ) (with f a final state)
are reachable only if σ = ⊥.

The property of being co-reduced can be rephrased when considering wnVPA

Proposition 1. Let A be a wnVPA satisfying condition (iii), then A is co-reduced iff
every configuration that can reach some configuration (f,⊥) with f ∈ F is reachable.

Proof. Let f ∈ F . By condition (iii), there exists σ ∈ Γ ∗ such that configuration (f, σ)
appears on some accepting run ρ, and by Remark 1, σ = ⊥. Thus the set of reachable
final configurations of A is equal to {(f,⊥) | f ∈ F}. ��

Let Σ = (Σc, Σr, Σι). The dual alphabet of Σ (denoted dual(Σ)) is the alphabet
(Σr, Σc, Σι). Roughly speaking call and return symbols are switched.

Let w be a word in Σ∗wn. We define dual(w) as the mirror image of w. We naturally
extend this notion to languages L such that L ⊆ Σ∗wn.

Definition 5. Let A = (Q, I, F, Γ, δ) be a wnVPA over some alphabet Σ. Its dual
VPA denoted dual(A) = (Q′, I ′, F ′, Γ ′, δ′) over the alphabet dual(Σ) is given by
Q′ = Q, I ′ = F , F ′ = I , Γ ′ = Γ , and δ′c = {(q, r, γ, q′) | (q′, r, γ, q) ∈ δr},
δ′r = {(q, c, γ, q′) | (q′, c, γ, q) ∈ δc}, δ′ι = {(q, i, q′) | (q′, i, q) ∈ δι}, and δ′⊥r = ∅.

It is easy to prove that :

Proposition 2. Let A be a wnVPA. Then

– For all w ∈ Σ∗wn, there exists a bijection between Runw(A) and Rundual(w)

(dual(A)) which induces a bijection between ARunw(A) andARundual(w)(dual(A)).
– A is reduced iff dual(A) is co-reduced.
– A is deterministic iff dual(A) is co-deterministic.

3 For any state q, one can build in polynomial time from A a word automaton over the alphabet
Γ whose language is empty iff no configuration of the form (q, σ) is reachable.
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3 Trimming Well-Nested VPA

Let A be a wnVPA on a structured alphabetΣ. We present the construction of the VPA
trimwn(A), which recognizes the same language, and in addition is trimmed. First we
define the reduced VPA reduce(A) which is equivalent to A.

3.1 Construction of wreduce(A) and reduce(A)

Consider a wnVPA A = (Q, I, F, Γ, δ). We describe the construction of the VPA
wreduce(A), which is weakly reduced. The VPA reduce(A) is then obtained by re-
moving useless states of wreduce(A), as explained in the previous section.

We first consider the set WN = {(p, q) ∈ Q × Q | ∃(p,⊥) → (q,⊥) ∈ Run(A)}.
This set can be computed in quadratic time as the least one satisfying

– {(p, p) | p ∈ Q} ⊆ WN,
– if (p, p′) ∈ WN and (p′, p′′) ∈ WN, then (p, p′′) ∈ WN
– if (p, q) ∈ WN, and ∃(q, i, q′) ∈ δι, then (p, q′) ∈ WN
– if (p, q) ∈ WN and ∃(p′, c, γ, p) ∈ δc, (q, r, γ, q′) ∈ δr, then (p′, q′) ∈ WN

Definition 6. For any wnVPA A = (Q, I, F, Γ, δ), we define the wnVPA wreduce(A)
as (Q′, I ′, F ′, Γ ′, δ′) where Q′ = WN, I ′ = WN ∩ (I × F ), F ′ = {(f, f) | f ∈ F},
Γ ′ = Γ ×Q, and δ′ is defined by its restrictions on call, return 4 and internal symbols
respectively (namely δ′c, δ′r and δ′ι):

– δ′c =
{((p, q), c, (γ, q), (p′, q′)) | (p, q), (p′, q′) ∈ Q′, (p, c, γ, p′) ∈ δc,

∃r ∈ Σr, ∃s ∈ Q, (q′, r, γ, s) ∈ δr and (s, q) ∈ Q′}
– δ′r = {((q′, q′), r, (γ, q), (p, q)) | (q′, q′), (p, q) ∈ Q′, (q′, r, γ, p) ∈ δr}
– δ′ι = {((p, q), a, (p′, q)) | (p, q), (p′, q) ∈ Q′, (p, a, p′) ∈ δι}
Intuitively, the states (and the

(p, σ)

(p′, σ.γ) (q′, σ.γ)

(s, σ) (q, σ)

c

w1

r
w2

Fig. 1. Construction of call transitions

stack) ofwreduce(A) extend those
of A with an additional state of
A. This extra component is used
by wreduce(A), when simulating
a run of the VPA A, to store the
state that the run should reach to
pop the symbol on top of the stack. To obtain a weakly reduced VPA, we require for
the call transitions the existence of a matching return transition that allows one to reach
the target state q. This condition is depicted on Figure 1, and we give an example of the
construction in Figure 2.

3.2 Properties of wreduce(A) and reduce(A)

We consider the projection π from configurations of Awred = wreduce(A) to configu-
rations of A obtained by considering the first component of states, as well as the first
component of stack symbols. By definition of Awred, each transition of Awred is associ-
ated with a unique transition of A, we also denote by π this mapping. One can easily
prove (see [7]), that π maps runs of Awred onto runs of A.

The constructions wreduce and reduce have the following properties:
4 As the language is well-nested, we do not consider return transitions on the empty stack.
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1 2 3

c/γ1

r/γ1

c1/γ2

c2/γ3

r/γ3

r/γ2

1, 1 2, 2

3, 3

2, 3
c/γ1, 1

r/γ1, 1
r/γ3, 3

r/γ2, 2

c1/γ2, 2

c2/γ3, 3

Fig. 2. On the left a VPAA, on the right reduce(A). There exists an initialized run of A over cc1c1
which cannot be completed into an accepting run. This run is no longer present in reduce(A).

Theorem 1. Let A be a wnVPA, and let Awred = wreduce(A) and Ared = reduce(A).
Awred and Ared can be built in polynomial time, and satisfy:

(1) there exist bijections between ARun(Awred) and ARun(A), and ARun(Ared) and
ARun(A) and thus in particular L(A) = L(Awred) = L(Ared),

(2) Awred is weakly reduced, and Ared is reduced,
(3) if A is co-reduced, then Ared is co-reduced,
(4) if A is co-deterministic, then Awred and Ared are co-deterministic.

Proof (Sketch). As explained above, the mapping π induces a mapping from runs of
Awred to runs of A. It is easy to verify that this mapping preserves the property of being
accepting. In addition, one can prove by induction on the structure of the underlying
word that it is both injective and surjective when restricted to the set ARun(Awred).
This yields a bijection between ARun(Awred) and ARun(A). The bijection between
ARun(Awred) and ARun(Ared) is trivial as by definitionAred only differs fromAwred by
states that do not appear in accepting runs.

The proof that Awred is weakly reduced proceeds by induction on the size of the
stack of the reachable configuration (p, σ) under consideration. It is then an immediate
consequence that Ared is reduced.

By Proposition 1, to prove Property (3), we only have to prove that every configura-
tion of Awred co-reachable from a final configuration with an empty stack is reachable.
This is done by induction on the size of the stack of this configuration. Last, the proof
of Property (4) is done by an inspection of the transitions of Awred. ��

3.3 From Reduced to Trimmed

A construction for the co-reduction. Given a wnVPA, we can perform the following
composition of constructions: coreduce = dual ◦ reduce ◦ dual. As a consequence of
Proposition 2 and Theorem 1, the construction coreduce yields an equivalent wnVPA
which is co-reduced.

Trimming. We define the construction trimwn as trimwn = coreduce ◦ reduce. Property
(3) of Theorem 1 entails that the construction coreduce preserves the reduction, and we
thus obtain the following result:

Theorem 2. Let A be a wnVPA, and Atrim = trimwn(A). Atrim is trimmed and can be
built in polynomial time. Furthermore there exists a bijection between ARun(A) and
ARun(Atrim), and thus in particular L(A) = L(Atrim).
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Remark 2. The construction of co-reduction could also be presented explicitly. It would
consist in adding an extra component into states and stack symbols, as done for the
construction reduce, but representing the state reached when the top symbol of the stack
was pushed. The same approach allows to present explicitly the construction trimwn.

4 General Case

In order to trim a VPA A over some alphabetΣ, we will first build a wnVPA extend(A)
over a new alphabet. In a second step, we trim the VPA extend(A) using the procedure
described in the previous section for wnVPA. Last, we construct from the resulting
wnVPA a VPA, which recognizes the language L(A), and which is still trimmed. It
is far from being trivial to propose procedures for transforming a VPA into wnVPA,
and back, which are compatible with the notion of being trimmed. In addition, we will
address the property of determinism in the next section, and our constructions should
also be compatible with that issue.

4.1 Constructing Well-Nested Words from Arbitrary Words

Let Σ = Σc &Σr & Σι be a structured alphabet. We introduce the structured alphabet
Σext = Σext

c & Σext
r & Σext

ι defined by Σext
c = Σc, Σext

r = Σr & {r̄}, and Σext
ι =

Σι & {ir | r ∈ Σr}, where r̄ and {ir | r ∈ Σr} are fresh symbols.
We define inductively the mapping ext which transforms a word overΣ into a well-

nested word overΣext as follows, given a ∈ Σι, r ∈ Σr and c ∈ Σc:
ext(aw) = a · ext(w), ext(rw) = ir · ext(w),

ext(cw) =

{
cw1r · ext(w2) if ∃w1 ∈ Σ∗wn such that w = cw1rw2,
c · ext(w) otherwise.

For example, ext(rccar) = irccarr̄ with c ∈ Σc, r ∈ Σr and a ∈ Σι. The mapping
ext replaces every return r on empty stack by the internal symbol ir, and adds a suffix
of the form r̄∗ in order to match every unmatched call. As a consequence, ext(w) is a
well-nested word over the alphabetΣext. We extend the function ext to languages in the
obvious way.

4.2 Reduction to wnVPA

From VPA to wnVPA . . . . We present the construction extend which turns a VPA over
Σ into a wnVPA overΣext. Intuitively, when firing a call transition, the automaton non-
deterministically guesses whether this call will be matched or not. Then, if a call is
considered as not matching, the automaton completes it by using a transition over r̄ at
the end of the run. This is done by adding a suffix to the VPA which reads words from
r̄+. Moreover the construction replaces the returns on empty stack by internals, this is
done by memorizing in the state the fact that the current stack is empty or not.

We let T denote the set of symbols {⊥,�, ◦}. Intuitively, ⊥ means that the stack is
empty, ◦ means that the stack contains only useless symbols (i.e. symbols associated
with calls that will be unmatched), and � means that the stack contains some useless
symbols (possibly none) plus symbols which will be popped. Furthermore we consider
a fresh final state denoted by f̄ . This state is used to pop all the useless symbols.
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Definition 7. Let A = (Q, I, F, Γ, δ) be a VPA over an alphabetΣ, we define the VPA
extend(A) = (Q′, I ′, F ′, Γ ′, δ′) over the alphabetΣext, whereQ′ = (Q×T )∪ ({f̄}×
{⊥, ◦}), I ′ = I × {⊥}, F ′ = (F ∪ {f̄})× {⊥}, Γ ′ = Γ × T , and δ′ is given by:

δ′c={((p, t), c, (γ, t), (q, x)) | (p, c, γ, q) ∈ δc and either x=� or (x= ◦ ∧ t �=�)}
δ′r={((p,�), r, (γ, t), (q, t)) | (p, r, γ, q) ∈ δr} ∪

{((p, ◦), r̄, (γ, t), (f̄ , t)) | p ∈ F ∪ {f̄}, γ ∈ Γ, t �= �}
δ′ι={((p, t), a, (q, t)) | (p, a, q) ∈ δι} ∪ {((p,⊥), ir, (q,⊥)) | (p, r,⊥, q) ∈ δr}

Theorem 3. Let A be a VPA. Then for all words w ∈ Σ∗, there exists a bijection
between ARunw(A) and ARunext(w)(extend(A)).

. . . and back. We present now the construction allowing to go from a wnVPA onΣext to
the ”original”VPA onΣ. It is not always possible to find such a VPA, we thus introduce
the property of being retractable.

Definition 8. Let Σ be an alphabet and A = (Q, I, F, Γ, δ) be a VPA over the alpha-
bet Σext. We define two subsets of Q as follows:
trap(A) = {q ∈ Q | ∃p, (p, r̄, γ, q) ∈ δr}
border(A) = {p �∈ trap(A) | ∃t ∈ δ such that source(t) = p and target(t) ∈ trap(A)}
Elements of border(A) are called border states of A.

Definition 9. LetΣ be an alphabet andA = (Q, I, F, Γ, δ) be a VPA over the alphabet
Σext. Then A is said to be retractable if :

(i) There exists a VPA B over Σ such that L(A) = ext(L(B)),
(ii) We have trap(A) ∩ I = ∅,
(iii) For all transitions t in δ such that source(t) �∈ trap(A), if letter(t) = r̄, then

target(t) ∈ trap(A), otherwise target(t) �∈ trap(A).
(iv) For all transitions t in δ such that source(t) ∈ trap(A), then letter(t) = r̄, and

target(t) ∈ trap(A).
(v) For each initialized run of A which ends in a border state there exists a unique

run ρ′ over r̄+ such that ρρ′ is an accepting run.

Intuitively, a VPA which is retractable has two components: the first (before entering
trap(A)) can read words over (Σext \{r̄})∗ whereas the second reads words of the form
r̄+. Note that the only way to go from a state not in trap(A) to a state in trap(A) is to
use a transition which leaves a border state by r̄. We give an example of these properties
in Figure 3. We naturally have:

Lemma 1. Let A be a VPA, then extend(A) is retractable.

We now define the converse of the function extend, named retract:

Definition 10. Let A = (Q, I, F, Γ, δ) be a retractable VPA over the alphabet Σext,
we define the VPA retract(A) = (Q′, I ′, F ′, Γ, δ′) over the alphabet Σ by Q′ = Q \
trap(A), I ′ = I , F ′ = (F \ trap(A)) ∪ border(A), and the set of transition rules
δ′ = δ′c & δ′r & δ′⊥r & δ′ι is defined by: δ′c = δc, δ′r = {t ∈ δr | letter(t) �= r̄},
δ′⊥r = {(p, r,⊥, q) | (p, ir, q) ∈ δι}, and δ′ι = {t ∈ δι | letter(t) ∈ Σι}.
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1

2

r/γ r/⊥

c/γ 1,⊥ 1,
 1, ◦ f̄ , ◦

f̄ ,⊥2,⊥ 2,
 2, ◦

c/γ,⊥
c/γ,⊥

c/γ, ◦

r/γ,⊥
r/γ,
 r/γ, ◦

r̄/γ, ◦

r̄/γ,⊥
ir r̄/γ,⊥

c/γ,
 c/γ, ◦
r̄/γ, ◦

Fig. 3. At left, the VPA A with L(A) = (crr)∗c∗, at right the VPA Aext = extend(A) with
L(Aext) = {(crir)∗ckr̄k | k ∈ N}. border(Aext) = {(1, ◦)}, trap(Aext) = {(f̄ , ◦), (f̄ ,⊥)}.

This construction is very simple, it replaces all the internal transitions over ir by return
transitions on empty stack over symbol r, and removes the return transitions over r̄.
Note that the final states of retract(A) are the final states ofA which are not in trap(A)
and the border states of A. We list below important properties of retract:

Theorem 4. Let A be a retractable VPA on Σext, we have:

(i) for any word w ∈ Σ∗, there exists a bijection between ARunw(retract(A)) and
ARunext(w)(A), and thus in particular L(A) = ext(L(retract(A))),

(ii) if A is trimmed, then so is retract(A).

In addition, the retractability is preserved by the trimming procedure described in the
previous section for well-nested VPA:

Theorem 5. Let A be a VPA, then the VPA trimwn(extend(A)) is retractable.

4.3 Trimming VPA

We consider the construction trim defined by trim(A) = retract ◦ trimwn ◦ extend(A),
and state its main properties:

Theorem 6. Let A be a VPA on the alphabet Σ, and let Atrim = trim(A). The VPA
Atrim can be built in polynomial time, and satisfies:

(i) there is a bijection betweenARun(A) andARun(Atrim), and soL(A) = L(Atrim),
(ii) Atrim is trimmed.

Proof. First, by Theorem 5, the VPA trimwn◦extend(A) is retractable, and thus trim(A)
is well-defined. Then, the first property follows from the fact that such bijections exist
for the constructions extend, trimwn and retract. The second property is a consequence
of Theorems 2 and 4.(ii). ��

5 Deterministic Trimmed VPA

We have proven in the previous section that it is always possible, given a VPA, to
build an equivalent VPA (i.e. that recognizes the same language) which is trimmed. In
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addition, in the original paper of Alur and Madhusudan, it was proven that it is always
possible to build an equivalent VPA that is deterministic. In this section, we prove that
it is possible to build an equivalent VPA that is both trimmed and deterministic. This is
not a trivial corollary of the two previous results, as the different constructions can not
be directly combined.

Due to lack of space, we do not show the determinization procedure for VPA, it
can however be found in [2]. Note that its complexity is O(2n

2

), where n denotes
the number of states of the input VPA. We denote by determinize the procedure ob-
tained by applying the construction of [2], followed by the removal of useless states
(according to property (iii) of Definition 4), which can be performed in polynomial
time.

5.1 Determinization Preserves Reduction and Retractability

We start by proving that the construction determinize preserves the properties of being
weakly reduced and of being retractable. In the sequel, we let A be a VPA and we let
Adet = determinize(A). The following results are proved in [2]:

Theorem 7. Adet is a deterministic VPA, and L(A) = L(Adet).

Lemma 2. Letw ∈ Σ∗. If there exists an initialized run ρ′ ofAdet onw (not necessarily
accepting), then there exists an initialized run ρ of A on w.

As a corollary we prove in [7]:

Proposition 3. If A is weakly reduced (resp. retractable), then Adet is weakly reduced
(resp. retractable).

5.2 Construction of a Deterministic Trimmed VPA

We consider the following composition of the different constructions presented
before:

det-trim = retract ◦ coreduce ◦ determinize ◦ reduce ◦ extend

We claim that this composition allows one to build an equivalent VPA that is both
deterministic and trimmed, as stated in the following theorem:

Theorem 8. Let A be a VPA. The VPA det-trim(A) is deterministic, trimmed, and
satisfies L(A) = L(det-trim(A)).

Proof. We first let A1 = reduce ◦ extend(A). By Theorems 1 and 3, A1 is weakly
reduced, and recognizes the language ext(L(A)). In addition, we prove in [7] that
A1 is retractable. Consider now A2 = determinize(A1). We have L(A2) = L(A1)
and, by Proposition 3 and as the construction determinize includes the removal of
useless states, the VPA A2 is deterministic, reduced and retractable. Consider now
A3 = coreduce(A2). By Theorem 1, properties (3) and (4) and by Proposition 2, the
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construction coreduce preserves the properties of being reduced, and of being deter-
ministic. In addition, we prove in [7] that this construction also preserves the property
of being retractable. We thus conclude that A3 is retractable, trimmed, deterministic,
and satisfies L(A3) = L(A1) = ext(L(A)). To conclude, it remains to observe that the
construction retract preserves the determinism, and to use Theorem 4. ��

6 Conclusion

We introduced a series of constructions to trim a VPA. For each of these constructions,
there exist projections of transitions of the obtained VPA onto those of the original one,
which yield bijections between the accepting runs of the two VPA’s. As a corollary, our
constructions can be lifted to weighted VPA (VPA equipped with a labeling function of
transitions, such as visibly pushdown transducers).

Our trimming procedure doesn’t preserve the deterministic nature of the input VPA.
We have however presented an alternative method to simultaneously trim and deter-
minize a VPA, the complexity of this method being exponential. One can wonder
whether a deterministic VPA can be trimmed with a polynomial time complexity, pre-
serving its deterministic nature. The answer to this question is negative, and can be ob-
tained using the family of languagesLN = {(c1+ c2)kc1(c1 + c2)N rN+k+1 | k ∈ N},
with N ∈ N, as a counter-example.

As future work, we plan to study the complexity of determining whether a VPA is
trimmed. Another perspective is to implement our constructions in libraries for nested
words such as [10].
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Abstract. We study the class of relations implemented by nested word
to word transducers (also known as visibly pushdown transducers). We
show that any such relation can be uniformized by a functional rela-
tion from the same class, implemented by an unambiguous transducer.
We give an exponential upper bound on the state complexity of the
uniformization, improving a previous doubly exponential upper bound.
Our construction generalizes a classical construction by Schützenberger
for the disambiguation of nondeterministic finite-state automata, using
determinization and summarization constructions on nested word au-
tomata. Besides theoretical interest, our procedure can be the basis for
synthesis procedures for nested word to word transductions.

Keywords: uniformization, transduction, nested word, visibly
pushdown language.

1 Introduction

A central result in the theory of rational languages is the unambiguity theo-
rem [1,2], which states that every rational function can be implemented by an
unambiguous transducer, that is, a transducer that has at most one success-
ful run on any input. Schützenberger [3] gave an elegant and direct proof of
the unambiguity theorem, by showing, for any rational function, a matrix repre-
sentation which can be made unambiguous. Sakarovitch [2] subsequently showed
that the construction of Schützenberger can be used as the foundation for several
results in the theory of rational functions, most notably the rational uniformiza-
tion theorem and the rational cross-section theorem (see [4,5,2]).

In more detail, the construction of Schützenberger starts with a (possibly
nondeterministic) finite-state transducer T , and constructs a new transducer
with the property that any input string has at most one successful run. The
construction performs a cross product of the subset automaton with the original
automaton, and shows that certain edges in the cross product can be removed
to obtain unambiguity, while preserving the language. As a simple consequence,
the input–output relation that relates two words (u,w) if the transducer T can
output w on input u, can be uniformized: for every u in the domain of T , we
can pick a unique w that is related to it (the rational uniformization theorem).

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 97–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we present an extension of the construction by Schützenberger
to transducers from nested words to words. A nested word consists of a word over
an alphabet, together with a matching relation that relates “call” positions in
the word with corresponding “return” positions. Nested word automata [6] were
introduced as a subclass of pushdown automata which are expressive enough for
a large number of application domains but nevertheless retain many closure and
decidability properties of regular languages. Nested word automata distinguish
between “call,” “return,” and “internal” positions of the word, and, informally,
push a symbol on the runtime stack on a call letter, pop a symbol on a return
letter, and do not touch the stack on an internal letter.

These automata were extended to nested word transducers by Raskin and
Servais [7] (under the name “visibly pushdown transducers”). The definition
of nested word transducers in [7] allows transitions with ε-marking, but ensures
that no transition can read and write symbols of different types (call, return, and
internal symbols, in terms of visibly pushdown automata). We study a model of
nested-word to word transducers considered in [8,9], in which the output word
carries no structural information (i. e., call, return, or internal). That is, our
transducers transform nested words into “normal” (linear) words.

Our main construction generalizes Schützenberger’s construction to give an
unambiguous automaton that is at most a single exponential larger than the
input automaton. Our construction relies on the standard determinization con-
struction for nested word automata from [6], as well as on a summarization of
a nested word automaton, which captures the available properly-nested compu-
tation paths between two states. We show how to prune the product of these
automata, in analogy with [3,2], to get an unambiguous automaton.

As a consequence of our construction, we obtain a uniformization theorem
for nested-word to word transducers: any relation defined by such a transducer
can be uniformized by a functional (i. e., single-valued) relation implemented by
an unambiguous transducer. For functional nested-word to word transductions
this yields an unambiguity theorem: every single-valued transduction can be
implemented by a unambiguous transducer. The increase in the number of states
is at most exponential, which improves a doubly exponential construction of [10]
based on a notion of look-ahead. Note that for several other classes of algebraic
(i. e., pushdown) transductions, uniformization theorems were obtained in [11].

In this extended abstract we focus on the case of nested words without un-
matched calls, which we call closed words. Our construction for this special case
captures main technical ideas and can be extended with an auxiliary transfor-
mation to fit the general case. Another variant of our construction, also not
discussed here, applies to so-called weakly hierarchical nested word automata
from [6,12], which are restricted to record only the current state on the stack.

Besides theoretical interest, our results provide an easily-implementable dis-
ambiguation construction. Since uniformization results are at the core of reactive
synthesis techniques [13], our construction can form the basis of implementations
of synthesis procedures for nested-word to word transductions.
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The structure of the current paper is as follows. After introducing necessary
definitions, we describe three basic constructions on nested word automata in
Section 3. We show how to combine them to obtain a specific disambiguation
of an arbitrary automaton (the Schützenberger construction) in Section 4. The
proofs are delayed until Section 6, while in Section 5 we discuss how to use the
construction to obtain uniformization and unambiguity theorems. Short notes
sketching the extension to the general (non-closed-word) case can be found in
relevant parts of Sections 4 and 5.

2 Nested Words and Transducers

A nested word of length k over an alphabet Σ is a pair u = (x, ν), where x ∈ Σk

and ν is a matching relation of length k, that is, a subset ν ⊆ {−∞, 1, . . . , k} ×
{1, . . . , k,+∞} such that, first, if ν(i, j) holds, then i < j; second, for 1 ≤ i ≤ k
each of the sets {j | ν(i, j)} and {j | ν(j, i)} contains at most one element; third,
whenever ν(i, j) and ν(i′, j′), it cannot be the case that i < i′ ≤ j < j′. We
assume that ν(−∞,+∞) never holds.

If ν(i, j), then the position i in the word u is said to be a call, and the position j
a return. All positions from {1, . . . , k} that are neither calls nor returns are
internal. A call (a return) is matched if ν matches it to an element of {1, . . . , k}
and unmatched otherwise.

We shall call a nested word closed if it has no unmatched calls, and well-
matched if it has no unmatched calls and no unmatched returns. We denote the
set of all nested words over Σ by Σ∗n, the set of all closed nested words by Σ∗c,
and the set of all well-matched words by Σ∗w. Observe that Σ∗w � Σ∗c � Σ∗n.

The family of all non-empty (word) languages over the alphabet Δ is denoted
by L(Δ∗).

Define a (nested-word to word) transducer over the input alphabet Σ and
output alphabet Δ as a structure T = (Q,P, δ,Qi, Qf , P i), where:

– Q is a finite non-empty set of (linear) states,
– P is a finite set of hierarchical states,
– δ = (δcall, δint, δret), where

• δint ⊆ Q× Σ×Q × L(Δ∗) is a set of internal transitions,
• δcall ⊆ Q× Σ×Q× P × L(Δ∗) is a set of call transitions,
• δret ⊆ P ×Q× Σ×Q× L(Δ∗) is a set of return transitions,

– Qi ⊆ Q and Qf ⊆ Q are sets of initial and final linear states, and
– P i ⊆ P is a set of initial hierarchical states.

A path through a transducer T driven by an input word u = (a1 . . . ak, ν) ∈ Σ∗n

is a sequence of alternating linear states and transitions of T , where ith transition
leads from the current linear state to the next one, carries the letter ai ∈ Σ, and
has type chosen according to the matching relation ν; furthermore, for every pair
of matched call and return, hierarchical states encountered in the corresponding
transitions are required to be the same (we say that they are sent and received
along the hierarchical edges).
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The path is successful if it starts in a state from Qi, ends in a state from
Qf , and all states received along the hierarchical edges in unmatched returns
belong to P i. Note that, following [6], we impose no requirement on unmatched
calls (our automata are called linearly accepting). A (successful) computation
consists of a (successful) path and a sequence of words wi taken from languages
�i ∈ L(Δ∗) in the transitions of the path in the same order. The concatenation of
these words gives a word w ∈ Δ∗, which is said to be output by the transducer.

We say that the transducer T implements the transduction T ⊆ Σ∗n×Δ∗ that
contains each pair (u,w) if and only if there exists a successful computation of
T driven by the input u and having the output w. When we are only interested
in the behaviour of T on closed words, we say that T weakly implements T c =
T ∩ (Σ∗c ×Δ∗).

3 Automata and Auxiliary Constructions

A nested word automaton (NWA, or simply an automaton) A is defined similarly
to a transducer, with the only difference that it has no output, that is, all L(Δ∗)
factors are dropped. Words u ∈ Σ∗n carried by successful paths are said to be
accepted by A, and the automaton itself is then said to recognize the language
L ⊆ Σ∗n of all such words. Two automata are equivalent if they recognize the
same language.

We call A (weakly) unambiguous if it has at most one successful path for each
(closed) word u ∈ Σ∗n (u ∈ Σ∗c). As usual, A is deterministic if, first, each of
the sets Qi and P i contains at most one element and, second, for every q ∈ Q,
a ∈ Σ, and p ∈ P , each of the three sets δint, δcall, and δret contains at most
one tuple of the form (q, a, q′, p′), (q, a, q′, p), and (p, q, a, q′), respectively. Every
deterministic automaton is unambiguous, but not vice versa. Also recall that a
linear state q of an automaton A is called accessible if there exists a path in A
starting in some linear state q0 ∈ Qi and ending in q, in which all states received
along the hierarchical edges in unmatched returns belong to P i.

We now define three auxiliary constructions for nested word automata. Their
combination, as shown in Sections 4 and 5, can be used to obtain uniformization
and unambiguity theorems for nested-word to word transductions.

Determinization. Every nested word automaton is known to be equivalent to a
deterministic one, by a variant of the well-known subset construction [6],1 which
can be traced to a 1985 paper [14]. Given an automaton A = (Q,P, δ,Qi, Qf , P i),
construct the automaton with the following components:

– the set of linear states is 2Q×Q (in this context pairs (q, q′) ∈ Q × Q
are called summaries and understood as available properly-nested path
fragments between pairs of states);

– the set of hierarchical states is {p′0}∪ (2Q×Q×Σ), where the state p′0 is new;

1 Note that the construction described in the print version of [6] is flawed, so we refer
the reader to the electronic document available on the Web.
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– for every input letter a and every state S ⊆ Q ×Q, transitions lead from S
to states S′ defined as follows:
• for an internal transition, S′ contains all summaries (q, q′′) such that
there exists a summary (q, q′) ∈ S and an internal transition (q′, a, q′′) ∈
δint;

• for a call transition, S′ contains all summaries (q′′, q′′), for which there
exists a summary (q, q′) ∈ S and a call transition (q′, a, q′′, p) ∈ δcall;
along the hierarchical edge the pair (S, a) is sent;

• for a return transition upon the receipt of a hierarchical state H =
(S0, b), where S0 ⊆ Q ×Q, the state S′ contains all summaries (q0, q

′′)
such that there exist summaries (q0, q1) ∈ S0 and (q, q′) ∈ S, a call
transition (q1, b, q, p) ∈ δcall and a return transition (p, q′, a, q′′) ∈ δret
with a matching p ∈ P ;

• for a return transition upon the receipt of a hierarchical state p′0, the
state S′ contains all summaries (q, q′′) such that there exists a summary
(q, q′) ∈ S and a return transition (p0, q

′, a, q′′) ∈ δret with some p0 ∈ P i;
– the only initial linear state is {(q0, q0) | q0 ∈ Qi} (here we deviate from [6],

where the setQi×Qi is used), and an arbitrary linear state S is final whenever
it contains some pair (q, q′) with q′ ∈ Qf ;

– the only initial hierarchical state is p′0.

The accessible part of this automaton is called the determinization of A and
denoted Adet. It is deterministic and can be proved equivalent to A.

Summarization. We also introduce another auxiliary automaton, closely re-
lated to that of Adet. This automaton will keep track of summaries instead of
single states, similarly to Adet, but still rely on nondeterminism rather than
subset construction to mimic the behaviour of A. In short, for any transition
in Adet, if it leads from a state containing a summary (q, q′) to some state S′,
this automaton will have transitions from (q, q′) to all summaries that can use
(q, q′) as a witness for their inclusion in S′. More formally, this summary-tracking
automaton has the following components:

– the set of linear states is Q×Q;
– the set of hierarchical states is ({p′0} × δret) ∪ ((Q × Q) × δcall), where the

state p′0 is new;
– for every input letter a and every state (q, q′) ∈ Q × Q, transitions from

(q, q′) are defined as follows:
• every internal transition (q′, a, q′′) ∈ δint of A is translated here into an
internal transition leading to (q, q′′);

• every call transition t = (q′, a, q′′, p) ∈ δcall is translated into a call
transition leading to (q′′, q′′), with ((q, q′), t) sent along the hierarchical
edge;

• every pair of call and return transitions t = (q1, b, q, p) ∈ δcall and
(p, q′, a, q′′) ∈ δret with matching p ∈ P is translated, for all q0 ∈ Q,
into return transitions to (q0, q

′′), depending on the state ((q0, q1), t)
received along the hierarchical edge;
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• every return transition t = (p0, q
′, a, q′′) ∈ δret with p0 ∈ P i is also

translated into a return transition to (q, q′′) with (p′0, t) received along
the hierarchical edge;

– initial linear states are (q0, q0), for all q0 ∈ Qi, and the set of final linear
states is Q×Qf ;

– the set of initial hierarchical states is {p′0} × δret.

The accessible part of this automaton is called the summarization of A and
denoted Asum. This automaton is also easily shown to be equivalent to A.

Note that we could also define Asum in a more natural way, with the set of
hierarchical states {p′0} ∪ ((Q × Q) × Σ), similarly to Adet. However, we need
to tie transitions of Asum to individual transitions of A, as seen in the proof of
Lemma 7 in Section 6 below.

Product. Let us define the product of two nested word automata A1 = (Q1, P1,
δ1, Q

i
1, Q

f
1, P

i
1) and A2 = (Q2, P2, δ2, Q

i
2, Q

f
2, P

i
2) in the standard way:

– sets of linear and hierarchical states are Q1 ×Q2 and P1 × P2, respectively;
– whenever δ1 and δ2 contain transitions from q1 to q′1 and from q2 to q′2,

respectively, having the same type and carrying the same letter a ∈ Σ, this
results in a transition from (q1, q2) to (q′1, q

′
2) of the same type carrying

a ∈ Σ; the state sent or received along the hierarchical edge (if any) is the
ordered pair of the hierarchical states carried by these transitions;

– sets of initial and final linear states are Qi
1 ×Qi

2 and Qf
1 ×Qf

2;
– the set of initial hierarchical states is P i

1 × P i
2.

The accessible part of this automaton is called the product of A1 and A2 and
denoted A1 ×A2.

4 The Schützenberger Construction for NWA

We now describe a special disambiguation construction for nested word au-
tomata, generalizing a construction due to Schützenberger [3,2].

First suppose that B and A are nested word automata, and there exists a
mapping μ that takes states and transitions of B to states and transitions of
A, preserving letters and transition types, in such a way that the image of a
successful path is always a successful path. Then we say that the automaton B
is morphed into A by μ (this word usage roughly corresponds to that in [2,5]).
We shall sometimes decorate symbols denoting attributes of B with the prime ′,
to distinguish these attributes from those of A.

We now define a special operation eliminating some transitions of an au-
tomaton. Suppose that B is morphed into A by μ, and δ′ is some subset of B’s
transitions. For every state s′ of B, consider its image μ(s′) in A and take an
arbitrary transition t arriving at μ(s′). Denote the set of all transitions arriving
at s′ by in(s′). If the set μ−1(t) ∩ in(s′) ∩ δ′ has cardinality 2 or greater, i. e., if
the inverse image μ−1(t) contains more than one transition from δ′ arriving at s′,
then transform the automaton B by eliminating all of these transitions but one,
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arbitrarily chosen. Repeat this procedure for all states s′ of B and all transitions
t arriving at their images μ(s′). We shall say that the resulting automaton is
obtained from B by weeding transitions δ′ with respect to the mapping μ.

Now everything is ready for our generalization of the Schützenberger con-
struction to nested word automata. Suppose we are given an automaton A.
First construct the automaton Asum × Adet, where Asum and Adet are the sum-
marization and determinization of A. Let the mapping π take linear states and
transitions of Asum × Adet to their projections in Adet. Weed the sets of inter-
nal and return transitions of Asum × Adet with respect to π (note that all call
transitions are left intact), and then for every final state S of Adet, make all but
one state in π−1(S) non-final (this remaining final state should have the form
((q, q′), S), where (q, q′) is final in Asum). Denote the obtained automaton by S.

Theorem 1. The automaton S is weakly unambiguous, equivalent to and
morphed into A.

The proof of this theorem is given in Section 6. Before that, in Section 5, we
show that S can be used to obtain a uniformization of any relation weakly
implemented by a transducer whose underlying automaton is A. (Recall that
this relation is defined as a subset of Σ∗c ×Δ∗.)

Note that if we cannot disregard non-closed words, then an auxiliary step is
needed. Roughly speaking, if in S we additionally separate matched calls from
unmatched calls and weed the latter in the same fashion as earlier, then the
obtained automaton will be unambiguous, equivalent to and morphed into A.
We leave a detailed discussion of this construction until the full version of the
paper, and only note that this transformation involves at most a constant-factor
increase in the number of states and transitions.

Proof Idea. The “morphism” part is easy, and the main challenge is the weak
unambiguity and equivalence to A. We borrow the overall strategy from [2,5],
but prefer not to hide the needed properties behind the framework of covering
of automata, and instead make the main steps explicit to achieve more clarity.

Consider the mapping π defined above. For every final state S of Adet, exactly
one of the states in its inverse image π−1(S) is final. Now for every successful
path in Adet terminating in S we construct its inverse image in S. If we show
that at all states every arriving transition in Adet has a non-empty inverse image
in Asum×Adet (this is almost in-surjectivity in terms of [2,5]), then our definition
of weeding will ensure that at each state exactly one option remains in S (in-
bijectivity). As a result, every successful path in Adet has exactly one counterpart
in S. Since the automaton Asum × Adet only accepts words accepted by A, the
equivalence follows; and the unambiguity then follows from that of Adet.

There are, however, two issues with this strategy. Note that the concatenation
of correct path segments is not necessarily a correct path segment, unlike in the
standard finite-state machines. To this end, we choose not to weed call transi-
tions, in order to ensure that the path can be correctly prolonged on each step,
with matching hierarchical states sent and received along hierarchical edges. This
explains why our construction of S guarantees only weak unambiguity.
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At this point we also brush upon the more subtle second issue, which is the
reason for our having defined and taken Asum in the product, as opposed to just
using A as in the original construction. Imagine we did otherwise, and consider
some return transition from (q′, S′) to (q′′, S′′) in S encountered while construct-
ing the inverse image of some path in Adet. Note that the specific transition from
q′ to q′′ is in fact chosen at the weeding stage and fixes some specific state p ∈ P
received along the hierarchical edge.

Now if S′ contains two summaries (q1, q
′) and (q2, q

′), we cannot know which
of q1 and q2 we will hit after extending the path backwards until the matching
call. But then it may well be the case that none of the call transitions arriving in
this state qi under the appropriate input letter carries the hierarchical state p.
This means that the weeding of return transitions would change the recognized
language, which is undesirable. Introducing the automaton Asum, which keeps
track of summaries, resolves this issue, as seen from Lemmas 5 and 6 in Section 6.

5 Uniformization of Transductions

Return to the problem of uniformizing an arbitrary nested-word to word trans-
duction T . Recall that a relation U ⊆ A × B is a uniformization of a relation
T ⊆ A×B if U is a subset of T , single-valued as a transduction, and has the same
domain, that is, if U ⊆ T and for every u ∈ A, the existence of a w ∈ B such
that (u,w) ∈ T implies that there is exactly one w′ ∈ B such that (u,w′) ∈ U .

In this section, we show how to use the Schützenberger construction to obtain
a uniformization of an arbitrary nested-word to word transduction T . Take any
transducer T implementing T , and denote by A its underlying automaton, that
is, one obtained by removing the output labels from transitions. Transform A
into S as described in Section 4. By the “morphism” part of Theorem 1, S is
morphed into A by some mapping ρ, so that each transition t′ in S is projected
onto a single transition ρ(t′) in A. Take the output label � ⊆ Δ∗ of ρ(t′) in T
and specify any single word w ∈ � as the output of t′. The automaton S is thus
transformed into a transducer U , which is claimed to satisfy our needs.

Theorem 2. Let the transducer T weakly implement a transduction T . Then the
transducer U weakly implements a transduction U , which is a uniformization of T .

Proof. We use the “equivalence” and “weak unambiguity” parts of Theorem 1.
First observe that any nested word u belongs to the domain of T (or, respectively,
U) if and only if it is is accepted by A (or, respectively, S). It then follows
from the “equivalence” part that T and U have the same domain within Σ∗n.
Second, if (u,w′) and (u,w′′) with w′ �= w′′ are in U , then U has at least two
successful paths driven by u. This is impossible for any closed word u by the
“weak unambiguity” part of Theorem 1. ��

We say that a relation U ⊆ Σ∗c ×Δ∗ is a weak uniformization of a transduction
T ⊆ Σ∗n ×Δ∗ if U is a uniformization of the transduction T c = T ∩ (Σ∗c ×Δ∗).
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Corollary. Any nested-word to word transduction T implemented by a trans-
ducer with n linear states has a weak uniformization implemented by a transducer
with at most n2 2n

2−1 linear and n 2n
2−1 |δcall|+ |δret| hierarchical states.

We conclude this section with a series of remarks. First, the statement of Theo-
rem 1 can actually be augmented with the following observation. The transduc-
tion U implemented by U not only has the property that U c is a uniformization
of T c, but also satisfies U ⊆ T and has the same domain as T . In other words,
for all non-closed words u, the existence of a w ∈ Δ∗ such that (u,w) ∈ T implies
that there is at least one w′ ∈ Δ∗ such that (u,w′) ∈ U , and all such pairs (u,w′)
from U also belong to T .

Second, an additional refinement of the construction of S, as sketched in
Section 4, can be used to obtain a stronger version of Theorem 2, giving a uni-
formization instead of a weak uniformization. The proof of the stronger version
repeats the proof above almost literally.

Finally, note that for a single-valued transduction T , the statement above gives
an unambiguity theorem: the construction defines a transducer implementing T ,
whose underlying automaton is (weakly) unambiguous.

6 Proof of Theorem 1

In this section we demonstrate that the automaton S constructed in Section 4 has
the desired properties: weak unambiguity, equivalence to the original automa-
ton A, and the property of being morphed into A. We first prove an important
property of accessible states in the automaton Asum ×Adet.

Lemma 1. If a state ((q, q′), S) is accessible in Asum×Adet, then (q, q′) belongs
to S and S is accessible in Adet.

Proof. It is clear that no state of the form ((q, q′), S) can be accessible in Asum×
Adet unless the state S is accessible in Adet. The fact that (q, q′) ∈ S is then
proved by induction on the length of the path leading from the initial state of
Adet to S. Indeed, {(q0, q0) | q0 ∈ Qi} is the only initial state of Adet and the
states (q0, q0), q0 ∈ Qi, are initial inAsum. This forms the induction base. Further,
suppose that ((q1, q2), S) is accessible and a transition leads from this state to
some state ((q, q′), S′). Then (q1, q2) ∈ S and, by the definition of Asum × Adet,
there are transitions from S to S′ and from (q1, q2) to (q, q′). It remains to use
the fact that whenever a transition leads in Asum from (q1, q2) to (q, q′), any
corresponding transition in Adet from a state containing (q1, q2) can only lead to
a state containing (q, q′). ��

Lemma 1 shows that every accessible state of Asum ×Adet can be regarded as a
set of summaries S with a distinguished element (q, q′) ∈ S. From now on we
shall only use the states of Asum ×Adet satisfying the conclusion of this lemma.
For our second lemma, recall that by π we denote the mapping taking every
state of Asum ×Adet to its projection in Adet.
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Lemma 2 (in-surjectivity). For every accessible state ((q, q′), S) of Asum ×
Adet and every transition t arriving at its projection S in Adet, there exists at
least one transition in Asum ×Adet whose projection is t.

Proof. First apply Lemma 1 to note that (q, q′) ∈ S. Let the transition t arriving
at S depart from a state S0. We claim that there exists a summary (q1, q2) ∈ S0
and a transition from (q1, q2) to (q, q

′) in Asum such that the inverse image π−1(t)
in Asum ×Adet contains a transition from ((q1, q2), S

0) to ((q, q′), S).
Indeed, since (q, q′) ∈ S, it follows that there exists a summary (q1, q2) ∈ S0

that guaranteed the inclusion of (q, q′) into S by the definition of Adet. The
definition of Asum then ensures the existence of a transition of the same type
from this (q1, q2) to (q, q′). The rest follows by the definition of Asum ×Adet. ��

Lemma 3 (partial in-bijectivity). For every state ((q, q′), S) of S and every
internal or return transition t arriving at its projection S in Adet, there exists a
unique transition in S whose projection is t.

Proof. Follows from Lemma 2 and the definitions of S and weeding. ��
Lemma 4. The automaton S is weakly unambiguous.

Proof. Consider any closed word u ∈ Σ∗c accepted by S and assume for the sake
of contradiction that there are two different successful paths driven by u. Observe
that the projection by means of π of a successful path in S is a successful path
in Adet. Since the automaton Adet is deterministic and, therefore, unambiguous,
it follows that both paths in S are projected onto a single path in Adet.

Consider the last position in this pair of paths, on which these paths disagree,
that is, ((q1, q

′
1), S) �= ((q2, q

′
2), S) (note that the projection onto Adet should be

the same, hence the common component S). The successors of these two states
are the same in both paths, and the following segments up to the end of the
paths also coincide (both paths end in the same final state of S, since for each S
at most one state from π−1(S) is final). Suppose that our chosen pair of paths
leads from this pair of states to some state ((q, q′), S′).

Now consider the transition t leading from S to S′ in the (single) induced path
in Adet. This transition has at least two elements in its inverse image π−1(t), one
of them departing from ((q1, q

′
1), S) and another from ((q2, q

′
2), S). By the partial

in-bijectivity given by Lemma 3, this transition t can only be a (matched) call
transition. We shall show, however, that this conclusion leads to a contradiction.

Indeed, consider the tails of the paths, which coincide by our initial assump-
tions. It follows that these tails take the same transition at the return posi-
tion matching the call in question (recall that our word is closed, so all calls
are matched). This transition receives some state ((q0, q

′
0), t0, S

0, a) along the
hierarchical edge, and so the call in question can only originate at the state
((q0, q

′
0), S

0). This contradicts the availability of the choice between ((q1, q
′
1), S)

and ((q2, q
′
2), S) and establishes that one of the paths must be invalid. ��

Our next goal is to show that every successful path in Adet has an inverse image
in S that is also a successful path. To prove this fact, we need an auxiliary lemma
that describes the behaviour of Asum on well-matched words.
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Lemma 5. Suppose that the automaton Asum can be driven by some well-
matched word u ∈ Σ∗w from a state (q0, q1) to a state (q2, q3). Then q0 = q2.

Proof. Any well-matched word is a concatenation of internal transitions and
well-matched fragments enclosed in matched pairs of symbols. By the definition
of Asum, internal transitions do not change the first component of a summary,
and every matched return resets it to the state just before the matching call. ��

Lemma 6. The automaton S is equivalent to A.

Proof. Since the projection of a successful path through S is a successful path
through Adet, it is sufficient to demonstrate that S always accepts whenever Adet

accepts. Consider a successful path through Adet and construct a path through S
as follows. First consider the destination of the path inAdet and take the (unique)
final state in its inverse image. Second, reconstruct a path through S by the
following procedure. On each step, given a state of S and a transition t arriving
at its projection in Adet, choose a transition from the inverse image π−1(t) to
obtain the previous state in the path through S. Lemmas 2 and 3 reveal that
this procedure will indeed yield a path-like sequence in S. Since all summaries
from the initial state of Adet are initial states of Asum, this sequence will begin
in an initial state of S. However, we also need to show that this sequence will
indeed be a correct path through S, that is, states sent and received along the
hierarchical edges will match.

Consider a fragment of the input word of the form 〈bua〉, where u ∈ Σ∗w (here
and below angle brackets decorate call and return positions). Suppose that the
automatonAdet is driven by a〉 from a state S to a state S′, and the reconstructed
path in S distinguishes summaries (q, q′) ∈ S and (q0, q

′′) ∈ S′, with Asum driven
by a〉 from the former to the latter. Also suppose that at this point a transition
receiving a state ((q0, q1), t0, S

0, b) along the hierarchical edge is chosen in S.
Now assume that the matching call drives Adet from S

0 to some state S′′. We
need to show that when the reconstruction of the path in S reaches this call, the
state S′′ will have been mapped to the state ((q, q), S′′) and a transition to this
state from ((q0, q1), S

0) will be available, with ((q0, q1), t0, S
0, b) sent along the

hierarchical edge.
The second of this claims is relatively straightforward. Indeed, by the def-

initions of Adet and Asum, a transition from ((q, q′), S) to ((q0, q
′′), S′) driven

by a〉 upon the receipt of ((q0, q1), t0, S
0, b) along the hierarchical edge is wit-

nessed by a pair of call and return transitions of the form t0 = (q1, b, q, p) ∈ δcall,
(p, q′, a, q′′) ∈ δret with matching p ∈ P . Since a call transition from S0 to S′′ is
available in Adet with an input letter b, it follows that a call transition with the
same input letter leads from ((q0, q1), S

0) to ((q, q), S′′) in S.
Now turn to the first of the claims. Recall that we are now dealing with a

fragment of the input word of the form 〈bua〉 with u ∈ Σ∗w. Observe that our
entire argument can be interpreted as a proof that the reconstructed sequence
segment induces a correct path segment in Asum. We now use induction to prove
this fact. The base case corresponds to words containing internal symbols only,
and does not require any analysis. The inductive step corresponds to words of
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the form 〈bua〉 with u ∈ Σ∗w, as specified earlier. Here, since just before the
input symbol a〉 the automaton Asum is set to the state (q, q′) and the word u
is well-matched, one concludes with the help of the inductive hypothesis and
Lemma 5 that after reading the symbol 〈b the automaton Asum must have been
in some state of the form (q, q̄), where q̄ ∈ Q. Since this state (q, q̄) is taken from
S′′, and the state S′′ is the destination of some call transition in Adet, it follows
from the definition of Adet that q̄ = q. This concludes the proof of Lemma 6. ��
Lemma 7. The automaton S is morphed into A.

Proof. Removing Adet-components maps the states of S into the set of states of
Asum. Transitions are mapped to transitions of Asum accordingly. It remains to
observe that Asum is itself morphed into A, for every transition of Asum can be
mapped into a specific transition of A. ��
Theorem 1 follows from Lemmas 4, 6 and 7.
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Abstract. Two kinds of automata are introduced, for recognising reg-
ular and context-free nominal languages. We compare their expressive
power with that of analogous proposals in the literature. Some properties
of our languages are proved, in particular that emptiness of a context-
free nominal language L is decidable, and that the intersection of L with
a regular nominal language is still context-free. This paves the way for
model-checking systems against access control properties in the nominal
case, which is our main objective.
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Introduction

Languages over an infinite alphabet are receiving growing interest, see e.g. [3,21].
They are used to formalise different aspects of many real computational systems,
in particular of those concerning the usage of potentially unboundedly many re-
sources that are dynamically created, accessed, and disposed. Examples can be
found in XML schemas, in the Web (URLs), in security protocols (e.g. nonces
and time-stamps), in virtualised resources of Cloud systems, in mobile and ubiq-
uitous scenarios, etc [23,8,4]. Also foundational calculi for concurrent and dis-
tributed systems faced the similar problem of handling unboundedly many fresh
(or restricted) names, under the term nominal languages [22,5,13,17,18].

The literature mainly reports on various kinds of regular languages over infi-
nite alphabets and on their recognizers [16,2,7]. Also context-free languages over
infinite alphabets have been investigated [9,5,19,20]. Indeed, even the following
simple example, as well as the recursive patterns of PCRE [15], shows that the
patterns of dynamical resource usage have an intrinsic context-free nature.

let rec exec() =
if(...)
let socket = newsocketfromenv();
send(socket);
exec();
release(socket);

else ...
� This work has been partially supported by the MIUR project Security Horizons, and
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The ML-like script above is an abstract dispatcher of tasks on sockets. The
execution environment yields a new socket that is fresh, so to guarantee ex-
clusive access. Then a sequence of actions exec occurs (we omit them below),
and eventually the socket is released. An example of a trace generated during
a run is new(s1)new(s2)new(s3) . . .release(s3)release(s2)release(s1). Now,
forgetting the actions new, release and only keeping the names of the sockets
(taken from an infinite alphabet), we get a word wwR, where the symbols in w
are all different. For the sake of simplicity, we omit below actions and we only
consider resources; actions, hence data words are dealt with in Examples 2 and 7
showing that only simple extensions are required in the general case.

In the line of [10], we pursue here our investigation on developing a founda-
tional model for nominal languages. Our main interest is in statically verifying
nominal regular properties of systems, in particular safety properties. Systems
are modelled as nominal context-free languages, and verification is done via
model-checking. In this paper, we propose an effective model that characterises
a novel class of nominal languages, including the one of [9] and expressing, e.g.
the traces wwR above — because of this ability in dealing with “balanced” paren-
thesis, we shall call these nominal languages context-free, and regular those that
cannot. Additionally, our model can express traces wwR where the restriction
that the resources of w are different is relaxed at wish, yet keeping freshness.
This makes the binding name-resource more flexible, in the spirit of dynamic
allocation and garbage collection of variable-location typical of programming
languages.

To make our model-checking procedure effective, we need to establish the
conditions under which the emptiness of the intersection of a nominal context-
free language with a nominal regular one is decidable. Preliminary to that is
defining a group of nominal automata with increasing expressive power. Besides
regular vs. context free, we also consider a disposal mechanism that supports
“garbage collection” of symbols thus allowing to re-use disposed symbols, so
having, e.g., the above nominal languages of wordswwR with/without replication
of symbols.

We proved that regular nominal languages are not closed under complement
and (full) concatenation, but they are under union and also under intersection,
provided that symbol re-use is forbidden. In that case the language of all the
strings over an infinite alphabet is however not regular, while it is in the general
case. We also establish relations with proposals in the literature: without disposal
our class of regular languages includes that of Usage Automata (UA) [2] and is
incomparable with Variable Automata (VFA) [14] and Finite-memory Automata
(FMA) [16]. With the disposal mechanism instead, VFA languages are included
in our class, and we conjecture that the same holds for FMA.

Our class of context-free nominal languages is only closed under union and
a restricted form of concatenation. Without disposal, ours are equivalent to
Usages [2] and become more powerful than these and than quasi context-free
languages (QCFL) [9] with the possibility of re-using disposed symbols.

As said above, our main goal is proving nominal properties of nominal models,
in particular regular safety properties expressing secure access to resources [10].
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Table 1. Notation

Math
i, j ∈ r = {i | 1 ≤ i ≤ r} set of indices in N, the natural numbers
L �� L′ incomparable sets: L � L′ and L � L′

Words
Σ=Σs ∪Σd,
({?,
} ∪ N) ∩Σ = ∅

alphabet with Σs finite set of static symbols and Σd disjoint
countably infinite set of dynamic symbols.

a, b ∈ Σ; w ∈ Σ∗ symbols in Σ and words, where ε is the empty string
w[i], |w| , wR, ‖w‖ i-th symbol, length, reverse, and set of symbols of w

Automata
q ∈ Q state of an automaton
σ ∈ Σs ∪ r ∪ {ε,
} input symbol in a transition label
Z ∈ Σs ∪ r ∪ {ε, ?} stack read symbol in a transition label
ζ ∈ (Σs ∪ r)∗; z ∈ Σs ∪ r stack write symbols in a transition label
Δ ∈ {i+, i−} ∪ {ε} m-register update in a transition label
S a stack, _ is the empty one
N,M m-registers, _ is the empty one
‖N‖ set of (dynamic) symbols in N
C, ρ a configuration, and a run C1 → · · · → Ck

R,A; L(R), L(A) a FSNA,PSNA automaton and their language
L(FSNA),L(VFA), . . . set of languages accepted by FSNA,VFA, . . . automata

Standard and efficient (automata-based) model-checking techniques require that
the emptiness of context-free nominal languages is decidable, and that the in-
tersection of a property and a model is still context-free. We here consider the
nominal languages accepted by automata without disposal, and prove that both
requirements above hold. We also conjecture that intersecting a regular and a
context-free language results in a context-free one, provided that at most one of
their recognizers uses a disposal mechanism.

The paper is organised as follows. Notation and abbreviations are summarised
in Tab. 1. For lack of space, we occasionally only give an intuition of why our
results hold; all the proofs are in www.di.unipi.it/~mezzetti. Sect. 1 intro-
duces Finite State Nominal Automata that express nominal properties richer
than those considered in [10]; also, we compare these regular nominal languages
(with and without disposal) with other proposals in the literature. Then Sect. 2
defines Pushdown Nominal Automata, studies some language theoretic proper-
ties and compares them with existing formalisms. Sect. 3 contains our main
achievements: decidability of the emptiness of a context-free nominal language
(without disposal) and feasibility of model-checking them against regular nomi-
nal properties.

1 Finite State Nominal Automata

Our automata accept languages over infinite alphabets, partitioned in a finite
set of static symbols and an infinite set of dynamic symbols, representing resp.
the resources known before program execution and those created at run-time.

www.di.unipi.it/~mezzetti
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Table 2. Operations s-push, s-pop, s-top on m-registers

An m-register is a pair N = 〈x ∈ {0, 1}, S〉, where x is the activation state of the stack S

s-push(a, 〈x, S〉) = 〈1, push(a, S)〉
s-top(〈1, S〉) = top(S)

s-pop(〈x,S〉) =

{
〈0, pop(S)〉 if S 
= _
〈0, S〉 if S = _

A finite nominal automaton is a non-deterministic finite state automaton
(FSA) enriched with a fixed number of mindful registers. These registers are
components of the configurations that store dynamic symbols, and are accessed
and manipulated while recognizing a string. (See Tab. 1 for notation used below.)

Definition 1 (Finite State Nominal Automata)
A finite state nominal automaton (FSNA) is R = 〈Q, q0, Σ, δ, r, F 〉 where:

– Q is a finite set of states, q0 ∈ Q −F ⊆ Q is the set of final states
– Σ = Σs ∪Σd is a partitioned alphabet (Σs is finite and Σd denumerable)
– r is the number of mindful registers (m-registers for short)
– δ is a relation between pairs (q, σ) and (q′, Δ), with σ �= �. For brevity, we

write q σ−→
Δ
q′ ∈ δ whenever (q, σ, q′, Δ) ∈ δ

A configuration is a triple C = 〈q, w, [N1, . . . , Nr]〉 where q is the current state, w
is the word to be read and [N1, . . . , Nr] is an array of r m-registers with symbols
in Σ. The configuration is final if 〈qf ∈ F, ε, [N1, . . . , Nr]〉.

An m-register N is actually a stack plus a tag, recording if it is either active
or not. The operations on N are almost standard (see Tab. 2), but additionally
N becomes inactive after a s-pop, while a s-push makes it active (note that
s-popping an empty m-register results in a no-operation). The operation s-top
yields a value only if the m-register is active, otherwise it is undefined, as well
as when the m-register is empty.

If σ ∈ Σs, just as in FSA, a transition q σ−→
Δ
q′ checks whether the current

symbol in the input string is σ. Instead, if σ ∈ r, the symbol to be read is
s-top(Nσ), i.e. the top of the σth m-registers (analogously to [16]).

An m-register is at the same time updated according to Δ. There are three
cases: Δ = ε then nothing has to be done; Δ = i+ then a fresh dynamic symbol
is s-pushed on the i-th m-register; Δ = i− then the i-th m-register is s-popped.
A symbol is fresh if it does not appear in any of the r m-registers.

The application of a transition is detailed in the following definition:

Definition 2 (Recognizing Step)
Given an FSNA R, a step 〈q, w, [N1, . . . , Nr]〉 → 〈q′, w′, [N ′1, . . . , N ′r]〉 occurs iff
there exists a transition q σ−→

Δ
q′ ∈ δ s.t. both conditions hold:

1.

⎧⎪⎨⎪⎩
σ = ε⇒ w = w′ and
σ = i⇒ w = s-top(Ni)w

′ and
σ ∈ Σs ⇒ w = σw′
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q0

1

ε

ε

1+

ε
1−

R1

q0 q1
1

ε

ε

1+

R2

q′0 q′1 q′2 q′3

n(1)

ε

ε

1+

ε

2+

n(2)

ε

r(1)

ε

R3

ρ1 = 〈q0, aax,
[
_
]
〉 ε−→ 〈q0, aax,

[
a

]
〉 a−→ 〈q0, ax

[
a

]
〉 a−→ 〈q0, x,

[
_
]
〉 ε−→ 〈q0, x,

[
x

]
〉 x−→

〈q0, ε,
[

x
]
〉

ρ2 = 〈q0, abc,
[
_
]
〉 ε−→ 〈q1, abc,

[
a

]
〉 a−→ 〈q0, bc,

[
a

]
〉 ε−→ 〈q1, bc,

[

a
b

]
〉 b−→ 〈q0, c,

[

a
b

]
〉 ε−→

〈q1, c,
[

a
b
c

]
〉 c−→ 〈q0, ε,

[

a
b
c

]
〉

ρ3 =〈q′0, n(a)n(b)r(a),
[
_,_

]
〉 ε−→〈q′0, n(a)n(b)r(a),

[
a ,_

]
〉 ε−→〈q′0, n(a)n(b)r(a),

[
a , b

]
〉 n(a)−−−→

〈q′1, n(b)r(a),
[

a , b ,
]
〉 n(b)−−−→ 〈q′2, r(a),

[
a , b

]
〉 r(a)−−−→ 〈q′3, ε,

[
a , b

]
〉

Fig. 1. Three examples of FSNA Ri and of their runs ρi. The automaton R1 accepts
Σ∗; note that the dynamic symbol x can be any symbol in Σd, even a, because the
m-register is empty when x is s-pushed and there is no restriction on its freshness. The
automaton R2 accepts L0 in Ex. 4; and R3 accepts strings aba (a �= b).

2.

⎧⎪⎨⎪⎩
Δ = i+ ⇒ N ′i = s-push(b,Ni) ∧ ∀j.b /∈ ‖Nj‖ ∧ ∀j (j �= i).Nj = N

′
j and

Δ = i− ⇒ N ′i = s-pop(Ni) ∧ ∀j (j �= i).Nj = N
′
j and

Δ = ε⇒ ∀j.Nj = N
′
j

Finally, the language accepted by R is
L(R) = {w ∈ Σ∗ | 〈q0, w, [_, . . . ,_]〉 →∗ Ck,with Ck final}

Some examples follow.

Example 1. The FSNA R1 in Fig. 1 non-deterministically acceptsΣ∗ ∈ L(FSNA).

Example 2. The FSNA R3 in Fig. 1 on data words represents a property for
the new-release traces of the introduction, in the default-accept paradigm [1].
(The symbols new(a), release(a) are abbreviated by n(a), r(a).) The automaton
accepts the unwanted traces where a second socket is created (n(2)) before having
released the last one created (r(1)). Dealing with data words, σ assumes the
form n(u), r(u), u ∈ r ∪ Σs. For readability, we only mention the sockets in the
m-registers, omitting the actions n, r.

Example 3. Let Lr = {wwR ∈ Σ∗d | |w| = r and ∀i, j. w[i] �= w[j]} then no
FSNA R with less that r states and r m-registers accepts Lr. Indeed, a standard
argument on FSA proves that r states are required. Assume now that R has
less than r registers and accepts wwR. By the pigeonhole principle, there is at
least one symbol of w, say a, s.t. ∀i. a �= s-top(Ni) when w has been read. Since
a ∈ ‖w‖, a needs to be s-pushed while traversing wR, but it is fresh so it can
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be replaced by any other (fresh) different symbol, which makes R to accept also
ww′, where w′ �= wR: contradiction.

We now define a sub-class of FSNA where no transitions can s-pop any
m-registers.

Definition 3 (FSNA+). An FSNA+ is a FSNA with no edge q σ−→
i−
q′.

Example 4. The FSNA+ R2 in Fig. 1 accepts L0 = {w ∈ Σ∗d | ∀i �= j. w[i] �= w[j]}.

Example 5. Σ∗ is not accepted by any FSNA+, as Σd is infinite. Indeed, if there
is one with r m-registers, accepting ww with |w| = |‖w‖| = r + 1, the word ww
is not accepted if a ∈ ‖w‖ and, after having read w, ∀i. a �= s-top(Ni).

The two kinds of automata above enjoy a few closure properties with respect to
standard language operations. We conjecture that FSNA are also closed under
intersection; concatenation also preserves regularity, if the two languages do not
share any dynamic symbol.

Theorem 1 (Closures)

∪ ∩ . · ∗
FSNA � ? × � �
FSNA+ � � × × ×

We now compare the expressive power of FSNA and of FSNA+ with that of
other models for regular nominal languages, namely VFA [14], FMA [16] and
UA [2].

Theorem 2 (Comparison)

– L(FSNA) ⊃ L(VFA) ⊃ L(UA) – L(FSNA) ⊃ L(FMA)
– L(FSNA+) ⊃ L(UA) – L(FSNA+) �� L(VFA) – L(FSNA+) �� L(FMA)

2 Pushdown Nominal Automata

We presented in the introduction a simple program showing a behaviour that
is conveniently abstracted as a context-free nominal language. This is often the
case when defining static analysis, typically type and effect systems, through
which proving program properties, e.g. on resource usage [2]. Nominal context-
free languages have therefore both a theoretical and a practical relevance, and
received some attention [9,6,5,19]. Below, we extend FSNA with a stack, so
obtaining Pushdown Nominal Automata: nominal context-free automata.

Definition 4 (Pushdown Nominal Automata)
A Pushdown Nominal Automata (PSNA) is A = 〈Q, q0, Σ, δ, r, F 〉 where:

– Q, q0, r, F are as in FSNA (Def. 1)
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Table 3. The Pushreg operation

Pushreg is an operation taking ζ and S and returning a new stack as follows:

Pushreg(z ζ′, S) = Pushreg(ζ′, push(σ, S))
Pushreg(ε,S) = S

where σ =

{
z if z ∈ Σs

s-top(Nz) if z ∈ r

– δ is a relation between triples (q, σ, Z) and (q′, Δ, ζ), with (q, σ, Z, q′, Δ, ζ) ∈
δ written q σ,Z−−→

Δ,ζ
q′ ∈ δ

A configuration is a tuple C = 〈q, w, [N1, . . . , Nr], S〉 where q, w, [N1, . . . , Nr] are
as in FSNA and S is a stack with symbols in Σ.
The configuration 〈q, w, [N1, . . . , Nr], S〉 is final if q ∈ F,w = ε and S = _.

Since the label ζ of a transition refers to m-registers, the push on the stack
S requires an operation (illustrated in Tab. 3) able to also push the s-top of
the mentioned m-registers. E.g., ζ = a 3 b causes the string a s-top(N3) b to be
pushed.

Definition 5 (Recognizing Step)
Given a PSNA A, the step 〈q, w, [N1, . . . , Nr], S〉 → 〈q′, w′, [N ′1, . . . , N ′r], S′〉
occurs iff q σ,Z−−→

Δ,ζ
q′ ∈ δ and the following hold

1. condition 1 of Def. 2 and σ = � ⇒ w = top(S)w′ and
2. condition 2 of Def. 2 and

3.

⎧⎪⎨⎪⎩
Z = ε⇒ S′ = Pushreg(ζ, S) and
Z = i⇒ S′ = Pushreg(ζ, pop(S)) ∧ top(S) = s-top(Ni) and
Z =? ⇒ S′ = Pushreg(ζ, pop(S)) and

Finally, the language accepted by R is
L(A) = {w ∈ Σ∗ | 〈q0, w, [_, . . . ,_],_〉 →∗ Ck,with Ck final}

The definition above extends that for FSNA in handling the stack. In item (1)
we add the possibility of checking if the current symbol equals the top of the
stack, written �. The top of the stack, say a, is popped if Z =?, as well as if
Z = i, provided that the s-top of the ith m-register equals a. Finally, if Z = ε
the only action is pushing the string obtained from ζ, as explained above.

Example 6 Fig. 2(a) shows a PSNA accepting Lp = {wwR | w ∈ Σ∗d}, and a run
accepting aabbaa (for brevity, configurations are without strings, the symbols
read being in the labels of steps).

As done for FSNA we present a sub-class of PSNA without delete transitions.

Definition 6 (PSNA+). A PSNA+ is a PSNA with no edges q σ,Z−−−→
i−,ζ

q′.
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(a)

q0 q1

q2

ε, ε

1+, ε

�, ?

ε, ε

1, ε

1−, 1ε, ε

ε, ε

〈q0,
[
_
]
,_〉 ε−→ 〈q1

[
a

]
,_〉 a−→ 〈q0,

[
_
]
, a 〉 ε−→ 〈q1,

[
a

]
, a 〉 a−→

〈q0,
[
_
]
,

a
a 〉

ε−→ 〈q1,
[

b
]
,

a
a 〉

b−→ 〈q0,
[
_
]
,

a
a
b 〉

ε−→

〈q2,
[
_
]
,

a
a
b 〉

b−→ 〈q2,
[
_
]
,

a
a 〉

a−→ 〈q2,
[
_
]
, a 〉 a−→ 〈q2,

[
_
]
,_〉

(b)

q0 q1

q2

ε, ε

1+, ε

�, ?

ε, ε

n(1), ε

ε, r(1)ε, ε

ε, ε

〈q0,
[
_
]
,_〉 ε−→ 〈q1

[
a

]
,_〉 n(a)−−−→ 〈q0,

[
a

]
, r(a) 〉

ε−→

〈q1,
[

a
b

]
, r(a) 〉

n(b)−−−→ 〈q0,
[

a
b

]
,

r(a)

r(b) 〉
ε−→ 〈q2,

[

a
b

]
,

r(a)

r(b) 〉
r(b)−−−→

〈q2,
[

a
b

]
, r(a) 〉

r(a)−−−→ 〈q2,
[

a
b

]
,_〉

Fig. 2. (a) A PSNA accepting {wwR | w ∈ Σ∗
d}, and a run on aabbaa. (b) A PSNA+

for the data word language of the introduction and a run on n(a) n(b) r(b) r(a) (n and
r stand for new and release). Strings are omitted in configurations.

Example 7. Consider again the new-release (abbreviated n, r) language on
data words of the introduction, with all sockets different. The PSNA+ accept-
ing this language is in Fig. 2(b). The labels of transitions, but Δ, contain
n(u), r(u), u ∈ r ∪ Σs. Fig. 2(b) also shows the run for n(a) n(b) r(b) r(a); here
we omit the strings in configurations and we only mention the sockets in the
m-registers. Note that, only keeping the names of the sockets, we get ∪r∈NLr,
for Lr of Ex. 3.

A few properties of closure with respect to language operations follow.
Theorem 3 (Closures)

∪ ∩ . · ∗
PSNA � × × � �
PSNA+ � × × × ×

We now relate our proposal to quasi context-free languages (QCFL) [9] and
Usages [2], that are an automata-like and a process calculi-like models for nom-
inal context-free languages, respectively.
Theorem 4 (Comparison)

– L(PSNA) ⊃ L(QCFL) – L(PSNA) ⊃ L(Usages)
– L(PSNA+) �� L(QCFL) – L(PSNA+) = L(Usages)

3 Towards Nominal Model Checking

This section studies the feasibility of model-checking models expressed by nomi-
nal context-free languages A against regular nominal properties R, similarly to,
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q′0R : q′1
1+

1

q0A : q1
1+, 1

1, ε

q0, q
′
0

m
A′ :

q1, q
′
1

m′

q1, q
′
1

m

(1+, 2+), 2

2, ε

2+, 2

2, ε

m :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R : [ ]

A′ : [ , ]

A : [ ]

m′ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R : [ ]

A′ : [ , ]

A : [ ]

Fig. 3. A′ is a portion of the automaton recognizing the intersection of the languages
of R and A, the diagrams at the bottom represent the merges m,m′. Note that we are
using the equivalent version of automata that allows for updating two m-registers at
the same time.

e.g., [8,12,2,11]. We give a first positive answer to this problem, which is a main
result of this paper.

The standard automata based model-checking procedure [24] requires to verify
the emptiness of the intersection of the two languages: A ∩R = ∅. A first point
seems to arise in our case, because R is not necessarily regular, by Thm. 1.
Luckily, this is not a problem, since our main concern is now verifying access
control policies expressed within the default-accept paradigm, where unwanted
traces are defined, rather than those obeying the required properties [1]. We are
therefore left to prove that the intersection above is still a context-free language
and that its emptiness is decidable. Indeed, both properties hold for our classes
of languages, when their recognizing automata have no transitions that s-pop
any m-registers.

Our first theorem states that the emptiness problem is decidable for PSNA+.

Theorem 5. Given a PSNA+ A, it is decidable whether L(A) = ∅.
Proof. (Sketch) The proof relies on a restricted form of the pumping lemma:
roughly, there exists a constant n depending on A, s.t. any string w ∈ L(A), |w| >
n can be decomposed into w = uvxyz, s.t. also w = u′x′z′ belongs to L(A) with
u′, x′, z′ obtained from u, x, z by carefully substituting (distinguished) dynamic
symbols. By repeatedly applying this kind of pumping lemma, L(A) is non empty
if it contains a word w′, made of distinguished symbols, and s.t. |w′| ≤ n.

Our next theorem guarantees that model-checking is feasible in our case: PSNA+

are closed under intersection with FSNA+.

Theorem 6. Let A be a PSNA+ and R be a FSNA+. Then, L(A) ∩ L(R) is a
PSNA+ A

′.

Lack of space prevents us from detailing the proof, and we only present below
some ingredients of the above sketched construction, ignoring a few mild con-
ditions and assuming all the registers to be active in the initial configuration.
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To illustrate our construction, consider the automata A and R in Fig. 3 and
the portion of the PSNA+ A

′ accepting their intersection. A′ is obtained by the
standard construction that builds the new states as the product of the old ones.
Additionally, each pair 〈q, q′〉 is enriched with a merge function m. Intuitively, m
describes how the m-registers of the two automata are mapped into those of A′
— as a matter of fact, we shall use a variant of our automata (called PSNA+2),
the transitions of which can update two m-registers at the same time; the equiv-
alence of the extended automata with the ones used so far is easily shown by
rendering the extended transition q σ,Z−−−−−→

Δ1,Δ2,ζ
q′ updating the m-registers Δ1 and

Δ2 with two sequentialized “standard” transitions.
The idea underlying the definition of a merge m is to guarantee the following

invariant I along the runs: if A and R are in configurations 〈q0, w, [ y ], S〉 and

〈q′0, w, [ x ]〉 then A′ will be in configuration 〈〈q0, q′0,m〉, w, [ h , z ], S′〉 and if two
m-registers have the same s-tops then they are merged by m (and vice versa).
This is illustrated in the three left-most configurations of Fig. 4: if x = y = a
then m maps the two registers to one register of A′ (here the second one), and
z = a. The edges of the automaton are also defined in the standard way. However,
the m-registers mentioned in σ,Δ, ζ, Z of A′ are those merged by m, provided
that R and A agree on both σ and Δ under m.

Consider again Fig. 3. The transition t : 〈〈q0, q′0〉,m〉
2,ε−−−→
2+,2

〈〈q1, q′1〉,m〉 is

present because there are q′0
1−−→
1+
q′1 and q0

1,ε−−−→
1+,1

q1 and m maps the first m-

register of R and that of A to the second of A′. Instead, the state 〈〈q0, q′0〉,m′〉
(omitted in the figure) has no outgoing edges, because the symbols read by R
and A are kept apart by m′.

There are transitions that only differ for the merge function in their target
state. Not all the possible merges can however be taken, but only those “com-
patible” with the update Δ, in order to keep the invariant mentioned above. For
example, the transition 〈〈q0, q′0〉,m〉

2,ε−−−−−−→
(1+,2+),2

〈〈q1, q′1〉,m′〉 permits the recog-

nizing step C a−→ C′, where the m-register of R now has got a d, while that of A
has got c, and m′ keeps them apart. Instead, if both m-registers store the same
dynamic symbol c, the merge is still m, and the transition t above enables the
step C a−→ C′′ and guarantees the invariant.

Definition 7 (Merge function). The function m : {1, 2}×r→ 2r is a merge
iff m1(x) = m(1, x),m2(x) = m(2, x) are injective. The following are shorthands:
- two m-registers i, j are merged (i m←→ j) iff m1(i) = m2(j), or are taken apart
(i �� m←→ j), otherwise;
- m(ζ),m(Z) homomorphically apply m to ζ, Z, leaving untouched σ ∈ Σs ∪{?};
- m[N1

1 , . . . , N
1
r , N

2
1 , . . . , N

2
r ] = [M1, . . . ,M2r], iff the s-tops of the merged m-

registers match and additionally
⋃

i∈r ‖N1
i ‖ ∪

⋃
i∈r ‖N2

i ‖ =
⋃

i∈2r ‖Mi‖.

A further notion is in order. As shown in Fig. 4, from C one reaches both C′
and C′′, the states of which however have different merge functions (m′ and
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〈q′0,
[

a
]
〉 〈q′1,

[

a
c

]
〉 〈q′1,

[

a
d

]
〉

C = 〈〈q0, q′0,m〉,
[

_ , a
]
,_〉

C′ = 〈〈q1, q′1,m
′〉,

[
d , a

c
]
, a 〉

C′′ = 〈〈q1, q′1,m〉,
[

_ , a
c

]
, a 〉

〈q0,
[

a
]
,_〉

〈q1,
[

a
c

]
, a 〉

m′

m′
m′

m′

m

m

a

a

a

a

a

Fig. 4. Two recognizing steps of A′ (middle), built from steps of R (top), and steps of
A (bottom) (see Fig. 3). The step C

a−→ C′ simultaneously updates two m-registers.

m, resp.). To account for that, we explicitly represent the changes made by the
transition in the registers of the automata to be intersected, call them Δ1, Δ2.
We then say that a merge m evolves into m′ (m

Δ1,Δ2� m′), provided that m′ only
differs on the updated m-registers Δ1, Δ2, possibly merging either of them with
other m-registers by m′ or taking them apart from some to which they were
associated with by m. The registers updated in the intersection automata are

actually computed by the suitable function
m

m′
(
Δ1, Δ2

)
, the definition of which

we omit. It guarantees that the invariant I discussed above, and the compatibility
between the actual content of m-registers and m′.

The intersection of PSNA+ with FSNA+ is given as follows:

Definition 8 (Intersection Automaton)
Given the PSNA+ 〈Q1, q

1
0 , Σ, δ1, r, F1〉 and the FSNA+ 〈Q2, q

2
0 , Σ, δ2, r, F2〉,

their intersection automaton (of type PSNA+2) is 〈Q, q0, Σ, δ, 2r, F 〉, where

– Q = Q1 ×Q2 ×M , with M set of merge functions
– q0 = 〈q10 , q20 , 〈idr, idr〉〉 − F = {〈q1, q2,m〉 | q1 ∈ F1, q2 ∈ F2,m ∈M}
– 〈q1, q2,m〉

σ,Z−−−−−→
Δ1,Δ2,ζ

〈q′1, q′2,m′〉 ∈ δ iff m
Δ1,Δ2� m′ and

q1
σ1,Z−−−→
Δ1,ζ

q′1 ∈ δ1 and q2
σ2−−→
Δ2

q′2 ∈ δ2 and (σ1, σ2 ∈ r or σ1, σ2 ∈ Σs) and

• if σ1, σ2 ∈ r then σ = m1(σ1) = m2(σ2) and
• if σ1, σ2 ∈ Σs then σ = σ1 = σ2 and

• (Δ1, Δ2) =
m

m′
(
Δ1, Δ2

)
, Z = m1(Z), ζ = m1(ζ)

or q1
�,Z−−−→
Δ1,ζ

q′1 ∈ δ1 and q2
σ2−−→
Δ2

q′2 ∈ δ2 and σ2 ∈ r, σ = m2(σ2) and ζ = m1(ζ)

and either Z = k ∈ r implies k m←→ σ2, Z = m2(σ2),(Δ1, Δ2) =
m

m′
(
Δ1, Δ2

)
,

or Z =? implies Z = m2(σ2), (Δ1, Δ2) =
m

m′
(
Δ1, Δ2

)
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or q1
ε,Z−−−→
Δ1ζ

q′1 ∈ δ1 and σ = ε, (Δ1, Δ2) =
m

m′
(
Δ1, ε

)
, Z = m1(Z), ζ = m1(ζ)

or q2
ε−−→
Δ2

q′2 ∈ δ2 σ = ε, (Δ1, Δ2) =
m

m′
(
Δ1, ε

)
, Z = ε, ζ = ε

4 Conclusions

We introduced novel kinds of automata that recognise new classes of regular and
of context-free nominal languages. We studied their closure properties and we
related their expressive power to that of the models in the literature. A main
result of ours is that the problem of checking a model expressed by a nominal
context-free language against a regular nominal property is decidable, under mild
assumptions. Our contribution addresses therefore the shortcoming of standard
automata based model-checking approaches in the nominal setting, that only
considered regular languages. Ours is a further step towards developing methods
for formally verifying computational systems that handle an unbounded number
of resources. This is more and more the case nowadays, e.g. XML schemas, web
and cloud system, security protocols.

Further investigation is required on the impact that a disposal mechanism
has on the feasibility of model-checking. Preliminary results suggest us that
intersecting a regular and a context-free language results in a context-free one,
when at most one of them has a disposal mechanism.

Future research is needed to fill in the gap between our foundational results
and the concrete case studies and prototypal implementation of our abstract
model-checking procedure. Another line of research will study a logical charac-
terization of our nominal regular automata, as done e.g. by [7,11].
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Abstract. Vaucanson is an open source C++ platform dedicated to
the computation with finite weighted automata. It is generic: it allows
to write algorithms that apply on a wide set of mathematical objects.
Initiated ten years ago, several shortcomings were discovered along the
years, especially problems related to code complexity and obfuscation as
well as performance issues. This paper presents the concepts underlying
Vaucanson 2, a complete rewrite of the platform that addresses these
issues.

1 Introduction

Vaucanson
1 is a free-software2 platform dedicated to the computation of and

with finite automata. As a “platform” it is composed of a high-performance
(somewhat unfriendly) low-level C++ library, on top of which more humane
interfaces are provided: a comfortable high-level Application Program Inter-
face (API), flexible formats for Input/Output, easy-to-use command-line tools,
and eventually, a Graphical User Interface (GUI). Here, “automata” is to be
understood in the broadest sense: weighted automata on a free monoid — that
is automata that not only accept, or recognize, words but compute for every
word a multiplicity which is taken in an arbitrary semiring — and even weighted
automata on non-free monoids. As for now, are implemented in Vaucanson

only the (weighted) automata on (direct) products of free monoids, machines
that are often called transducers — automata that realize (weighted) relations
between words.

Vaucanson was started about ten years ago [7] with two main goals and
a constraint in mind: genericity (offering support for a wide set of automaton
types) and a natural (to mathematicians) programming style, while keeping
performances that compete with similar platforms. Genericity was obtained by
extensive use of C++ overloading and template programming, which are well

1 Work supported by ANR Project 10-INTB-0203 VAUCANSON 2.
2 http://vaucanson-project.org, http://vaucanson.lrde.epita.fr
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known means to avoid the costly dynamic polymorphism of traditional object-
oriented programming. A novel design, dubbed Element/MetaElement, al-
lowed a consistent pattern of implementation of mathematical concepts (such
as monoids, semirings, series, rational expressions, automata and transducers).
Annual releases have shown that genericity was indeed achieved: for instance
TAF-Kit, the command-line tools exposed by Vaucanson 1, features about
70 commands on 18 different kinds of automata/transducers [9].

However performances did not keep on par. The causes for these poor per-
formances are manifold. For instance “genericity” was sometimes implemented
by “generality”: instead of a carefully crafted specialized structure, a very gen-
eral one was used. Most prominently, usual automata, labeled with letters, were
implemented as automata whose transitions are labeled by polynomials. The
aforementionedElement/MetaElement design also conducted to error-prone,
obfuscated code, which eventually impeded the performance of the developers
themselves.

The Vaucanson 2 effort aims at keeping the best of Vaucanson 1 (generic-
ity, rich feature set, easy-to-use shell interface, etc.) while addressing its
shortcomings.

This paper presents the design of Vaucanson 2, which is only partly imple-
mented. Although much remains to be done, enough is already functional so that
we can report on our experience in the redesign of Vaucanson. The remainder
of this paper is structured as follows. Section 2 introduces the fundamental types
used in Vaucanson 2, and their implementation is presented in Section 3. In
Section 4 we explain how we provide flexible and easy-to-use interfaces on top
of an efficient but low-level library. We conclude in Section 5.

2 Types Implementation

2.1 From Typing Automata to Typing Transition

The type of a weighted automaton is classically given by the monoid M of its
labels and the semiring K of its weights. For instance, ifM is a free monoid over
a finite alphabet A, the weighted automaton is an automaton over finite words;
if M is a product A∗ × B∗ of two free monoids (A and B are finite alphabets),
then the weighted automaton is actually a transducer. The Boolean semiring B
corresponds to usual NFAs, while R can be used for probabilistic automata and
〈Z,min,+〉 for distance automata.

Such a weighted automaton realizes an application from M into K. The ap-
plications that can be realized this way are called (K-)rational series. They are a
subset of formal power series over M with coefficients in K, that are usually de-
noted K〈〈M〉〉, but seen as applications fromM into K, they can also be denoted
KM , or, with a notation closer to type theory M → K.

Vaucanson 1 follows this characterization, and, on top of its implementation,
the type of a weighted automaton is made of both the type of a monoid and
the type of a semiring. The pair Monoid/Semiring is called the context of the
automaton (in Vaucanson 1 vocabulary).
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This definition of types, based on the algebraic characterization, has two main
drawbacks. First, each implementation must support the most general automata
of a given type. Therefore, any element of M is accepted as a label of a tran-
sition; actually, in Vaucanson 1, labels and weights were handled at the same
time, since each transition can be labeled by a polynomial (a linear combination
of letters). Second, the application of many algorithms requires the label of the
automaton to have a particular form. For instance, the product of two automata
(that recognizes the intersection of languages in the case of NFAs) requires the
labels of both automata to be letters, or the usual composition algorithm for
transducers requires that the transducers are subnormalized. In Vaucanson 1,
these prerequisites, crucial for the effective computation, are not enforced stati-
cally (i.e., by specific C++ types): they must be checked at runtime.

In the design of Vaucanson 2 we decided to refine our typing system to
fit with the effective requirements of algorithms and implementations. It led to
focus on typing the transitions rather than the automata themselves. Indeed,
even if different automata on words have the same context in the sense of Vau-
canson 1, depending whether they are labeled by letters, or letters and ε, or by
words, their implementation and their behavior w.r.t. algorithms may be very
different. Hence, in Vaucanson 2 the type of an automaton is characterized by
the type of its transitions, which we name a context. Since the type of a transition
depends on the type of its label and of its weight, the context of an automaton
in Vaucanson 2 is a pair made from a LabelSet and a WeightSet (Section 2.3).
OpenFst [2] preceded us, and our contexts are alike their “arctypes”.

2.2 Bridge between Structures and Values

The implementation of mathematical objects in Vaucanson 2 follows a pat-
tern, which we name Element/ElementSet: the C++ type of values is sep-
arated from the C++ type of their set of operations. For instance, weights of
both semirings Z and 〈Z,min,+〉 are implemented by int, but their operations
are defined by the correspondingWeightSets: z and zmin. Other Element/Ele-
mentSet pairs include bool/b, double/r, etc., but also the rational expressions
and their set: ratexp<Context>/ratexpset<Context>. Thanks to this compli-
ance with this Element/ElementSet duality, rational expressions can be used
as weights. The behavior of labels (concatenation, neutral element. . . ) is also
provided by a LabelSet.

Whereas Vaucanson 1’s Element/MetaElement is a rich and complex
design in itself, our segregation between values and their operations is hardly
novel. It is a return to N. Wirth’s “Algorithms + Data Structures = Programs”
equation [10], phased out by traditional object-oriented programming’s “Pro-
grams = Objects”, and resurrected by generic programming à la STL.

2.3 LabelSet and WeightSet

LabelSet: Different Kinds of Label. The LabelSet contains the information
on the type of the labels, that is the implementation of the labels themselves, the
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implementation of the elements of the monoid (that may be different: a letter is
not implemented as a word). It also knows how to multiply (concatenate) labels.

Last, but not least, it provides a type called Kind that is used to choose
the most appropriate algorithm that has to be applied to the automaton (or
rational expression). There are two different kinds: LAW, LAL, and a third sort
of automata that is treated as a kind in itself: LAU.

LAW, ‘Labels Are Words’. The most general weighted automata have transitions
labeled by the elements of a monoid (and weighted by the elements of a semiring).
This class is very general, does not correspond to the usual definition of finite
automata and is not suitable for many algorithms (determinization, product,
evaluation, etc.). However it is the only kind so far that describes automata over
direct product of monoids. The LabelSet for the free monoid is called wordset.

LAL, ‘Labels Are Letters’. This class of automata corresponds to the usual way
NFAs, or even WFAs, are defined: labels are restricted to being letters. It also
corresponds to the description of automata as linear representations. Some al-
gorithms require the automata to be in this class, such as the product (which
implements the tensor product of the representations) or the reduction algo-
rithm (which can be applied when the weights belong to a field). The LabelSet
implementing this kind is letterset.

LAU, ‘Labels Are Unit’. This kind corresponds to the case where there is no
label, or, equivalently, where every label is the element of a trivial monoid. These
automata are therefore weighted graphs (with initial and final values attached
to vertices). They prove to be very useful since they allow to unify for instance
the state elimination (which computes a rational expression from an automata)
and the ε-removal algorithms. Its LabelSet is unitset.

WeightSet:DifferentValues. TheWeightSets define the nature of the weights,
and the operations that apply. They must provide addition, multiplication and
Kleene-star operators. Currently, basic WeightSets include (i) Booleans 〈B,∨,∧〉,
implemented by the class b; (ii) integers, 〈Z,+,×〉 and 〈Z,min,+〉, implemented
by z and zmin; (iii) double precision floats 〈R,+, ∗〉, implemented by r.

Every object that offers the same set of methods, i.e., every object that sat-
isfies the concept of WeightSet can be used. For instance, rational expressions
can be used as weights, even though they do not form a semiring.

2.4 Implementation of Contexts

In Vaucanson 2, the LabelSets manage the labels. Most aspects of labels are
static: their type (e.g., char, std::string, etc.) as well as the operations or
services that are available (algebraic operations, iteration on generators, etc.).
Others aspects may vary at runtime: an alphabet (a set of letters) is needed to
fully define a LabelSet (except for LAU). Therefore, LabelSets are C++ objects
(values), not just classes.
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Type︷ ︸︸ ︷
1©︷ ︸︸ ︷

context<

2©︷ ︸︸ ︷
letterset<

3©︷ ︸︸ ︷
set alphabet<

4©︷ ︸︸ ︷
char letters>︸ ︷︷ ︸

chars

>

︸ ︷︷ ︸
LabelSet = lal char

,

5©︷︸︸︷
b

︸︷︷︸
WeightSet = b

>>

︸ ︷︷ ︸
lal char b

Arguments︷ ︸︸ ︷
{

6©︷ ︸︸ ︷
{’a’,’b’},

7©︷︸︸︷
{} }

︸ ︷︷ ︸
"lal char(ab) b"

Fig. 1. Anatomy of lal_char(ab)_b, the C++11 implementation of {a, b} → B,
the context for Boolean automata. Class template (named generics in C# and
Java) generate classes once provided with parameters, in angle brackets. For in-
stance, set_alphabet is a class template expecting a single parameter (a class), and
set_alphabet<char_letters> is class.

Basic WeightSets (b, zmin, etc.) could be defined only as types, but more
complicated weights, like rational expressions (cf. Section 3.2), require runtime
values.

Because they depend on runtime values, contexts are objects (not just classes)
which aggregate an instance of a LabelSet and an instance of a WeightSet.
Contexts are the cornerstone on top of which the whole Vaucanson 2 platform
types its mathematical entities (words, weights, automata, rational expressions
etc.). As such, they could be named “types”, but it would lead to too much
confusion with C++’s own types. However, these (Vaucanson 2) “types” have
names which we write with quotes (e.g., "lal_char(ab)_b"), which should not
be confused with the C++ objects that implement them, even though C++ names
match those of the types, written without quotes (e.g., lal_char_b).

The context of Boolean automata (see Fig. 1) will help understanding
the C++ implementation of contexts. This context object is named
"lal_char(ab)_b". As any object, it is the instantiation of a Type, provided
with Arguments.

We name the C++ Type lal_char_b. It is a context 1©, which aggregates a
LabelSet (lal_char) and a WeightSet (b). Since we define an LAL context, the
LabelSet is letterset 2©, which must be provided with the type of the letters.
The alphabet 3© is a set of letters. We designed alphabets to work on different
types of letters, char, but also int; in Fig. 1 we work with the traditional C++

type for characters, char, provided by the char_letters class 4©. The effective
set of these letters is given in 6©. The WeightSet is b, i.e., 〈B,∨,∧〉. In this case,
b needs no argument, so none is provided 7©. Table 2 gives more examples of
contexts.



Implementation Concepts in Vaucanson 2 127

Table 2. Examples of contexts. chars stands for set_alphabet<char_letters>, an
alphabet whose letters and words are of type char and std::string.

Context
C++ Type C++ Initializers
Vaucanson Static Name Vaucanson Dynamic Name

{a, b} → B
context<letterset<chars>, b> {{’a’, ’b’}, {}}

"lal_char_b" "lal_char(ab)_b"

{a, b}� → Z
context<wordset<chars>, z> {{’a’, ’b’}, {}}

"law_char_r" "law_char(ab)_z"

{1} → {a, b} → Z
context<unitset,

ratexpset<letterset<chars>, z>>

{{}, {’a’, ’b’}}

"lau_ratexpset<lal_char_z>" "lau_ratexpset<lal_char(ab)_z>"

{a, b} → {x, y} → Z
context<letterset<chars>,

ratexpset<letterset<chars>, z>>

{{’a’, ’b’}, {’x’, ’y’}}

"lal_char_ratexpset<lal_char_z>" "lal_char(ab)_ratexpset<lal_char(xy)_z>"

3 Object Implementation

3.1 Automata

The design of automata in Vaucanson 2 is driven by their API, which was
designed after the experience of Vaucanson 1 to allow easy and efficient im-
plementation of algorithms. It offers a number of methods to access both in
reading and writing to the automaton content. The automaton is the object
that “knows” how to manipulate all sub-entities like states, transitions, labels
or weights. Following the Element/ElementSet principle, these are only val-
ues (that may be numbers, pointers or structures) with no methods; they can be
handled directly by the automaton or in some cases by the ElementSet objects
(the LabelSet or the WeightSet) that can be retrieved from the automaton.

To make the use of the Vaucanson library as intuitive as possible, all the
algebraic information is confined in the context object. An automaton is there-
fore a class template that depends on the implementation of the automaton,
where the template parameter is the context. For instance, the class template
mutable_automaton<Context> is a linked list based implementation that sup-
ports all the API. Vaucanson 2 provides also some wrappers that can be ap-
plied to a totally defined automaton (implementation and context). For instance,
the class template transpose_automaton<Automaton> wraps an automaton to
present a reverse interface, read and write.

The API of mutable_automata is totally symmetrical: the forward and back-
ward transition functions are both accessible. Other implementations can be
provided that partially implement the API, e.g., forward_mutable_automaton
(and backward_mutable_automaton for symmetry), which does not track in-
coming transitions, should improve performances in most cases. More wrappers
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can also be provided, for instance to change the alphabets, to change the weight
sets and so on.

Our API is designed to support implementation of automata computed
on-the-fly as well [6].

Pre and Post States. Weighted automata feature not only weights on tran-
sitions but also on the initial and final states. An implementation keeping these
initial and final weights on states is awkward, as we found out in Vaucanson 1.
The data structure is heavy, and the API error-prone.

In Vaucanson 2, weights on initial states are modeled as weights on (plain)
transitions from pre, a (unique) invisible “preinitial” state, to every initial state.
These transitions are labeled by a fresh label, denoted by $, which can be inter-
preted as the empty word. As a consequence the initial weights are handled seam-
lessly, which simplifies significantly the implementation of several algorithms.
Besides, since there is a single pre state, algorithms that start by loading a
queue with the initial states (e.g., determinization) can now push only pre and
let the loop iterate on the successors.

The final weights are handled in a similar fashion, with post, a (unique)
invisible “postfinal” state.

3.2 Rational Expressions

Although the concept of “context” emerged to design our implementation of
automata, it fits perfectly the same job to define the nature of the correspond-
ing rational expressions. By virtue of the Element/ElementSet principle,
rational expressions are implemented by ratexp<Context> and manipulated by
ratexpset<Context>.

Syntax. Vaucanson, 1 and 2, supports weighted rational expressions, such as
a+ (2b)� + 3(c�). Because weights can be arbitrarily complex, we delimit them
with braces: ‘a+({2}b)*+{3}(c*)’.

Vaucanson 1 provides customizable syntax for rational expressions: one can
define which symbols are used for the constants 0 and 1 (denoting the empty
language and empty word), and so forth. In the predefined parser of Vaucan-
son 2 ‘\z’ and ‘\e’ denote 0 and 1. Because braces are already used for weights
they cannot be used for the generalized quantifiers as in POSIX extended nota-
tion (a{min,max}), we denote them a(*min,max). Other parsers can be added
to support alternative syntaxes.

Contexts. Like automata, rational expressions support not only various types
of weights, but also of labels — for simplicity and by symmetry with automata,
we name “labels” the “atoms” of rational expressions. They are therefore pa-
rameterized by a context. Classical rational expressions such as ‘(a+b)*a(a+b)’
use letters (‘a’ and ‘b’) as atoms, and Booleans as weights (“true” is implicit):
their context is "lal_char(ab)_b".
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Labels may also be words (LAW) or reduced to 1 (LAU). Weights may
be integers (e.g., ‘one+{2}(two)+{3}(three)’ from "law_char(ehnortw)_z")
or even rational expressions: ‘{{1}x}a+{{2}y}b’ is a rational expression from
"lal_char(ab)_ratexpset<lal_char(xy)_z>" (see Table 2).

Associativity, Commutativity. We intend to experiment with different im-
plementations of rational expressions, including relying on associatitivity and
commutativity. To this end, our ratexp structure supports variadic sums and
products. It is up to ratexpset to decide whether to exploit this feature or not.
Currently sums and products are binary, and only straightforward rewritings are
performed on rational expressions (“Trivial Identities”, [9, Table 2.5]).

4 Dynamic Polymorphism Implementation

4.1 Dynamic I/O Routines

Contexts Input/Output. As its predecessor,Vaucanson 2 is more than just
a C++ library: it is a platform that provides a set of tools to manipulate automata
and rational expressions, means to save and restore them, eventually a GUI, etc.
I/O of automata and rational expressions is therefore crucial, which requires
a means to save, and read, their type. In short, a file containing a Boolean
automaton must specify that it is a Boolean automaton. This is achieved by I/O
support for contexts.

Vaucanson 2 can compute a name from a context, and conversely it can build
a context from its name. Examples of (dynamic) context names are provided in
Table 2; for instance the name for {a, b} → B is "lal_char(ab)_b". Static
names are computed from the (dynamic) names by removing the alphabets:
"lal_char_b".

Vaucanson 1 relies on FSMXML [4] for typed I/O: specific tags define the
algebraic context of the stored automaton or rational expression. Context names
play a similar role in Vaucanson 2’s I/Os.

Dynamic Automaton/Rational Expression Input. Vaucanson 2 aims at
providing an even larger set of algorithms than Vaucanson 1, yet in a more
flexible way. TAF-Kit 2 consists of a unique binary that replaces the set of
binaries of TAF-Kit 1. The following command lines for the computation of the
product of two automata and for the construction of the standard (or position)
automaton of an expression show the contrast between both interfaces.

# Vaucanson 1: use the context−specific tool.
$ vcsn-char-z product a.xml b.xml > c.xml # product of automata a and b
$ vcsn-char-z -a abc standard ’{2}a+{3}c’ > s.xml # automaton for 2a+3c

# Vaucanson 2: use the generic tool, the context is handled dynamically.
$ vcsn product a.xml b.xml > c.xml

$ vcsn -C ’lal_char(abc)_z’ standard -e ’{2}a+{3}c’ > s.xml
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In TAF-Kit 1, there is a command for every single context (here, vcsn-char-z),
while in TAF-Kit 2 context is just data of a unique command (vcsn). The
context must be either carried by the argument, for instance in the FSMXML
description of an automaton, or provided with a simple command line option
(-C ’lal_char(abc)_z’). In either case, the very profound difference between
the static nature of the C++ library and the dynamic one of data must be
resolved. This is addressed by our static/dynamic bridge.

4.2 Dynamic Calls to Static Algorithms

Static/Dynamic Polymorphisms. Polymorphism is the ability for a single
function name to denote several implementations that depend on the type of
its argument(s). It provides a means to specialize algorithms: some can be run
on automata of special kind, with special type of weights, or special type of
labels, others may have different versions according to the type of weights or of
labels. For instance, determinization applies to Boolean automata only, product
to LAL automata only, etc. The elimination of ε-transitions gives an example of
the second kind: any closure algorithm works on Boolean automata, for automata
with weights in Z it boils down to an algorithm that tests for acyclicity, and for
automata with weights in R, it is again another algorithm [8].

The dynamic polymorphism (i.e., specialization selection at runtime via vir-
tual tables) provides a flexible solution to these problems: roughly, when a
method is called on an object, the exact type of this object is examined at
run time and the corresponding implementation is then called. It is the essence
of object-oriented programming. Unfortunately this elegant mechanism slows
down the execution of the program when used in intensive computation loops.

C++ offers another mechanism, templates, that allows static polymorphism
(i.e., specialization selection at compile time). Functions and classes can be pa-
rameterized by one or several types (or constants); some specific implementations
can also be provided for particular types (see Fig. 1). When a method is called
on an object, the type of this object is known at compile time and the method,
if needed, is compiled especially for this type. Method invocation is then as effi-
cient as a plain function call. There are some drawbacks to this mechanism. First,
every object must be precisely typed: the type of an automaton shows its imple-
mentation and is moreover parameterized by the type of its labels and weights,
which can themselves be parameterized. Hence, users of the library may handle
quite complicated types. For instance the type for a classical Boolean automa-
ton is mutable_automaton<context<letterset<set_alphabet<char_letters
>>, b> (see Table 2 for a description of the context part). Second, to compile
binaries that offer all the required algorithms for each type of automata, the
corresponding functions must be compiled for each of these types. The compila-
tion, as a consequence, is an extremely long process, and the introduction of a
new “context” (that is, a new kind of weights, labels or implementation) needs
a configuration to specify which algorithms need to be compiled.

This is our experience with Vaucanson 1; compiling the whole package and
the 18 commands of TAF-Kit takes hours (annoying for users, crippling for
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template <typename Context> void

static(const string& lhs, const string& rhs, const string& word)

{

using automaton_t = vcsn::mutable_automaton<Context>;

automaton_t l = vcsn::read_automaton_file<automaton_t>(lhs);

automaton_t r = vcsn::read_automaton_file<automaton_t>(rhs);

automaton_t prod = vcsn::product<automaton_t, automaton_t>(l, r);

typename Context::weight_t w = vcsn::eval<automaton_t>(prod, word);

prod.context().weightset()->print(std::cout, w);

}

void dynamic(const string& lhs, const string& rhs, const string& word)

{

using namespace vcsn::dyn;

automaton l = read_automaton_file(lhs);

automaton r = read_automaton_file(rhs);

automaton prod = product(l, r);

weight w = eval(prod, word);

print(w, std::cout);

}

Fig. 3. Static/Dynamic APIs: evaluation of the word word by a product of the automata
stored in the files named lhs and rhs. The dynamic routine hides the complexity of
templated programming, demonstrated by static. It is also more flexible, as it can
be invoked with automata of equal algebraic type, but of different C++ types (e.g., a
transpose_automaton and a mutable_automaton).

developers!). Beside, the resulting API was repelling, and very few people dared
programming with the library, and preferred to use TAF-Kit.

To address these shortcomings while keeping the good properties of static
polymorphism (efficiency and rigorous type checking), Vaucanson 2 provides a
two-level API (see Fig. 3). The low-level API, named “static”, is fully typed: the
C++ types of the object are precise and heavily templated. When programming
at this level, the user is in charge of every detail, including memory management.
For sake of efficiency, all the algorithms of the library are written at the static
level: dynamic polymorphism and its costs are avoided. The high-level API,
named “dynamic”, provides the user with the comfort of dynamic polymorphism,
but at such a coarse grain that its cost is negligible (to select the appropriate
version of an algorithm, not in the implementation of the algorithms themselves).
This layer takes in charge details such as the exact type of the objects, and
memory management.

Dynamic Access to Template Algorithm. Fig. 4 demonstrates how the
dynamic API invokes the low-level one. In the high-level API, an automaton
a1 is handled as a dyn::automaton, whatever its exact type. When the user
invokes dyn::determinize(a1), several steps must occur. First a1 is asked for
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Fig. 4. Dynamic invocation on top of templated implementations. For con-
ciseness, in this diagram b_aut denotes the type of Boolean automata,
mutable_automaton<context<letterset<set_alphabet<char_letters>>, b>, the
“exact” type of the automaton a2, contained by the dynamic automaton a1.

the name of its exact type (n1 in Fig. 4). This string is used to query a registry
of all the static bridges of determinize. These bridges all have the same type
(dyn::automaton -> dyn::automaton), yet they are parameterized by the ex-
act type. Once the specific det_bridge<b_aut> is obtained, it is invoked with
a1 as argument. The bridge extracts a2, the static automaton, from a1, and
invokes the low-level determinize, whose type is b_aut -> b_aut. Its result,
the static automaton d2, is returned to the bridge, that wraps it in the dynamic
automaton d1, which is eventually returned to the user.

As far as we know, this two-layer technique to implement dynamic polymor-
phism on top of static polymorphism is unpublished. However several of its com-
ponents have already been documented in the literature. For instance, dynamic
objects such as dyn::automaton implement the External Polymorphism de-
sign pattern [3]. The implementation of algorithm registries is very similar to
“Object Factories” [1, Chap 8]., an implementation of the Abstract Factories [5]
tailored for C++.

5 Conclusion and Future Work

Vaucanson 2 is a complete rewrite of the Vaucanson platform. Its whole
design relies on objects called “contexts” that behave as a custom typing-system
for automata and rational expressions. They are also the cornerstone of the two-
level API, which provides an easy-to-use and flexible dynamic interface on top of
an efficient static C++ library. Although Vaucanson 2 is still in its early phase,
it already features 30+ different dynamic algorithms (including I/O) and 15+
predefined contexts. The benchmarks show that the new concepts have a clear
and positive effect on performances. For instance, as of mid 2013, Vaucanson 2

is about 2.5 times faster on determinization than its predecessor, and 50% slower
than OpenFst.
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Much remains to do. Importing the algorithms from Vaucanson 1 will be a
non-straightforward effort, as it will require adjusting to the new API, taking
advantage of C++11 features, and binding with dynamic API. It is expected to
improve both the readability of the algorithms, and their efficiency.

Adding more contexts should be reasonably simple. We are confident that
adding new WeightSets is simple and straightforward, as there are already many
very different implementations. Variety in the LabelSets is more challenging:
supporting other concepts of generators (integers for instance), and different
label kinds (tuples of letters and empty word, for instance, for implementing
automata on multiple tapes, a generalization of Vaucanson 1’s support for
transducers [7]).
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Abstract. When dealingwith infinite-state systems, Regular TreeModel
Checking approaches may have some difficulties to represent infinite sets
of data. We propose Lattice Tree Automata, an extended version of tree
automata to represent complex data domains and their related operations
in an efficient manner. Moreover, we introduce a new completion-based
algorithm for computing the possibly infinite set of reachable states in a
finite amount of time. This algorithm is independent of the lattice mak-
ing it possible to seamlessly plug abstract domains into a Regular Tree
Model Checking algorithm. As a first instance, we implemented a com-
pletion with an interval abstract domain. We provide some experiments
showing that this implementation permits to scale up regular tree model-
checking of Java programs dealing with integer arithmetics.

1 Introduction

In verification, infinite-state models are often used to avoid assumptions on data
structures and architectures, e.g. an artificial bound on the size of a stack or
on the value of a variable. At the heart of most of the techniques that have
been proposed for exploring infinite state spaces, is a symbolic representation
that can finitely represent infinite set of states. In Regular Tree Model Checking
(RTMC), states are represented by trees, set of states by tree automata, and
behavior of the system by tree transducers [1,8] or rewriting rules [11,16]. Any
RTMC approach is equipped with an acceleration algorithm to compute possibly
infinite sets of states in a finite amount of time. Among such algorithms, com-
pletion by equational abstraction [16] computes successive automata obtained by
application of the rewriting rules, and merges intermediary states according to
an equivalence relation to enforce the termination of the process.

In [6], the authors proposed an exact translation of the semantics of the Java
Virtual Machine to tree automata and rewriting rules. This translation permits
to analyze Java programs with Regular Tree Model checkers. One of the major
difficulties of this encoding is to capture and handle the two-side infinite dimen-
sion that can arise in Java programs. Indeed, in such models, infinite behaviors
may be due to unbounded number of calls to method and object creation, or
simply because the program is manipulating unbounded data such as integer
variables. While multiple infinite behaviors can be over-approximated with com-
pletion and equational abstraction [16], their combinations may require the use
of artificially large structures.
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We address this issue by defining Lattice Tree Automata (LTA). LTA have
special transitions to abstract possibly infinite sets of values by a single element of
a lattice. For example, we may abstract a set of integer values by a single interval
instead of using an unary or binary encoding of those integers and recognizing the
corresponding terms [6]. LTA recognize terms built over such intervals, and the
completion algorithm built on LTA will perform each basic arithmetic operation
in a single completion step, thanks to abstract interpretation techniques [9].

In this paper, we first define the LTA structure, then we propose a completion
algorithm (by equational abstraction) that returns an approximation of the set
of reachable states of an infinite-state systems whose behavior is modeled by
rewriting rules. Finally, we provide some experimental results on the verification
of Java programs using a RTMC environment. More details can be found in [15].

Related Work. [20] defined lattice automata to represent sets of words over an in-
finite alphabet. LTA are an extension of lattice automata to trees. Other models
like modal automata [4] or data trees [12,13] consider tree structure with infinite
alphabets but do not exploit the lattice structure as we do. Lattice (-valued) au-
tomata [19]map words over a finite alphabet to a lattice value, while LTA map
trees over an infinite alphabet to {0, 1}. Similar automata may define fuzzy tree
languages [10]. Verification of particular classes of properties of Java programs
with interpreted terms can be found in [23].

Many techniques aim at the verification of programs with integer arithmetics.
Among them, abstract interpretation [9] computes over-approximations of reach-
ability sets, but requires a complete evaluation of arithmetic expressions. LTA
can handle expressions that are only partially evaluated, thus may be useful in
interprocedural analysis. There are other ways to deal with arithmetic efficiently
in a regular model-checking framework such as [21]. However, we think that LTA
provide a way to abstract many different types of data (integers, strings, etc.)
by simply plugging the adapted abstract domain (and using its best available
implementation) in a RTMC framework. In particular, LTA could be used by
other RTMC techniques like [1,8] where such an ability does not exist.

2 Background

Rewriting Systems and Tree Automata. Let F be a finite set of functional sym-
bols, where each symbol is associated with an arity, and let X be a countable
set of variables. T (F ,X ) denotes the set of terms and T (F) denotes the set of
ground terms (terms without variables). Var(t) denotes the set of variables of a
term t, and Fn, the set of functional symbols of arity n. We denote by Pos(t)
the set of positions of a term t, i.e. the set of positions of all its subterms, where
a position is a world over N and ε denotes the top-most position. If p ∈ Pos(t),
then t|p denotes the subterm of t at position p and t[s]p denotes the term ob-
tained by replacement of the subterm t|p at position p by the term s. A Term
Rewriting System (TRS ) R is a set of rewrite rules l→ r, where l, r ∈ T (F ,X ),
and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if each variable of l occurs
only once in l. A TRS R is left-linear if every rewrite rule of R is left-linear.
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We now define Tree Automata that are used to recognize possibly infinite sets
of terms. Let Q be a finite set of symbols of arity 0, called states, such that
Q∩F = ∅. The set of configurations is T (F ∪Q). A transition is a rewrite rule
c→ q, where c is a configuration and q is a state. A transition is normalized when
c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q. A bottom-up non-
deterministic finite tree automaton (tree automaton for short) over the alphabet
F is a tuple A = 〈F ,Q,QF , Δ〉, where QF ⊆ Q is the set of final states, Δ is a
set of normalized transitions. The transitive and reflexive rewriting relation on
T (F ∪Q) induced by Δ is denoted by →∗

A. The tree language recognized by A
in a state q is L(A, q) = {t ∈ T (F) | t→∗

A q}. We define L(A) =
⋃

q∈QF
L(A, q).

Lattices, Atomic Lattices, Galois Connections. A partially ordered set (Λ,+) is a
lattice if it admits a smallest element ⊥ and a greatest element �, and if any finite
set of elements X ⊆ Λ admits a greatest lower bound (glb) �X and a least upper
bound (lub) �X . A lattice is complete if the glb and lub operators are defined
for all possibly infinite subsets of Λ. An element x of a lattice (Λ,+) is an atom
if it is minimal, i.e. ⊥ � x∧∀y ∈ Λ : ⊥ � y + x⇒ y = x. The set of atoms of Λ
is denoted by Atoms(Λ). A lattice (Λ,+) is atomic if any element x ∈ Λ where
x �= ⊥ is the least upper bound of atoms, i.e. x = �{a|a ∈ Atoms(Λ) ∧ a + x}.

Considered two lattices (C,+C) (the concrete domain) and (A,+A) (the ab-
stract domain), there is a Galois connection between the two if there are two
monotonic functions α : C → A and γ : A → C such that : ∀x ∈ C, y ∈ A,
α(x) +A y if and only if x +C γ(y). As an example, sets of integers (2Z,⊆) can
be abstracted by the atomic lattice (I,+) of intervals, whose bounds belong to
Z ∪ {−∞,+∞} and whose atoms are of the form [x, x], for each x ∈ Z. Any
operation op defined on a concrete domain C can be lifted to an operation op#

on the corresponding abstract domain A, thanks to the Galois connection.

3 Lattice Tree Automata

In this section, we first explain how to add elements of a concrete domain into
terms, which has been defined in [18]. Then we propose a new type of tree
automata recognizing terms with elements of an abstract lattice.

3.1 Interpreted Symbols and Evaluation

In what follows, elements of a possibly infinite concrete domain D will be repre-
sented by a set of interpreted symbols F•. The set of symbols is now F = F◦∪F•,
where F◦ is the set of passive (uninterpreted) symbols. The set of interpreted
symbols F• is composed of elements of D (notice that D ⊆ F0

• ), and is also com-
posed of some predefined operations op : Dn → D, where op ∈ Fn

• and n > 0.
We denote by OP the set of predefined operations, thus we have F• = D ∪OP .
For example, if D = Z, then F• can be Z ∪ {+,−, ∗}. Passive symbols can
be seen as usual non-interpreted functional operators, and interpreted sym-
bols stand for built-in operations on the domain D. The set T (F•) of terms
built on F• (called interpreted terms) can be evaluated by using an eval func-
tion eval : T (F•) → D. The purpose of eval is to simplify a term using
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the built-in operations of the domain D. eval naturally extends to T (F): (1)
eval(f(t1, . . . , tn)) = f(eval(t1), . . . , eval(tn)) if f ∈ F◦ or ∃i = 1 . . . n : ti �∈
T (F•), or (2) the evaluation returns an element of D if f(t1, . . . , tn) ∈ T (F•).

We want to define tree automata to recognize sets of interpreted terms. To
recognize {f(1), f(2), f(3), f(4)}, we would like to have tree automata with spe-
cial transitions to handle sets of integers for instance: {1, . . . , 4} → q, f(q) → qf .
We propose to generalize this encoding and to define tree automata with some
transitions to recognize elements of a lattice (sets of integers are elements of
the lattice (2Z,⊆)). By considering generic lattices, we can also improve the ef-
ficiency of the approach. Since RTMC only requires an over-approximation of
the set of reachable states, we have special transitions to recognize elements of
a simple, abstract lattice (Λ,+) such as the lattice of intervals. Moreover, we
assume that this abstract lattice is atomic (cf. Section 2).

Each built-in operation op ∈ OP defined on D, is also abstracted by op# ∈
OP#. Since we have that F• = D ∪ OP , the set of abstract symbols is F#

• = Λ ∪
OP#. The arity of op# is the same as the one of op. Assuming there is a Galois
connection between the concrete domain and the abstract one (cf. Section 2),

then op# = α◦op◦γ and eval# : T (F#
• ) �→ Λ is the best approximation of eval.

Example 1. There is a Galois connection between (2Z,⊆) and the lattice of
intervals (I,+). eval#([2, 3] +# [−1, 2]) = [1, 5]).

3.2 Definition and Semantics

Definition 1 (Lattice tree automaton). A bottom-up non-deterministic fi-
nite tree automaton with lattice (lattice tree automaton for short, LTA) for a

given lattice Λ, is a tuple A = 〈F = F◦ ∪ F#
• , Q,QF , Δ〉, where F◦ is a set

of passive symbols and F#
• = Λ ∪ OP# a set of interpreted symbols, Q a set of

states, QF ⊆ Q are the final states, and Δ is a set of normalized transitions.

The set of lambda transitions, which recognize elements of the lattice, is defined
by ΔΛ = {λ→ q | λ→ q ∈ Δ ∧ λ �= ⊥ ∧ λ ∈ Λ}. The set of ground transitions
is formally defined by ΔG = {f(q1, . . . , qn) → q | f ∈ F ∧ f(q1, . . . , qn) → q ∈
Δ ∧ q, q1, . . . , qn ∈ Q}. Epsilon transitions are transitions of the form q → q′
where q, q′ ∈ Q. We extend the partial ordering + (on Λ) on T (F):

Definition 2. Given s, t ∈ T (F), s + t iff :

(1) eval(s) + eval(t) (if both s and t belong to T (F#
• )), or (2) s = f(s1, . . . , sn),

t = f(t1, . . . , tn), f ∈ Fn
◦ and s1 + t1 ∧ . . . ∧ sn + tn.

Example 2. f(g(a, [1, 5])) + f(g(a, [0, 8])), and h([0, 4]+[2, 6]) + h([1, 3]+[1, 9]).

In what follows we may omit # on abstract operations when it is clear from the
context. We now define the transition relation and recognized language of an
LTA. A term t is recognized by an LTA A if eval(t) can be reduced in A.

Definition 3 (t1 →A t2 for LTA). Let t1, t2 ∈ T (F ∪Q). t1 →A t2 iff, for all
position p ∈ Pos(t1) :
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– if t1|p ∈ T (F#
• ), there is a transition λ → q ∈ Δ such that eval(t1|p) + λ

and t2 = t1[q]p
– if t1|p = q where q ∈ Q, there is an epsilon-transition q → q′ ∈ Δ, where
q′ ∈ Q such that t2 = t1[q

′]p
– if t1|p = f(s1, . . . , sn) where f ∈ Fn and s1, . . . sn ∈ T (F ∪ Q), ∃s′i ∈
T (F ∪Q) such that si →A s

′
i and t2 = t1[f(s1, . . . , si−1, s

′
i, si+1, . . . , sn)]p

– if t1|p = f(q1, . . . , qn) where f ∈ Fn and q1, . . . qn ∈ Q, there is a transition
f(q1, . . . , qn) → q ∈ Δ such that t2 = t1[q]p.

→∗
A is the reflexive transitive closure of →A. There is a run from t1 to t2 if
t1 →∗

A t2. If a LTA has a transition [0, 2] → q then [0, 0] →∗
A q, [1, 2] →∗

A q, . . . ,
i.e. all possible unions of atoms [0, 0],[1, 1],[2, 2]. The language recognized by a
LTA is thus defined over T (F ,Atoms(Λ)), where T (F ,Atoms(Λ)) is the set of
ground terms built over (F \ Λ) ∪ Atoms(Λ).

Definition 4 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F ,Atoms(Λ)) | ∃ t′ such that t + t′ and t′ →∗

A q}.
The language recognized by A is L(A) =

⋃
q∈Qf

L(A, q).

Example 3 (Run, recognized language). Let A = 〈F = F◦ ∪ F#
• , Q,Qf , Δ〉

be an LTA where Δ = {[0, 4] → q1, f(q1) → q2} and Qf = {q2}. We have:
f([1, 4])→∗

A q2 and f([0, 1] + [0, 1])→∗
A q2, and the recognized language of A is

given by L(A, q2) = {f([0, 0]), f([1, 1]), . . . , f([4, 4])}.

4 Completion Algorithm

We only present here the completion algorithm on LTA, other operations are
detailed in [15]. We are interested in computing the set of reachable states of
an infinite state system. We propose to represent states by (built-in) terms and
possibly infinite set of states by an LTA. In this section, we assume that the be-
havior of the system can be represented by conditional term rewriting systems,
i.e. TRS equipped with conjunction of conditions used to restrain the applica-
bility of the rule. Our conditional TRS , which extends the classical definition of
[2], rewrites terms defined on the concrete domain. This makes them indepen-
dent from the abstract lattice. We first start with the definition of predicates
that allows us to express conditions in TRS .

Definition 5 (Predicates). Let P be the set of predicates over D. Let ρ be a
n-ary predicate of P such that ρ : Dn �→ {true, false}. We extend the domain
of ρ to T (F)n in the following way:

ρ(t1, . . . , tn) =

{
ρ(u1, . . . , un) if ∀i = 1 . . . n : ti ∈ T (F•) and ui = eval(ti)
false if ∃j = 1 . . . n : tj �∈ T (F•)

Observe that if one of the predicate parameters cannot be evaluated into a built-
in term, then the predicate returns false and the rule is not applied.



A Completion Algorithm for Lattice Tree Automata 139

Definition 6 (Conditional Term Rewriting System (CTRS) on T (F◦ ∪
F•,X )). In our setting, a Conditional Term Rewriting System R is a set of
rewrite rules l → r ⇐ c1 ∧ . . . ∧ cn, where l ∈ T (F◦,X ), r ∈ T (F◦ ∪ F•,X ),
l �∈ X , Var(l) ⊇ Var(r) and ∀i = 1 . . . n : ci = ρi(t1, . . . , tm) where ρi is a m-ary
predicate of P and ∀j = 1 . . .m : tj ∈ T (F•,X ) ∧ Var(tj) ⊆ Var(l).

Example 4. Using conditional rewriting rules, the factorial can be encoded by
the CTRS: fact(x) → 1 ⇐ x ≥ 0 ∧ x ≤ 1, fact(x) → x ∗ fact(x− 1) ⇐ x ≥ 2.

Let X a set of variables,Q a set of states, and F a set of symbols. A substitution σ
is a function σ : X �→ Q∪T (F) that can be extended to T (F ,X ) in this way: for
all t ∈ T (F ,X ), we define tσ as: (1) if t = f(t1, . . . , tn) then tσ = f(t1σ, . . . , tnσ),
where t, t1, . . . , tn ∈ T (F ,X ), f ∈ Fn, (2) if t = x ∈ X then tσ = σ(x). Recall
thatF = F◦∪F•. The CTRS R and the eval function induces a rewriting relation
→R on T (F): in the following way: for all s, t ∈ T (F), we have s →R t if there
exist: (1) a rewrite rule l→ r ⇐ c1 ∧ . . .∧ cn ∈ R, (2) a position p ∈ Pos(s), and
(3) a substitution σ : X �→ T (F) s.t. s|p = lσ, t = eval(s[rσ]p) and ∀i = 1 . . . n :
ciσ = true. The reflexive transitive closure of →R is denoted by →∗

R.

Let A be an LTA representing the set of initial states, and R be a CTRS . Our
objective is to compute another LTA representing (an over-approximation of) the
set R∗(L(A)) = {t | ∃t0 ∈ L(A), t0 →∗

R t}. We adopt the completion approach
of [16,11], which intends to compute a tree automaton Ak

R such that L(Ak
R) ⊇

R∗(L(A)) for a left-linear CTRS R. The algorithm proceeds by computing the
sequence of automata A0

R,A1
R,A2

R, ... that represents successive applications
of R. Computing Ai+1

R from Ai
R is called a one-step completion. In general the

sequence of automata may not converge in a finite amount of time. To accelerate
the convergence, we perform an abstraction operation that will be described
in section 4.3. We now give details on the above constructions, which will be
illustrated step by step by a running example.

4.1 Computation of Ai+1
R

In our setting, Ai+1
R is built from Ai

R by using a completion step that relies
on finding critical pairs. Given a substitution σ : X �→ Q and a rule l → r ⇐
c1∧. . .∧cn ∈ R, a critical pair is a pair (rσ′, q) where q ∈ Q and σ′ is the greatest
substitution w.r.t + such that lσ →∗

Ai
R
q, σ , σ′ and c1σ′ ∧ . . .∧ cnσ′. Since R,

Ai
R, Q are finite, there is only a finite number of such critical pairs. For each

critical pair such that rσ′ �→∗
Ai

R
q, the algorithm adds two new transitions rσ′ →

q′ and q′ → q to Ai
R, in order to enrich the language of the previous automaton.

To find all critical pairs, in what follows, we use the standard matching algorithm
introduced and described in [11]. This algorithm Matching(l,A, q) matches a
linear term l with a state q in the automaton A. The solution returned by
Matching is a set of substitutions {σ1, . . . , σn} so that lσi →∗

A q. However, as
our TRS relies on conditions, we have to extend this matching algorithm in order
to guarantee that each substitution σi that is a solution of l→ r ⇐ c1 ∧ . . .∧ cn
satisfies c1 ∧ . . . ∧ cn.
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Example 5. Let Z be the concrete domain, and intervals on Z be the lattice,
R = {f(x) → cons(x, f(x+1)) ⇐ x ≥ 1} be the CTRS ,A0 the LTA representing
the set of initial configurations, with transitions: Δ0 = {[0, 2] → q1, f(q1) → q2}.
To build A1

R from A0, we have to find all possible substitutions. The matching
algorithm tells that the rewrite rule applies with the substitution {x �→ q1}. To
satisfy the constraint x ≥ 1, the substitution {x �→ q1} with [0, 2] → q1 will be
restricted to {x �→ [1, 2]}.
Restricting substitutions is done by a solver Solve on abstract domains. The
output of Solve(σ,A, c1 ∧ . . . ∧ cn) is either a set of substitutions σ′ which is a
restriction of σ satisfying c1 ∧ . . . ∧ cn or ∅ if such a restriction does not exist.
On the previous example, Solve({x �→ q1},A, x ≥ 1) = {{x �→ [1, 2]}}. See [15]
for details about the properties the solver needs to have. Such properties are
generally fulfilled by usual abstract domains implementations.

Definition 7 (Matching solutions of conditional rewrite rules). Let A be
a tree automaton, rl = l → r⇐ c1∧. . .∧cn a rewrite rule and q a state of A. The
set of all possible substitutions for the rewrite rule rl is Ω(A, rl, q) = {σ′ | σ ∈
Matching(l,A, q) ∧ σ′ ∈ Solve(σ,A, c1 ∧ . . . ∧ cn) ∧ �σ′′ : rσ′ + rσ′′ →A∗ q}.

Once the set of all possible restricted substitutions σi has been obtained, we
must add the rules rσi → q′ and q′ → q in the automaton, where q′ is a new
state. However, rσi → q′ is not necessarily a normalized ground transition of the
form f(q1, . . . , qn) → q or a lambda transition of the form λ→ q, which means
it must be normalized first in order to be added to the LTA.

Definition 8 (Normalization). Let s ∈ T (F ∪Q), q ∈ Q, A = 〈F ,Q,Qf , Δ〉
an LTA, where F• is the set of concrete interpretable symbols used in the CTRS,

F#
• the set of abstract symbols used in A, F = F#

• ∪F◦, and α : F0
• → F#0

• the
abstraction function, mapping concrete constants to elements of Λ. A new state
is a state of Q not occurring in Δ. Norm(s → q) returns the set of normalized
transitions deduced from s. Norm(s→ q) is defined by:

1. if s ∈ F0
• then Norm(s→ q) = {α(s) → q}.

2. if s ∈ F0
◦ ∪ F#0

• then Norm(s→ q) = {s→ q},
3. if s = f(t1, . . . , tn) where f ∈Fn

◦ ∪Fn
• , then Norm(s→ q) = {f(q′1, . . . , q′n) →

q}∪Norm(t1 → q′1)∪ . . .∪Norm(tn → q′n) where for i = 1 . . . n, q′i is either:
– the right-hand side of a transition of Δ such that ti →∗

Δ q
′
i

– or a new state, otherwise.

Example 6. From Ex.5, we have to add the normalized form of cons([1, 2],
f([1, 2] + 1)) → q′2 and q′2 → q2 (where q′2 is a new state) to the set of transi-
tions: 1 has to be abstracted by [1, 1] and f([1, 2]) has to be replaced by a state
recognizing this term. SoΔ1 = Δ0∪Norm(cons([1, 2], f([1, 2]+1))→ q′2)∪{q′2 →
q2} = Δ0 ∪{[1, 2] → q3, [1, 1] → q[1,1], q3+ q[1,1] → q4, f(q4) → q5, cons(q3, q5) →
q′2, q

′
2 → q2}, where q[1,1], q3, q4, q5 are new states induced by normalization.

Observe that the normalization algorithm always terminates. We conclude by
the formal characterization of the one step completion.
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Definition 9 (One step completed automaton CR(A)). Let A = 〈F ,Q,Qf ,
Δ〉 be a tree automaton, R be a left-linear CTRS. We denote by CR(A) the one
step completed automaton CR(A) = 〈F ,Q′,Qf , Δ

′〉 where:

Δ′ = Δ ∪
⋃

l→r∈R, q∈Q, σ∈Ω(A,l→r,q)

Norm(rσ → q′) ∪ {q′ → q}

where Ω(A, l → r, q) is the set of all possible substitutions defined in Def.7,
q′ /∈ Q a new state and Q′ contains all the states of Δ′.

4.2 Evaluation of a Lattice Tree Automaton

Any set of concrete terms that contains the term 1 + 2 should also contain the
term 3. While this property can be true on the initial automaton, it may be
broken when performing a completion step.

Example 7. The first completion step described in Ex.6 adds the transition q3+
q[1,1] → q4. Since we have that [1, 2] → q3 and [1, 1] → q[1,1], the language
recognized by q4 should also contain the term [2, 3].

The objective of the propag function is to evaluate the LTA and to add the
transition [2, 3] → q4 in the above example.

Definition 10 (propag). Let Δ be the set of transitions of a LTA. Let f(q1, . . . ,
qn) → q ∈ Δ, where f ∈ Fn

• is an interpreted symbol and q, q1, . . . , qn ∈ Q. If
there exists λ1, . . . , λn ∈ Λ such that λ1 →∗

Δ q1, . . . , λn →∗
Δ qn, then one step of

evaluation of f(q1, . . . , qn) → q is defined by:

propag(Δ, f(q1, . . . , qn) → q) =
{
Δ if ∃λ→ q ∈ Δ ∧ eval(f(λ1, . . . , λn)) + λ
Δ ∪ {eval(f(λ1, . . . , λn)) → q}, otherwise.

One step of evaluation for Δ is defined by:

propag(Δ) =
⋃

∀f(q1,...,qn)→q∈Δ s.t. f∈Fn•

propag(Δ, f(q1, . . . , qn) → q)

Since propag can add new transitions, it must be applied until a fix-point is
reached. Then using propag, we can extend the eval function to sets of transitions
and to tree automata in the following way.

Definition 11 (eval on transitions and automata). μX.f(X) denotes the
least fix-point of a generic function f . We define: eval(Δ) = μX.propag(X)∪Δ
and eval(〈F ,Q,Qf , Δ〉) = 〈F ,Q,Qf , eval(Δ)〉.

Example 8. In our example, eval(Δ1) = Δ1 ∪ {[2, 3] → q4}.

Theorem 1. L(A) ⊆ L(eval(A)).

4.3 Equational Abstraction

If we perform another completion step on our example, we see that we can apply
the rewrite rule with a new substitution mapping x to q4.
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Example 9. Then Norm(cons(q4, f(q4 + 1))) → q′5 and q′5 → q5 will be added
to eval(Δ1) to build A2

R from A1
R. We have Δ2 = eval(Δ1) ∪ {q4 + q[1,1] →

q6, f(q6) → q7, cons(q4, q7) → q′5, q′5 → q5}. If we perform the evaluation step,
we have eval(Δ2) = Δ2 ∪ {[3, 4] → q6}. We can see that this process is infinite,
because it will compute the infinite term cons([1, 2], cons([2, 3], cons([3, 4], . . .))).

Termination of completion can be enforced using a set E of approximation equa-
tions as in [22,16]. Depending on the objective, E can either be defined by hand
(e.g. [22]), by hand and automatically refined [5], or automatically generated
from a static analysis of the TRS (e.g. [7]). In our example, the infinite behavior
is due to transitions of the form qi + q[1,1] → qj . An equation such as x = x+ 1
is needed to ensure termination of completion. Equations of E will be of the
form u = v ⇐ c1 ∧ . . . ∧ cn, where u, v ∈ T (F◦ ∪ F•,X ). Let σ : X �→ Q be a
substitution s.t. uσ →Ai+1

R
q, vσ →Ai+1

R
q′ and q �= q′. An over-approximation

of Ai+1
R (denoted by Ai+1

R,E) can be obtained by merging states q and q′, i.e.

replacing each occurrence of q′ by q in Ai+1
R . Contrary to the completion case,

we do not need to restrict the substitutions obtained by the matching algorithm
with respect to the constraints of the equation, but simply guarantee that such
constraints are satisfiable, i.e., Solve(σ,A, c1 ∧ · · · ∧ cn) �= ∅.

For instance, E = {x = x + 1 ⇐ x > 2} can be used on Ex.9. We have
two possible substitutions: σ1 = {x �→ q3} and σ2 = {x �→ q4}. σ1 is due to
the transition q3 + q[1,1] → q4. However, since [1, 2] → q3 we have Solve({x �→
q3},A2, x > 2) = ∅ and thus σ1 does not satisfy the condition. Substitution σ2,
due to the transition q4 + q[1,1] → q6, satisfies the condition because [2, 3] → q4
and Solve({x �→ q4},A2, x > 2) = {x �→ [3, 3]} �= ∅. Hence, the equation is
applied for σ2 and results in the merging of q4 and q6 according to E.

Theorem 2. Let A be an LTA and E a set of equations. We denote by �!
E the

transformation of A by merging all equivalent states according to E. If A �!
E A′

then L(A) ⊆ L(A′).

Widening Step. Any set containing the term 1+2 should also contain the term 3.
However, this can be broken by merging. Merging of states changes transitions of
the LTA. So we have to perform an evaluation step after merging by equations.

Example 10. After merging q4 and q6, we have Merge(Δ2, q4, q6) = eval(Δ1) ∪
q3 + q[1,1] → q4, f(q4) → q5, cons(q3, q5) → q′2, q′2 → q2, [2, 3] → q4, q4 + q[1,1] →
q4, f(q4) → q7, cons(q4, q7) → q′5, q′5 → q5, [3, 4] → q4}. We have to evaluate the
transition q4 + q[1,1] → q4. The first iteration will evaluate the term [3, 4]+ [1, 1]
which adds the transition [4, 5] → q4. Since a new element is in the state q4, the
second iteration will evaluate the term [4, 5]+ [1, 1] recognized by the transition
q4 + q[1,1] → q4. Since there will always be a new element of the lattice that will
be associated to q4, the computation of the evaluation will not terminate.

Since eval is defined as a fix-point of propag, this computation may not termi-
nate without the application of a widening operator ∇Λ : Λ × Λ �→ Λ. It is a
classical way to compute over-approximation of fix-points within the abstract
interpretation framework [9].
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Example 11. If we apply such a widening operator on our example after 3 it-
erations (for instance) of the propag function, then the transitions: [2, 3] → q4,
[3, 4] → q4, [4, 5] → q4 will be replaced by [2,+∞[→ q4.

4.4 LTA Completion and Its Soundness

Definition 12 (Automaton completion for LTA). Let A be a tree automa-
ton, R a CTRS and E a set of equations.

– A0
R,E = A,

– Repeat An+1
R,E = A′ with eval(CR(An

R,E)) �
!
E A′′ and eval(A′′) = A′,

– Until a fixpoint A∗R,E = Ak
R,E = Ak+1

R,E (with k ∈ N) is reached.

Theorem 3 (Soundness). Let R be a left-linear CTRS, A be a tree automa-
ton and E be a set of linear equations. If completion terminates on A∗R,E then
L(A∗R,E) ⊇ R∗(L(A))

Example 12. In our example, thanks to the widening performed at the previ-
ous evaluation step, completion adds no more rule to the current automaton
and stops. We have a fixed-point which is an over-approximation of the set of
reachable states.

5 Experiments

LTA completion has been developed and integrated into Timbuk [14]. For those
experiments, we choose to instantiate the generic LTA-completion algorithmwith
the lattice of integer intervals: TimbukLTA. Experiments are detailed in [15].

We compare the efficiency of LTA completion w.r.t. standard completion on
TRS produced by Copster [3]. Copster compiles Java .class files into a TRS
modeling exactly the semantics of the Java program1. We extend Copster to
produce either TRSs or conditional TRS (CTRS ) as in Section 4. CTRSs do
not use Peano integers or arithmetic but assume that all integer arithmetic is
built-in. On the Java program examples, we prove the same properties using
either Timbuk or TimbukLTA and compare their efficiency. We made several ex-
periments on three different Java programs that are detailed in [15]. On the first
one, called “Threads”, we prove that whatever the scheduling of Java threads
may be, the access to a critical section is protected using the synchronized Java
mechanism. The second one “Euclid” consists of an implementation of integer
division in a recursive way using addition and subtraction. In the third one,
called “FactoList”, there is an unbounded number of integers which are read on
the input channel and their factorial values are stored into a singly linked list.
In the end, the content of the list is printed to the output stream. Depending on
the possible values for integers read on the input stream, we can prove different
properties on the integers printed on the output stream.

1 Copster covers basic types, arithmetic, object creation, heap management, field ma-
nipulation, virtual method invocation, threads, as well as a subset of the System and
String library. Details about this compilation can be found in [6].
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Table 1. Performances of standard completion against LTA completion

Examples

Standard completion LTA completion
Compl. Compl. Compl. Compl.
steps time steps time

Threads 306 56s 328 280s

Euclid 2019 59s 727 14s

FactoList, input stream=(3, 1, 2, 0) 799 17s 538 33s

FactoList, input stream=(7, 5, 6, 4, 1) >9465 >2h 1251 250s

FactoList, any input stream of [−∞; +∞] 467 20s 349 40s

FactoList, any input stream of [2; +∞] 468 21s 430 14s

FactoList, any input stream of [3; +∞] 953 320s 467 15s

FactoList, any input stream of [4; +∞] >1500 > 2h 641 32s

Table 1 shows that integration of LTA in completion may reduce its efficiency
when the TRS to verify does not rely on arithmetic (“Threads” example). On the
opposite, unlike standard completion, LTA completion scales up when arithmetic
is used in the analysis (“Euclid” and “FactoList” example). TimbukLTA and the
adapted Copster can be downloaded from their respective pages [14,3].

6 Conclusion and Future Work

We have proposed LTA, a new extension of tree automata for tree regular model
checking of infinite-state systems with interpreted terms. One of our main con-
tributions is the development of a new completion algorithm for such automata.
A nice property of this adapted algorithm is that it is independent of the lattice:
it only has to be atomic and equipped with a solver for the predicates of the
CTRS [15]. Any lattice fulfilling those requirements can be seamlessly plugged
into the regular tree model checking algorithm. We developed TimbukLTA which
is the implementation of completion for LTA. We presented a first instance of
TimbukLTA where we plugged in an integer interval abstract domain. This simple
abstract domain permitted to drastically improve the efficiency of completion for
the verification of Java programs dealing with integer arithmetic. The resulting
LTA homogeneously combine abstract domains to approximate numerical val-
ues with tree automata to approximate structures: thread states, stacks, heaps
and objects. Future plans are to integrate in TimbukLTA more abstract domains
dealing with other kinds of built-ins: strings, reals, etc. and to define syntactic
constraints on equations to guarantee termination of LTA completion like in [17].
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Abstract. Given a context-free grammar (CFG) and a finite-state au-
tomaton (FA), we tackle the problem of computing the most similar pair
of strings from two languages. We in particular consider three different
gap cost models, linear, affine and concave models, that are crucial for
finding a proper alignment between two bio sequences. We design effi-
cient algorithms for computing the edit-distance between a CFG and an
FA under these gap cost models. The time complexity of our algorithm
for computing the linear or affine gap distance is polynomial and the
time complexity for the concave gap distance is exponential.

Keywords: approximate matching, edit-distance, context-free
grammars, finite-state automata.

1 Introduction

The string matching problem aims to find exact matches of a pattern w from
an input text T and the approximate matching problem is to find similar oc-
currences of w that are within the distance k in T . Many researchers studied
the approximate pattern matching problem that allows various types of mis-
matches [1,6,16,17,19,22]. For example, Aho and Peterson [1], and Lyon [16]
introduced an O(n2m3) algorithm for the problem of approximately matching a
string of length n and a context-free language specified by a grammar of size m.
They generalized Earley’s algorithm [6] for parsing context-free languages and
considered the edit-distance model [15] that has a unit-cost function. Myers [19]
considered the variants of the problem under various gap costs such as linear,
affine and concave gap costs; these gap cost models are very important to find
proper alignment between two bio sequences in practices [20,21]. For the linear
and affine gap costs, Myers designed O(mn2(n+logm)) algorithms and sketched
an O(m5n88m) algorithm for the concave gap costs. His algorithm generalizes
the Cocke-Younger-Kasami (CYK) algorithm [4,8,12].

The approximate matching problem is based on the edit-distance between
two strings, or between a string and a language. This led researchers to exam-
ine the edit-distance between two formal languages. Mohri [18] proved that the
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edit-distance between two context-free languages is undecidable and provided a
quadratic algorithm for two regular languages. Choffrut and Pighizzini [3] con-
sidered the relative edit-distance between languages and defined the reflexivity
of binary relations based on the definition. Recently, the authors [9] studied the
problem of computing the Levenshtein distance [15] between a context-free lan-
guage and a regular language given by a pushdown automaton (PDA) P and a
finite-state automaton (FA) A, respectively. We constructed an alignment PDA
that computes all possible alignments between L(A) and L(P ), converted the
alignment PDA into a CFG and found the optimal alignment from the resulting
grammar. The overall runtime is O((n1n2) · 2(m1m2)

2

), where m1 is the number
of states of A, m2 is the number of states of P , n1 is the number of transitions
of A and n2 is the number of transitions of P . We also showed that we can
compute the optimal edit-distance value in O((m1m2)

4 · (n1n2)) time. Note that
the conversion from a PDA of size n into a CFG takes O(n3) time and the size
of the resulting grammar is at most O(n3) [10]. If a context-free language is
given by a CFG instead of a PDA, then we need to construct a PDA for an
input CFG before computing the alignment PDA. This motivates us to design
algorithms that compute the edit-distance between a CFG and an FA without
constructing a PDA, and extend this problem to the approximate matching be-
tween a CFG and an FA. In other words, we calculate the minimum edit-distance
and the optimal alignment between the most similar pair of strings generated
by a CFG and an FA, respectively. We introduce algorithms for computing the
various gap distances and the optimal alignments between a CFG and an FA.
While the previous research [9,11,14,18] on computing the edit-distance of for-
mal languages rely on variants of the Cartesian product, the proposed algorithms
are based on the dynamic programming approach that are generalized from the
CYK algorithm. Given an FA of size n and a CFG of size m, our algorithms
compute linear and affine gap distances in O(mn2(n+logm)) time. Furthermore,
the worst-case time complexity of our algorithm for computing the concave gap
distance is O(mn88m).

In Section 2, we give a basic notations and terminology used here. We present
the definitions for the edit-distance model in Section 3. In Section 4, we introduce
a dynamic programming algorithm for computing the edit-distance between a
CFG and an FA. The following two sections extend the algorithm to the problems
of computing affine and concave gap distance.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ
is any subset of Σ∗. Given a set X , 2X denotes the power set of X .

The symbol ∅ denotes the empty language and the character λ denotes the
null string. A finite-state automaton (FA) A is specified by a tuple (Q,Σ, δ, s, F ),
where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a
multi-valued transition function, s ∈ Q is the start state and F ⊆ Q is a set of
final states. If F consists of a single state f , we use f instead of {f} for simplicity.
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For a transition q ∈ δ(p, a) in A, we say that p has an out-transition and q
has an in-transition. Furthermore, p is a source state of q and q is a target state
of p. The transition function δ can be extended to a function Q × Σ∗ → 2Q

that reflects sequences of inputs. A string x over Σ is accepted by A if there is
a labeled path from s to a state in F such that this path spells out the string x,
namely, δ(s, x) ∩ F �= ∅. The language L(A) of an FA A is the set of all strings
that are spelled out by paths from s to a final state in F .

A context-free grammar (CFG) G is specified by a tuple G = (V,Σ,R, S),
where V is a set of variables, R ⊆ V × (V ∪Σ)∗ is a finite set of productions and
S ∈ V is the start symbol. Let αAβ be a string over V ∪ Σ with A a variable
and A→ γ be a production of G. Then, we say that αAβ ⇒ αγβ. The reflexive,
transitive closure of ⇒ is

∗⇒. Then the context-free language defined by G is
L(G) = {w ∈ Σ∗ | S ∗⇒ w}.

A CFG is in Chomsky normal form (CNF) if all of its production rules are of
the form: A → BC or A → a, where A,B,C ∈ V and a ∈ Σ. Note that every
context-free grammar can be converted into the CNF grammar with the size of
O(P 2) where P is the size of the original grammar. We consider the pseudo-
CNF grammars that consist of the rules of the form A → BD or A → B or
A → a where A,B,C ∈ V and a ∈ Σ. We can transform every grammar into
the pseudo-CNF grammar whose size is still O(P ) [19].

For more details on automata theory, we refer the reader to the books [10,23].

3 Edit-Distance

The edit-distance between two strings x and y is the smallest number of opera-
tions that transform x to y. People consider different edit operations depending
on the applications. We consider three basic operations, insertion, deletion and
substitution for simplicity. Given an alphabet Σ, let

Ω = {(a→ b) | a, b ∈ Σ ∪ {λ}}

be a set of edit operations. Namely, Ω is an alphabet of all edit operations for
deletions (a → λ), insertions (λ → a) and substitutions (a → b). We call a
string ω ∈ Ω∗ an edit string [11] or an alignment [18].

Let h be the morphism from Ω∗ into Σ∗ ×Σ∗ defined by setting

h((a1 → b1) · · · (an → bn)) = (a1 · · ·an, b1 · · · bn).

For example, a string ω = (a→ λ)(b→ b)(λ→ c)(c→ c) over Ω is an alignment
of abc and bcc, and h(ω) = (abc, bcc). Thus, from an alignment ω of two strings x
and y, we can retrieve x and y using h: h(ω) = (x, y).

Definition 1. An edit string ω is a sequence of edit-operations transforming a
string x into a string y if and only if h(ω) = (x, y).

We associate a non-negative edit cost c(ω) to each edit operation ω ∈ Ω where
c is a function Ω → R+. We can extend the function to the cost c(ω) of an
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alignment ω = ω1 · · ·ωn as follows:

c(ω) =

n∑
i=1

c(ωi).

Definition 2. The edit-distance d(x, y) of two strings x and y over Σ is the
minimal cost of an alignment ω between x and y:

d(x, y) = min{c(ω) | h(ω) = (x, y)}.

We say that ω is optimal if d(x, y) = c(ω).

We can extend the edit-distance definition to languages.

Definition 3. The edit-distance d(L,R) between two languages L,R ⊆ Σ∗ is
the minimum edit-distance of two strings, one is from L and the other is
from R:

d(L,R) = min{d(x, y) | x ∈ L and y ∈ R}.

The edit-distance in Definition 3 is the distance between the closest pair of
strings from L and R under the considered edit operations. In other words, the
most similar pair of strings defines the edit-distance between L and R.

4 Algorithm

We compute the edit-distance between a CFG and an FA. We assume that an in-
put CFG G = (V,Σ,R, S) is in pseudo-CNF and an input FAM = (Q,Σ, δ, s, F )
has no λ-production. We use a pseudo-CNF (instead of CNF) because an arbi-
trary grammar can be converted to a pseudo-CNF grammar with only constant
increase in size. First, we define C(A, q, p) to be the minimum edit-distance be-
tween one string v derivable from a variable A and a string w that spells out a
computation ofM from q to p. We can compute the edit-distance between L(G)
and L(M) by computing C-values for all A ∈ V and q, p ∈ Q. We formally define
it as follows:

C(A, q, p) = min{d(v, w) | v ∈ L(GA) and w ∈ L(Mq,p)},

where GA = (V,Σ,R,A) andMq,p = (Q,Σ, δ, q, {p}). Then, min{C(S, s, f) | f ∈
F} is the edit-distance between L(G) and L(M). In Theorem 3, we provide a
recurrence for computing the C-values. For this purpose we first need to establish
some preliminary properties and introduce notation.

First we establish the unsurprising property that among the strings w ∈
L(Mq,p) that take state q to state p, the string that minimizes the distance
to an individual alphabet symbol uses a computation from q to p that does not
repeat any loop. For states q and p, we define Lone−cyclic(q, p) to consist of those
strings w such that M has a computation on w from q to p that does not visit
any state more than twice.
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Lemma 1. For any states of M , q, p ∈ Q and a ∈ Σ,

d(a, L(Mq,p)) = d(a, Lone−cyclic(q, p)).

Note that, when the cost function is allowed to be arbitrary, a property analogous
to Lemma 1 would not hold for strings that correspond to an acyclic computation
ofM from state q to p. If any string corresponding to an acyclic computation does
not contain occurrences of the symbol a and the cost of deleting a is considerably
larger than the costs of insertions of any other symbol, it is possible that the
distance of a and L(Mq,p) cannot be minimized by a string that would not repeat
any state in the computation from q to p.

Now corresponding to a variable A ∈ V and states q, p ∈ Q of M , we define
the following sets:

(i) X(A, q, p) = {C(B, q, r) + C(D, r, p) | r ∈ Q, A→ BD ∈ R}.
(ii) Y (A, q, p) = {C(B, q, p) | A→ B ∈ R}.
(iii) Z(A, q, p) = {d(a, Lone−cyclic(q, p)) | A→ a ∈ R, a ∈ Σ}.

Theorem 1. For all A ∈ V and q, p ∈ Q,

C(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p)]. (1)

Note that Equation (1) in Theorem 1 is an essential recurrence equation for
computing d(L(G), L(M)) in bottom-up dynamic programming approach. First,
we compute C(A, q, p) where the distance between two states q and p is 0. For
convenience, we define the distance between two states q and p in the FA as
the minimum number of transitions required to reach p from q and denote it
by d(p, q). For the basis, we start from when d(p, q) is 0, thus, two states are
the same. Let us assume that there is a cycle in M from q to q of length n.
Since there can be a set of strings Lq accepted through the cycle including the
self-loop, we should consider Lq for computing C(A, q, q). Therefore, we should
compute all C-values where the distance between two states is less than n to
compute the basis. We denote the C-values not considering the cycles in paths
by C′-values to avoid confusion.

Now we consider C(A, q, q), which is a basis for recursive definition of C-values.
First, for a variable A ∈ V and a state q ∈ Q of M , we define the following sets:

(i) X(A, q, q) = {C′(B, q, r) + C′(D, r, q) | r ∈ Q, A→ BD ∈ R}.
(ii) Y (A, q, q) = {C′(B, q, q) | A→ B ∈ R}.

Then, for all A ∈ V and q, p ∈ Q, we can establish another recursion for the
basis of C-values as follows:

C(A, q, q) = min[C′(A, q, q) ∪X(A, q, q) ∪ Y (A, q, q)].

Now it seems that we are ready to compute C-values. However, we still have a
problem to solve the recurrence step. Consider Y (A, q, p) in Equation (1). We
need to know C(B, q, p) to compute C(A, q, p) that is in the same level of recur-
sion. Similarly, when r is the same state with q or p in the first term X(A, q, p) of
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the recurrence, we need to compute C(B, q, p) or C(D, q, p) to compute C(A, q, p).
This problem also arises when we compute C′-values. These dependencies be-
tween the recursive values in the same level prohibit us to compute the next
level of recursion. Thus, we define an independent recursive definition for this
problem. First, we define the following sets:

(i) X(A, q, p) = {C(B, q, r) + C(D, r, p) | r ∈ Q, A→ BD ∈ R}.
(ii) Y (A, q, p) = {d(a, Lone−cyclic(q, p)) | A→ a ∈ R, a ∈ Σ}.

Here, r should not be q or p. Then, K-values are defined as follows:

K(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p)].

Note that all K-values can be computed by assuming that all C(A, q′, p′) are
already computed where d(q′, p′) < d(q, p). Now, we can redefine C(A, q, p) as
the minimum of the following four values:

(i) K(A, q, p).

(ii) minA→B C(B, q, p).
(iii) minA→BD C(B, q, p) + C(D, p, p).
(iv) minA→BD C(B, q, q) + C(D, q, p).

We can solve the dependencies between C-values by the construction of a weighted
graph, which has a vertex for each variable A ∈ V and a special source vertex φ.
Then, we connect φ to each vertex for a variable A with an edge whose weight
is K(A, q, p). Also there are the edge of weight 0 from B to A if and only if
A → B ∈ R and the edge of weight C(D, p, p) from B to A if and only if
A→ BD ∈ R or A→ DB ∈ R. Then, from the construction, C(A, q, p) becomes
the shortest path from φ to A in the graph. Similarly, we can also solve the depen-
dency problem for C′-values. We give an algorithm for computing d(L(G), L(M))
in Algorithm 1.

Theorem 2. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and
a non-negative cost function c, we can compute the edit-distance between L(G)
and L(M) in O(mn2(n+ logm)) worst-case time, where m = |G| and n = |Q|.

Lemma 2. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and an
arbitrary cost function c, we can compute the edit-distance between L(G) and
L(M) in O(mn2(n+m)) worst-case time, where m = |G| and n = |Q|.

We can also observe that it is possible to retrieve the optimal alignment by
backtracking the optimal path.

Lemma 3. Given a CFG G = (V,Σ,R, S) and an FA M = (Q,Σ, δ, s, F ),
we can compute the optimal alignment of length k between L(G) and L(M) in
O(mnk) worst-case time, where m = |G| and n = |Q|.
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Algorithm 1. The algorithm for computing d(L(G), L(M))

Input: A CFG G = (V,Σ,R, S) and an FA M = (Q,Σ, δ, s, F )
1: for q ∈ Q do
2: for d← 1 to |Q| − 1 do
3: for p ∈ Q and d(p, q) = d do
4: for A ∈ V do
5: C(A, q, p)← K(A, q, p)
6: end for
7: H ← heap of V (ordered by C(?, q, p))
8: while H �= ∅ do
9: A← extract min(H)
10: for A ∈ H and (A→ BD ∈ R or A→ DB ∈ R) do
11: C(B, q, p)← min{C(A, q, p),C(B, q, p) + C(D, p, p)}, reheap(H,A)
12: end for
13: for A ∈ H and A→ B ∈ R do
14: C(A, q, p)← min{C(A, q, p),C(B, q, p)}, reheap(H,A)
15: end for
16: end while
17: end for
18: end for
19: end for
20: return min{C(S, s, f) | f ∈ F}
Output: d(L(G), L(M))

S1 = A C T T A G T A G A T C C
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S2 = A C T T − G − A − − T C C

(a)

S1 = A C T T A G T A G A T C C
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

S2 = A C T T − − − − G A T C C

(b)

Fig. 1. Two alignment examples that align S2 to the target sequence S1. The first
alignment contains three short gaps while the second contains one long gap.

5 Affine Gap Distance

The approximate pattern matching problem is often used for the sequence align-
ment in bioinformatics [20,21]. A biological sequence alignment is a process of
arranging the sequences of DNA, RNA or protein, and examining the similari-
ties between the sequences. Consider the two alignments of sequences described
in Fig. 1. Both have gaps of length four, which can be defined as deletion or
insertion edit operations. However, the second alignment is biologically better
since a deletion or insertion of four consecutive elements is more likely to occur
than of three separated elements. Therefore, we need to give more penalty to
the alignments containing many short gaps than few long gaps. Note that we
can consider a sequence of consecutive deletion or insertion operations as a gap.
Assume that an alignment ω consists of k consecutive insertions or deletions, in
other words, a gap of the length k. Then, the cost of ω is linearly dependent
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on |ω|. Namely, c(ω) = g · |ω| where g is a constant. Instead of using this lin-
ear gap penalty function, we can use the affine gap penalty function to obtain
biologically better alignments. The affine gap penalty function is defined as fol-
lows. Here the alphabet Ω of edit operations consists only of deletions (a→ λ),
insertions (λ → a) and trivial substitutions (a → a) that do not change the
symbol. We denote Ωdel = {(a → λ) | a ∈ Σ}, Ωins = {(λ → a) | a ∈ Σ} and
Ωtriv = {(a→ a) | a ∈ Σ}, and thus

Ω = Ωdel ∪Ωins ∪Ωtriv.

Let ω ∈ Ω+ be a sequence of edit operations. The (maximal) ID-decomposition
of ω (insertion–deletion decomposition of ω) is the tuple

compID(ω) = (ω1, ω2, . . . , ωk)

where ωi ∈ Ω+
del∪Ω

+
ins ∪Ω+

triv, for i = 1, . . . , k, and for any 1 ≤ j < k the strings
ωj and ωj+1 belong to different sets Ω+

del, Ω
+
ins and Ω

+
triv.

The ID-decomposition of ω is obtained simply by subdividing ω into maximal
substrings each consisting only of insertions, or only deletions, or only trivial
substitutions and thus compID(ω) is uniquely defined.

Now for a sequence consisting only of deletions or only of insertions, ω ∈
Ω+

del ∪Ω
+
ins, we define the affine gap cost of ω as caffine(ω) = e+ g · |ω|, where e

and g are constants. For a sequence consisting of trivial substitutions, ω ∈ Ω+
triv,

we set caffine(ω) = 0.
Now the affine gap cost of an arbitrary sequence of edit operations ω ∈ Ω+,

where compID(ω) = (ω1, ω2, . . . , ωk) is defined as

caffine(ω) =

k∑
i=1

caffine(ωi).

The affine gap cost gives, for a sequence of edit operations, a constant e penalty
for each gap opening (consisting of consecutive insertions or consecutive dele-
tions) and additionally a penalty that is linear in the length of the gap. The edit
distance based on the affine gap cost function is called the affine gap distance.

We introduce an algorithm for computing the affine gap distance between a
CFG and an FA. This is an extension of the previous algorithm, yet has the
same time complexity. The key difference is that we define four types of C-values
as follows:

C�
�(A, q, p) =

min{d(x, λ) + d(v, w) + d(y, λ) | A ∗⇒ xvy, |x|	 0, |y|
 0 and p ∈ δ(q, w)},

where 
,	 ∈ {=, �=}. We illustrate four cases in Fig. 2. The affine gap distance
becomes min{C�

�(S, s, f) | f ∈ F and 
,	 ∈ {=, �=}}.
Before introducing the recurrence for C�

� -values, corresponding to a variable
A ∈ V and states q, p ∈ Q of M , we define the following sets:
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x v

w

y

(a) C �=
�= case

v

w

x

(b) C �=
= case

v

w

y

(c) C=
�= case

v

w

(d) C=
= case

Fig. 2. The pictorial representations of C�
�-values where 
,	 ∈ {=, �=}

(i) X(A, q, p) = {C�
�(B, q, r) + C�

�(D, r, p) − (h if � = � = ‘�=’) | r ∈ Q, A →
BD ∈ R}.

(ii) Y (A, q, p) = {C�
�(B, q, p) | A→ B ∈ R}.

(iii) Z(A, q, p) = {I�
� (a, w) | A→ a ∈ R, a ∈ Σ, w ∈ Lone−cyclic(q, p)}.

Here, I-values are also defined as follows:

– I=
= (a, w) = mink∈[1,|w|]{c(a, wk)+(|w|−1)·g+(h if k > 1)+(h if k < |w|)},

– I=

= (a, w) = I 
== (a, w) = (|w| + 1) · g + 2h, and

– I 
=
= (a, w) = g + h.

Now we establish a recursive definition for C�
�-values.

Theorem 3. For all A ∈ V and q, p ∈ Q,

C�
�(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p)].

Note that the time complexity of this algorithm is still O(mn2(n+ logm)), the
same as in Theorem 2. Since we consider the four variations of C-values, the time
complexity increases to four times the runtime of Theorem 2.

Theorem 4. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and
a non-negative cost function c, we can compute the affine gap distance between
L(G) and L(M) in O(mn2(n + logm)) worst-case time, where m = |G| and
n = |Q|.

Lemma 4. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and an
arbitrary cost function c, we can compute the affine gap distance between L(G)
and L(M) in O(mn2(n+m)) worst-case time, where m = |G| and n = |Q|.

6 Concave Gap Distance

Many researchers consider non-linear gap penalty functions including the affine
gap penalty function [13,17,22]. Although the affine gap penalty function prefers
few longer gaps to many smaller gaps, the alignment results based on the affine
gap penalty function are not practically the best. For example, assume that there
are two alignments s1 and s2 aligning two sequences. Alignment s1 contains two
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gaps whose lengths are 99 and 100, respectively, while s2 contains just one gap
of length 240. Note that the remaining parts of s1 and s2 are perfectly matched.
By employing the affine gap penalty function with h = 5 and g = 1, we obtain
c(s1) = 99+ 100+ 5× 2 = 209 and c(s2) = 240+ 5 = 245. Even though the gap
opening penalty is introduced in the affine gap distance, it may not be sufficient
to consider some practical cases such as this example. This is why the concave
gap distance is introduced and replaces other distances considering the linear
or affine gap penalties. For a sequence consisting only of deletions or only of
insertions, ω ∈ Ω+

del ∪Ω
+
ins, we define the concave gap cost of ω as

cconcave(ω) = e+ g · log |ω|,

where e and g are constants. For a sequence consisting of trivial substitutions,
ω ∈ Ω+

triv, we set cconcave(ω) = 0. Now the concave gap cost of an arbitrary
sequence of edit operations ω ∈ Ω+, where compID(ω) = (ω1, ω2, . . . , ωk) is
defined as

cconcave(ω) =

k∑
i=1

cconcave(ωi).

Under this gap penalty function, the shape of the penalty score with respect
to the length of the gap is concave in the sense that its forward differences
are non-increasing. In other words, Δc(ω1) ≥ Δc(ω2) ≥ Δc(ω3) ≥ · · · where
Δc(ωk) ≡ c(ωk+1)− c(ωk) and |ωk| = k. We define new C-values for computing
the concave gap distance as follows:

C(A, q, p, i, j) = min{d(x, λ) + d(v, w) + d(y, λ) | A ∗⇒ xvy �= λ},

where |x| = i, |y| = j and p ∈ δ(q, w). Here we use two additional parameters
i and j for maintaining the lengths of gaps on both sides. We also define a set
V(t) of variables that can derive strings of length t as follows:

V(t) = {A | A ∈ V,A ∗⇒ w and |w| = t}.

We can compute a set V(t) of variables as follows:

t−1⋃
k=1

{A | A→ BD ∈ V(k)× V(t− k)} ∪ {A | A→ B ∈ V(t)} ∪ {A | A→ a}.

Then, before introducing the recurrence for C-values for the concave gap distance,
we define the following sets corresponding to a variable A ∈ V and states q,
p ∈ Q of M :

(i) X(A, q, p) = {C(B, q, r, i,m) + C(D, r, p, n, j) + g · log m+n
mn − h | r ∈ Q, A→

BD ∈ R}.
(ii) Y (A, q, p) = {C(B, q, p, i, j − t) | A→ BD ∈ R, 1 ≤ t ≤ j, D ∈ V(t)}.
(iii) Z(A, q, p) = {C(D, q, p, i− t, j) | A→ BD ∈ R, 1 ≤ t ≤ i, B ∈ V(t)}.
(iv) U(A, q, p) = {C(B, q, p, i, j) | A→ B ∈ R}.
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(v) W (A, q, p) = {I(a, w, i, j) | A→ a, 0 ≤ i+ j ≤ 1, w ∈ Lone−cyclic(q, p)}.

Here, I-values are also defined as follows:

– I(a, w, 0, 0) = c(a, wk) + 2h+ log(k − 1)(|w| − k),
– I(a, w, 0, 1) = I(a, w, 1, 0) = h+ log |w|.

Now we establish a recurrence for computing the concave gap distance between
a CFG and an FA.

Theorem 5. For all A ∈ V , q, p ∈ Q and 1 ≤ i, j ≤ |Q| · 2
h
g |V |,

C�
�(A, q, p) = min[X(A, q, p) ∪ Y (A, q, p) ∪ Z(A, q, p) ∪ U(A, q, p) ∪W (A, q, p)].

Based on the recurrence, we can compute the concave gap distance between
L(G) and L(A) in exponential runtime.

Theorem 6. Given a CFG G = (V,Σ,R, S), an FA M = (Q,Σ, δ, s, F ) and a
non-negative cost function c, we can compute the concave gap distance between
L(G) and L(A) in O(mn88m) worst-case time, where m = |G| and n = |Q|.

7 Conclusions

We have considered the problem of approximately matching a context-free lan-
guage specified by a CFG and a regular language specified by an FA. We have
examined three types of gap cost functions that are used for approximate string
matching: linear, affine and concave. Based on the dynamic programming ap-
proach, we have introduced algorithms for computing the linear, affine and con-
cave gap distance between an FA and a CFG.

Given an FA of size n and a CFG of size m, we have presented algorithms
for computing linear and affine gap distances in O(nm2(n+ logm)) time under
a non-negative cost function and O(nm2(n+m)) time under an arbitrary cost
function. We have also shown that computing the optimal alignment of length k
takes O(nmk) time by our algorithm when we consider linear or affine gap
distance. Finally, we have proposed an O(mn88m) time algorithm for computing
the concave gap distance.

It will be interesting to see if we can compute the max-min distance between
an FA and a CFG, or find a k optimal alignment between an FA and a CFG
using a similar approach.
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Abstract. In this paper, we present a novel weighted finite automata
called PSA (Palindromic Subsequence Automata) that is a compact rep-
resentation of all the palindromic subsequences of a string. Then we use
PSA to solve the LCPS (Longest Common Palindromic Subsequence)
problem. Our automata based algorithms are efficient both in theory
and in practice.

1 Introduction

A string is a sequence of symbols drawn from an alphabet Σ. A subsequence
of a string is a sequence that can be derived by deleting zero or more symbols
from it without changing the order of the remaining symbols. A palindrome is
a string w such that w = wR, where wR is the reverse of w; often, w is said to
be a palindromic string. For example, ATTA and CATTAC are palindromes.
In the Palindromic Subsequence Problem, all the palindromic subsequences of
a string are to be computed. A common subsequence of two strings is a subse-
quence common to both the strings. Additionally, if the common subsequence is
a palindrome, it is called a common palindromic subsequence.

Stringology researchers have been conducting research on different problems
related to palindromes on strings and sequences since long [1,8,15,18,16,14,11].
Palindromes appear frequently in DNA and are widespread in human cancer
cells. Identifying these parts of DNAs could aid in the understanding of genomic
instability [3,19]. Biologists believe that palindromes play an important role
in regulation of gene activity and other cell processes because these are often
observed near promoters, introns and specific untranslated regions. So, finding
palindromic subsequences in any genome sequence is important. Also finding
common palindromes in two genome sequences can be an important criterion
for comparing them, and also to find common relationships between them.

The problem of computing palindromes and variants in a single sequence
has received much attention in the literature. An on-line sequential algorithm
was given by Manacher [15] that finds all initial palindromes in a string. An-
other algorithm to find long approximate palindromes was given by Porto and
Barbosa [18]. Gusfield gave a linear-time algorithm to find all maximal palin-
dromes in a string [9]. Matsubara et al. in [16] solved the problem of finding

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 158–168, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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all palindromes in SLP (Straight Line Programs)-compressed strings. Addition-
ally, a number of variants of palindromes have also been investigated in the
literature [14,11,2]. Very recently, Tomohiro et al. worked on pattern matching
problems involving palindromes [12]. Chuang, Lee and Huang [6] proposed an
algorithm to solve the palindromic subsequence problem.

1.1 Our Contribution

In this paper we present a weighted finite automata that is a compact represen-
tation of all the palindromic subsequences of a string. The space complexity of
our approach is better than that of [6]. In particular, we need only O(n2) space
to represent all the palindromic subsequences of the given string while the space
complexity of [6] is directly proportional to the total number of palindromes
which is exponential in nature. Furthermore, as an interesting application of
PSA, we show how we can solve the LCPS problem of two given strings effi-
ciently. The time complexity of our algorithm is O(R1R2|Σ|) where R1 and R2

are the number of states of respective automata.

1.2 Roadmap

In Section 2, we present the Palindromic Subsequence Automata. In Section 3,
we present another automata to find the LCPS of two strings which is derived
from PSA presented in Section 2.

In Section 4, we present extensive experimental results. Finally we briefly
conclude in Section 5.

2 PSA: An Automaton to Generate All Palindromic
Subsequence of a String

To design this automata we need a string and its reverse. We will find the com-
mon subsequence automata of these two strings. We will follow the techniques
provided in [10,7]. The resulting automata will be a weighted automata. This au-
tomata can be seen as a weighted version of a Common Subsequence Automata
(CSA) between a string and its reverse.

Definition 1. Palindromic Subsequence Automata (PSA): Given a string
S and let the reverse of S be SR. A Palindromic Subsequence Automata (PSA)
M accepts all palindromic subsequence of the given string S.

The PSA M is 6 tuple (Q,
∑
, δ, σ, q0, F ), where

– Q is a finite set of states. Here, Q is a subset of pairs of positions in S and
SR

–
∑

is an input alphabet
– δ : Q×

∑
−→ Q is a transition function

– σ : Q×
∑

×Q −→ K assigns a edge cost between pair of states
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– q0 ∈ Q is the initial state
– F ⊆ Q is the set of final states. However, in our formulation all the states

are valid final states.

Here, Q and δ are defined in the same way as in [10,7]. Each state qa ∈ Q is
associated with pair of positions (ai, aj) where ai and aj refers to positions in
S and SR respectively and S[ai] = S

R[aj ]. Let the length of S is n. So we have
1 � ai, aj � n for any state qa. Now, for any state qb ∈ Q and c ∈ Σ we have
edge from qb to state qa if and only if S[ai] = S

R[aj ] = c, bi < ai, bj < aj and
there is no l, k such that bi < l < ai, bj < k < aj and S[l] = c or S[k] = c. Now
we exaplain the definition of the function σ as follows. We restrict the edge cost
K between 0, 1 and 2. The reason for such values will be clear from the following
definition of cost function:

σ(qb, c, qa) =

⎧⎪⎨⎪⎩
2, if ai < n− aj + 1.

1, if ai = n− aj + 1.

0, if ai > n− aj + 1.

(1)

Example 1. Let, S = abacbca. The PSA of S is given in Fig. 1. Each state in
the PSA is an ending state. In Fig. 1 each edge represents a transition. The
character above each edge represents the transition character and the number
above each edge represents the weight of it. Each state is represented by [i, j],
where i and j are indexes of S and SR. For example, for the edge between states
[1,1] and [2,3], the transition character is b and the weight is 2. For simplicity of
the figure, the ‘error’ state is omitted, since the edges from or to this state has
weight 0.

A brief discussion on the possible values of K is in order. The reason for the
values of K is quite intuitive. We will construct a palindromic string based on
accepted strings of PSA. If the accpeted string is w, we find the reverse of w
which is wR and concatenate both to create a palindrome of even length. However
for a palindrome having odd length we can not do that. In this case, we have to
compute u such that w = ua where a ∈ Σ. In this case, we can get a palindrome
of the form uauR. To determine whether an odd-length palindrome is there (in
addition to the even-length one), we use the value two. The value of one is used
to indicate that only an even-length palindrome of the form wwR is there. A
value of zero indicates that the corresponding character does not take part in
the construction of a palindrome.

Now we discuss how PSA works. Assume that we have computed a PSA, M1

of a given string S1. Now we want to check whether a string S = a1a2...ak is a
palindromic subsequence of S1. Intuitively, we can always obtain a longest palin-
dromic subsequence of S1 by first taking the LCS (Longest Common Sequence)
L of S1 and SR1 and then “reflecting” the first half of the result onto the second
half; that is, if L has k characters, then we replace the last �k2 � characters of L by

the reverse of the first �k2 � characters of L to obtain a longest palindromic sub-
sequence of S1. Obviously, this argument can be extended for any palindromic



On Palindromic Sequence Automata and Applications 161

subsequence by taking any common subsequence of S1 and SR1 . Now suppose
that Sh = a1a2...a� k+1

2 �. It follows from the discussion above that S will be a

palindromic subsequence of S1 if and only if Sh is a common subsequence of
both S1 and SR1 . So, to decide whether S is a palindromic subsequence of S1, it
is sufficient to check whether Sh is accepted byM1. Hence, we have the following
lemma.

Lemma 1. Suppose we have constructed M1 based on the string S1. Further
suppose that S = a1a2...ak is a palindromic string and Sh = a1a2...a� k+1

2 �. If Sh
is accepted by M1 then S is a palindromic subsequence of S1.�

2.1 Computing All Palindromic Subsequences

To find all the palindromic subsequences, all we need is to traverse M1 and
find the strings accepted by M1 as follows. Suppose we get a string V1 reaching
a final state qn. The state before that is qn−1 and the transition character is
c. Let, σ(qn−1, c, qn) = kn. Clearly, kn ∈ {0, 1, 2}. If kn = 2, we can get two
palindromic subsequences. The first string is V1V

R
1 . Suppose V1 = Uc. Then,

the second string is UcUR. If kn = 1 only one palindromic subsequence can be
formed which is UcUR. If kn = 0, we can not get a palindromic subsequence
with the current string reaching the final state qn.

The following example explains the characteristics of PSA. The algorithm for
constructing PSA is formally presented in Algorithm 1.

Example 2. In Fig. 1 a path from the starting node to [2,3] is [0,0], [1,1], [2,3].
In this case wn = 2. So, we can form two palindromic subsequences: abba and
aba. But the transition from [1,1] to [3,5] has weight 1. A path from the starting
node to [3,5] is [0,0], [1,1], [3,5]. As wn = 1 only one palindromic subsequence,
aaa can be formed.

1,1

2,3

4,2

4,4

3,5

5,3

a,2

c,2

b,2

b,2

c,2

a,1

b,1

a,1

c,1

0,0

Fig. 1. A Palindromic Subsequence Automata for string “abacbca”
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Algorithm 1. PSA Construction

input:S1 : input string, S2 : REV ERSE(S1), n : LENGTH(S1)
output: PSA M = (Q,

∑
, δ, σ, q0, F )

1: begin
2: q0 ← [0, 0]
3: Q← {[0, 0]}
4: F ← {q0}
5: C ← NEW −QUEUE()
6: ENQUEUE(C, [0, 0])
7: while not EMPTY(C) do
8: [i1, j1]← DEQUEUE(C)
9: for all s ∈ Σ do
10: i2 ← NEXT MATCH(S1, i1, s)
11: j3 ← NEXT MATCH(S2, j1, s)
12: j2 ← n− j3 + 1
13: if i2 � j2 then
14: δ([i1, j1], s)← [i2, j2]
15: if [i2, j2] �∈ Q then
16: ENQUEUE(C, [i2, j2])
17: Q← Q ∪ [i2, j2]
18: F ← Q ∪ [i2, j2]
19: end if
20: if i2 < j2 then
21: σ([i1, j1], s, [i2, j2])← 2
22: else
23: σ([i1, j1], s, [i2, j2])← 1
24: end if
25: end if
26: end for
27: end while
28: end

2.2 Analysis

As PSA is derived from subsequence automata of two strings [10,7] so the running
time for Algorithm 1 to compute a PSA of two strings is O(R|Σ|) [10], where R
is the number of states and Σ is the set of characters. It can be easily verified
that R is less than the total number of matches between the two strings (each
match does not always produce a valid state). In worst case, R = O(n2). Hence
the worst case running time for Algorithm 1 is O(n2|Σ|).

3 An Application of PSA: Computing an LCPS

The longest common subsequence (LCS) problem for two strings is to find a
common subsequence in both the strings, having the maximum possible length.
In the longest common palindromic subsequence (LCPS) problem, the computed
longest common subsequence must also be a palindrome. More formally, given a
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pair of strings X and Y over an alphabet Σ, the goal of the LCPS problem is to
compute an LCS Z such that Z is a palindrome. In what follows, for the sake of
convenience we will assume, that X and Y have equal length, n. But our result
can be easily extended to handle two strings of different length.

Despite a plethora of work on problems related to palindromes concerning a
single sequence, to the best of our knowledge, there has not been any work on
the LCPS problem until very recently, when Chowdhury et al. [5,4] introduced
two algorithms to solve the LCPS problem with time complexity O(n4) and
R2 log2 n log logn, respectively. Here, the set of all ordered pairs of matches be-
tween the two strings is denoted by M and |M| = R. Readers are kindly noted
regarding the subtle difference of the two parameters R and R (see Section 2.2).

In this section we discuss how to use PSA to compute an LCPS of two
given strings. Our idea is to compute an automata called Common Palindromic
Subsequence Automata (CPSA) as defined below.

Definition 2. Common Palindromic Subsequence Automata (CPSA):
Given two strings, a Common Palindromic Subsequence Automata (CPSA)
accepts all common palindromic subsequences of the given strings.

Now in the LCPS problem, given two strings S1 and S2 our task is to find the
longest common palindromic subsequence (LCPS). Now we have the following
lemma.

Lemma 2. To find the longest common palindromic subsequence (LCPS) of
two strings S1 and S2 we need to find the Max Length Automata [13] of the
intersection of the PSA of S1 and S2

Proof. Since the PSA of S1 and S2 can generate all the palindromic sub-sequences
of S1 and S2, their intersection automata can generate all the palindromic com-
mon sub-sequences of S1 and S2. So, the Max Length Automata will find the
LCPS of S1 and S2.��

So we have the following simple algorithm to compute an LCPS.

– Step 1: Find the PSA M1 of S1
– Step 2: Find the PSA M2 of S2
– Step 3: Find the CPSA M3 by intersecting M1 and M2

– Step 4: Find the Max Length Automaton M4 of M3

Notably, in Step 3, we use the algorithm presented in [13,17] with a slight mod-
ification. Example 3 shows the construction of a CPSA. The algorithm for con-
structing CPSA is formally presented in Algorithm 2.

Example 3. Let S1 = abba and S2 = abca be two strings. Figures 2 and 3
represent the PSA’s of S1 and S2 respectively. The CPSA is shown in Fig. 4.
From that CPSA we can get four common palindromic subsequences of S1 and
S2 namely a, b, aa and aba based on the path and weight. The LCPS of S1 and
S2 is aba.
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Algorithm 2. Algorithm for Construction of CPSA

input: PSA M1 = (Q1, Σ1, δ1, σ1, q10 , F
1),M2 = (Q2, Σ2, δ2, σ2, q20 , F

2)
output: PSA M = (Q,Σ, δ, σ, q0, F ), L(M) = L(M1) ∩
L(M2)

1: begin
2: q0 ← [q10 , q

2
0 ]

3: Q← {[q10 , q20 ]}
4: F ← {q0}
5: C ← NEW −QUEUE()
6: ENQUEUE(C, [q10 , q

2
0 ])

7: while not EMPTY(C) do
8: [q1, q2]← DEQUEUE(C)
9: for all s ∈ Σ do
10: [p1, p2]← [δ1(q1, s), δ2(q2, s)]
11: δ([q1, q2], s)← [p1, p2]
12: if σ(q1, s, p1) = σ(q2, s, p2) then
13: σ([q1, q2], s, [p1, p2])← σ(q1, s, p1)
14: else
15: σ([q1, q2], s, [p1, p2])← 1
16: end if
17: if [p1, p2] �∈ Q then
18: ENQUEUE(C, [p1, p2]
19: Q← Q ∪ {[p1, p2]}
20: F ← {[p1, p2]}
21: end if
22: end for
23: end while
24: end

b,2

a,2 b,20,0 1,1 2,2

Fig. 2. A PSA for string “abba”

a,2
0,0 1,1 2,3

3,2

b,1

b,1

c,1
c,1

Fig. 3. A PSA for string “abca”
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a,2

b,1

b,1
0,0
1,1

1,1
1,1 2,2

2,3

Fig. 4. A CPSA for string “abba” and “abca”

3.1 Analysis

Let the number of states in M1 and M2 be R1 and R2, respectively. Then the
time complexity of constructing M1 and M2 will be O(R1|Σ|) and O(R2|Σ|),
respectively. So, the time complexity of constructing M3 (presented in Algo-
rithm 2) will be O(R1R2|Σ|) [13]. The time complexity of constructing M4 will
also be O(R1R2|Σ|). We can traverse through the longest path of M4 and the
accepting string will be LCPS of the given two strings. As the length of LCPS
is at most n so finding LCPS in M4 needs only O(n) times. Thus the total
complexity of finding LCPS is O(R1R2|Σ|). In worst case the running time is
O(n4|Σ|)

3.2 Comparison of the Algorithms

As has been mentioned above, to the best of our knowledge the only work in the
literature that presents algorithm to compute LCPS is the very recent work of
Chowdhury et al. [5,4]. In [5,4] two algorithms were provided. The first algorithm,
referred to as CHIR-1 henceforth, runs in O(n4) time and the second one, referred
to as CHIR-2 henceforth, runs in R2 log2 n log logn time where R is the number
of matches. In this section we compare the running time of our algorithm with
CHIR-1 and CHIR-2.

Since R1 = O(n2) and R2 = O(n2), the running time of Algorithm 2 becomes
O(n4|Σ|) in the worst case, which is not better than that CHIR-1 presented
in [5,4]. But in cases where we have R1 = O(n) and R2 = O(n), it exhibits very
good performance. In such cases the running time reduces to O(n2|Σ|). Even for
R1 = R2 = O(n1.5) this algorithm performs better (O(n3|Σ|)) than CHIR-1.

Algorithm 2 also performs better than CHIR-2 of [5,4] in some of the cases.
Clearly R � R1 and R � R2 and in most cases |Σ| < log2 n log logn. And if Σ
is constant then our algorithm always outperforms CHIR-2 of [5,4].

4 Experimental Result

In addition to a theoretical analysis presented above we make an effort to exper-
imentally analyse the performance of PSA and CPSA. Both the running time
and space complexity of the algorithms presented here depend on the number of
states of PSA and CPSA. So in our experiments we investigate how the number
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of states increases in practice with the increase of n and Σ for both PSA and
CPSA.

In our experiments the strings were generated randomly based on a given
character set, Σ. For PSA the length of the string, n varies among 100, 250,
500, 850, 1000, 1200, 1500, 5000 and 10000. The alphabet size |Σ| varies among
4, 8, 12, 16, 20, 24 and 28. For each combination of n and |Σ|, we generate
50 strings and calculate (and report) the average number of states of the PSA.
These are presented in Table 1. It can be seen from Table 1 that by increasing
n the number of states in PSA increases. However this increase is not really as
much as suggested by the theoretical analysis. For example when n = 10000
and |Σ| = 4 the number of states of PSA should be in the range of 100000000
whereas in practice, it is only 7489599. Increasing |Σ| decreases the number of
states of PSA as is evident in Table 1.

Now, let us focus our attention to our algorithm for LCPS computation. The
running time of our algorithm for computing an LCPS of two strings mainly
depends on the construction time of the PSA. The construction of PSA in turn
depends on the total number of states of PSA. While conducting the experiments
the lengths of the two strings were kept equal. The length of the string, n varies
among 30, 40, 50, 62, 80, 100, 120, 150, 170, 200. The alphabet size |Σ| varies

Table 1. Number of states in PSA

n |Σ| = 4 |Σ| = 8 |Σ| = 12 |Σ| = 16 |Σ| = 20 |Σ| = 24 |Σ| = 28

100 715 494 384 322 282 255 232

250 4582 3061 2275 1831 1546 1350 1198

500 18588 12148 8962 7111 5903 5083 4486

850 53707 35150 25723 20353 16776 14356 12551

1000 74401 48645 35478 28008 23167 19720 17261

1200 107539 69964 51211 40257 33194 28248 24669

1500 167600 109669 79886 62637 51792 43929 38378

5000 1873262 1214192 79886 691858 567412 481795 419028

10000 7489599 4862742 3529004 2762079 2263614 1922768 1669577

Table 2. Number of states in CPSA

n |Σ| = 4 |Σ| = 8 |Σ| = 12 |Σ| = 16 |Σ| = 20 |Σ| = 24 |Σ| = 28

30 127 61 39 27 24 19 16

40 426 165 88 58 46 38 32

50 1027 385 199 125 92 70 58

62 2604 895 441 276 186 147 106

80 8525 2799 1304 720 482 334 245

100 24634 7786 3299 1705 1122 788 564

120 58311 17239 7137 3786 2350 1574 1212

150 170738 46648 19237 10026 3957 4033 2782

170 277262 84245 33298 17043 9995 6463 4567

200 673053 17239 68762 36851 20198 11937 9730
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among 4, 8, 12, 16, 20, 24. For each combination of n and |Σ| we generate 50
strings and calculate (and report) the average number of states in the CPSA.
The results are given in Table 2. As is evident from Table 2 the number of states
in CPSA is far less than n4, the theoretical worst case bound. It is even less
than the square of the number of states in PSA (see Table 1). For example when
n = 200 and |Σ| = 4, the number of states of CPSA should be in the range of
200000000 where in practice it is only 673053. So despite a theoretical worst case
bound of O(n2) for PSA and O(n4) for CPSA, practically the states never reach
that limit (and hence the time requirement as well is much low in practice).
Increasing |Σ| decreases the number of states of CPSA as is evident in Table 2.

5 Conclusion

In this paper, we have introduced and presented PSA, a novel weighted finite
automata that is a compact representation of all the palindromic subsequences
of a string. The space complexity of our approach is better than that of [6].
Furthermore we use the PSA to solve the LCPS problem. In particular we present
CPSA which is the intersection automata of two PSA of two given strings. The
time complexity of our algorithm to solve the LCPS problem is O(R1R2|Σ|)
whereR1 andR2 are the number of states of respective automata. Our algorithm
also performs better than the algorithms presented in [5,4]. We also present
experimental results which suggest that both PSA and CPSA perform very well
in practice.
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Abstract. We describe the program LALBLC which tests whether two determin-
istic pushdown automata recognize the same language.

Keywords: Deterministic pushdown automata, deterministic context-free
grammars, equivalence problem.

1 Introduction

The so-called “equivalence problem for deterministic pushdown automata” is the
following decision problem:

INSTANCE : two dpda A,B; QUESTION : L(A) = L(B)?

i.e. do the given automata recognize the same language? This problem was shown to
be decidable in ([Sén97],[Sén01a, sections 1-9])1. Beside crude decidability, the in-
trinsic complexity of this problem is far from being understood. A progress in this
direction has been achieved in [Sti02] by showing that the general problem is primitive
recursive while subclasses with complexity in P (resp. co-NP) have been discovered in
[BCFR06, BG11, BGJ13](resp.[Sén03]). Any further progress in this direction is likely
to have some impact on other areas of computer science, as is shown by the numer-
ous applications that were found even before proving decidability of the problem (see
[Sén01b] for a survey and [MOW05, CCD13] for more recent connections).

The contribution presented here consists in showing that it is practically feasable to
solve the equivalence problem for general dpda on non-trivial examples (see section
5). We have implemented, and to some extent refined, the main ideas of [Sén01a]. For
every pair (A,B) the program returns, either a proof of L(A) = L(B) (see section 4
for a precise notion of proof) or a terminal word witnessing the fact that L(A) �= L(B).

The sources of our (Python) program, as well as as additional information, can be
uploaded from http://dept-info.labri.u-bordeaux.fr/˜ges.

2 Automata, Grammars

We introduce here the notions of automata and grammars that are manipulated by the
program.

1 A similar method is exposed within the framework of term root-rewriting in [Jan12].

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 169–180, 2013.
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2.1 Deterministic Matricial fa

A finite automaton is, as usual, a tuple, A =< X,Q,Q−, Q+, δ > whereX is the input
alphabet,Q is the set of states, Q− ⊂ Q is the set of initial states, Q+ ⊂ Q is the set of
terminal states, δ ⊂ Q × X × Q is the set of transitions, and all of these five sets are
finite.

The main object that our program handles is a matrix of languages which is defined
by some finite automaton with one set of initial states for each line and one set of
terminal states for each column.

Let us recall that a language L ⊂ X∗ is a prefix language iff, ∀u, v ∈ L, u � v ⇒
u = v. The line-vectors of the matrices we are interested in are prefix vectors in the
following sense:

Definition 1. A vector (L1, . . . , Li, . . . , Ln) ∈ P(X∗)n is said to be prefix iff it fulfills:
∀i, j ∈ [1, n], i �= j ⇒ Li ∩ Lj = ∅ and

⋃n
i=1 Li is a prefix language.

We thus consider the following variant of the notion of d.f.a. which recognizes a prefix
matrix of languages i.e. where each row-vector is prefix.

Definition 2 (complete deterministic matricial f.a.). A finite complete deterministic
matricial finite automaton is a tuple, A =< X,Q,Q1,−, . . . , Qn,−, Q1,+, . . . , Qm,+,
δ > where X is the input alphabet,Q is the set of states, Qi,− ⊆ Q is the set of initial
states of the i-th line, Qj,+ ⊆ Q is the set of final states of the j-th column,
∀i ∈ [1, n],Card(Qi,−) = 1
∀j, k ∈ [1,m], j �= k ⇒ Qj,+ ∩Qk,+ = ∅
δ : (Q×X) → Q is a total map, which is called the transition map.
∀j ∈ [1,m], ∀q ∈ Qj,+, ∀x ∈ X, δ(q, x) is not co-accessible from ∪1≤k≤m Qk,+.
All the items of this tuple are assumed to be finite sets.

Such an automaton defines a prefix matrix of languages L(A) := (Li,j)(i,j)∈[1,n]×[1,m]

where Li,j := {u ∈ X∗ | ∃q ∈ Qi,−, δ
∗(q, u) ∈ Qj,+}.

The usual theory of recognizable languages, complete deterministic automata and
residuals can be adapted to (prefix) matrices of languages, cdmfa’s and residuals of
matrices.

Implementation. Our module fautomata deals with f.automata and their analogues.
The class dr-matrix implements the notion of cdmfa. The program stores every ra-
tional prefix matrix under the form of a canonical dcmfa i.e. a minimal dcmfa, in which
the states are integers that are completely determined by some depth-first traversal of
the minimal automaton. The equality of two rational (prefix) matrices is implemented
as an isomorphism-test for the corresponding canonical dcmfa.

2.2 Pushdown Automata and Context-Free Grammars

The notions of pushdown automaton and context-free grammar are well-known. A pda
is said deterministic if, informally, on every triple (state, stack-contents, tape-contents),
at most one transition is applicable. It is called strict if it recognizes by empty stack and
a finite set of final sates and normal if every ε-transition is popping.



LALBLC A Program Testing the Equivalence of dpda’s 171

Definition 3. ([Har78, Definition 11.4.1 p.347]) Let G =< X, V, P > be a context-
free grammar. G is said strict-deterministic iff there exists an equivalence relation  
over V fulfilling the following conditions:
1-X is a class (mod  )
2- for every v, v′ ∈ V, α, β, β′ ∈ (X ∪ V )∗, if v −→P α · β and v′ −→P α · β′ and
v  v′, then either:
2.1- both β, β′ �= ε and β[1] β′[1]
2.2- or β = β′ = ε and v = v′.

(In the above definition, for every word γ, γ[1] denotes the first letter of the word γ).
Any equivalence satisfying the above condition is said to be a strict equivalence for
the grammar G. It is known that, given a strict dpda M, one can construct, in polyno-
mial time, an associated grammarGM =< X, VM, PM >which is strict-deterministic
and generates the language recognized by M.

Implementation Our module grammars deals with dpda and dcf grammars. The trans-
lation of a dpda into a dcf grammar is realized by the autotogram(A) function;
some routine functions around these notions are implemented (test for determinism of
a cf grammar, elimination of non-productive non-terminals and reduction in Greibach
normal-form, for grammars translating a normal strict dpda), see Figure 1.

Non-terminal symbols :
[<q2-A-q4> <q2-A-qb> ][<q4-O-q3> ][<q1-O-q3> ]
[<q2-O-q3> ][<q3p-O-q3> ][<q4-A-q4> ][<q3-O-q3> ]
[<q3-A-q3> ][<q1-A-q3> <q1-A-q5> ][<q3b-O-q3> ]

Terminal symbols : # a b x
Rewriting rules:
<q1-A-q3>::=a
<q1-A-q3>::=x<q1-A-q3><q3-A-q3>
<q1-A-q5>::=b
<q1-A-q5>::=x<q1-A-q5>
<q1-O-q3>::=#<q1-A-q3><q3-O-q3>
<q1-O-q3>::=#<q1-A-q5>

<q2-A-q4>::=a<q4-A-q4><q4-A-q4>
<q2-A-q4>::=x<q2-A-q4><q4-A-q4>
<q2-A-qb>::=b
<q2-A-qb>::=x<q2-A-qb>
<q2-O-q3>::=#<q2-A-q4><q4-O-q3>
<q2-O-q3>::=#<q2-A-qb>
<q3-A-q3>::=a
<q3-O-q3>::=a<q3p-O-q3>
<q3b-O-q3>::=a
<q3p-O-q3>::=a<q3b-O-q3>
<q4-A-q4>::=a
<q4-O-q3>::=a

Axiom: <q1-O-q3>

Fig. 1. A dcf grammar G2 (obtained from some dpda)

3 Algebraic Framework

We recall here the algebraic framework which is the base of our program (see [Sén01a,
sections 2,3] for more details).

3.1 Semi-rings and Right-Actions

Semi-ring B〈〈 W 〉〉. Let (B,+, ·, 0, 1) where B = {0, 1} denote the semi-ring of
“booleans”. Let W be some alphabet. By (B〈〈 W 〉〉,+, ·, ∅, ε), we denote the semi-
ring of boolean series over W (which is, up to isomorphism, nothing else than the
semi-ring of subsets ofW ∗: (P(W ∗),∪, ·, ∅, {ε}).
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Right-actions over B〈〈 W 〉〉. We recall the following classical right-action • of the
monoidW ∗ over the semi-ring B〈〈W 〉〉 : for all S, S′ ∈ B〈〈W 〉〉, u ∈W ∗

S • u = S′ ⇔ ∀w ∈ W ∗, (S′w = Su·w),

(i.e. S • u is the residual of S by u ). Let (V, ) be the structured alphabet associated
with a strict-deterministic grammar (see paragraph §2.2). We define the right-action 	
over non-terminal words by:

ε	 x = ∅. (v · β)	 x = (
∑

(v,h)∈P
h • x) · β,

The action is then extended to arbitrary boolean series (on the left) and to arbitrary
terminal words (on the right) by:

(
∑

w∈W∗
Sw · w) 	 x :=

∑
w∈W∗

Sw(w 	 x), S 	 ε := S, S 	 wx := (S 	 w) 	 x

3.2 Deterministic Matrices

We recall here the notion of deterministic series and, more generally, deterministic ma-
trices2,3. Let us consider a pair (W, ) whereW is an alphabet and is an equivalence
relation overW . We call (W, ) a structured alphabet.

Let us denote by Bn,m〈〈 W 〉〉 the set of (n,m)-matrices with entries in the semi-
ring B〈〈 W 〉〉 (the index (m,n) will continue to mean “of dimension (m,n)” for all
subsequent subsets of matrices).

Definition 4. Let m ∈ IN, S ∈ B1,m〈〈 W 〉〉: S = (S1, · · · , Sm). S is said left-
deterministic iff either ∀i ∈ [1,m], Si = ∅ or
∃i0 ∈ [1,m], Si0 = ε and ∀i �= i0, Si = ∅ or
∀w,w′ ∈ W ∗, ∀i, j ∈ [1,m], (Si)w = (Sj)w′ = 1 ⇒ [∃A,A′ ∈ W,w1, w

′
1 ∈

V ∗, A  A′, w = A · w1 and w′ = A′ · w′1].

Both right-actions •,	 on B〈〈W 〉〉 are extended componentwise to Bn,m〈〈W 〉〉.

Definition 5. A row-vector S ∈ B1,m〈〈W 〉〉 is said deterministic iff for every u ∈ W ∗,
S • u is left-deterministic.
A matrix S ∈ Bn,m〈〈 W 〉〉 is said deterministic iff for every i ∈ [1, n], Si,∗ is a
deterministic row-vector.

The classical definition of rationality of series in B〈〈W 〉〉 is extended componentwise
to matrices. GivenA ∈ B1,m〈〈W 〉〉 and 1 ≤ j0 ≤ m, we define the vector ∇∗j0(A) :=
A by:
if A = (a1, . . . , aj , . . . , am) then A′ := (a′1, . . . , a

′
j, . . . , a

′
m) where

a′j := a
∗
j0 · aj if j �= j0 , a′j := ∅ if j = j0.

2 These series play, for dcf grammars the role that configurations play for a dpda.
3 It extends the notion of (finite) set of associates defined in [HHY79, definition 3.2 p. 188].
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Note that every deterministic matrix is prefix; it follows that every deterministic ratio-
nal matrix is recognized by some cdmfa. We use the acronyms DBn,m〈〈 W 〉〉 (resp.
DRBn,m〈〈W 〉〉) for the sets of Deterministic (resp. Deterministic Rational) matrices.
The main closure properties of deterministic rational matrices are summarized below.

Proposition 1. Let S ∈ DRBn,m〈〈 W 〉〉, T ∈ DRBm,s〈〈 W 〉〉, w ∈ W ∗, u ∈ X∗,
Then
S · T ∈ DRBn,s〈〈W 〉〉, S • w ∈ DRB〈〈W 〉〉, S 	 u ∈ DRB〈〈W 〉〉
If n = 1, 1 ≤ j0 ≤ m, then ∇∗j0(S) ∈ DRB1,m〈〈W 〉〉.

These closure properties are effective.

Terminal matrices versus non-terminal matrices. Let us denote by L : DB〈〈 V 〉〉 →
DB〈〈X 〉〉 the map sending every deterministic series S on the language L(S) := {u ∈
X | S 	 u = ε} (i.e. the set of terminal words generated from all non-terminal words
of S via the derivation w.r.t. the rules ofG). For every integers n,m ≥ 1, L is extended
componentwise as a map DBn,m〈〈 V 〉〉 → DBn,m〈〈 X 〉〉.

Lemma 1. For every S ∈ DBn,m〈〈 V 〉〉, T ∈ DBm,s〈〈 V 〉〉, u ∈ X∗,
L(ε) = ε, L(S · T ) = L(S) · L(T ), L(S 	 u) = L(S) • u.

Implementation. The module fautomata implements the matricial product · (prod),
the right-actions • (bullet), 	(odot) and the operation ∇∗j0 (nablastar).

3.3 Linear Combinations

Let us call linear combination of the series S1, . . . , Sj , . . . , Sm any series of the form∑
1≤j≤m αj · Sj where α ∈ DRB1,m〈〈 V 〉〉. Let S1, . . . , Sj , . . . , Sm ∈ DRB〈〈 V 〉〉.

We call dependency of order 0 between the Sj’s, an equality of the form:

Sj0 =
∑

1≤j≤m

γ′j · Sj , (1)

where j0 ∈ [1,m], γ′ ∈ DRB1,m〈〈 V 〉〉 and γ′j0 = ∅. 4 Analogously, we call depen-
dency of order 1 between the Sj’s, an equality of the form (1), but where the symbol
“=” is replaced by the symbol “≡”. It is clear that the homomorphism L maps every
dependency of order 1 between the Sj’s onto a dependency of order 0 between the
L(Sj).

Canonical coordinates. Let S, T1, T2, . . . , Tn ∈ DB〈〈 V 〉〉. We assume that i �= j ⇒
Ti �= Tj . For every i ∈ [1, n], we define
αi := {u ∈ V ∗ | S • u = Ti and ∀u′ ≺ u, ∀j ∈ [1, n], S • u′ �= Tj} and
αn+1 := {u ∈ S | ∀u′ � u, ∀j ∈ [1, n], S • u′ �= Tj}.

4 This terminology originates in [Mei89].
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Lemma 2. The vector α of canonical coordinates fullfils:
1- α ∈ DB1,n+1〈〈 V 〉〉, S =

∑n
i=1 αi · Ti + αn+1

2- S is a linear combination of the Ti, with a vector of coefficients in DB1,n〈〈 V 〉〉 iff
αn+1 = ∅.

Unifiers. The following notion was implicit in [Sén01a, section 5] and explicited in
[Sén05, section 11]. It turns out to be central in our implementation. Let α,β ∈ DB1,q

〈〈 X 〉〉. A unifier of (α,β) is any matrix U ∈ DBq,q〈〈 X 〉〉 such that: α · U = β · U.
U is a Most General Unifier iff every unifier of (α,β) has the form U · T for some
T ∈ DBq,q . This notion is lifted to α,β ∈ DRB1,q〈〈 V 〉〉 via the map L.

Theorem 1. 1- Every pair α,β ∈ DB1,q〈〈 V 〉〉 has a MGU (up to ≡)
2- This MGU is unique, up to ≡ and up to some right-product by a permutation matrix.
3- For pairs α,β ∈ DRB1,q〈〈 V 〉〉, the MGU has some representative which belongs
to DRBq,q〈〈 V 〉〉 and is computable from α,β.

In other words, the MGU of two algebraic row-vectors defined by det. rational vectors
over a s.d. grammarG is itself algebraic and definable by a det. rational-matrix over the
grammarG. The MGU of α,β ∈ DRB1,q〈〈 V 〉〉 can be computed along the following
algorithm scheme:

M ← Idq; cost← 0
while (not α ·M ≡ β ·M ) do

find j ∈ [1, q], w ∈ X∗, prefix-minimal, such that:
((α ·M)	 w = εqj ) iff ((β ·M)	 w �= εqj )
γ ← (α ·M)	 w (if it is equal to εqj ) or γ ← (β ·M)	 w (if it is equal to εqj )
γ ← ∇∗j (γ))
D ← Idq; Dj,∗ ← γ {D is the dependency matrix associated to γ and j}
M ←M ·D; cost← cost+ |w|

end while
return [M , cost]

(See on Figure 2 an example of mgu computation, where q = 4).
The integer cost is useful for a proper use of M leading to an equivalence proof (i.e.
for ensuring property (3) of §4.5).

Implementation. The module fautomata implements the function coords that
computes the canonical coordinates of a d.r. series over a finite family of d.r. series.

The module equations defines a functional mgu(f-equiv,f-op,vec1,
vec2): it computes the MGU of two row-vectors by the above algorithm where
f-equiv is used for testing the equivalence (or returning a witness) of two row-
vectors and f-op is the right-action used for computing the dependency γ. The MGU’
s of order 0 or approximated5 MGU’ s of order 1 are obtained by application of this
functional.

5 I.e. up to some length for the terminal words.
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v1: list of states [0,1,2,3]
sets of init states [[0]]
sets of fin states [[1],[3],[],[]]
list of (non-sink) transitions:
( 0 <q1-A-q3> )--> 1
( 0 <q1-A-q5> )--> 3

v2: list of states [0,1,2,3]
sets of init states [[0]]
sets of fin states [[],[],[2],[3]]
list of (non-sink) transitions:
( 0 <q2-A-q4> )--> 2
( 0 <q2-A-qb> )--> 3

mgu list of states [0,1,2,3,4]
sets of init states [[0],[4],[3],[4]]
sets of fin states [[],[],[3],[4]]
list of (non-sink) transitions:
( 0 <q4-A-q4> )--> 2
( 2 <q4-A-q4> )--> 3

cost_mgu 2

Fig. 2. A mgu w.r.t. grammar G2

4 Logics

4.1 The Deduction Relation

We denote by A the set DRB〈〈 V 〉〉 × DRB〈〈 V 〉〉. An element (S, T ) ∈ A is called
an equation while a triple (p, S, T ) where p ∈ IN is called a weighted equation. The
divergence of (S, T ), denoted by Div(S, T ), is defined by:

Div(S, T ) := inf{|u| | u ∈ X∗, (S 	 u = ε) ⇔ (S 	 u �= ε)}

The map Div is extended to sets of equations by: Div(P ) := inf{Div(p) | p ∈ P}. Let
C be the set of meta-rules described in Figure 3. Let B be the set of meta-rules obtained
by forgetting the first component p (an integer) in every weighted equation (p, S, T ) of
every meta-rule of C. We define the binary relation ||−− B ⊆ P(A)×A, as the set of all
the instances of meta-rules of B where S, T, T ′, T ′′, U ∈ DB〈〈 V 〉〉, (S1, S2), (T1, T2),
(U1, U2) ∈ DB1,2〈〈 V 〉〉, U1 �= ε. The binary relation |−− B over P(A) is defined by:
∀P,Q ∈ P(A)

P |−− BQ⇔ (∀q ∈ Q− P, ∃P ′ ⊆ P, such that P ′ ||−− Bq).

The relation
p

|−− B (for p ∈ IN) and
∗
|−− B are then deduced from |−− B as usual (and

likewise the binary relations ||−− C , |−− C ,
p

|−− C ,
∗
|−− C).

(W 0) ∅ ||−− (0, T, T )
(W 0′) {(p, S, T )} ||−− (p+ 1, S, T )
(W 1) {(p, T, T ′)} ||−− (p, T ′, T )
(W 2) {(p, T, T ′), (p, T ′, T ′′)} ||−− (p, T, T ′′)
(W 3) {(p, S1, T1), (p, S2, T2)} ||−− (p, S1 + S2, T1 + T2)
(W 4) {(p, T, T ′)} ||−− (p, T · U, T ′ · U)
(W 5) {(p, T, T ′)} ||−− (p,U · T, U · T ′)
(W 6) {(p, U1 · T + U2, T )} ||−− (p,U∗

1 · U2, T )

Fig. 3. System C
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Lemma 3. : For every P,Q ∈ P(A), P
∗
|−− B Q⇒ Div(P ) ≤ Div(Q).

4.2 Self-Provable Sets

A subset P ⊆ A is said self-provable6 iff

∀(S, T ) ∈ P, (S = ε) ⇔ (T = ε) and ∀x ∈ X,P
∗
|−− B P 	 x.

Lemma 4. If P is self-provable then, ∀(S, T ) ∈ P, S ≡ T .

This follows easily from Lemma 3.

4.3 Comparison-Forest

A comparison-forest is, informally speaking, a set of oriented trees labeled by weighted
equations such that:
- a distinguished root, the starting-node, has a label of the form (0, S, T ), where S, T ∈
DRB〈〈 V 〉〉
- all other roots, the unifier-nodes have labels of the form (0, u.M, v.M) where u, v are
det. rat. row-vectors of dimension (1, d) andM is a det. rat. matrix of dimension (d, d)
- non-root nodes have labels of the form (p, U, U ′) where U,U ′ ∈ DRB〈〈 V 〉〉.
Every node can have the status “open” or “closed”. In case it is closed, property (3) of
§4.5 is satisfied. Open nodes are leaves.

4.4 Tactics and Strategies

The program maintains, at each step of the computation, a comparison-forest.
The program starts from the comparison-forest consisting of just one node, labeled by
(0, S, T ). Then it iteratively modifies this c.f. by either:
1- closing an open node and adding new sons (the number of new sons ranges from 0
to the maximum cardinality of some class (modulo ); at this stage, the sons are open.
2- discovering that an open node is obviously false ( e.g (p, ε, S) where S �= ε); a wit-
ness u ∈ X∗ of non-equivalence is thus propagated to the root r above this node

2-a if r is a unifier-node, this unifier is improved and all nodes of the forest that are
below some node “using” the unifier are destroyed.

2-b if r is the starting-node, the witness u is thus a witness of falsity for the initial
equation (S, T ). The algorithm stops and returns the witness.
3- discovering that the forest has no open node. The set of equations of the forest is thus
a self-provable set. The algorithm stops and returns the self-provable set.

The precise sequence of actions of the program will be determined by a strategy; in
turn, the strategy will call tactics that are able to perform, given an open node of the
current comparison-forest, one of the above kind of actions.

Tactics. The main tactics already implemented are summarized in Table 1. The four
last tactics lean on the notions exposed in Section 3. Note that TCM implements the
“triangulation process” described in [Sén01a, section 5].

6 Translation into our framework of the notion of “self-proving set of pairs” from [Cou83,
p.162].
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Table 1.

Trep argument-node: n, open, labeled by (p, S, T )
context:n′, closed, labeled by (p′, S, T ) where p′ ≤ p.
action: n is closed, “leaning on” n′.

Teq argument-node: n, open, labeled by (p, T, T )
action: n is closed.

TA argument-node: n, open, labeled by (p, S, T )
action: n is closed “leaning on his new sons”. Card(X) sons are created,
x-ith son is labeled by (p+ 1, S � x, T � x)

TD argument-node: n, open, labeled by (p,
∑d

j=1 Aj · Sj ,
∑n

j=1 Aj · Tj),
where Aj are �-equivalent non-terminals.
action: n is closed, “leaning on his new sons”. d sons are created,
j-ith son is labeled by (p+ 1, Sj , Tj)

TCM argument-node: n, open
context: n0, n1, . . . , n� is a path with n� = n, ni is labeled by Ei = (αiS,βiS)
with a weight πi where αi, βi ∈ DRB1,d〈〈 V 〉〉, S ∈ DRBd,1〈〈 V 〉〉,
action: a subsequence n0, ni1 , . . . , nir is selected and r series Sj are eliminated
as follows (w.l.o.g. we assume the eliminated indices are 1, . . . , r)
E0 � w1 = (S1, γ1 · S), Ei1D1 �w2 = (S2,γ2 · S), . . . , Eir−1D1 · · ·Dr−1 �wr = (Sr,γr · S)
each Di is the dependency matrix associated to line i and vector γi

Successive indices are chosen in such a way that πj ≥ πj−1 + |wj |+ 1.
the sub-tree strictly beneath nir is destroyed. M := D1D2 · · ·Dr ,
nr is given d new open sons n′

j labeled by: (πir , (αir ·M)j , (βir ·M)j).

TCJ argument-node: n, open
context: idem as for TCM .
In addition, ∀i < �,∃ui ∈ X∗, (αi � ui,βi � ui) = (αi+1,βi+1).
action: a candidate mgu M for the vectors α0,β0 is computed together with its cost c.
The smallest index i such that πi ≥ π0 + c+ 1 is selected. The subtree strict. beneath ni is destroyed.
ni is given d new open sons n′

j labeled by: (πi, (αi ·M)j , (βi ·M)j)

TCR argument-node: n, open, labeled by (p, S, T )
context : idem as for TCJ .
action: M , cost, i are computed and subtree is destroyed as in TCJ.
A new root n′ is created, it is closed ,
n′ is given d new open sons n′

j labeled by (0, (α0 ·M)j , (β0 ·M)j).

TSUN argument-node: n, open, labeled by (p,αS,βS),
where α, β ∈ DRB1,d〈〈 V 〉〉, S ∈ DRBd,1〈〈 V 〉〉.
and all components of α,β are null or have length one.
action: n is closed. A candidate mgu M for the vectors α,β is computed
The node n is given d new open sons, labeled by: (p+ 1, Sj , (M · S)j).

Error tactics. The tactics Terror is responsible for detecting that an open node is
labeled by some trivially false equation. Then it returns “failure”.
The tactics Terror-dyn also detects that an open node is false and then performs
action 2-a or 2-b of subsection 4.4

Strategies. Two kinds of strategies have been developed. They all consist of combi-
nations of the above tactics (or variants).The static strategies make only one guess of
MGU (for each call to a computation of MGU) and either succeed to confirm this guess
by terminating the proof, or discover an error and return “failure” as the global result.
The dynamic strategies start each computation of mgu by a guess which might be im-
proved by successive discoveries of errors by tactics Terror-dyn. Finally they return
either a proof of the proposed equivalence or a witness of non-equivalence.
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Implementation. The module proofs defines a class proof that implements the
notion of comparison-forest. The functions in charge of managing the equations and
MGU’s are defined there. The module tactics implements the above defined tactics.
In general we first defined abstract tactics that depend of functionnal arguments. Con-
crete tactics are obtained by instanciating these arguments by specific functions which
compute MGU’s. The module strategies defines a functional make-strategy
(maxsteps,error-tactics,*tactics) which, in turn, produces concrete
strategies.

4.5 Soundness

Our (meta)-proof that the program is sound i.e. that its positive outputs are really self-
provable sets, leans on the auxiliary system C (see Figure 3). Let us use the following
notation: for every π, n ∈ IN, S, S′ ∈ DRB〈〈 V 〉〉,

[π, S, S′, n] = {(π + |u|, S 	 u, S′ 	 u) | u ∈ X≤n}. (2)

All the above tactics T enjoy the following fundamental property: if (π, S, S′) is the
weighted equation labelling a closed node of the forest t on which tactics T has been
applied, then, for every terminal letter x ∈ X⋃

{[p, U, U, n] | (p, U, U) ∈ im(t), p+ n ≤ π}
∗
|−− C {(π + 1, S 	 x, S′ 	 x)} (3)

A comparison-forest is said closed when all its nodes are closed.

Theorem 2. Let t be the closed forest computed by some strategy using only the tactics
Trep,Teq,TA,TD,TCM,TCJ,TCR,TSUN. Then the set of equations labelling t is
a self-provable set.

Sketch of proof: Let us note P the set of weighted equations labelling t and let us con-

sider the following property Q(π, n, p): ∀S, S′ ∈ DRB〈〈 V 〉〉, P
p

|−− C (π, S, S′) ⇒
P

∗
|−− C [π, S, S′, n].
Following the lines of the induction of [Sén01a, subsec. 10.2, eq (136)], one can

prove by lexicographic induction over (π + n, n, p) the statement: ∀(π, n, p) ∈ IN3,
Q(π, n, p). �

5 Experiments

Out of 17 strategies already experimented, let us show the behaviour of 5 typical ones
over 7 positive examples and 5 negative examples. The selected strategies are charac-
terized by 3 parameters: their algebraic tactics [TCM (triangulation) or TCJ (jump) or
TSUN (quasi division)], the connectedness property for the forests they produce7 and
their static (versus dynamic) character (see section 4). The size is the sum of the lengths

7 Depending on the fact that they launch a new tree for each new mgu-computation or not.
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of the rhs of the grammar. The tests have been run on a computer Intel(R) Xeon(R)

CPU X5675 @ 3.07GHz. In each positive example we show the number of nodes of
the final proof, the number of tactic calls and the CPU-time (number of seconds or “oot”
if >= 3600).

pos example ex0 ex1 ex2 ex3

size 36 51 34 86
trg, c, stat 44/44/0.88 75/121/10 99/145/11 oot
jp, c, dyn 44/44/0.79 75/117/4 67/123/8 100/1206/88
jp, nc, dyn 44/44/0.8 60/102/3.5 61/117/7 64/1104/83
qdiv, nc, stat 51/51/0.87 54/54/1 54/84/4 25/25/15
qdiv, nc, dyn 51/60/1 54/70/1 60/140/7 25/39/0.23

pos example ex4 ex5 ex6

size 179 253 525
trg, c, stat oot oot oot
jp, c, dyn 707/1067/476 oot oot
jp, nc, dyn 251/467/117 732/4220/1245 oot
qdiv, nc, stat 134/134/180 149/149/80 502/502/977
qdiv, nc, dyn 132/177/3 149/191/9 489/747/66

In each negative example, we show the length of the witness (for dynamic strategies8)
and the CPU-time (in s.); we mention the behavior of an exhaustive search, for compar-
ison.

neg example ex2n ex4n ex4nn ex4nnn ex6n

size 34 168 175 171 525
trg, c, stat −/2 −/2.7 −/52 −/17 oot
jp, c, dyn 4/2.9 8/3.1 13/69 13/20 19/1609
jp, nc, dyn 4/2.8 8/3.2 11/60 13/20 19/2062
qdiv, nc, stat −/1.3 −/0.6 −/61 −/2.8 −/128
qdiv, nc, dyn 4/4 7/15 13/35 13/29 23/170
ex− srch 4/0.02 4/0.08 7/2 7/1.3 oot

6 Conclusion and Perspectives

The present program is a prototype where the low-level functions are far from being op-
timized. Its performance on grammar examples of 20 to 100 rules (and size in [30,500])
seems to show that the equivalence problem for dpda (and the computation of algebraic
mgu’s) is not out of reach from a practical point of view.

Among our perspectives of development we plan: to improve the core of the program
by using rewriting techniques; to devise an example-generation module; to add modules
implementing the reductions described in [Sén01b].

The program is open-source and we hope other authors will write their own comple-
mentary modules (e.g. the authors of [CCD13] are already implementing their
reduction).

8 Recall that the ” failure” message sent by static strategies is unconclusive.
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Abstract. For a finite automaton, regardless whether it is deterministic
or nondeterministic, Brzozowski’s minimization algorithm computes the
equivalent minimal deterministic finite automaton by applying reversal
and power-set construction twice. Although this is an exponential algo-
rithm because of the power-set construction, it performs well in experi-
mental studies compared to efficient O(n log n) minimization algorithms.
Here we show how to slightly enhance Brzozowski’s minimization algo-
rithm by some sort of reachability information so that it can be applied
to the following automata models: deterministic cover automata, almost
equivalent deterministic finite state machines, and k-similar automata.

1 Introduction

The study of the minimization problem for finite automata dates back to the
early beginnings of automata theory. This problem is also of practical relevance,
because regular languages are used in many applications, and one may like to rep-
resent the languages succinctly. While the minimization for nondeterministic au-
tomata (NFAs) is computationally intractable [13], it becomes efficiently solvable
for deterministic finite automata (DFAs). We refer to [15] for a brief summary of
DFA minimization algorithms. While the algorithm with the best running time
of O(n logn) remains difficult to understand, the most elegant one is that of
Brzozowski [4], which minimizes an automaton A, regardless whether it is deter-
ministic or nondeterministic, by applying the reversal and power-set construction
twice in sequence, i.e., it computes P([P(AR)]R), to obtain an equivalent minimal
DFA—here the superscriptR refers to the reversal or dual operation on automata
and P denotes the power-set construction. Although, Brzozowski’s minimization
technique is exponential due to the power-set construction, it is reported in [15]
that it usually outperforms Hopcroft’s O(n log n) minimization algorithm. Fur-
ther studies conducted in [1] show a more complex scenario when comparing
minimization algorithms. Nevertheless, Brzozowski’s minimization algorithm is
identified as superior to any other minimization technique implemented in [1],
when starting with an NFA. Why Brzozowski’s minimization algorithm is so effi-
cient is not completely answered. Recently, Brzozowski’s minimization algorithm
was generalized to Moore machines and weighted finite automata in [3,6].

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 181–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A closer look on Brzozowski’s minimization algorithm shows that it does com-
pute state equivalence in the second power-set construction. In fact, in [7] a
characterization of the equivalence classes of the automaton A is given w.r.t.
the set of states of P(AR). This is the starting point of our investigation. We
utilize Brzozowski’s minimization algorithm to compute other types of equiv-
alences such as, e.g., E-equivalence [10], almost-equivalence [2], similarity [5],
and k-similarity [8]. Here two automata A and B are E-equivalent if and only
if L(A)1L(B) ⊆ E, where 1 refers to the symmetric difference. To this end
we enhance Brzozowski’s minimization algorithm with reachability information
on the states of the intermediate automaton B = P(AR), and/or the result-
ing automaton P (BR). These aforementioned equivalence concepts, except for
E-equivalence, are related to hyper-minimal DFAs [2], minimal deterministic
cover automata [5], and k-minimal DFAs [8]. All these minimal automata can
be efficiently computed by state merging algorithms [8,9,11,14] by appropriately
applying the previously mentioned state relations. As a first result we show that
although we can give a characterization of E-mergeability of states in general,
there are even finite sets E where a state merging algorithm cannot be applied
in order to obtain a DFA that is minimal w.r.t. the considered equivalence.
This nicely fits a previously obtained result which shows that minimizing DFAs
w.r.t. E-equivalence is already NP-complete [10]. Nevertheless, the previously
mentioned enhancement of Brzozowski’s minimization algorithm allows us to
identify almost-equivalent, similar, and k-similar states in P(BR). For instance,
two states S and T in P(BR) are almost equivalent if and only if every element
in S1T—these are states in B—belongs to the preamble of B, i.e., to the states
of B which are reachable from the initial state of B by a finite number of inputs
only. Similar characterizations are given for the other mentioned relations, too.
Then these characterizations can be used to merge states appropriately in order
to obtain minimal machines of a certain type. Like Brzozowski’s original mini-
mization algorithm, the proposed algorithms run in exponential time. In fact we
expect the performance of our algorithms to be comparable to Brzozowski’s min-
imization algorithm, because the additional information that is needed can be
computed easily. This shows that Brzozowski’s minimization algorithm is more
robust and useful than expected. Experimental verification of the performance
of these algorithms has still to be conducted and is subject of further research.

2 Preliminaries

We assume the reader to be familiar with the basic concepts of automata the-
ory [12]. A multiple entry nondeterministic finite automaton (NNFA) is a quin-
tuple A = (Q,Σ, δ, I, F ), where Q is the finite set of states, Σ is the finite set
of input symbols, I ⊆ Q is the set of initial states, F ⊆ Q is the set of accepting
states, and δ : Q × Σ → 2Q is the transition function, where 2Q refers to the
power set of Q. The language accepted by the finite automaton A is defined as

L(A) = {w ∈ Σ∗ | ∃q0 ∈ I : δ(q0, w) ∩ F �= ∅ },
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where the transition function is recursively extended to δ : Q × Σ∗ → 2Q. In
case I is a singleton set, i.e., |I| = 1, we simply speak of a nondeterministic
finite automaton (NFA). In this case we simply write A = (Q,Σ, δ, q0, F ) for
A = (Q,Σ, δ, {q0}, F ). If in addition |δ(q, a)| = 1, for all states q ∈ Q and letters
a ∈ Σ, then we say that the automaton is deterministic (DFA). In this case we
simply write δ(q, a) = p for δ(q, a) = {p}, assuming that δ is a mapping of the
form Q × Σ → Q. Two automata A and B are equivalent, for short A ≡ B,
if they accept the same language, which means L(A) = L(B) holds. Further,
we need some notation on languages associated with states in automata. For
a DFA A = (Q,Σ, δ, q0, F ) and a state q ∈ Q, define qA = (Q,Σ, δ, q, F ),
and Aq = (Q,Σ, δ, q0, {q}). Thus, the language L(qA) denotes the set of all words
that lead from state q to some accepting state, and L(Aq) is the set of words
leading from the initial state of A to state q. The languages L(qA), and L(Aq)
are also known as the right, and left language of q, respectively. Finally, for a
language E ⊆ Σ∗, the set QA(E) = { q ∈ Q | L(Aq) ⊆ E } denotes the set of
states of the automaton A, which are only reachable by reading words from E.
If there is no danger of confusion we simply write Q(E) instead of QA(E).

Next we define two important operations on automata: (i) The reverse or dual
of A = (Q,Σ, δ, I, F ) is the (multiple entry) automaton AR = (Q,Σ, δR, F, I),
that results from swapping the initial and final states in A, and reversing all
its transitions, i.e., p ∈ δR(q, a) if and only if q ∈ δ(p, a), for every p, q ∈ Q
and a ∈ Σ. For AR one can show the nice and useful property p ∈ δR(q, wR) if
and only if q ∈ δ(p, w) by induction on the length of the word w. (ii) For a finite
automaton A = (Q,Σ, δ, I, F ), its power-set automaton or subset automaton
is the DFA referred to P(A) = (Q′, Σ, δ′, q′0, F

′) with state set Q′ ⊆ 2Q that
consists of only those subsets of Q that are reachable from the (singleton) initial
state q′0 = I, final states F ′ = {P ∈ Q′ | P ∩ F �= ∅ }, and the transition
function of which is defined as δ′(P, a) =

⋃
q∈P δ(q, a), for every state P ∈ Q′

and letter a ∈ Σ.
The following result was presented in [4] and is commonly referred to as

Brzozowski’s minimization algorithm.

Theorem 1. If A is a finite automaton (deterministic or nondeterministic),
then A′ = P([P(AR)]R) is the minimal DFA for L(A).

We illustrate Brzozowski’s minimization algorithm on a small example. From
the example one observes, that the key to the minimization of A lies in the
automaton P(AR). In the next section we consider this automaton in more
detail.

Example 2. Consider the DFAs A, B = P(AR), and Amin = P(BR) which are
depicted from left to right in Figure 1. In order to show that Amin is minimal,
one has to verify that all states are pairwise distinguishable. For instance, the
initial state qs of P(BR) can be distinguished from state pqr with the help of
state s ∈ qs1 pqr of B and the word (ba)R = ab—the word ba is chosen because
it leads from the initial state q in B to state s: since reading ab from state qs
leads to the accepting state pq, while reading the same word from pqr leads to
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Fig. 1. Left: the DFA A. Middle: the automaton B constructed by reversal and power-
set construction from A, i.e., B = P(AR). For instance, the initial state of B is
{1, 3, 4} simply referred to as p, which has an a-transition to state {0, 1, 2, 3, 4} =⋃

x∈{1,3,4} δ(x, a) and a b-transition to {1} =
⋃

x∈{1,3,4} δ(x, b). The former state is

abbreviated by q and the latter one by r. State s represents the set {0}, and t stands
for the empty set ∅. Right: the minimal DFA Amin for the language L(A), constructed
from B by computing P (BR). For instance, the state qs is an abbreviation for the
subset (state) {q, s}.

the non-accepting state q. Instead of s, we could also choose p or r from qs1 pqr
to distinguish these states with the words λR = λ or bR = b, respectively. ��

3 Deciding E-Equivalence of States in P(AR)

Before we continue our investigations we need some notation, which was intro-
duced in [10], and covers some well-known equivalence concepts. Let E ⊆ Σ∗
be called the error language. Then two languages L,M ⊆ Σ∗ are E-equivalent,
denoted by L ∼E M , if and only if their symmetric difference lies in E, i.e.,
L1M ⊆ E. Obviously, the notion of E-equivalence naturally carries over to
finite automata and states; two finite automata A and B are E-equivalent, for
short A ∼E B, if and only if L(A) ∼E L(B) is satisfied, and two states p
and q of an automaton A are E-equivalent, referred to p ∼E q, if and only if
L(pA) ∼E L(qA) holds.

To extend Brzozowski’s minimization algorithm, our first goal is to decide
for two given states S, T of P(AR) and an error language E, whether S ∼E T
holds. The following lemma describes the connection between words accepted
from states in P(AR), and words leading to states in A. Due to space limitations
most of the proofs are omitted.

Lemma 3. Let A = (Q,Σ, δ, q0, F ) be a DFA and let B = (QB, Σ, δB, F, FB) be
the power-set automaton of the reverse of A, i.e., B = P(AR). Then L(SB) =⋃

q∈S L(Aq)
R, for all states (sets) S ∈ QB, and the union is disjoint. Further,

for all states S, T ∈ QB, we have L(SB)1L(TB) =
⋃

q∈S�T L(Aq)
R. ��
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This lemma also holds if the power-set automaton B = P(AR) is defined such
that QB = 2Q, even if not all subsets of Q are reachable in B. From this lemma
one can easily conclude the following statement, which can also be used to prove
Theorem 1.

Corollary 4. Let A = (Q,Σ, δ, q0, F ) be a DFA where all states are reachable,
that is, L(Aq) �= ∅, for every q ∈ Q. Then P(AR) is a minimal DFA. ��

Corollary 4 implies that P([P(AR)]R) is a minimal DFA, because the “inner”
automaton P(AR) has no unreachable states. If we leave out the precondition
in Corollary 4, that all states in A are reachable, then the resulting DFA is
not necessarily minimal, because it may contain distinct states S and T which
are not distinguishable. In this case the symmetric difference L(SB)1L(TB) =⋃

q∈S�T L(Aq)
R of the sets of words accepted from states S and T must be

empty, which means that all elements q ∈ S1T satisfy L(Aq)
R = ∅. In other

words, distinct but equivalent states S and T may only differ in elements q which
are non-reachable states of A. In this way, we can syntactically check, whether
or not two states are equivalent: if they differ in an element, which is reachable
in A, then they are not equivalent, otherwise they are equivalent. This idea can
be adapted also to the general notion of E-equivalence. The next statement is
the main lemma of this section.

Lemma 5. Let A be a DFA with state set Q and input alphabet Σ. Further as-
sume E ⊆ Σ∗, and let S and T be two states of B = P(AR). Then S ∼E T if and
only if S1T ⊆ QA(E

R), i.e., if and only if L(Aq) ⊆ ER, for all
q ∈ S1T . ��

Since classical equivalence allows no “errors,” two states S and T are equivalent
if they are E-equivalent for E = ∅, i.e., if S ∼∅ T . Then Lemma 5 states that S
and T are equivalent, if and only if L(Aq) ⊆ ∅R = ∅, i.e., q is not reachable, for
all elements q ∈ S1T . Since Brzozowski’s minimization algorithm assumes that
the power-set construction does not produce unreachable states, it immediately
follows that no two states S, and T in the resulting DFA can be equivalent.

In the classical setting two equivalent states in a DFA can always be merged,
and the resulting DFA is still equivalent to the original one. For a DFA A =
(Q,Σ, δ, q0, F ), two of its states p, q ∈ Q, and an error language E ⊆ Σ∗, we
say that p is E-mergeable to q, if L(A) ∼E L(A

′), where A′ results from A
by merging state p to state q, in the following way: A′ = (Q \ {p}, Σ, δ′, q′0,
F \ {p}), with

δ′(r, a) =

{
q if δ(r, a) = p,

δ(r, a) otherwise,
and q′0 =

{
q if q0 = p,

q0 otherwise.

The following result characterizes E-mergeability of states in terms of languages
related to these states.Weuse the following notation: for aDFAA=(Q,Σ, δ, q0, F ),
a state r ∈ Q, sets of states S, T ⊆ Q, and L = L(A), let rL

T
S be the set of words

that lead from state r to some state s ∈ S, while only reaching states in T in
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between. IfS = {s} is a singleton set, we omit the set braces, andwrite qL
T
s instead

of qL
T
{s}.

Lemma 6. In a DFA A, with L(A) = L, the state p is E-mergeable to state q

if and only if [pL
Q
F ]1[(qL

Q\{p}
p )∗ · qLQ\{p}F ] ⊆

⋂
u∈q0L

Q\{p}
p

u−1E. ��

For E-minimization in general, the approach of merging states in order to obtain
an E-minimal automaton does not always work, as the upcoming Theorem 7
shows. Concerning the complexity of the E-minimization problem for DFAs, it
is shown in [10] that this problem is NP-complete.

Theorem 7. There is no algorithm that, for any two given DFAs A and AE,
computes an E-minimal DFA B for the language L(A) by merging states of A,
where E = L(AE). This even holds for a fixed and finite set E. ��

Nevertheless, for some error sets, minimization can be done by state merging
algorithms. This gives rise to the following question: Is there a precise character-
ization, for which error sets E state-merging algorithms that compute E-minimal
DFA representations exist? We have to leave open the answer to this question.

4 Applications

In this section, we present three modifications of Brzozowski’s minimization
algorithm that allow us to compute hyper-minimal DFAs, minimal determin-
istic finite cover automata, and k-minimal DFAs. All three automata models
share that there is no unique (up to isomorphism) minimal automaton any-
more, nevertheless these minimal automata can be computed efficiently by state
merging algorithms in O(n logn) time for hyper-minimization [8,11] and cover-
minimization [14], and in time O(n log2 n) for k-minimization [8,9]. The herein
presented algorithms are comparable in running time to Brzozowski’s minimiza-
tion algorithm, and thus, have an exponential running time, due to the power-set
construction.

4.1 A Brzozowski-Like Algorithm for Hyper-Minimizing DFAs

A finite automaton is hyper-minimal if every other automaton with fewer states
disagrees on acceptance for an infinite number of inputs. In [2] basic properties
of hyper-minimization and hyper-minimal DFAs were investigated, and it was
shown that a hyper-minimal DFA can be obtained from a given DFA by merging
every preamble state p to an almost-equivalent state q, where p is not reachable
from q. Here the set of preamble states, pre(A), are the states that are reachable
from the initial state of A by a finite number of inputs only, and the kernel
states, ker(A), are the states that are reached by an infinite number of inputs.
Further, two states p and q of A are almost-equivalent, p ∼ q, if L(pA)1L(qA)
is finite—if A has n states, then p and q are almost-equivalent if and only if they
areΣ≤n equivalent [9]. Thus, Lemma 5 implies that two states S and T of P(BR),
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Algorithm 1. Brzozowski-like algorithm for hyper-minimizing finite automata.

Require: a DFA or NFA A = (Q,Σ, δ, q0, F )

1: construct B = P(AR)
2: identify preamble and kernel states of B
3: construct A′ = P(BR)
4: identify preamble and kernel states of A′

5: compute topological order ≺ of preamble states of A′

6: for all preamble states S of A′ do
7: find T �= S such that S�T ⊆ pre(B), and T ∈ ker(A′) or S ≺ T
8: if T exists then
9: merge S to T
10: return A′

for some n-state DFA B with state set Q, are almost-equivalent if and only
if S1T ⊆ QB(Σ

≤n) = pre(B), i.e., if and only if the symmetric difference S1T
consists only of preamble states of B. So if there is an element q ∈ S1T , which
is a kernel state of B, then S and T are not almost-equivalent, and vice versa.
We summarize this in the following lemma.

Lemma 8. Let B be an n-state DFA with state set Q, and let S and T be two
states of P(BR). Then S ∼ T if and only if S1T ⊆ Q(Σ≤n), i.e., if and only
if all states in S1T are preamble states of B. ��

So, if we use Brzozowski’s algorithm on some finite automaton A, we can first
build the DFA B = P(AR), now mark the preamble and kernel states of B, and
then continue by constructing the (minimal) DFA A′ = P(BR). We can now use
Lemma 8 to check which states in A′ are almost-equivalent. This gives rise to
Algorithm 1 for hyper-minimizing finite automata.

Theorem 9 (Brzozowski-Like Hyper-Minimization). Given a (determin-
istic or nondeterministic) finite automaton A, then Algorithm 1 computes a
hyper-minimal DFA A′ for the language L(A) in exponential time. ��

The identification of preamble and kernel states in the automata B and A′ can
be done on-the-fly during the power-set construction, e.g., by using Tarjan’s
algorithm to identify strongly connected components. Also the topological or-
dering of the preamble states of A′ can by computed during the second power-set
construction. In order to find an appropriate state T in line 7, one could sim-
ply cycle through all states of A′ and check whether the desired properties are
present. But we do this in a more clever way, by using a hash table H , which
gets initialized before the for all loop. The entries of H are states of A′ (sets of
states of B), and they are indexed by their subset of kernel states of B. Since all
states in A′ that are equivalent to some state S have the same subset of kernel
elements from B, namely K = S \ pre(B), the entry H [K] = S is a represen-
tative of the almost-equivalence class of state S. The initialization of H , which
will be described in a few lines, assures that H [K] is always a state to which
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other almost-equivalent (preamble) states of A′ can be merged: preferably H [K]
is a kernel state of A′, but if there is no kernel state in the almost-equivalence
class of H [K], then H [K] is a preamble state that has a maximal index in the
topological order ≺ among all states that are almost-equivalent to H [K], i.e.,
no other almost-equivalent preamble state can be reached from it. The initial-
ization of H can be done as follows: for all kernel states P of A′ we construct
the set K = P \ pre(B), and if H [K] is not yet defined, then we set H [K] = P .
Then for all preamble states P of A′ we construct the set K = P \ pre(B), and
if H [K] is not defined, or if H [K] = P ′ for some preamble state P ′ ≺ P , then
we set H [K] = P . In this way, the entry H [K] is either a kernel state, or a
“maximal” preamble state. Now the search in line 7 for a state T , to which the
preamble state S could be merged, can be done as follows. We compute the set
of critical states K = S \pre(B) and check, whether the entry H [K] in the hash
table H is defined. If H [K] is not defined, or if H [K] = S, then no appropriate
set T is found, otherwise we have T = H [K].

We illustrate the algorithm with the following example.

Example 10. Consider again the DFAs A, B = P(AR), and A′ = P(BR) from
Example 2. The DFA A′ is also depicted on the left-hand side of Figure 2.

q pq
a

b a

b

Fig. 2. The hyper-minimal DFA
Ahypermin for the language L(A)

The kernel states in B are q and t, and the
preamble states in B are p, r, and s. The
kernel states in A′ are {q} and {p, q}. If we
assume that in the initialization of the hash
table H the kernel state {q} is processed be-
fore the other kernel state {p, q}, then H has
the entry H [{q}] = {q}. Since q is the only
element from the two preamble states of A′,
that is not in pre(B), no further entry is made
in H . The topological order of the preamble
of A′ would be {q, s} ≺ {p, q, r}.

Assume that in the for all loop we first process the preamble state S =
{q, s}. We find an appropriate state T by constructing K = S \ pre(B) = {q},
and obtain T = H [K] = {q}. Thus, we merge {q, s} to state {q}—note that this
has the effect that the new initial state is now {q}. Now we process the next
preamble state S′ = {p, q, r}: again we obtain K ′ = S′ \ pre(B) = {q}, so we
also merge state {p, q, r} to state H [K ′] = {q}. Since no further preamble states
in A′ are left, the algorithm terminates, and we obtain the hyper-minimal DFA,
which is depicted on the right-hand side of Figure 2. ��

4.2 A Brzozowski-Like Algorithm for Minimal Cover Automata

Complementary to almost-equivalence, which is Σ≤n-equivalence, the concept
of cover automata can be seen as E-equivalence of automata with E = Σ>k,
for some natural number k, called the cover length. A finite automaton is cover-
minimal (w.r.t. number k) if every other automaton with fewer states disagrees
on acceptance for at least one input when considering only words up to length k.



Brzozowski’s Minimization Algorithm—More Robust than Expected 189

Algorithm 2. Brzozowski-like algorithm for finding minimal cover automaton

Require: a DFA or NFA A = (Q,Σ, δ, q0, F ), integer k ≥ 1

1: construct B = P(AR)
2: for all i = 0, 1, . . . , k do
3: compute QB(Σ

>i)
4: construct A′ = P(BR)
5: for all states S of A′ (in BFS visit order) do
6: let m = levelA′(S)
7: find T �= S such that S�T ⊆ QB(Σ

>k−m)
8: if T exists then
9: merge S to T
10: return A′

The basic properties of cover-minimization and cover-minimal DFAs were stud-
ied in [5], where it was shown that a cover-minimal DFA can be obtained by
merging similar states (the direction of merging depends on the levels of the
states). Here two states p and q of a DFA A with m = max(levelA(p), levelA(q)),
where levelA(p) = min{ |w| | w ∈ L(Ap) }, are similar (w.r.t. cover length k),
denoted by p ≈A,k q, if and only if L(pA) ∩ Σ≤k−m = L(qA) ∩ Σ≤k−m. If the
automaton A and the integer k are clear from the context we omit them and
write level(p) for levelA(p), and p ≈ q for p ≈A,k q. One can see that p and q are
similar if and only if they are Σ>k−m-equivalent. If we consider states S, T ⊆ Q
in a power-set automaton P(BR), where Q is the state set of a DFA B, Lemma 5
implies that S and T are Σ>k-equivalent if and only if S1T ⊆ Q(Σ>k). This
means that levelB(q) > k, for all elements q in the symmetric difference of S
and T . Thus, we obtain the following lemma.

Lemma 11. Let B be a DFA with state set Q, and let S and T be two states
of A′ = P(BR) with m = max(levelA′(S), levelA′(T )). Further, let k be an inte-
ger. Then S ≈ T (w.r.t. cover length k) if and only if S1T ⊆ Q(Σ>k−m), i.e.,
if and only if levelB(p) > k −m, for all p ∈ S1T . ��

This allows us to use the following algorithm for constructing a cover-minimal
DFA, i.e., aΣ>k-minimal DFA, similar to Brzozowski’s minimization algorithm—
see Algorithm 2. Given a DFA A and a cover length k, construct the DFA B =
P(AR), and compute the sets QB(Σ

>i), for 0 ≤ i ≤ k, by computing the levels
of the states in B. Then construct the DFA A′ = P(BR), and mark each state S
in A′ with levelA′(S). Finally merge state S to state T , wheneverm = levelA′(S),
and S1T ⊆ QB(Σ

>k−m).

Theorem 12 (Brzozowski-Like Cover-Minimization). Given a (determin-
istic or nondeterministic) finite automaton A, and an integer k, then Algorithm 2
computes a cover-minimal DFAA′ for the language L(A) in exponential time. ��

The levels of the states of the automata B = P(AR) and A′ = P(BR) can easily
be computed on-the-fly, if both power-set constructions are implemented as a
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breadth-first search. Further, this also allows us to perform the state merging
already during the second power-set construction: as soon as we discover a state S
on level m, that is Σ>k−m-equivalent to some previously discovered state T ,
we can merge S to T . Note that this is different from the hyper-minimization
algorithm in Subsection 4.1, where we do not start the merging before the whole
state graph of A′ = P(BR) is discovered.

The search in line 7 for a previously discovered state T , to which a newly
discovered state S in A′ = P(BR) could be merged, can be done by cycling
through all states of A′. But again, this can be done more cleverly by using
hash tables, similar as in the previous Subsection 4.1. This time we need several
hash tables H0, H1, . . . , Hk, since we also work with several relations, depending
on the level of the currently processed state. An entry Hi[K] = T means that
T \ QB(Σ

>i) = K, so if we have some other state S, with S \ QB(Σ
>i) = K,

then we know that S ∼E′ T , for E′ = Σ>i. We initialize and use these hash
tables as follows. Whenever a state S with m = levelA′(S) is discovered, we
compute the set of critical states K = S \QB(Σ

>k−m) and check, whether there
exists an entry Hk−m[K] in the hash table Hk−m for key K. If Hk−m[K] = T ,
then we merge S to T , because we know that levelA′(S) ≥ levelA′(T ), since we
discovered T before S, and we also know that T \Q(Σ>k−m) = K, so S1T ⊆
QB(Σ

>k−m). If Hk−m[K] is not defined yet, then we assign Hi[S \Q(Σ>i)] = S,
for 0 ≤ i ≤ k −m. Compared to Brzozowski’s minimization algorithm, the only
additional resources we need are the k + 1 hash tables H0, H1, . . . , Hk.

We illustrate the algorithm with the following example.

Example 13. Consider again the DFAs A, B = P(AR), and A′ = P(BR) from
Example 2—the DFA A′ is also depicted on the left-hand side of Figure 3.

qs pqra

b a, b

Fig. 3. The minimal cover DFA
Acover for the language L(A)∩Σ≤2

Assume we want to find a minimal cover au-
tomaton for A, with cover length k = 2,
i.e., a minimal cover DFA for L(A) ∩ Σ≤2.
The sets QB(Σ

>i), for 0 ≤ i ≤ k are
QB(Σ

>0) = {q, r, s, t}, QB(Σ
>1) = {s, t},

and QB(Σ
>2) = ∅. In the for all loop we

first process the initial state S = {q, s} on
level 0. The set of critical states is K =
S \ QB(Σ

>2) = {q, s}. Since all hash tables
are still empty, we do not find an appropriate
state T , and so we set Hi[S \QB(Σ

>i)] = S,
for 0 ≤ i ≤ 2, which gives H0[∅] = {q, s}, H1[{q}] = {q, s}, and H2[{q, s}] =
{q, s}. Assume that from the two states in A′ on level 1, we first process
state S = {p, q, r}. The critical states are K = S \ QB(Σ

>1) = {p, q, r}.
Since H1[K] is not defined, we do not find an appropriate state T and add the
entriesHi[S\QB(Σ

>i)] = S, for 0 ≤ i ≤ 1 to the hash tables:H0[{p}] = {p, q, r},
and H1[{p, q, r}] = {p, q, r}. Next, we process state S = {q} on level 1, where
the critical states are K = S \QB(Σ

>1) = {q}. Now we find a matching entry
in the hash table Hk−m = H1, namely T = H1[{q}] = {q, s}. This means, that
we merge state S = {q} to state T = {q, s}. Since now state {q} no longer
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exists in A′, we do not have to explore the state graph “behind” {q} any fur-
ther, but we still process the remaining state {p, q}, because it gets discovered
from state {p, q, r}. So now we have S = {p, q} on level 2, with the set of crit-
ical states K = S \ QB(Σ

>0) = {p}. In the corresponding hash table H0 we
find the entry T = H0[{p}] = {p, q, r}, so we merge state S = {p, q} to the
state T = {p, q, r}. Since we processed all states in A′, the algorithm terminates,
and we obtain the minimal cover DFA for L(A)∩Σ≤2, which is depicted on the
right-hand side of Figure 3. ��

4.3 A Brzozowski-Like Algorithm for k-Minimization

In this last subsection we discuss k-minimization [8,9], which is closely related
to hyper-minimization, and complementary to cover-minimization. A finite au-
tomaton is k-minimal if every other automaton with fewer states disagrees on
acceptance for at least one input of length at least k. In [9] a simple algo-
rithm for k-minimization of DFAs is presented. Again, it is shown that the
minimization can be done by merging states which are k-similar to each other,
a relation that is complementary to the similarity relation used for minimizing
cover automata. Two states p and q of a DFA A are k-similar [9], p ∼k q, if
d(p, q) + min(k, in-level(p), in-level(q)) ≤ k. Here the in-level of a state is the
length of the longest word leading to that state—the in-level is ∞, if the state
is a kernel state, and d(p, q) = min{ � | L ∩ Σ≥� = L′ ∩ Σ≥� }, which is one
plus the length of the longest word that distinguishes between p and q—and
if p ≡ q, then d(p, q) = 0. One can see that p and q are k-similar if and only
if they are Σ<k−m-equivalent, where m = min(k, in-level(p), in-level(q)), thus,
Lemma 5 implies the following characterization.

Lemma 14. Let B be a DFA with state set Q, and let S and T be two states
of A′ = P(BR), with m = min(k, in-levelA′(S), in-levelA′(T )). Further let k be
an integer. Then S ∼k T if and only if S1T ⊆ Q(Σ<k−m), i.e., if and only if
in-levelB(p) < k −m, for all p ∈ S1T . ��
As discussed in [9], the k-minimal DFA can be obtained by merging k-similar
states, where the state with the lower in-level has to be merged to the state
with the higher in-level. This enables us to use the following modification of
Algorithm 2 for k-minimization: (i) instead of Σ>i, and Σ>k−m in lines 3, and 7,
we use Σ<i, and Σ<k−m, respectively; (ii) instead of level in line 6, we use
in-level; and (iii) in the for all loop in line 5 we only consider states S of A′

with in-levelA′(S) < k.

Theorem 15 (Brzozowski-Like k-Minimization). Given a (deterministic
or nondeterministic) finite automaton A, and an integer k, then Algorithm 2
with the above mentioned modifications computes a k-minimal DFA A′ for the
language L(A) in exponential time. ��
The computation of the in-levels, and of the sets QB(Σ

<i) can be done by a
depth-first search algorithm on the reverse of the underlying state graph. The
search for an appropriate state T to which a state S can be merged can be
implemented with the help of hash tables, as in the case of cover automata.
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Abstract. We address several types of decision questions related to
context-free languages when an NPDA is given as input. First we con-
sider the question of whether the NPDA makes a bounded number of
stack reversals (over all accepting inputs) and show that this problem
is undecidable even when the NPDA is only 2-ambiguous. We consider
the same problem for counter machines (i.e., whether the counter makes
a bounded number of reversals) and show that it is also undecidable.
On the other hand, we show that the problem is decidable for unam-
biguous NPDAs even when augmented with reversal-bounded counters.
Next, we look at problems of equivalence, containment and disjointness
with fixed languages. With the fixed language L0 being one of the fol-
lowing: P = {x#xr | x ∈ (0 + 1)∗}, Pu = {xxr | x ∈ (0 + 1)∗}, Dk

= Dyck language with k-type of parentheses, or Sk = two-sided Dyck
language with k types of parentheses, we consider problems such as: ‘Is
L(M) ∩ L0 = ∅?’, ‘Is L(M) ⊆ L0?’, or ‘Is L(M) = L0?’, where M is an
input NPDA (or a restricted form of it). For example, we show that the
problem, ‘Is L(M)∩ P ?’, is undecidable when M is a deterministic one-
counter acceptor, while the problem ‘Is L(M) ⊆ P ?’ is decidable even
for NPDAs augmented with reversal-bounded counters. Another result
is that the problem ‘Is L(M) ⊆ Pu?’ is decidable in polynomial time
for M an NPDA. We also show several other related decidability and
undecidability results.

Keywords: Context-free language (CFL), nondeterministic pushdown
automaton (NPDA), counter acceptor, 1-reversal counters, palindromes,
Dyck language, decidable, undecidable.

1 Introduction

Decision problems for context-free languages have been extensively studied be-
cause of their wide-ranging applications such as parsers for programming lan-
guages, XML, natural languages and even in biological modeling such as RNA
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folding patterns [9], [3], etc. In this work, we consider decision problems for
various restricted classes of NPDAs. In an earlier paper [13], we considered sev-
eral questions related to bounded context-free languages and their connection to
reversal-bounded NPDAs. Specifically we showed that the number of reversals
necessary and sufficient to accept a k-bounded language is 2k − 3. This study
naturally led to decision questions such as, given an NPDA or a nondeterminis-
tic counter acceptor (NCA) M , and given a k (resp., for some k) whether every
string in L(M) has an accepting computation in which the stack (or counter)
makes at most k reversals. We show that this problem is undecidable even when
the NPDA is 2-ambiguous. It is also undecidable for an NCA, which is no longer
assumed to be finitely ambiguous. On the other hand, we show that the problem
is decidable for unambiguous NFAs even when augmented with reversal-bounded
counters. Note that our problems are different than previously studied questions
(see, e.g., [4]), where it was required that in all computation paths, accepting or
not, the stack (or counter) makes at most k reversals (or turns in the terminology
of [4]).

We also consider the problems of containment, equivalence and disjointness in
which one of the languages is fixed and the other one is an unrestricted NPDA (or
a restricted NPDA such as a counter machine or an extended model of NPDA
augmented with reversal-bounded counters). Some of the results are counter-
intuitive. For example, let P (Pu) be the set of palindromes with a marker
(with no marker) separating the left and right half of the string. We show that
the problem of determining if L(M) is disjoint from P (Pu) for an input M is
undecidable even if M is restricted to be a deterministic one-counter acceptor
(DCA). However, the containment problem, ‘Is L(M) ⊆ P?’ (‘Is L(M) ⊆ Pu?’),
is decidable. We also show that the question, ‘Is L(M) = P?’, is decidable
if M is an unrestricted NPDA. We show, based on recent results in [1], that
the containment problem, ‘Is L(M) ⊆ Pu?’, is decidable in polynomial time
(although the equivalence problem, ‘Is L(M) = Pu?’, remains open). Regarding
Dyck (Dk) and two-sided Dyck (Sk) languages: we show that the the equivalence
problem, ‘Is L(M) = Sk?’, is undecidable (even for k = 1), while the problem,
‘Is L(M) = Dk?’, is open.

NOTATION. We will use the following notation throughout the paper:

1. NPDA = nondeterministic pushdown automaton
2. DPDA = deterministic pushdown automaton
3. NCA = NPDA that uses only one stack symbol in addition to the bottom

of the stack, which never altered (thus, the stack is a counter)
4. DCA = deterministic NCA
5. NFA = nondeterministic finite automaton
6. DFA = deterministic finite automaton
7. An NPCM M is an NPDA augmented with multiple 1-reversal counters

which are initially set to zero. At each step, every counter can be incremented
by 1, decremented by 1, or left unchanged, and can be tested for zero. A zero
counter cannot be decremented.M is a 1-reversal machine in that it has the
property that once a counter is decremented, it can no longer be incremented.
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An NFCM (resp., DFCM) is an NFA (resp., DFA) augmented with multiple
1-reversal counters. For m ≥ 0, NPCM(m) (resp., NFCM(m), DFCM(m))
is an NPCM (resp., NFCM, DFCM) with m 1-reversal counters.

8. CFG = context-free grammar
9. CFL = context-free language
10. An acceptor is k-ambiguous (k ≥ 1) if every input can be accepted in at

most k distinct computations (note that 1-ambiguous is the same as unam-
biguous). It is finitely ambiguous if it is k-ambiguous for some k.

We will need the following result from [11]:

Theorem 1. The following problems are decidable for an NPCM M : (a) Is
L(M) = ∅? (b) Is L(M) infinite?

2 Undecidability of Reversal Bounds

In this section, we look at the question of whether or not an NPDA (NCA) has
a reversal-bounded stack (counter).

An NPDA (NCA) M is k-reversal if for every string accepted by M , there
is an accepting computation in which the stack (counter) makes no more than
k reversals. M is finite-reversal if it is k-reversal for some k. We will need the
following lemma.

Lemma 1. Let S = {ai1bai1+i2 · · · bain−2+in−1bain−1 | n ≥ 2, i1, . . . , in−1 ≥ 1}.
Note that S = Sr.

1. S can be accepted by a deterministic counter automaton (DCA).
2. Any NPDA (hence, any NCA) accepting S is not finite-reversal.

Proof. Clearly, S can be accepted by a DCA. Now suppose S can be accepted
by an NPDA M that is r-reversal for some r. Let n be such that 2n − 3 > r
and Rn = (a+b)n−1. Rn is regular and can be accepted by a DFAM ′. Construct
from M and M ′ an r-reversal NPDA M ′′ accepting L(M) ∩ L(M ′). Clearly
L(M ′′) = {ai1bai1+i2 · · · bain−2+in−1bain−1 | i1, i2, . . . , in−1 ≥ 1}.

Now let a1, . . . , an be distinct symbols. We construct fromM ′′ another NPDA
M ′′′ to accept the languageL2 = {ai11 ai1+i2

2 · · ·ain−2+in−1

n−1 a
in−1
n | i1, i2, . . . , in−1 ≥

1}, which makes no more than r reversals. ¿From the proof of Theorem 5 in [16],
L2 cannot be accepted by any NPDA in less than 2n−3 reversals. But, 2n−3 > r,
a contradiction. ��

Theorem 2. The following problems are undecidable for a 2-ambiguous NPDA
M :

1. Given M and k ≥ 1, is M k-reversal?
2. Given M , is M k-reversal for some k ≥ 1?
3. Given M does there exist an NPDA M ′ (which need not be finitely ambigu-

ous) that is k-reversal for a given k ≥ 1 (resp., k-reversal for some k ≥ 1)
such that L(M ′) = L(M)?
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Proof. We will use the undecidability of the halting problem for Turing machines.
Let T be an arbitrary Turing machine. The (unique) halting computation of T on
blank tape, if it exists, can be described by a sequence of instantaneous descrip-
tions H(T ) = I1#I2# . . .#Im, where I1 is the initial instantaneous description
of T , Im is a halting instantaneous description of T , and Ij+1 follows from Ij in
one step for j = 1, 2, . . . ,m− 1. Let Σ be set of symbols that can occur in H(T )
and a, b, c be new symbols. Define L = L1 ∪ L2 where
L1 = {xcycz | x, y ∈ Σ+, z ∈ (a+ b)+, y �= xr} and
L2 = {xcxrcz | x = H(T ), z ∈ S}

where S is the language in Lemma 1. Note that L2 = ∅ if and only if the TM
does not halt on blank tape.

We can design a 2-ambiguous NPDA M that accepts L as follows. M non-
deterministically verifies one of the following two processes when given input w,
which we may assume has the form xcycz, where x, y ∈ Σ+ and z ∈ (a + b)+

(since this format can be checked by the finite control):

(a) M checks and accepts w if it is in L1. Clearly,M can do this deterministically
by making only one stack reversal.

(b) M assumes that in w, y = xr (Note that if, in fact, y �= xr, w would be
accepted in process (a).) M checks deterministically that x = H(T ) using
only one stack reversal by reading the input segment before the second c,
i.e., the segment xcxr = I1#I2# · · ·#Im−1#ImcI

r
mI

r
m−1# · · ·#Ir2#Ir1 . This

checking is done as follows: M reads the string I1#I2# · · ·#Im−1#Im and
stores it in the stack, and pops Im. Then M reads cIrmI

r
m−1# · · ·#Ir2#Ir1

while popping the stack and checks that Ij+1 is the valid successor of Ij for
1 ≤ j ≤ m− 1 (i.e., I1#I2# · · ·#Im = H(T )). If x = H(T ), M then checks
and accepts if z ∈ S. Since S can be accepted by a DCA (by Lemma 1), M
can do this deterministically. If x �= H(T ), M rejects.

Since processes (a) and (b) are deterministic, M is 2-ambiguous. Clearly, if T
does not halt on blank tape, thenM only makes one reversal on the stack. On the
other hand, if T halts on blank tape, then there is a unique halting computation
x0 = H(T ) of T . Then for any z ∈ (a + b)+, x0cx

r
0cz will not be accepted via

process (a). However, for any z ∈ S, x0cxr0cz will be accepted via process (b). We
claim that L(M) cannot be accepted by any finite-reversal NPDA. For suppose
L(M) can be accepted by some k-reversal NPDA M ′. Then we can construct
from M ′ another NPDA M ′′ accepting S as follows: M ′′ on input z in (a+ b)+

simulates the computation of M ′ on x0cx
r
0cz but simulates movements of the

input head on the initial segment x0cx
r
0c in the finite control. Then S can be

accepted by a k-reversal NPDA, a contradiction by Lemma 1.
Items (1), (2), and (3) of the theorem follow from the above discussion. ��

We have a similar result for NCAs.

Theorem 3. The following are undecidable for an NCA M (which is no longer
assumed to be finitely ambiguous):

1. Given M and k ≥ 1, is M k-reversal?
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2. Given M , is M k-reversal for some k ≥ 1?
3. Given M does there exist an NCA M ′ that is k-reversal for a given k ≥ 1

(resp., k-reversal for some k ≥ 1) such that L(M ′) = L(M)?

Proof. Again, we will use the undecidability of the halting problem for Turing
machines on blank tape. Using the notation in the proof of the previous theorem,
let

L = {xcz | x ∈ Σ+, x �= H(T ), z ∈ (a+ b)+} ∪ {xcz | x ∈ Σ+, z ∈ S}

where S is the language in Lemma 1. L can be accepted by an NCA M as
follows: On input xcz, M nondeterministically verifies one of the following two
possibilities:

1. x �= H(T ): either x is not well-formed, or I1 is not the initial ID, or Im is
not a halting ID, or Ij+1 does not follow from Ij in one step for some j. The
first three conditions can be checked with a DFA. The last condition can be
checked by guessing j and guessing the location where Ij and Ij+1 do not
agree using one reversal of the counter. Since the number of candidates for
j depends on m, M is not finitely ambiguous.

2. z is in S.
Since S can be accepted by a DCA (by Lemma 1), M can easily check this
deterministically.

If T does not halt on blank tape, then any input that is accepted via a computa-
tion of type (2) above is also accepted by a computation of type (1), and hence
M is 1-reversal.

On the other hand, if T halts on blank tape, then there is a unique halting
computation x0 of T . Then for any z ∈ (a + b)+, x0cz will not be accepted
via a computation of type (1). However, for any z ∈ S, x0xz will be accepted
by a computation of type (2). Hence, M will be unbounded-reversal. It follows
that M is finite-reversal iff it is 1-reversal iff T halts on blank tape. We also
note that in the case when M is not finite-reversal, there is no NCA M ′ that is
finite-reversal that will accept L(M). Otherwise, we can construct fromM ′ (and
x0), another NCA M

′′ that will accept S, a contradiction by Lemma 1. ��

Remark: In the statement of Theorem 2, we assumed that k ≥ 1, because the
proofs only worked for this case. When k = 0, we have:

1. It is decidable, given an NPDA (hence, also an NCA) M (which may be
of unbounded ambiguity), whether it is 0-reversal. This is because we can
construct an NFA M ′ which, on any input, simulates M and accepts if
M accepts and during the computation, the stack does not reverse. Ob-
viously, L(M ′) ⊆ L(M). Hence, M is 0-reversal iff L(M) ⊆ L(M ′) iff
L(M) ∩ L(M ′) = ∅, which is decidable.

2. It is undecidable, given an NPDA (resp., NCA) M , whether there exists
another NPDA (resp., NCA) M ′ that is 0-reversal and L(M ′) = L(M).
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Note that for such an M ′, if it exists, L(M) is regular. The claim then
follows from the fact that it is undecidable, given an NCA (hence, also an
NPDA), whther the language it accepts is regular [5].

In contrast to Theorems 2 and 3 parts (1) and (2), for 1-ambiguous NPCM (i.e.,
NPDA with 1-reversal counters):

Theorem 4. It is decidable, given a 1-ambiguous NPCM M , whether M is
finite-reversal (resp., k-reversal for a given k ≥ 0).

Proof. GivenM , we construct another NPCMM ′ accepting L = {dm |m ≥ 0,M
makes at least m stack reversals on some input }. L can be accepted by an M ′

which, on unary input x = dm, simulates M by guessing some input y to M
symbol-by-symbol, and every time the stack makes a reversal, the input head of
M ′ moves one cell to the right. When x is exhausted,M ′ continues the simulation
(further guessing the symbols in y) and accepts if M accepts. Clearly, M is not
finite-reversal iff L is infinite, which is decidable by Theorem 1.

When k is given, M ′ operates as above and checks that the input dm has
length k + 1. Then M is not k-reversal iff L(M ′) �= ∅, which is decidable by
Theorem 1. ��

3 Palindromes

In this section, we study the disjointness, containment and equivalence problems
for NPDA’s when one of the languages is fixed: the set of marked palindromes
or the set of unmarked palindromes (these languages are fundamental CFLs).
Let Σ be an alphabet with at least two symbols, and # be a symbol not in Σ.
Define:
P = {x#xr | x ∈ Σ∗}
Pu = {xxr | x ∈ Σ∗}

Thus, P is the set of palindromes with a center marker, and Pu is the set of
unmarked palindromes. Clearly, P (resp., Pu) can be accepted by a 1-reversal
DPDA (NPDA).

Theorem 5. The following problems are undecidable:

1. Given a DCA M , is L(M) ∩ P = ∅?
2. Given a DCA M , is L(M) ∩ Pu = ∅?

Proof. We first prove part (1). The proof uses the undecidability of the halting
problem for 2-counter machines. A close look at the proof in [17] of the undecid-
ability of the halting problem for 2-counter machines, where initially one counter
has value d1 and the other counter is zero, reveals that the counters behave in
a regular pattern. The 2-counter machine operates in phases in the following
way. Let c1 and c2 be its counters. The machine’s operation can be divided into
phases, where each phase starts with one of the counters equal to some posi-
tive integer di and the other counter equal to 0. During the phase, the positive
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counter decreases, while the other counter increases. The phase ends with the
first counter having value 0 and the other counter having value di+1. Then in
the next phase the modes of the counters are interchanged. Thus, a sequence of
configurations corresponding to the phases will be of the form:

(q1, d1, 0), (q2, 0, d2), (q3, d3, 0), (q4, 0, d4), (q5, d5, 0), (q6, 0, d6), . . .

where the qi’s are states, with q1 the initial state, and d1, d2, d3, . . . are positive
integers. Note that the second component of the configuration refers to the value
of c1, while the third component refers to the value of c2. We assume, w.l.o.g.,
that d1 = 1.

Let T be a 2-counter machine. We assume that if T halts, it does so in a
unique state qh. Let T ’s state set be Q, and 1,# be new symbols.

In what follows, α is any sequence of the form I1I2 · · · I2m (thus we assume
that the length is even), where Ii = 1kq for some k ≥ 1 and q ∈ Q, represents a
possible configuration of T at the beginning of phase i, where q is the state and
k is the value of counter c1 (resp., c2) if i is odd (resp., even).

Define Lodd to be the set of all strings α such that

1. α = I1I2 · · · I2m;

2. m ≥ 1;

3. I1 = 1d1q1, where d1 = 1 and q1 is the initial state;

4. I2m = 1vqh for some positive integer v;

5. for odd j, 1 ≤ j ≤ 2m − 1, Ij ⇒ Ij+1, i.e., if T begins in configuration Ij ,
then after one phase, T is in configuration Ij+1;

Define Leven analogously except that the condition “Ij ⇒ Ij+1” now applies to
even values of j, 2 ≤ j ≤ 2m− 2.

Define the following languages:
L = {x#yr | x ∈ Lodd, y ∈ Leven}
P = {w#wr | w ∈ (Q ∪ {1})∗}

We can construct an NCA M accepting L as follows. Given input z, M ’s finite
control can check if z is well formed. So assume that z = x#yr.M checks that x
is in Lodd deterministically by simulating the 2-counter machine T as follows:M
reads x = I1I2 · · · I2m = 1d1q11

d2q2 · · · 1d2mq2m and verifies that d1 = 1, q1 is the
initial state, q2m is the halting state qh, and for odd j, 1 ≤ j ≤ 2m−1, Ij ⇒ Ij+1.
To check that Ij ⇒ Ij+1,M reads the segment 1djqj and stores 1dj in its counter
(call it c) and remembers the state qj in its finite control. This represents the
configuration of T when one of its two counters, say c1, has value dj , the other
counter, say c2, has value 0, and its state is qj . Then, starting in state qj , M
simulates the computation of T by decrementing c (which is simulating counter
c1 of T ) and reading the input segment 1dj+1 until c becomes zero and at which
time, the input head ofM should be on qj+1. Thus, the process has just verified
that counter c2 of T has value 1dJ+1, counter c1 has value 0, and the state is
qj+1.
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Similarly, M checks that y is in Leven, i.e., for even j, 2 ≤ j ≤ 2m − 2,
Ij ⇒ Ij+1. Now y

r = Ir2mI
r
2m−1 · · · Ir2 Ir1 = q2m1d2mq2m−11

d2m−1 · · · q21d2qd1
1 . So

to check that Ij ⇒ Ij+1, M reads the segment qj+11
dj+1 and stores 1dj+1 in

its counter c and remembers qj+1 in its finite control. Then, M verifies that
Ij ⇒ Ij+1 by reading the segment qj1

dJ while decrementing counter c.
Clearly, L ∩ P = L(M) ∩ P = ∅ iff T halts, which is undecidable.

The proof for part (2) is similar. The languages L and P now become:

L = {x##yr | x ∈ Lodd, y ∈ Leven}
Pu = {wwr | w ∈ (Q ∪ {1,#})∗}

So now, # is no longer a center marker. The rest the proof is the same as above.
��

The above result shows that it is undecidable, given a 1-reversal DPDA M1 and
a DCA M2, whether L(M1) ∩ L(M2) = ∅. It is also known that disjointness of
L(M1) and L(M2) is undecidable when both machines are DCAs [11]. On the
other hand, disjointness is decidable whenM1 is an NPCM andM2 is an NFCM,
since the intersection language can be accepted by an NPCM, and emptiness for
NPCMs is decidable by Theorem 1. Hence it is decidable, given an NFCM M ,
whether L(M) ∩ P = ∅ (resp. L(M) ∩ Pu = ∅).

Proposition 1. It is decidable, given an NPCM M and a language L whose
complement, L, can be accepted by an NFCM, whether L(M) ⊆ L.

Proof. Let L′ = L(M)∩L. Then L(M) ⊆ L if and only if L′ = ∅. Clearly, L′ can
be accepted by an NPCM, and the emptiness problem for NPCMs is decidable by
Theorem 1. ��

Corollary 1. It is decidable, given an NPCM M , whether L(M) ⊆ P (resp.,
whether L(M) ⊆ Pu).

Proof. This follows from Proposition 1, since P (resp., Pu) can be accepted by
an NFCM(1). ��

The converse of the above corollary is not true. In fact, we have:

Proposition 2. It is undecidable whether P ⊆ L(M) for M a DCA, DPDA, or
NPDA. The result also holds for Pu.

Proof. . It is sufficient to prove the result for M a DCA. Since DCA languages
are closed under complementation, let M ′ be a DCA accepting L(M). Then
P ⊆ L(M) if and only if P ∩ L(M) = ∅. The claim follows from Theorem 5.
Similar argument works for Pu. ��

Clearly, the question, Is P = L(M)?, is decidable for M a DCA (or NCA),
because the answer is always no, since P cannot be accepted by any NCA. It is
also decidable when M is a DPDA, since P can be accepted by a DPDA and
equivalence of DPDAs is decidable [18,19]. It is also decidable when M is an
NPDA, as the next theorem shows.
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Theorem 6. It is decidable, given a CFG G, whether L(G) = P .

Proof. First we check if L(G) ⊆ P . This is decidable by Corollary 1.
Now we show how to test if P ⊆ L(G) as follows. LetG=< Σ∪{#}, T, R, S >,

T is the set of non-terminals, S is the start symbol and R is the set of rules. Also
assume that G is in Chomsky Normal Form. (This is a valid assumption since
ε is not in L(G).) Assume that all the non-terminals are useful in that for each
A ∈ T , there is a string w ∈ Σ∗ such that S ⇒∗ αAβ ⇒∗ w for some w ∈ Σ∗.
In the following, lower case letters (e.g. w) denote terminal strings.

Define a non-terminal X ∈ T to be self-embedding if X ⇒∗ αXβ for some
α and β, (at least one of which is non-null) or X ⇒∗ αY β where Y is self-
embedding. We note that for every self-embedding variable A, if A⇒∗ w, then
w must include exactly one #. (Clearly it can’t include more than one; if it
includes less than one, then, we can use the following pumping argument: We
have S ⇒∗ α′Aβ′ ⇒∗ α′αnAβnβ′ ⇒∗ α′αnwβnβ′. Since w does not contain #,
it must be in one of the strings α′, α, β or β′. But this leads to a contradiction
by choosing two different values of n.

It follows that if X is a non-embedded variable, then the language L(X) =
{x | X ⇒∗ x} is finite. Now we describe an NFA M that accepts the language
{x|x#y ∈ L(G) for some y}. The NFA remembers one non-terminal in the finite
control during the simulation of the PDA. Initially, this symbol will be S. If the
current symbol it holds in finite-control is X , then M guesses a rule with X on
the left-hand side. Since G is in CNF, the rule will be either X → a for some
a ∈ Σ∪{#} or X → BC. In the former case, if a = #,M will accept, else it will
reject the input. In the latter case, at most one of the two variables B or C will
be self-embedding. (They both can’t be self-embedding as shown in the above
paragraph.) Suppose B is self-embedding. Then, it will simply switch X to B on
an ε move and continue the simulation. (Note that in this case it is discarding
C completely since the part of the string generated by C is to the right of the #
symbol and hence is irrelevant.) If C is the self-embedding variable, then L(B)
is finite, so M guesses one of the strings in L(B) and matches this string with a
prefix of the string on the input tape, and then remembers C in finite control.
This completes the description of one step of the simulation.M repeats this step
until it halts by accepting or rejecting as described above. It is easy to see that
L(M) = {x|x#y ∈ L(G) for some y}.

Next, we show that if a CFG G is such that L(G) ⊆ P , then, L(M) =
{x|x#y ∈ L(G) for some y} = Σ∗ if and only if P ⊆ L(G).

Let x be an arbitrary string in Σ∗. Then, x is in L(M). This means, there is
a y such that x#y is in L(G). By the hypothesis, y must be xr (else G would
generate a non-palindrome). Thus, x#xr is in L(G). The converse is obvious.

Thus, the problem of testing if P ⊆ L(G) reduces to checking if L(M) = Σ∗

which is clearly decidable. ��
Theorem 4.9 of Hunt and Rosenkrantz [10] which states that equivalence testing
for an input CFG G to a fixed, unbounded CFL L0 is PSPACE-hard. It is easy
to see that P is unbounded (e.g. using the equivalence between sparseness and
boundedness of CFL’s [12]). Thus the problem is PSPACE-hard. We believe
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that this problem is PSPACE-complete. We also do not know if the question
L(G) ⊆ P ? is decidable in polynomial time.

Now consider the language Pu. We know from Corollary 1 that it is decidable,
given an NPCM M , whether LM) ⊆ Pu. Interestingly, for the case when M is
an NPDA, containment in Pu is decidable in polynomial time, as shown in the
next theorem. To show this result, we will use a theorem due to [1]. We first
introduce some definitions from [1].

Let Σ be a finite alphabet. A semi-Thue system (or string rewriting system) is
a pair of generators and relators < Σ;R > where R is a finite subset of Σ∗×Σ∗.
The pair < Σ;R > is a monoid presentation. It defines a monoid M(R) which
is the quotient of Σ∗ by the congruence ∼R generated by the relators R. The
canonical morphism φR maps Σ∗ onto M(R) by assigning to each word its
congruence class. A pair (u, v) in R is denoted by u = v. A monoid is said to be
cancellative if xy = xz implies y = z and yx = zx implies y = z.

With a total order defined on the strings in Σ∗, we can define an ordered
version →R of relation R where u→Rv if (u, v) ∈ R and v < u.

A string rewriting system R is said to be complete if it has the property of
finite termination and confluence [2]. For such a string rewriting system, each
string x is equivalent to a unique reduced string denoted by RedR(x). It is easy
to check that x∼Ry if and only if RedR(x) = RedR(y).

A straight-line program (SLP) is a restricted context-free grammar G = <
Σ,S, P,N > such that for every X ∈ N , there exists exactly one production of
the form X → α is in P for α ∈ (Σ ∪N)∗, and there exists a linear order < on
the set of nonterminals N such that X < Y whenever there exists a production
of the form (X,α) ∈ P for α ∈ (N ∪Σ)∗Y (N ∪Σ)∗.

The following decision problems (with respect to a fixed, complete cancellative
rewriting system R) were introduced in [1]:

1. Compressed-equality problem: Takes as input two SLP’s S1 and S2 and re-
turns ‘yes’ (‘no’) if φR(s1) = φR(s2) where s1 (s2) is the unique string gen-
erated by S1 (S2).

2. Containment problem: Takes as input a CFG G (in Chomsky Normal Form)
and outputs ‘yes’ (‘no’) if L(G) ⊆ φ−1

R (1).

The following result was shown in [1].

Theorem 7. Containment problem is polynomial-time reducible to compressed-
equality problem.

Using the above result, we now show the following:

Theorem 8. It is decidable in polynomial time, given a CFG G, whether L(G) ⊆
Pu.

Proof. Let Σ be the alphabet over which Pu is defined. We note that the rewrit-
ing system R = aa→ ε for each a ∈ Σ defines the language Pu in the sense that
a string w ∈ Pu if and only if φR(w) = ε. Clearly R is finitely terminating since
every rewriting step reduces the length of the string by 2.
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To show that R is confluent, suppose x →R u, x →R v. We need to show
that there is a w such that u → w and v → w. Let S1 and S2 be the sets of
pairs of positions that were removed in x to generate u and v respectively. Thus,
for example, the rewrite aabbabaa → bbabaa corresponds to (1, 2). If S1 = S2,
then u and v are the same so we can choose w to be u (= v) and we are done.
Otherwise, define a set S3 = {p | p ∈ S1 or S2 but not both }. It can be checked
that applying S3 to u and v will result in a common string w that is the result of
applying S1∪S2 to the original string x. This proves that R a confluent rewriting
system.

Next we show that R is cancellative for which we need to show that if (xy, xz)
(or (yx, zx)) is in R, (y, z) is in R. Suppose (xy, xz) in R. This means xy has
been rewritten as xz. This implies that during the rewriting process, x has not
been affected by the rewriting. Thus it is clear that (y, z) is in R since we can
still apply exactly the rewriting rules on y to derive z.

Thus from Theorem 7, the containment problem L(G) ⊆ Pu reduces to
compressed-equality problem. To complete the proof, it is enough to show that
compressed equality problem is solvable for the rewriting system R, which we
do in the following. We can show this using the result of [15] that the com-
pressed equality problem is solvable in polynomial time for 2-homogeneous N -
free rewriting systems. A rewriting system is 2-homogeneous if the left-side of
all the rewrite rules in R have length 2 and this is clearly true for R. A rewriting
system is N -free if ac, ad, bc in the left-side of some rules of R, then bd should
be on the left-side of some rule. This condition is vacuously satisfied for R. This
completes the proof. ��

Our results give rise to the following interesting situations (where G is a CFG):

1. L(G) ⊆ P? is decidable but not known to be in polynomial time; P ⊆ L(G)?
is undecidable; L(G) = P? is decidable.

2. L(G) ⊆ Pu? is decidable in polynomial time; Pu ⊆ L(G)? is undecidable;
L(G) = Pu? is open.

4 Dyck and Two-Sided Dyck Languages

Here, we look at the question, L(M) ⊆ L0? and L(M) = L0, where L0 is either
the Dyck language Dk or the 2-sided Dyck language Sk, and M is an NPCM,
NFCM, or DFCM. (i.e., NPDA, NFA, DFA augmented with 1- reversal counters).

Let k ≥ 1, and Σk = {a1, . . . , ak, b1, . . . , bk}. Let Dk be the Dyck language
over the alphabet Σk. Thus, Dk is generated by the CFG:

S → SS
S → aiSbi for 1 ≤ i ≤ k
S → ε

Clearly, Dk can be accepted by a DPDA. It is known that L(G) ⊆ Dk? is
decidable when G is a CFG [6]. In fact it was shown in [1] that the problem is
decidable in polynomial time.



204 O.H. Ibarra and B. Ravikumar

Lemma 2. D1 can be accepted by a machine M in NFCM(2).

Proof. We first note that a string w is in D1 if and only if one of the following
conditions hold: (i) the number of occurrences of b1 is larger than the number
of occurrences of a1 in some prefix of w; (ii) the number of occurrences of a1
and b1 in w are not equal [8]. We can construct an NFCM with two 1-reversal
counters as follows. M on input w in Σ∗1 guesses one of the two processes below
to execute:

1. M accepts w if (i) holds. M does this by scanning w while keeping track of
the number of a1’s (resp., the number of b1’s) in a counter C1 (resp., counter
C2). At some point, nondeterministically chosen, M checks if C2 > C1 (by
decrementing the counters). If so, M accepts w.

2. M accepts w if (ii) holds. Again, M uses two 1-reversal counters to accom-
plish this, as in item (1).

It is straightforward to verify that L(M) = D1. ��

Theorem 9. It is decidable, given an NPCM(m) M , whether L(M) ⊆ D1.

Proof. Clearly, L(M) ⊆ D1 if and only if L(M) ∩ D1 = ∅. Since, by Lemma
2, D1 can be accepted by an NFCM(2), we can construct an NPCM(m + 2)
M ′ to accept L(M) ∩ D1. The result follows since emptiness is decidable for
NPCMs. ��

Notation. NLOG denotes the class of languages accepted by nondeterministic
TMs in log n space. PTIME denotes the class of languages accepted by deter-
ministic TMs in polynomial time.

Corollary 2. For fixedm ≥ 0, deciding, given an NFCM(m)M , whether L(M) ⊆
D1 is in NLOG (hence, in PTIME).

Proof. As in the proof of Theorem 9, we can construct an NFCM(m + 2) to
accept L(M) ∩Dk. The result follows, since emptiness of NFCMs with a fixed
number of 1-reversal counters is in NLOG [7]. ��

It is an interesting open question whether the inclusion problem, D1 ⊆ L(M)?,
is decidable for M an NPCM. We do not even know if it holds when M is a
DPDA. When M is a DFCM, the inclusion problem, Dk ⊆ L(M)?, is decidable
(for any k ≥ 1) as shown below.

Theorem 10. It is decidable, given a DFCM(m) M , whether Dk ⊆ L(M).

Proof. Dk ⊆ L(M) if and only if Dk ∩ L(M) = ∅. Since M is deterministic,
L(M) can also be accepted by a DFCM(m). Hence Dk ∩L(M) can be accepted
by a DPCM(m + 2) (since Dk can be accepted by a DPDA), and therefore its
emptiness is decidable. ��
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Remark. We conjecture that Lemma 2 can be generalized as follows: there is a
fixed constant c such that for any k ≥ 1, Dk can be accepted by a machine M
in NFCM(c). Then Theorem 9 and Corollary 2 would also generalize for Dk.

Now consider the two-sided Dyck language Sk over an alphabet
Σ = {a1, ..., ak, b1, ..., bk} which is defined by a CFG:

S → SS
S → aiSbi for 1 ≤ i ≤ k
S → biSai for 1 ≤ i ≤ k
S → ε

We consider the containment, disjointness and equivalence problems of CFL to
Sk. We use the following result from [1]:

Theorem 11. The problem, Is L(G) ⊆ Sk?, given input CFG G (in CNF) is
in PTIME.

Our next result settles the containment problem in the reverse direction and the
equivalence problem.

Theorem 12. The problems, Is Sk ⊆ L(G)? and Is L(G) = Sk?, given input
CFG G are undecidable even for k = 1.

Proof. In [10] it was shown that the problem, Is L(G) = L0?, for a fixed CFL
L0 is undecidable if L0 contains an unbounded regular subset. It is easy to show
that S1 over alphabet {0, 1} is the set of strings with equal number of 0’s and
1’s. Since (01 + 10)∗ is an unbounded regular subset of S1, the undecidability
of equivalence is immediate. Now suppose, the containment, Is S1 ⊆ L(G)?, is
decidable. This, combined with the decidability result of the previous theorem
would lead to an algorithm for equivalence problem which we just showed to be
undecidable. ��

Finally, we summarize the following results for the case of S1.

Theorem 13. Let S1 be over alphabet {0, 1}.

1. It is decidable, given an NPCM M , whether L(M) ⊆ S1.
2. It is decidable, given a DPCM M , whether S1 ⊆ L(M) and whether S1 =
L(M).

3. For a fixed m, deciding for a given NFCM(m) M , whether L(M) ⊆ S1 is in
NLOG (hence, in PTIME).

4. For a fixed m, deciding for a given DFCM(m) M , whether S1 ⊆ L(M) and
whether S1 = L(M) are in NLOG (hence, in PTIME).

Proof. For part (1), as noted above, S1 is the set of strings with equal number
of 0’s and 1’s. Hence S1 and S1 can be accepted by DFCM(2)s. It follows that
L(M) ∩ S1 can be accepted by an NPCM, and its emptiness is decidable.

For part (2), it is sufficient to show that S1 ⊆ L(M) is decidable. Since M is
deterministic, L(M) can be accepted by a DPCM [14]. It follows that S1∩L(M)
can be accepted by a DPCM and its emptiness is decidable.
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For part (3), as in part (1), L(M)∩ S1 can be accepted by an NFCM(m+ 2)
and its emptiness is in NLOG.

For part (4), as in part (2), since M is deterministic, S1 ∩ L(M) can be
accepted by a DFCM(m+ 2), and its emptiness is in NLOG. ��

5 Conclusion

We conclude with some open problems:

1. Characterize the class of CFLs L for which the decision problem DisjointL
(for this problem L is fixed and is not part of the input) is decidable: Input is
a DCA (or NCA or NPDA) M and output is ‘yes’ (‘no’) if L(M)∩L = ∅. L
clearly has to be an unbounded language for this problem to be undecidable.

2. Characterize the class of CFLs L for which the decision problemEquivalenceL
(for this problem L is fixed and is not part of the input) is decidable: Input
is a DCA (or NCA or NPDA) M and output is ‘yes’ (‘no’) if L(M) = L.
Specifically, is the equivalence problem “L(G) = Pu?” decidable? Recall the
result of Hunt and Rosenkrantz [10]: If a CFL L0 has an unbounded regular
subset, testing if L(G) = L0 is undecidable. In terms of the type of regular
subsets, the two languages P and Pu are quite different: the former does
not have an infinite regular subset - this readily follows from the pumping
lemma for regular languages [9]. The latter has infinite regular subsets (e.g.
0*). However, it does not have unbounded regular subsets. Thus, the result
of Hunt and Rosenkrantz is not helpful in resolving this problem.

3. Two problems left open related to P are: if the input is a NCAM , and L(M)
= P , is the equivalence problem decidable? We have shown that containment
L(M) ⊆ P is undecidable. (In fact, our result shows that this problem is
undecidable even ifM is a DCA.) But the containment in the other direction
and the equivalence problem are open. Also the complexity of the equivalence
problem “Is L(G) = P?” remains open. We showed that the problem is
PSPACE-hard, but we do not know if it is in PSPACE.
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Abstract. We prove that the tight bound on the state complexity of
the boundary of regular languages, defined as bd(L) = L∗ ∩ (L )∗, is
22n−2+22n−3+2n−2+2−2·3n−2−n. Our witness languages are described
over a five-letter alphabet. For a four-letter alphabet, the lower bound is
smaller by just one, and we conjecture that the upper bound cannot be
met in the quaternary case.

1 Introduction

The famous Kuratowski’s “14-theorem” states that, in a topological space, at
most 14 sets can be produced by applying the operations of closure and com-
plement to a given set [2,4]. In analogy with this theorem, Brzozowski et al.
[1] proved that there is only a finite number of distinct languages that arise
from the operations of Kleene (or positive) closure and complement performed
in any order and any number of times. Every such language can be expressed,
up to inclusion of the empty string, as one of the following five languages and

their complements: L,L+, (L)+, (L+)+, ((L)+)+, where L and L+ denote the
complement and positive closure of L, respectively.

If the state complexity of a regular language L, that is, the number of states of
the minimal deterministic finite automaton for L, is n, then the state complexity
of L is also n, and the state complexity of L+ and (L)+ is 3/4 · 2n − 1 [5,12].
The state complexity of (L+)+ could potentially be double-exponential [8], how-
ever, as shown in [3], it is only 2Θ(n logn).

Brzozowski, Grant, and Shallit in [1] also studied the concepts of “open” and
“closed” sets. A language L is said to be Kleene-closed if L = L∗, where L∗ is
the Kleene closure of L. A languages is Kleene-open if its complement is Kleene-
closed. The same notions can be defined for positive closure. These are natural
analogues of the concepts with the same names from point-set topology, and in
[1], the authors found many natural analogues of the classical theorems.

In point-set topology, the concept of the “boundary” of a set S is studied [8].
The boundary of S, bd(S), is defined as the intersection between the closures
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of S and S. This is a natural concept which corresponds well to the geometrical
notion of boundary. For example, when S is the unit disk, that is, the set of
points {(x, y) | x2 + y2 ≤ 1} in the plane, the boundary bd(S) is just the circle
{(x, y) | x2 + y2 = 1}.

The boundary of a language is defined as bd(L) = L∗ ∩ (L)∗, respectively, as
L+∩(L)+ for positive closure [1,8,9]. In this paper, we study the state complexity
of the boundary of regular languages in the case of Kleene closure. To simplify
the exposition, we will write everything in an exponent notation, using c to
represent complement, thus Lc∗ stands for (L)∗, and so bd(L) = L∗ ∩ Lc∗.

We show that if a language L over an alphabet Σ is accepted by an n-state
deterministic finite automaton (DFA), then the boundary bd(L) is accepted by
a DFA of at most 22n−2+22n−3+2n−2+2−2·3n−2−n states. We also prove that
this bound is tight in case when the alphabet Σ has at least five symbols. For
a four-letter alphabet, the lower bound is smaller by just one. Our calculations
show that four symbols are not enough to meet the upper bound, and we strongly
conjecture that a five letter alphabet used for defining our witnesses is optimal.

2 Upper Bound: Construction of DFAs for Boundary

Let us start with the construction of a DFA for the boundary of a regular lan-
guage L defined by bd(L) = L∗ ∩ Lc∗. Without loss of generality, we may as-
sume that the empty string is in L. Let a language L be accepted by a DFA
A = (Q,Σ, ·, s, F ), where |Q| = n, s ∈ F , |F | = k, and · is the transition
function extended to the domain 2Q ×Σ∗ in a natural way. Let F c = Q \ F .

Construct an NFA N for the language L∗ from the DFA A by adding an
ε-transition from each state in F to the initial state s. Next, construct an NFA
N ′ for the language Lc∗ from the DFA A as follows. First, interchange the sets
of final and non-final states to get a DFA for Lc. Then add a new initial and
final state q0 going to state s by ε. Finally, add an ε-transition from each state
in F c to the state s. Fig. 1 illustrates the construction of NFAs N and N ′.

Let D and D′ be the DFAs obtained from NFAs N and N ′, respectively, by
the subset construction [6,10]. Then the language L∗ ∩ Lc∗ is accepted by the
cross-product automaton D ×D′, the states of which are pairs of subsets of Q.
The initial state of the cross-product automaton is ({s}, {q0, s}), and a state
(S, T ) is final if S is a final state in D and T is a final state in D′.

ε ε

ε sq
0

aa a a
a

N’

ε ε
s a

a
aaas aa a a

a NA

Fig. 1. A DFA A of a language L and the NFAs N and N ′ for L∗ and Lc∗



210 J. Jirásek and G. Jirásková

Since the initial state contains s in both components, we can make the fol-
lowing observation.

Proposition 1. If (S, T ) is a reachable state of the cross-product automaton,
then S and T have a non-empty intersection. ��

Denote the transition functions of the NFAs N and N ′ (extended to subsets
of Q, see [10]) by ◦ and •, respectively. Then in the cross-product automaton,
a state (S, T ) goes to the state (S ◦ a, T • a) by any symbol a in Σ. Notice that

S ◦ a =
{
S · a, if S ∩ F = ∅,
S · a ∪ {s}, otherwise, T • a =

{
T · a, if T ∩ F c = ∅,
T · a ∪ {s}, otherwise;

recall that · is the (deterministic) transition function of the DFA A. It follows
that in the DFA D, a set S may go a set of (at most by one) larger cardinality by
any symbol a only if S contains a final state of A. In the DFA D′, a set going by
a to a larger set, must contain a rejecting state. This gives the following results.

Proposition 2. If (S, T ) is a reachable state of the cross-product automaton,
then at least one of the sets S and T contains the initial state s of the DFA A.

Proof. By Proposition 1, we have S ∩ T �= ∅. Let q ∈ S ∩ T . If q ∈ F , then
s ∈ S, otherwise s ∈ T . ��

Proposition 3. Let S, T ⊆ Q and a ∈ Σ. Then

(i) |S ◦ a| ≤ |S|+ 1 and if |S ◦ a| = |S|+ 1 then S ∩ F �= ∅ and s ∈ S ◦ a;
(ii) |T • a| ≤ |T |+ 1 and if |T • a| = |T |+ 1 then T ∩ F c �= ∅ and s ∈ T • a. ��

We use the above mentioned observations to show that in the cross-product au-
tomaton, we cannot reach certain pairs (S, T ) having only s in their intersection.
Recall that n = |Q|, k = |F |, and s ∈ F . In what follows we assume that n ≥ 3
and k ≥ 2.

Lemma 1. Let N = {(S, T ) ⊆ Q ×Q | S ∩ T = {s}, |T | = k, |S| = n− k + 1}.
No pair in N is reachable in the cross-product automaton D ×D′.

Proof. Since n ≥ 3 and k ≥ 2, no pair in N can be reached from the initial state
({s}, {q0, s}). Assume that a pair (S, T ) in N is reached from a pair (P,R) in
Q × Q with P ∩ R �= ∅ by a symbol a, that is, (S, T ) = (P ◦ a,R • a). Let us
show that the pair (P,R) must also be in N .

Let S′ = S \ {s} and T ′ = T \ {s}. Then S′ and T ′ are disjoint, do not
contain s, and |T ′| = k − 1, and |S′| = n− k.

Let P ′ = P \(P∩R) and R′ = R\(P∩R). Notice that for each state q in P∩R,
we must have q · a = s because otherwise the intersection S ∩ T would contain a
state different from s. Since P ∩R �= ∅, we have (P ∩R)◦a = (P ∩R)•a = {s},
and therefore S′ ⊆ P ′ ◦ a and T ′ ⊆ R′ • a, which is illustrated in Fig. 2.

By Proposition 3, since S′ and T ′ do not contain s, we must have |S′| ≤ |P ′|
and |T ′| ≤ |R′|. Thus |P ′| ≥ n− k and |R′| ≥ k− 1, so |P ′|+ |R′| ≥ n− 1. Since
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... ...

s

a a

......
S’ T’

aa a a a

...
P’ R’RP

Fig. 2. Unreachable states; S′ ∩ T ′ = ∅, |S′| = n− k and |T ′| = k − 1

P ′ and R′ are disjoint subsets of Q with |Q| = n, it follows that |P ∩ R| = 1.
Hence |P | = |P ′|+ |P ∩R| = n− k + 1, and |R| = |R′|+ |P ∩R| = k.

Next, since for the state (P,R) we have |P | = n − k + 1, where k = |F |, the
set P must contain a state from F . Therefore it also contains the state s. Since
|R| = k, then either R = F or R contains a state from F c. In both cases, the
state s is in R. Thus P ∩ R = {s} which means that the state (P,R) is in N .
The proof is complete. ��

Now we are able to prove an upper bound on the state complexity of the bound-
ary of L. Recall that the state complexity of a regular language L, sc(L), is the
number of states of the minimal DFA recognizing the language L.

The following lemma provides an upper bound that depends on the number
of final states in the minimal DFA for L. Then we show that this upper bound
is maximal if the minimal DFA has two final states. In the end of this section,
we discuss the case when the initial state is a unique final state.

Lemma 2. Let n ≥ 3 and 2 ≤ k ≤ n−1. Let L be a regular language with ε ∈ L
and sc(L) = n. Let the minimal DFA for L have k final states. Then

sc(L∗∩Lc∗) ≤ 4n−1−
(
n− 1

k − 1

)
+2n−k 2n−1−3n−k 2k−1+2k−1 2n−1−3k−1 2n−k+1.

Proof. Let L be accepted by a minimal DFA A = (Q,Σ, ·, s, F ) with |F | = k.
Since ε ∈ L, the initial state s is in F . Let F c = Q \ F .

Construct the NFAs N and N ′ and the DFAs D and D′ as described above,
and consider the cross-product automaton D × D′ for the language L∗ ∩ Lc∗.
Let us count the number of reachable pairs in the cross-product automaton.

By Propositions 1 and 2, the sets S and T have a non-empty intersection, and
at least one of them contains the initial state s of the DFA A. We now count the
number of reachable pairs (S, T ) in Q × Q such that (i) s /∈ S and s ∈ T , (ii)
s ∈ S and s /∈ T , and (iii) s ∈ S and s ∈ T .

(i) If s /∈ S and s ∈ T , then S must be a subset of F c and T is a subset
of Q containing s. The number of all such pairs is 2n−k2n−1. However,
the subsets S and T must have a non-empty intersection, so we need to
subtract all the pairs with S and T disjoint. The number of such pairs is
3n−k2k−1 since every function f : F c → {1, 2, 3} may be viewed as a code
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of two disjoint subsets of F c: S = {i |f(i) = 1} and T = {i |f(i) = 2}. Some
other elements of T may be chosen arbitrarily in the set F \ {s}. Thus in
this case, we get 2n−k2n−1 − 3n−k2k−1 pairs.

(ii) The case of s ∈ S and s /∈ T is symmetric. The set T must be a subset
of F not containing s, and after subtracting the disjoint subsets, we get
2k−12n−1 − 3k−12n−k pairs in this case.

(iii) Now consider the case of s ∈ S and s ∈ T . By Lemma 1, the pairs in
{(S, T ) ∈ Q ×Q | S ∩ T = {s}, |T | = k, |S| = n − k + 1} are unreachable.
Hence in this case, we have to subtract

(
n−1
k−1

)
from 2n−12n−1.

By counting the number of pairs in all three cases, and by adding the initial
state ({s}, {q0, s}), we get the expression in the statement of the lemma. ��

Straightforward calculations show that the upper bound given by Lemma 2 is
maximal if the minimal DFA for the language L has 2 or n− 1 final states.

Lemma 3. Let n ≥ 3 and 2 ≤ k ≤ n− 1. The value of the function

f(k) = 4n−1 −
(
n− 1

k − 1

)
+ 2n−k · 2n−1 − 3n−k2k−1 + 2k−1 · 2n−1 − 3k−12n−k + 1

is maximal if k = 2 or k = n − 1, and the maximum of the function f(k) is
22n−2 + 22n−3 + 2n−2 + 2− 2 · 3n−2 − n. ��

Next, we consider the case when a language is accepted by a DFA, in which the
initial state is the sole final state.

Lemma 4. Let n ≥ 3 and let L be accepted by an n-state DFA, in which only
the initial state is final. Then sc(L∗ ∩ Lc∗) ≤ (n+ 1) · 2n−2.

Proof. If L is accepted by a DFA, in which the initial state is a unique final state,
then L = L∗. Thus, the DFA D for the language L∗ is the same as the DFA A.
Therefore the language L∗ ∩ Lc∗ is accepted by the cross-product automaton
A×D′, where D′ is the DFA for Lc∗ described in the beginning of this section.

Let s be the initial and the unique final state of A. All the other states of
A are non-final. Therefore in every reachable state (S, T ) of the cross-product
automaton, the set S is equal to a set {q}, where q is a state of A.

Next, if ({q}, T ) is a reachable state of the cross-product automaton, then
T ∩ {q} �= ∅, and moreover, if q �= s, then the initial state s must be in T .
This gives 2n−1 states ({s}, T ), and 2n−2 states ({q}, T ) for every non-final q.
The lemma follows. ��

Since (n+1) ·2n−2 < 22n−2+22n−3+2n−2+2−2 ·3n−2−n for n ≥ 2, we get the
following upper bound on the state complexity of boundary of regular languages.

Theorem 1 (Boundary: Upper Bound). Let n ≥ 3 and let L be a language
with sc(L) = n. Then sc(L∗∩Lc∗) ≤ 22n−2+22n−3+2n−2+2− 2 ·3n−2−n. ��
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2 3 4 n−2 n−1

a

...a a a a a
0 1

d
d

a,d a,c

b,e
b,e

c

b,c,d,e b,c,d,e b,c,d,e b,c,d,e

b,c

e

Fig. 3. The DFA A over {a, b, c, d, e} accepting the witness language L

3 Matching Lower Bound

In this section, we show that the upper bound given by Theorem 1 is tight. Our
witness languages will be defined over a five-letter alphabet. However, the fifth
symbol will be used only to prove the reachability of one particular pair. As a
consequence, a lower bound for a four-letter alphabet is just by one smaller. Our
calculations show that the upper bound cannot be met in the quaternary case.

Let L be the language accepted by the DFA A = (Q, {a, b, c, d, e}, ·, 0, {0, 1})
in Fig. 3 with the state set Q = {0, 1, . . . , n − 1}, n ≥ 4, and the transitions
defined as follows. By a, states 0 and 1 go to themselves, state n− 1 goes to 2,
and every other state i goes to i+ 1. By b, the states 0 and 1 are interchanged,
state 2 goes to state 0, and every other state goes to itself. The inputs c, d, and
e interchange the states 0 and 2, 1 and 2, and 0 and 1, respectively.

Construct an NFA N for the language L∗ from the DFA A by adding an
ε-transition from state 1 to state 0 as shown in Fig. 4 (up). Next, construct an
NFA N ′ for the language Lc∗ from the DFA A first by exchanging the final and
non-final states, and then by adding a new initial and final state q0 going to
state 0 by ε, and by adding ε-transitions from states 2, 3, . . . , n − 1 to state 0.
Fig. 4 (down) illustrates the construction of N ′.

Apply the subset construction to the ε-NFAs N and N ′ [10] to get the DFAs
D and D′ for the languages L∗ and Lc∗, respectively. In what follows we consider
the cross-product automaton D ×D′ for the language L∗ ∩ Lc∗.

2 3 4 n−2 n−1

4 n−2 n−1

a

N ...a a a a a
0 1

d
d

a,d a,c

b,e
b,e

...a a a a a
0 1 2 3

a

εq
N’ b,e

b,e

a,ca,d

ε ε ε ε ε ε

c

c

0

d
d

b,c,d,e b,c,d,e b,c,d,e b,c,d,e

b,c,d,e b,c,d,e b,c,d,e b,c,d,e

ε
b,c

b,c

e

e

Fig. 4. The NFAs N and N ′ for L∗ and Lc∗, respectively
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3.1 Reachability

The aim of this subsection is to show that the cross-product automaton D×D′
has 22n−2 + 22n−3 + 2n−2 + 2 − 2 · 3n−2 − n reachable states. We only need to
show that every pair (S, T ) with S ∩ T �= ∅ is reachable in D ×D′, except for
the pairs with S ∩ T = {0} and |T | = 2 and |S| = n− 1.

We start with the reachability of some special sets, and then we prove the
reachability of the pairs (S, T ) with S ∩ T = {0}. Notice that we need the
symbol e only to get the reachability of the pair (Q, {0}).

Lemma 5. Let k, � ≥ 0 and k + � ≤ n − 1. Moreover, if � = 1 let k ≤ n − 3.
Then the pair (

{0, �+ 1, �+ 2, . . . , �+ k}, {0, 1, 2, . . . , �}
)

is reachable in the cross-product automaton.

Proof. Consider three cases.

(i) Let � = 0. Let us show by induction on k that every pair ({0, 1, 2, . . . , k}, {0})
is reachable in the cross-product automaton. The claim holds if k = 0 or
k = 1 since we have

({0}, {q0, 0}) a−→ ({0}, {0}) b−→ ({0, 1}, {1}) b−→ ({0, 1}, {0}).

Assume that 2 ≤ k ≤ n−2, and that
(
{0, 1, 2, . . . , k−1}, {0}

)
is reachable.

Since

({0, 1, 2, . . . , k − 1}, {0}) a−→ ({0, 1, 3, 4 . . . , k}, {0}) d−→

({0, 2, 3, 4, . . . , k}, {0}) a−→ ({0, 3, 4, 5, . . . , k + 1}, {0}) bb−→

({0, 1, 3, 4, 5, . . . , k + 1}, {0}) an−3

−−−→ ({0, 1, 2, 3, 4, . . . , k}, {0}),

the pair ({0, 1, 2, . . . , k}, {0}) is reachable as well.
Finally, if k = n− 1, then ({0, 1, 2, . . . , n− 1}, {0}) is reached from the pair
({0, 1, 2, . . . , n − 2}, {0}) by ade. Notice that this is the only place in the
proof of reachability and distinguishability where we use the symbol e.

(ii) Let � = 1. By the assumption of the lemma, we have k ≤ n− 3. As shown
in case (i), the set ({0, 1, 2, . . . , k}, {0}) is reachable, and

({0, 1, 2, 3, . . . , k}, {0} ) ada−−→ ({0, 3, 4, . . . , k + 2}, {0} ) cc−→

({0, 3, 4, . . . , k + 2}, {0, 2}) d−→ ({0, 3, 4, . . . , k + 2}, {0, 1}) an−3

−−−→
({0, 2, 3, . . . , k + 1}, {0, 1}).

Thus the lemma holds in the case of � = 1 and k ≤ n− 3.
(iii) Let 2 ≤ � ≤ n − 1 and k + � ≤ n − 1. Then k ≤ n − 3, and therefore the

pair ({0, 2, 3, . . . , k + 1}, {0, 1}) is reachable as shown in case (ii). Next

({0, 2, 3, . . . , k + 1}, {0, 1}) (acc)�−1

−−−−−→ ({0, �+ 1, �+ 2, . . . , �+ k}, {0, 1, . . . , �}),

which completes the proof. ��



On the Boundary of Regular Languages 215

Lemma 6. Let S, T be subsets of Q with S ∩ T = {0}. Moreover, if |T | = 2 let
|S| ≤ n− 2. Then the pair (S, T ) is reachable in the cross-product automaton.

Proof. Let S = {0, s1, s2, . . . , sk} and T = {0, t1, t2, . . . , t�} be subsets of Q with
{s1, s2, . . . , sk} ∩ {t1, t2, . . . , t�} = ∅. By the assumption of the lemma, if � = 1,
then k ≤ n−3. By Lemma 5, the pair

(
{0, �+1, �+2, . . . , �+k}, {0, 1, 2, . . . , �}

)
is reachable in the cross-product automaton D × D′. Next, notice that in the
DFA A, the string ad performs circular shift (1, 2, . . . , n− 1), while the input d
swaps the states 1 and 2. Recall that swap and circular shift generate the whole
symmetric group. Therefore for every permutation π of {1, 2, . . . , n−1}, there is
a string wπ in {ad, d}∗ such that in the DFA A, each state i in {1, 2, . . . , n− 1}
goes to the state π(i) by wπ . Moreover, by both a and d, the state 0 goes to
itself in the DFA A. Thus in the cross-product automaton, the state

( {0, �+ 1, �+ 2, . . . , �+ k}, {0, 1, 2, . . . , �} )
goes to the state

( {0, π(�+ 1), π(�+ 2), . . . , π(�+ k)}, {0, π(1), π(2), . . . , π(�}) )
by the string wπ. Now, by considering a permutation π̂ such that π̂(i) = ti for
i = 1, 2, . . . , �, and π̂(� + i) = si for i = 1, 2, . . . , k, we get the reachability of
(S, T ). Note that (Q, {0}) is the only pair that needs symbol e to be reached. ��

Next, we prove the reachability of pairs (S, T ) such that S ∩ T contains 0 and
at least one more state.

Lemma 7. Let S and T be subsets of Q such that {0} � S ∩ T . Then the pair
(S, T ) is reachable in the cross-product automaton.

Proof. Let {0} � S∩T . Let S′ = (S \ (S∩T ))∪{0} and T ′ = (T \ (S∩T ))∪{0}.
Then the subsets S′ and T ′ satisfy the conditions in Lemma 6 since if |T ′| = 2,
then |S′| ≤ n − 2 because S and T have a non-zero state in their intersection.
Therefore the pair (S′, T ′) is reachable by a string over {a, b, c, d}. Now it is
enough to prove that if 0 ∈ S ∩ T and i /∈ S ∪ T , then the pair ({i}∪ S, {i}∪ T )
is reached from the pair (S, T ).

First, let i = 2. If 1 ∈ S, then the pair (S, T ) goes to
(
{2} ∪ S, {2} ∪ T

)
by

input c, otherwise by the string bd.
Now, let i ≥ 3. Then we can rotate the sets S, T using transitions by a to

some sets S′, T ′ that do not contain the state 2. Namely, we use the string an−i,
by which the sets S, T go to some sets S′, T ′, respectively, such that S′ and T ′

do not contain the state 2. Moreover, these sets S′, T ′ go back to the sets S, T
by ai−2; notice that there is a self-loop under a in the states 0 and 1 in the DFA
A. As shown in the previous case, the pair ({2} ∪ S′, {2} ∪ T ′) is reached from
the pair (S′, T ′) by a string x in {c, bd}. Hence

(S, T )
an−i

−−−→ (S′, T ′)
x−→ ({2} ∪ S′, {2} ∪ T ′) ai−2

−−−→ ({i} ∪ S, {i} ∪ T ).

Finally, let i = 1. Then by d, the sets S, T go to some sets S′, T ′, respectively,
such that S′, T ′ do not contain state 2, and go back to S, T by d. Similarly as in
the previous case we get the reachability of ({1} ∪ S, {1} ∪ T ). ��
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The next two lemmata prove the reachability of all pairs that contain 0 only in
one of their components.

Lemma 8. Let S be a subset of Q containing the states 0 and 1. Then the pair
(S, {1}) is reachable in the cross-product automaton.

Proof. First, let 2 /∈ S. By Lemma 6, the pair (S, {0}) is reachable by a string
over {a, b, c, d}, and it goes to (S, {1}) by b.

If 2 ∈ S, then (S \ {2}, {1}), which is reachable as shown in the former case,
goes to (S, {1}) by c. ��

Lemma 9. Let S ⊆ {2, 3, . . . , n− 1} and T ⊆ Q be subsets such that 0 ∈ T and
S ∩ T �= ∅. Then the pair (S, T ) is reachable in the cross-product automaton.

Proof. Let i ∈ S∩T , thus i ≥ 2. Let S′ = S\{i} and T ′ = T \{i}. Since S′ and T ′
do not contain i, by the string an−i, the sets S′, T ′ go to some sets S′′, T ′′ that do
not contain state 2, and go back to S′, T ′, respectively, by ai−2. By Lemmata 6
and 7, the pair ({0} ∪ S′′, T ′′) is reachable by a string over {a, b, c, d}, and

({0} ∪ S′′, T ′′) c−→ ({2} ∪ S′′, {2} ∪ T ′′) ai−2

−−−→ ({i} ∪ S′, {i} ∪ T ′) = (S, T ).

This proves the lemma. ��

As a consequence of Lemmata 5-9, we get the following result.

Corollary 1. Let L be the language accepted by the DFA over {a, b, c, d, e}
shown in Fig. 3. Then the cross-product automaton D × D′ for the language
L∗ ∩Lc∗ has 22n−2 +22n−3 +2n−2 +2− 2 · 3n−2−n reachable states. Moreover,
all the states, except for (Q, {0}), can be reached via strings in {a, b, c, d}∗.

3.2 Distinguishability

The idea of the proof of distinguishability of the states in the cross-product
automaton of D ×D′ for the language L∗ ∩ Lc∗ is the following. We show that
for every state q of the DFA A, there exist strings uq and vq such that in the
NFA N for the language L∗, the string uq is accepted only from the state q, and
the string vq is accepted from each of its states; while in the NFA N ′ for the
language Lc∗, the string uq is accepted from each of its states, and the string vq
is accepted only from from the state q.

This is enough to prove distinguishability since if (S, T ) and (S′, T ′) are two
distinct states of the cross-product automaton D × D′, then either S �= S′ or
T �= T ′. In the first case, without loss of generality, there is a state q with q ∈ S
and q /∈ S′. Then the string uq is accepted in D from S and rejected from S′.
Moreover, in D′, the string uq is accepted from T , and therefore, this string is
accepted by the cross-product automaton D×D′ from (S, T ), but rejected from
(S′, T ′). The second case is symmetric, and vq distinguishes (S, T ) and (S′, T ′).

Assume that n ≥ 4, and let us start with the following technical result.
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Lemma 10. Let ◦ and • denote the (nondeterministic) transition functions of
the NFAs N and N ′ for the languages L∗ and Lc∗, respectively. For every state
q in Q, there exists a string wq in {a, b, c, d}∗ such that

q ◦ wq = {2}, q • wq = {0, 1, 2},

and for every state p in Q with p �= q,

p ◦ wq = p • wq = {0, 1}.

Proof. First, let y = (ab)n−3a. Then 2 ◦ y = {2} and 2 • y = {0, 1, 2}. However,
if r �= 2, then r ◦ y = r • y = {0, 1}.

Now, for q = 0, 1, . . . , n − 1, define the string xq by x0 = c, x1 = d, and
xq = an−q if q ≥ 2. Then q ◦ xq = {2} and q • xq = {0, 2}.

Finally, let wq = xq y for q = 0, 1, . . . , n− 1. Then we have

q ◦ wq = q ◦ xq y = {2} ◦ (ab)n−3a = {n− 1} ◦ a = {2},
q • wq = q • xq y = {0, 2} • (ab)n−3a = {0, 1, n− 1} • a = {0, 1, 2},

which proves the first part of the lemma.
Next, let p �= q. Then p goes by xq to a set not containing state 2 in both

NFAs N and N ′. Therefore p ◦ wq = p ◦ xq y = {0, 1} = p • xq y = p • wq. ��
Now we are ready to define the strings uq and vq as described above.

Lemma 11. For every state q in Q, there exist strings uq and vq in {a, b, c, d}∗
such that

(i) in the NFA N , the string uq is accepted only from the state q, while the string
vq is accepted from each of its states;

(ii) in the NFA N ′, the string uq is accepted from each of its states, while the
string vq is accepted only from the state q.

Proof. Let wq be the string defined by Lemma 10. Let

uq = wq d a c, vq = wq d d a b.

Let p �= q. By Lemma 10, in the NFA N (with final states 0 and 1) we have

q ◦ uq = q ◦ wq dac = {2} ◦ dac = {0, 1, 2},
p ◦ uq = p ◦ wq dac = {0, 1} ◦ dac = {2, 3},
q ◦ vq = q ◦ wq ddab = {2} ◦ ddab = {0, 1, 3},
p ◦ vq = p ◦ wq ddab = {0, 1} ◦ ddab = {0, 1}.

It follows that in N , the string uq is accepted only from q, while the string vq is
accepted from each state.

By the same lemma, in the NFA N ′ (with final states 2, 3, . . . , n− 1) we have

q • uq = q • wq dac = {0, 1, 2} • dac = {0, 1, 2, 3},
p • uq = p • wq dac = {0, 1} • dac = {0, 2, 3},
q • vq = q • wq ddab = {0, 1, 2} • ddab = {0, 1, 3},
p • vq = p • wq ddab = {0, 1} • ddab = {0, 1}.

Therefore in N ′, the string uq is accepted from each state, while the string vq is
accepted only from the state q. ��
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The last lemma proves the distinguishability of the states in the cross-product
automaton.

Lemma 12. Let L be the language accepted by the DFA A shown in Fig. 3.
All the reachable states of the cross-product automaton D×D′ for the language
L∗ ∩ Lc∗ are pairwise distinguishable by strings in {a, b, c, d}∗.

Proof. Let S, S′, T, T ′ be subsets of Q with (S, T ) �= (S′, T ′). Then either S �= S′
or T �= T ′. In the former case, without loss of generality, there is a state q such
that q ∈ S and q /∈ S′. Let uq be the string given by Lemma 11. Then uq
is accepted by the NFA N only from the state q. It follows that the DFA D,
obtained from N by the subset construction, accepts the string uq from the
subset S, and rejects from the subset S′. Moreover, the string uq is accepted
from each state in the NFA N ′. Hence the DFA D′, obtained from N ′ by the
subset construction, accepts uq from the subset T . Therefore, the cross-product
automaton D ×D′ accepts the string uq from (S, T ) and rejects from (S′, T ′).
The latter case is symmetric; now the sets T and T ′ differ in a state q, and the
string vq distinguishes states (S, T ) and (S′, T ′) of the cross-product automaton.

Finally, we need to show that the initial and final state ({0}, {q0, 0}) can be
distinguished from any other final state. Notice that the initial state ({0}, {q0, 0})
goes to the non-final state ({0}, {0}) by a. Let us show that a is accepted from
any other final state of the cross-product automaton. To this aim let (S, T ) be
a final state of D ×D′. Then 0 ∈ S and T ∩ {2, 3, . . . , n− 1} �= ∅. In the DFA
A, the state 0 goes to itself by a, while every state in {2, 3, . . . , n − 1} goes to
a state in {2, 3, . . . , n − 1} by a. This means that the final state (S, T ) goes by
a to a state (S′, T ′) with 0 ∈ S′ and T ′ ∩ {2, 3, . . . , n− 1} �= ∅. It follows that
(S′, T ′) is final, so a is accepted from (S, T ). This completes the proof. ��

Corollary 1 and Lemma 12 give the following lower bound.

Theorem 2 (Boundary: Lower Bound). Let L be the language accepted by
the DFA A in Fig. 3. Then sc(L∗∩Lc∗) = 22n−2+22n−3+2n−2+2−2 ·3n−2−n.
Moreover, if K is the language accepted by the DFA A restricted to {a, b, c, d},
then sc(K∗ ∩Kc∗) = sc(L∗ ∩ Lc∗)− 1. ��

Since the lower bound in Theorem 2 matches our upper bound in Theorem 1, we
have the exact value of the state complexity of boundary of regular languages
over an alphabet of at least five letters. Moreover, a lower bound for quaternary
languages is smaller by just one.

Theorem 3 (State Complexity of Boundary). Let n ≥ 4 and let L be a
language over an alphabet Σ with sc(L) = n. Then

sc(L∗ ∩ Lc∗) ≤ 22n−2 + 22n−3 + 2n−2 + 2− 2 · 3n−2 − n,

and the bound is tight if |Σ| ≥ 5. Moreover, there is a quaternary language K
such that sc(K∗ ∩Kc∗) = 22n−2 + 22n−3 + 2n−2 + 2− 2 · 3n−2 − n− 1. ��
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4 Conclusions

We studied the state complexity of the boundary of regular languages defined
as bd(L) = L∗∩ (L)∗, where L is the complement of L and L∗ is the Kleene star
of L. We showed that if a language L is accepted by an n-state deterministic
finite automaton, then the boundary bd(L) is accepted by a deterministic finite
automaton of at most 22n−2 + 22n−3 + 2n−2 + 2− 2 · 3n−2 − n states.

We also proved that this upper bound is tight by describing a language over
a five-letter alphabet meeting this upper bound for boundary. For a four-letter
alphabet, we showed that the lower bound is smaller by just one.

We also did some calculations. If n = 3 or n = 4, then the upper bound can
be met by a four-letter automaton, however, if n = 5 then a four-letter alphabet
is not enough to define the worst case example. We strongly conjecture that the
five-letter alphabet used to define our witness languages is optimal.

The calculations in the binary case show that the upper bound in the case,
when only the initial state is final, is met by binary languages. We would guess
Ω(22n) lower bound in the binary case with more final states. All these open
problems are of great interest to us.

To conclude the paper, let us notice that the unary case is easy since the
string a must be either in L or in L. Therefore one of L∗ or (L)∗ is equal to a∗,
and the boundary is equal to the other. The state complexity of star operation
in the unary case is known to be (n− 1)2 + 1 [12].
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Abstract. Given a reduced deterministic finite state machine, there al-
ways exists a homing sequence of length polynomial with respect to the
number of states of the machine. For nondeterministic reduced finite
state machines, a homing sequence may not exist, and moreover, if it ex-
ists, its length can be exponential. We show that the problem of deriving
a homing sequence cannot be reduced to deriving a synchronizing word
for underlying automata and should be studied independently. We also
propose a novel class of (n− 1)-input finite state machines with n states
whose shortest homing sequence is of length 2n−1 − 1.

1 Introduction

Finite state machines are widely used in many application areas, such as analy-
sis and synthesis of digital circuits, telecommunication protocols, software testing
and verification etc. A finite state machine (FSM) is a state transition model with
finite non-empty sets of inputs, outputs, states, and transitions. An FSM moves
from state to state producing an output when an input is applied, and thus FSMs
are widely used for modeling reactive systems where inputs are used for represent-
ing queries while outputs are used for representing responses. When a system has
no reset there is a problem of determining its initial state and usually this is done
using so-called homing or synchronizing experiments [11]. In a homing experiment,
a sequence of inputs is applied to an FSM under experiment, output responses are
observed and the conclusion is drawnwhat is the system state after the experiment,
while a synchronizing experiment relies on one and the same final state for all out-
put responses to a corresponding input sequence. For a deterministic reduced FSM
a homing sequence always exists, and if the FSM has n states, then its shortest
homing sequence has length at most n(n − 1)/2 and this upper bound is reach-
able [6,1]. Nowadays the behavior of many systems is described by nondetermin-
istic FSMs. Nondeterminism occurs due to various reasons such as performance,
flexibility, limited controllability, and abstraction [9]. Synchronizing sequences for
(nondeterministic) FMSs are usually derived for the underlying automaton ob-
tained by deleting outputs at each transition of an FSM under experiment. It has
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been shown [2] that a nondeterministic synchronizing automatonwith n states can
be synchronized by a word of length 2n−n−1 and this bound is tight. A determin-
istic automaton can be derived for an observable FSM by considering the Carte-
sian product of the input and output alphabets as the set of actions. In this case,
a synchronizing automaton has a synchronizing word [10,5] of polynomial length,
but as an example in Section 2 shows, this word is not necessarily a synchroniz-
ing/homing word for the initial FSM. We also show that a homing word can exist
when the underlying automaton without outputs is not synchronizing and thus,
the existing results on the derivation of a synchronizing word cannot be directly
used for deriving homing words for nondeterministic FSMs.

In [7] an algorithm for deriving a homing sequence for a nondeterministic FSM
has been proposed and a tight lower bound on the length of a shortest homing
sequence for a nondeterministic FSM with n states has been shown to be of
the order 2n

2

. However, this exponential bound is only shown to be reachable
for nondeterministic FSMs where the number of inputs is exponential w.r.t. the
number of states, and as usual, there is a challenge to establish the reachability
of this bound for FSMs with minimal number of inputs. For synchronizing words
the reachability problem can be often solved for 2- and 3-letter automata, see,
for example, [8]. Here we show that for homing words, there exists a class of
(n − 1)-input FSMs with n states which have a shortest homing sequence of
length 2n−1− 1. As the maximal length of a homing sequence for NFSM with n

states and m initial states is at most 2(
n
2) − 2(

n
2)−(

m
2 ), we conclude that for an

(n − 1)-input FSM with n states the length of a shortest homing word belongs

to the segment [2n−1 − 1, 2(
n
2) − 2(

n
2)−(

m
2 )].

The rest of the paper is organized as follows. Preliminaries are given in Section
2. Section 3 includes a description of a class of (n− 1)-input FSMs with n states
which have a shortest homing sequence of length 2n−1 − 1. Section 4 concludes
the paper.

2 Preliminaries

A finite state machine (FSM ), or simply a machine throughout this paper
is a complete observable, possibly nondeterministic FSM, i.e., a 5-tuple S =
〈S, I, O, hS , S′〉, where S is a finite nonempty set of states with a nonempty
subset S′ of initial states; I and O are finite input and output alphabets; and
hS ⊆ S×I×O×S is a behavior (transition) relation. For each pair (s, i) ∈ S×I
there exists (o, s′) ∈ O × S such that (s, i, o, s′) ∈ hS (FSM is complete) and for
each triple (s, i, o) ∈ S × I × O there exists at most one state s′ ∈ S such that
(s, i, o, s′) ∈ hS (FSM is observable). An FSM is nondeterministic (NFSM), if
for some pair (s, i) ∈ S × I there exist several pairs (o, s′) ∈ O × S such that
(s, i, o, s′) ∈ hS . We further refer to an FSM with m inputs as an m-input FSM.

The notion of an FSM is very close to the notion of an automaton that does
not support output responses, i.e., automaton transitions are labeled by actions
that are not divided into inputs and outputs. One may propose several ways how
to derive an automaton that corresponds to an FSM under experiment, while the
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most popular ways are as follows: 1) to eliminate outputs at each transition, and
2) to consider the set I×O as the set of actions of the automaton. In the former
case, a nondeterministic FSM has a nondeterministic underlying automaton; in
the latter case, the underlying automaton is deterministic if and only if the FSM
is observable. As synchronizing experiments do not rely on output responses of a
system under experiment, almost all the results on the synthesis of synchronizing
words have been obtained for automata. In particular, it has been shown that
the length of a synchronizing word for a deterministic automaton with n states
is bounded by a polynomial of degree three [10,5]. However, as we further show,
the known results on synchronizing automaton cannot be applied to deriving
homing sequences even for observable FSMs.

As usual, the behavior relation is extended to input and output sequences.
Given an FSM S = 〈S, I, O, hS , S′〉, states s, s′ ∈ S, an input sequence α =
i1i2 . . . ik ∈ I∗, and an output sequence β = o1o2 . . . ok ∈ O∗, there is a transition
under input sequence α with the output sequence β if there exist states s1 =
s, s2, . . . , sk, sk+1 = s′ such that (sj , ij, oj , sj+1) ∈ hS , j ∈ {1, . . . , k}. In this
case, the property that the input/output sequence α/β can take (or simply
takes) the FSM S from the state s to the state s′ is expressed by the function:
next state(s, α/β) = s′. By out(s, α) we denote the set of all output sequences
(responses) that the FSM S can produce at the state s in response to the input
sequence α. Any pair α/β with β ∈ out(s, α) is an input/output (I/O) sequence
(or a trace) at the state s. The FSM is connected if for any two states s and
s′, there exists an I/O sequence that can take the FSM from the state s to the
state s′.

When deriving a homing sequence for an FSM we are interested in pairs of
FSM states. A pair of states is an unordered state pattern of length 2 denoted
as sp, sq with sq, sq ∈ S; if sp = sq then the pair is a singleton sp, sp. Given
an input/output pair i/o and a pair sp, sq, an i/o-successor of sp, sq is the pair
of i/o-successors of states sp and sq (if such successors exist for both states sp
and sq). If sk is an i/o-successor of both states sp and sq then the i/o-successor
of sp, sq is the singleton sk, sk. Given an input i, the i-successor of sp, sq is the
set of i/o-successors of sp, sq for all possible outputs o ∈ O. This set is empty
if for each o ∈ O the pair sp, sq has no i/o-successor, i.e., for each o ∈ O, the
i/o-successor of sp, sq exists at most for one state sp or sq.

Given an FSM S = 〈S, I, O, hS , S′〉, two states s1, s2 ∈ S are equivalent if
for each input sequence α ∈ I∗ we have out(s1, α) = out(s2, α). The FSM S is
reduced if its states are pair-wise non-equivalent. States s1, s2 of S are separable
if there exists an input sequence α ∈ I∗ such that out(s1, α)∩ out(s2, α) = ∅; in
this case, α is a separating sequence of states s1 and s2. If there exists an input
sequence α that separates every two distinct states of the set S′, then the FSM
S is separable and α is a separating sequence for the FSM S.

A sequence α ∈ I∗ is a homing sequence (HS )1 for an observable FSM S =
〈S, I, O, hS , S′〉 if for each set {s1, s2} ⊆ S′, it holds that

∀β ∈ out(s1, α) ∩ out(s2, α) [next state(s1, α/β) = next state(s2, α/β)].
1 In [7], such a sequence is called a preset homing sequence.
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In [7] we have shown that not every nondeterministic reduced FSM has a hom-
ing sequence. Similarly to synchronizing automata which have a synchronizing
sequence [13], we call an FSM homing if the FSM has a homing sequence. By
definition of a homing sequence, the following statements hold.

Proposition 1. If an FSM S has a separating sequence, then the FSM is hom-
ing; moreover, every separating sequence is a homing sequence for S.

Proposition 2. Let S = 〈S, I, O, hS , S′〉 be an FSM such that

∀α ∈ I∗[out(s1, α) ∩ out(s2, α) �= ∅ → ∃β ∈ out(s1, α) ∩ out(s2, α)
(next state(s1, α/β) �= next state(s2, α/β))].

The FSM S is homing if and only if it has a separating sequence; moreover,
every homing sequence is a separating sequence for S.

However, there exist FSMs which are not separable but have a synchronizing
sequence and, thus, have a homing sequence.

A sequence α ∈ I∗ is a synchronizing sequence for an FSM S = 〈S, I, O, hS , S′〉
if ∀sj ∈ S (|next state(sj , α)| = 1) and ∀sj , sk ∈ S′ (next state(sj, α) =
next state(sk, α)). This means that α takes S to the same state next state(sj, α)
for each state sj ∈ S′ for all possible output responses that are not analyzed
when performing the experiment.

In other words, a homing sequence allows one to detect the current state of an
FSM by observing the output response to this sequence while a synchronizing
sequence takes an FSM from every initial state to the same final state indepen-
dently of output responses. As mentioned above, synchronizing sequences and
their lengths are well studied for automata but as we show below, the known
results cannot be directly applied for generating homing sequences for nondeter-
ministic FSMs.

Example 1. Consider the nondeterministic 2-input FSM S in Fig. 1.1. By direct

Fig. 1. The FSM S and its underlying automaton A

inspection, one can verify that the FSM has no homing sequence. Derive the
corresponding underlying automaton A for the FSM S with the set I × O of
actions (Fig. 1.2). In Fig. 1.2, the action a corresponds to the input/output
pair i1/o1, the action b corresponds to the input/output pair i1/o2 while the



224 N. Kushik and N. Yevtushenko

action c denotes the input/output pair i2/o1. The automaton A in Fig. 1.2
is synchronizing, and moreover, the length of the shortest synchronizing word
equals one, since A is synchronized by the letter b. Thus, the problem of deriving
a homing experiment for a nondeterministic FSM cannot be reduced to the
problem of deriving a synchronizing experiment for the corresponding underlying
automaton where the set of actions is the Cartesian product of the input and
output alphabets. On the other hand, consider the FSM in Fig. 2 that is homed
be the input i2. If we observe the output response o1, then the current state of

Fig. 2. The homing FSM S without synchronizing words

S is 2. When the output response is o2, the current state is 1. Therefore, for
this FSM no synchronizing sequence exists since after applying i1 (or i2) at the
states 1 or 2 we reach different states with different outputs. Thus the problem
of deriving a homing sequence for a nondeterministic FSM cannot be reduced to
the problem of deriving a synchronizing sequence. The two problems should be
studied independently.

An algorithm for deriving a shortest HS for possibly nondeterministic FSM
has been proposed in [7], and we briefly sketch it for establishing the maximal
length of a homing sequence for an NFSM.

Procedure 1 for deriving a shortest HS for an FSM
Input: S = 〈S, I, O, hS , S′〉
Output: A shortest HS for S or the message “ the FSM S is not homing”

Derive a truncated successor tree for the FSM S. The root of the tree is labeled
with the set of the pairs sp, sq, where sp, sq ∈ S′, sp �= sq; the nodes of the tree
are labeled by sets of pairs of the set S. Edges of the tree are labeled by inputs
and there exists an edge labeled by i from a node P of level j, j ≥ 0, to a node
Q such that a pair sp, sq ∈ Q if this pair is an i/o-successor of some pair from
P . The set Q contains a singleton if i/o-successors of some pair of P coincide
for some o ∈ O. If the input i separates each pair of states of P , then the set Q
is empty.

Given a node P at the level k, k > 0, the node is terminal if one of the
following conditions holds.

Rule-1: P is the empty set.
Rule-2: P contains a set R without singletons that labels a node at a level j,
j < k.
Rule-3: P has only singletons.
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If the successor tree has no nodes labeled with a set of singletons or with the
empty set, i.e., is not truncated using Rules 1 or 3 then
Return the message “FSM S is not homing”.
Otherwise,

Determine a path with minimal length from the root to a node labeled with
a set of singletons or with the empty set;

Return HS as the input sequence α that labels the selected path.
End

Proposition 3. Given an FSM S = 〈S, I, O, hS , S′〉 with |S| = n, |S′| = m, the

length of a shortest homing sequence is at most 2(
n
2) − 2(

n
2)−(

m
2 ).

Proof. The length of an HS for an FSM with n states and m initial states is
bounded by the number of sets of state pairs that do not include pairs of initial
states (Rule-2). The number of all sets of state pairs which are not singletons

equals 2(
n
2) while the number of sets of state pairs including pairs of initial states

equals 2(
n
2)−(

m
2 ). Thus, if an HS exists, then its maximal length is at most the

difference 2(
n
2) − 2(

n
2)−(

m
2 ). ��

Thus, according to the results in [7], given a homing FSM with n states and m

initial states, the length L of a shortest HS satisfies 2n
2/4 ≤ L ≤ 2(

n
2)−2(

n
2)−(

m
2 ).

However, the reachability of the lower bound is shown only for 2n
2/4-input

FSMs with n states, and thus, it is a challenge to assess the number of inputs
when the length of a shortest HS is still exponential. In this paper, we propose
a new class of (n − 1)-input homing FSMs with n states for which a shortest
homing sequence has length 2n−1 − 1.

3 Deriving an (n − 1)-Input FSM with a Shortest
Homing Sequence of Exponential Length

When deriving a class of (n− 1)-input FSMs with the state set {0, 1, . . . , n− 1}
and an exponential lower bound on the length of a shortest homing sequence,
we consider FSMs where a truncated successor tree has a path labeled with a
sequence of all subsets of the state set but the next subset in the chain depends
not on the previous subset (as in [12]) but rather on the least integer in the
current subset. Such a chain of subsets of length 2n−1 − 1 can be derived using
a special linear order that is called a deducibility relation.

We define a linear order (deducibility relation) over the set of all nonempty
subsets of the set Zn = {0, 1, . . . , n−1} based on corresponding Boolean vectors
of length n. Given a subset P = {p1, p2, . . . , pt}, 0 ≤ p1 < p2 < · · · < pt, the
corresponding Boolean vector has 1′s in the positions p1, p2, . . . , pt (counting
from right to left) and 0′s in all other positions. For example, the vector v = (1
1 0 1 0) corresponds to the subset Q = {1, 3, 4} ⊆ Z5, and the corresponding
integer B(Q) = 26. A subset Q ⊆ Zn is directly deduced from the nonempty
subset P (written: P �d Q) if B(Q) = B(P ) − 1. In other words, the subset
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Q ⊆ Zn is directly deduced from the nonempty subset P = {p1, p2, . . . , pt},
0 ≤ p1 < p2 < · · · < pt < n, if one of the following conditions holds2.

1. If p1 = 0, then Q = P − {0} = {p2, . . . , pt}.
2. If 0 /∈ P , then Q = {0, 1, . . . , p1 − 1, p2, . . . , pt}.

A subset Q ⊆ Zn is deduced from a subset P ⊆ Zn (written: P � Q) if there
exists a sequence of sets P = R1, R2, . . . , Rl = Q such that each set Rj , j =
2, . . . , l, is directly deduced from the set Rj−1. In this case, the sequence of sets
R1, R2, . . . , Rl is called a deduction chain for the subset Q from the subset P . For
instance, the set {1, 3, 4} ⊆ Z5 is directly deduced from the set {0, 1, 3, 4} ⊆ Z5
while the set {3, 4} is deduced from set {1, 3, 4} via a sequence {0, 3, 4}, {3, 4},
i.e., {0, 1, 3, 4} �d {1, 3, 4} and {1, 3, 4} � {3, 4}.

By definition, the deduction relation is a linear order and a subset Q ⊆ Zn
is deduced from a nonempty subset P ⊆ Zn if and only if B(Q) = B(P ) − k
for some 0 < k < B(P ). Correspondingly, when starting with the set Zn of the
initial states each subset can be deduced from Zn.

When deriving a class of (n−1)-input FSMs with n states with the exponential
lower bound on the length of a shortest homing sequence, we consider FSMs
where the sequence of subsets directly deducible from each other labels a path
of a truncated successor tree, i.e., this tree should have a path labeled with the
chain of sets

{0, 1, . . . , n− 1} �d {1, 2, . . . , n− 1} �d {0, 2, . . . , n− 1} �d

{2, 3, . . . , n− 1} �d · · · �d {0, n− 1} �d {n− 1}. (1)

Given a subset P = {p1, p2, . . . , pt}, 0 ≤ p1 < p2 < · · · < pt = n−1, an input ip1

is responsible for deriving a subset that is directly deduced from P . Outputs at
the transition under input ip1 should truncate branches which are labeled with
a sequence headed with the input ip1 for all subsets where the least integer is
not p1. Therefore, at each level of the successor tree a single edge is useful when
deriving a homing sequence and this edge is labeled by the input ip1 . This edge
bridges a node labeled by all the pairs of the set P = {p1, . . . , pt} with a node
labeled by pairs of the set {0, 1, . . . , p1 − 1, p1 +1, p2, . . . , pt} if p1 > 0 or with a
node labeled by pairs of the set {p2, . . . , pt} if p1 = 0. All other inputs take the
FSM to a node labeled with pairs of the set Q such that P is deduced from Q
or Q contains P . Below we show how an FSM Sn of this class can be derived.

Consider NFSM Sn, n > 1, with the set S = {0, 1, 2, . . . , n− 1} of states, the
set I = {i0, i1, . . . , in−2} of inputs, and the set O = {(i, j)|i, j ∈ {0, . . . , n − 1}
and i < j} of outputs. We define the transition relation of the FSM Sn in the
following way. Given the input i0, there is a single transition at the state 0
under this input, namely, the transition to the state (n − 1) with the output
(0, n− 1). Moreover, at each state j, 0 < j ≤ n− 1, there is a loop labeled with
the I/O pair i0/(0, n − 1). Thus, given a node labeled by all the pairs of the
set P = {0, p2, . . . , pt}, pt = n − 1, an outgoing transition at this node labeled

2 Such a chain of subsets is proposed in [4].
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with the input i0 takes the FSM to the node labeled with all the pairs of the set
{p2, . . . , pt} that is directly deduced from P .

Given the input ik, 0 < k < n − 1, we define transitions under this input
keeping the two following points in mind. On the one hand, for a node labeled
by the set of all pairs of the set P = {k, p2, . . . , pt}, 0 < k < p2 < · · · < pt = n−1,
the outgoing transition at this node labeled with the input ik should take the
FSM to the node labeled with all the pairs of the set {0, . . . , k−1, p2, . . . , pt} that
is directly deduced from P . Therefore, given a state k, the FSM Sn moves from
the state k to a state q ∈ {0, 1, . . . , k − 1} under input ik producing outputs
(q, l) where l ∈ {0, 1, . . . , k − 1, k + 1 . . . , n − 1} and l > q, i.e., there exist
transitions (k, ik, (q, l), q) and those transitions are shown below. On the other
hand, for a node labeled by all the pairs of the set P = {p1, p2, . . . , pt}, p1 �= k,
the outgoing transition at this node labeled with the input ik should take the
FSM to an unpromising node, i.e., to a node labeled with pairs of the set Q
where Q contains P or P is deduced from Q. Correspondingly, at each state p
where p > k the FSM Sn has loops labeled with ik/(l, p) for all l < p and with
ik/(p, l) for all p < l < n. Moreover, at the state p there are transitions to each
state q ∈ {1, 2, . . . , k− 1} labeled with ik/(l, q) for all l < q. At each state p < k
the FSM Sn has transitions to the state k under the input ik with the output
(q, l) for q, l �= k and 0 ≤ q < l ≤ n− 1.

The FSM S4 constructed by using the above rules is shown below (Fig. 3).
Here we notice that there are many ways how to derive an FSM with n states

Fig. 3. The NFSM S4

such that a truncated successor tree in Procedure 2.1 has only one path that
is labeled by a shortest HS. In this paper, we just show that the (n − 1)-input
FSM Sn constructed by the above rules has a shortest homing sequence of length
2n−1 − 1.

For the FSM Sn we use Procedure 1 in order to derive a shortest HS. For
FSM S4, the corresponding truncated successor tree is represented in Fig. 4 and
by direct inspection, one can verify that the sequence i0i1i0i2i0i1i0 is a shortest



228 N. Kushik and N. Yevtushenko

homing sequence for NFSM S4. The sequence has seven inputs, i.e., its length
is 23 − 1 = 2n−1 − 1. We note that in Fig. 4 we do not show singletons of the
sets which label nodes of the truncated successor tree.

Fig. 4. The truncated tree for S4 returned by Procedure 1

We now prove that a shortest HS for the FSM Sn has length 2n−1 − 1.
For this purpose, we establish some properties of the truncated tree where
nodes are labeled by sets of state pairs or by the empty set. Given a set U =
{k, p1, p2, . . . , pt}, 0 ≤ k < p1 < p2 < · · · < pt ≤ n − 1, we denote by Ũ2 the
set of all pairs i, j, i, j ∈ U , i < j, and a pair i, j belongs to next state(Ũ2, iq)
if and only if there exist o ∈ O and states b, c ∈ U such that the state i is an
iq/o-successor of the state b while the state j is an iq/o-successor of the state c.

The set next state(Ũ2, iq) can have singletons, i.e., pairs p, p, p ∈ S. We prove
some lemmas on the properties of the FSM Sn. By direct inspection, one can
verify that for n > 3, this FSM is complete, connected and observable.

Lemma 1. Given U = {k, p1, p2, . . . , pt}, 0 ≤ k < p1 < p2 < · · · < pt, pt =
n−1, the set next state(Ũ2, ik) up to singletons coincides with the set Ñ2, where
N is directly deduced from U , i.e., U �d N .

Proof. If k = 0, then the statement holds since at each state 1, 2, . . . , n− 1, the
FSM Sn has a loop labeled by an I/O pair i0/(0, n − 1) while at the state 0
there is a transition to the state (n − 1) labeled by the same I/O pair. Corre-
spondingly, next state(Ũ2, i0) = {i, j, i < j, j = p1, p2, . . . , pt} ∪ {n− 1, n− 1},
i.e., next state(Ũ2, i0) = Ñ2 ∪ {n− 1, n− 1} where N = {p1, p2, . . . , pt}, i.e.,
U �d N .
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If U = {k, p1, p2, . . . , pt}, 0 < k < p1 < p2 < · · · < pt, pt = n− 1, then by the
definition, next state(Ũ2, ik) has all pairs i, j, which are ik/o-successors of the
pairs of the set Ũ2 for some output o. Two cases are possible.

Case 1. If i, j is in the ik-successor of a pair k, pz with z ∈ {1, 2, . . . , t}, then
by construction, under the input ik the FSM Sn moves from the state k to a
state q ∈ {0, 1, . . . , k−1} outputting (q, l) for l ∈ {0, 1, . . . , k−1, k+1, . . . , n−1}
and l > q. At the state pz > k there are loops labeled by the input/output pair
ik/(l, pz) for all l < pz , and loops labeled by ik/(pz, l) for pz < l < n. Moreover,
at the state pz there are transitions to a state q ∈ {1, 2, . . . , k − 1} labeled by
the I/O pair ik/(l, q) for l < q. Therefore, the set of ik/o-successors of the pairs
of the set Ũ2 contains each pair q, pz for q ∈ {0, 1, . . . , k − 1}, z = 1, . . . , t, and
each pair of the set {0, 1, . . . , 0, k − 1, 1, 2, . . . , k − 2, k − 1}.

Case 2. Let a pair i, j be an element of the ik-successor of the pair pr, pz,
k < pr < pz, 1 < r < z < t. Each ik/o-successor of the pair pr, pz, k < pr < pz,
is the pair pr, pz, and this pair is obtained according to outputs (l, pz) when
l = pr (or (pr, l) when l = pz). Moreover, an ik/o-successor can be a singleton
q, q, q ∈ {1, 2, . . . , k − 1} according to an I/O pair ik/(l, q) for l < q.

Thus, the set next state(Ũ2, ik) up to singletons coincides with the set Ñ2

where N = {0, 1, . . . , k − 1, p1, p2, . . . , pt}, i.e., U �d N . ��

Lemma 2. Given U = {k, p1, p2, . . . , pt}, pt = n − 1, k < p1 < p2 < · · · < pt,
k > 0, the union of ij-successors of all pairs of Ũ2 contains Ũ2 for 0 < j < k.

Proof. In the conditions of the lemma, p > j for each p ∈ U . By construction of
Sn, at each state p for p > j there are loops labeled by the input/output pair
ij/(l, p) for all l < p, and loops labeled by the input/output pair ij/(p, l) for p <
l < n. Moreover, at the state p there are transitions to a state q ∈ {0, 1, . . . , j−1}
labeled by ij/(l, q) for l < q. Thus, similar to the proof of Lemma 1, each pair

of the ij-successor of each pair of the set Ũ2 is a pair k, pz, z ∈ {1, 2, . . . , t}, or
is a singleton q, q, q ∈ 1, 2, . . . , j − 1. Correspondingly,

next state(Ũ2, ik) = Ũ2 ∪ {1, 1, 2, 2, . . . , k − 1, k − 1},

i.e. the set next state(Ũ2, ik) contains Ũ2. ��

Lemma 3. Given U = {k, p1, p2, . . . , pt}, k < p1 < p2 < · · · < pt, pt = n − 1,
for each n > j > k it holds that next state(Ũ2, ij) contains Ñ2 where U is
deduced from N , i.e., N � U .

Proof. Given n > j > k, two cases are possible.
Case 1. If j ∈ U , then similarly to the proofs of Lemmas 1 and 2, it can be

shown that the set next state(Ũ2, ij) contains all the pairs pr, pz with pr, pz ∈ U ,
j < pr < pz. Moreover, at the state k there are transitions to the state j with
the outputs (q, l), q, l �= j, 0 ≤ q < l < n. Therefore, the set next state(Ũ2, ij)
contains the pairs j, pz, with pz ∈ U, j < pz. At the state j there are transitions
to a state q ∈ {0, 1, . . . , j − 1} with outputs (q, l), q, l �= j, 0 ≤ q < l < n and
at the state qt = n− 1 there are transitions to a state p ∈ {1, 2, . . . , j − 1} with
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outputs (l, p), 0 ≤ l < p < j, i.e., the set next state(Ũ2, ij) contains the pairs

q, pz, 0 ≤ q < j < pz and thus, next state(Ũ2, ij) contains Ũ2.
Case 2. If j /∈ U , then U = {k, p1, . . . , pt} for k < j < p1 or U =

{k, p1, . . . , pa−1, pa, . . . , pt} where pa−1 < j < pa. Consider a subset U ′ =
{k, pa, . . . , pt} of the set U such that k < j < pa < · · · < pt. If k < j < p1
then U ′ = U and a = 1. Similarly to the proofs of Lemmas 1 and 2, it can be
shown that the set next state(Ũ ′2, ij) contains the pairs pr, pz with pr, pz ∈ U ,
a ≤ r < z. Moreover, k < j, and for each state p < j, the FSM Sn has
transitions to the state j under the input ij with an output (q, l) for q, l �= j,
0 ≤ q < l ≤ n − 1. Therefore, the set next state(Ũ ′2, ij) contain all pairs j, pz ,
with pz ∈ U , due to the I/O pair ij/(pz, n− 1).

Correspondingly, the set next state(Ũ ′2, ij) contains the subset Ñ2 for N =

{j, pa, . . . , pt}, and
∑t

i=1 (2
pi + 2j) is the integer corresponding to the Boolean

vector for the subset N . The integer corresponding to the Boolean vector for the
subset U equals

∑t
i=1 2

pi + 2k and the difference B(N) − B(U) =
∑t

i=1 2
pi +

2j−
∑t

i=1 2
pi − 2k equals 2j− (2k+

∑a−1
i=1 2pi). If a = 1, then

∑a−1
i=1 2pi = 0, and

the difference B(N) − B(U) = 2j − 2k > 0. If a > 1, then 2k +
∑a−1

i=1 2pi < 2j ,
since in the worst case the set U contains all the integers of the interval [0; j− 1]
(j > k and j > pa−1), and thus, the difference B(N) − B(U) > 0. For this
reason, B(N) > B(U) and the subset U can be deduced from the subset N . ��

Theorem 1. The length of a shortest homing sequence for NFSM Sn, n > 3,
is equal to 2n−1 − 1.

Proof. The homing sequence arises as a sequence that labels a path in the trun-
cated successor tree from the root to a node labeled by the empty set or by
a set of singletons. The root of the tree is labeled by the set {i, j : 0 ≤ i <
j ≤ n − 1}. Consider a node of the tree labeled by Ũ2, U = {k, p1, p2, . . . , pt},
k < p1 < p2 < · · · < pt, pt = n− 1. All the nodes at the next level labeled with
next state(Ũ2, ij), j �= k, are terminal due to Rule-2 (Lemmas 2 and 3). For

the input ik, the node at the next level is labeled with next state(Ũ2, ik) = Ñ2

where U �d N . Thus, the shortest input sequence that labels a path from the
root to the set of singletons is the sequence that labels the chain (1). In [4], it is
shown that this chain has each subset that contains the state (n− 1). The input
sequence that labels this path has length 2n−1 − 1. ��

4 Conclusion and Future Work

In this paper, we have shown that the problem of deriving homing sequences for
nondeterministic FSMs cannot be reduced to the problem of deriving synchro-
nizing words for the corresponding automata. We also show that an exponential
lower bound for the minimum length of a homing sequence is reachable for (n−1)-
input FSMs with n states. In fact, we have shown that for each n > 3 there exists
a class of (n− 1)-input FSMs with n states with a shortest homing sequence of
length 2n−1 − 1. However, there still is a gap between lower and upper bounds
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on the length of a shortest HS. One of directions of possible future research is to
reduce this gap. If there is no HS for a given nondeterministic FSM, an adaptive
homing experiment may still exist sometimes. Adaptive homing experiments and
their complexity are out of the scope of this paper and we only mention that a
preliminary study shows that the complexity of adaptive homing experiments,
i.e., length of a longest adaptive input/output sequence, also seems to be expo-
nential w.r.t. the number of states of the FSM under experiment. More research
is needed in order to accurately evaluate the complexity of homing experiments
for nondeterministic FSMs.

Acknowledgments. The authors are also thankful to the anonymous referees
for several useful remarks.
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Abstract. We introduce and study the model of input-driven queue
automata. On such devices, the input letters uniquely determine the
operations on the memory store which is organized as a queue. In par-
ticular, we consider the case where only a finite number of turns on the
queue is allowed. The resulting language families share with regular lan-
guages many desirable properties. We show that emptiness and several
other problems are decidable. Furthermore, we investigate closure un-
der Boolean operations. The existence of an infinite and tight hierarchy
depending on the number of turns is also proved.

Keywords: Input-driven automata, queue automata, finite turns,
decidability questions, closure properties.

1 Introduction

Finite automata have been widely investigated from many theoretical as well as
practical points of view. On the one hand, they possess many nice properties
such as equivalence of nondeterministic and deterministic models, existence of
minimization algorithms, closure under many operations, and decidable ques-
tions such as emptiness, inclusion, or equivalence (see, e.g., [13]). On the other
hand, their computational power is quite low since only regular languages are
accepted. It is therefore natural to consider extensions of the model featuring
additional storage media such as pushdown tapes [6], stack tapes [8], queue
tapes [5], or Turing tapes. In general, such extensions lead to a broader family
of accepted languages, but also to a weaker manageability of the models since
certain closure properties do not longer hold, minimization algorithms do not
exist, and formerly decidable questions become undecidable. Thus, there is an
obvious interest in extensions which enlarge the language family, but keep as
many of the ‘good’ properties as possible.
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One such extension is represented by input-driven automata. Basically, for
such devices the operations on the storage medium are dictated by the input
symbols. The first references date back to [4,16], where input-driven pushdown
automata (PDA) are introduced as classical PDA in which the input symbols
define whether a push operation, a pop operation, or no operation on the push-
down store has to be performed. The first results show that input-driven PDA
can accept context-free languages in logarithmic space, and that nondetermin-
istic and deterministic models are equivalent. Later, it has been shown in [7]
that their membership problem belongs to the parallel complexity class NC1.
The investigation of input-driven PDA has been renewed in [1,2], where such
devices are called visibly PDA (VPDA) or nested word automata. The main
result is that input-driven PDA describe a language family lying properly in
between the regular and the deterministic context-free languages, and sharing
with regular languages many desirable features such as many closure properties
and decidable questions. Moreover, an exponential upper bound is given for the
size increase when removing nondeterminism in input-driven PDA. Extensions
have also been studied, e.g., with respect to multiple pushdown stores in [17],
or more general auxiliary storages in [14]. Recently, the computational power of
input-driven stack automata has been investigated in [3].

In this paper, we consider the storage medium of a queue, and investigate de-
terministic input-driven queue automata (DVQA), as well as general determinis-
tic queue automata (DQA). Note that the letter V in DVQA stands for ‘visibly’
as in VPDA and means a shorthand notation for input-driven DQA. DQA have
been considered in [5] where, among others, it is proved that their computational
power equals that of Turing machines. Thus, to focus on a more ‘manageable’ de-
vice, we investigate here also the restricted type of finite-turn queue automata, in
which the number of alternations between enqueuing and dequeuing is bounded
by some fixed finite number. The property of finite turns has been already intro-
duced and studied for PDA in [9,10]. In this model, the number of alternations
between increasing and decreasing the height of the pushdown store is bounded
by some fixed finite number. The main results are a proper turn hierarchy for PDA
and the decidability of the finite-turn property for an arbitrary PDA. On the other
hand, decidability problems which are undecidable for PDA remain undecidable
for finite-turn PDA. In [15], the finite turn-paradigm is considered for two-way
PDA. Precisely, the descriptional power of finite-turn PDA processing bounded
languages with a constant number of input head reversals is investigated, as well
as some related decidability questions. The formal definition of finite-turn queue
automata and examples are given in Section 2. The main result of Section 3 is
the existence of an infinite proper hierarchy on the number of turns for DQA and
DVQA. In fact, for every k ≥ 0, we show that k+1 turns are more powerful than k
turns. One motivation to study input-driven automata is to obtain models with
attractive closure properties and decidability questions. Here, we consider both
automata with compatible signatures – which roughly speaking means that they
agree on the actions induced by input symbols – and automata with incompati-
ble signatures. Concerning closure properties, in Section 4 we show that DVQA
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are closed under complementation, whereas finite-turn DVQA are not. Moreover,
DVQA as well as finite-turn DVQA are closed under union and intersection in
case of compatible signatures, whereas non-closure is obtained for incompatible
signatures. Concerning decidability questions, in Section 5 we show that empti-
ness, finiteness, and universality are decidable for finite-turn DQA which are not
necessarily input-driven. For finite-turn DVQA with compatible signatures, we
show in addition that inclusion and equivalence are decidable. On the other hand,
we prove the undecidability of inclusion in case of incompatible signatures, and
the undecidability of all questions in case of DVQA with unbounded turns. This
shows that it is essential for DVQA to restrict the number of turns in order to
get a manageable model. It may be worth noticing that positive decidability re-
sults for finite-turn DVQA are achieved although the model is not closed under
complementation.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions. The complement of a language L ⊆ Σ∗ is defined as L = Σ∗\L.

A classical deterministic queue automaton is called input-driven if the next
input symbol defines the next action on the queue, that is: entering a symbol at
the end of the queue, removing a symbol from the front of the queue, or changing
the internal state without modifying the queue content. To this end, we assume
the input alphabet Σ is partitioned into the sets Σe, Σr, and Σi, that control the
actions enter, remove, state change only (internal). A formal definition reads as:

Definition 1. A deterministic input-driven queue automaton (DVQA) is a sys-
tem M = 〈Q,Σ, Γ, q0, F,⊥, δe, δr, δi〉, where

1. Q is the finite set of internal states,
2. Σ is the finite set of input symbols consisting of the disjoint union of sets
Σe, Σr, and Σi,

3. Γ is the finite set of queue symbols,
4. q0 ∈ Q is the initial state,
5. F ⊆ Q is the set of accepting states,
6. ⊥ /∈ Γ is the empty-queue symbol,
7. δe is the partial transition function mapping Q×Σe × (Γ ∪ {⊥}) to Q× Γ ,
8. δr is the partial transition function mapping Q×Σr × (Γ ∪ {⊥}) to Q,
9. δi is the partial transition function mapping Q×Σi × (Γ ∪ {⊥}) to Q.

A configuration of a DVQA M = 〈Q,Σ, Γ, q0, F,⊥, δe, δr, δi〉 is a triple (q, w, s),
where q ∈ Q is the current state, w ∈ Σ∗ is the unread part of the input, and
s ∈ Γ ∗ denotes the current queue content, where the leftmost symbol is at the
front. The initial configuration for an input string w is set to (q0, w, λ). During
the course of its computation, M runs through a sequence of configurations.
One step from a configuration to its successor configuration is denoted by 4. Let
a ∈ Σ, w ∈ Σ∗, z, z′ ∈ Γ , and s ∈ Γ ∗. We set
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1. (q, aw, zs) 4 (q′, w, zsz′), if a ∈ Σe and (q′, z′) ∈ δe(q, a, z),
2. (q, aw, λ) 4 (q′, w, z′), if a ∈ Σe and (q′, z′) ∈ δe(q, a,⊥),
3. (q, aw, zs) 4 (q′, w, s), if a ∈ Σr and q′ ∈ δr(q, a, z),
4. (q, aw, λ) 4 (q′, w, λ), if a ∈ Σr and q′ ∈ δr(q, a,⊥),
5. (q, aw, zs) 4 (q′, w, zs), if a ∈ Σi and q

′ ∈ δi(q, a, z),
6. (q, aw, λ) 4 (q′, w, λ), if a ∈ Σi and q

′ ∈ δi(q, a,⊥).

So, whenever the queue is empty, the successor configuration is computed by
the transition functions with the special empty-queue symbol ⊥. As usual, we
define the reflexive and transitive closure of 4 by 4∗. The language accepted by
the DVQAM is the set L(M) of words for which there exists some computation
beginning in the initial configuration and ending in a configuration in which the
whole input is read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (q0, w, λ) 4∗ (q, λ, s) with q ∈ F, s ∈ Γ ∗ }.

The difference between a DVQA and a classical deterministic queue automaton
(DQA) is that the latter makes no distinction on the types of the input symbols,
and may perform λ-moves. However, in all cases, there must not be more than
one choice of action for any possible configuration. So, the transition function is
defined to be a (partial) mapping from Q× (Σ ∪ {λ})× (Γ ∪ {⊥}) to Q× (Γ ∪
{remove, internal}), where it is understood that remove means to remove the
symbol from the front of the queue, internal means to let the content of the
queue unchanged, and a symbol of Γ means to enter this symbol at the tail of
the queue. In general, the family of all languages accepted by an automaton of
some type X will be denoted by L (X).

For a computation of a queue automaton, a turn is a phase in which the length
of the queue first increases and then decreases. Formally, a sequence of at least
three configurations (q1, w1, s1) 4 (q2, w2, s2) 4 · · · 4 (qm, wm, sm) is a turn if
|s1| < |s2| = · · · = |sm−1| > |sm|. For any given k ≥ 0, a k-turn computation
is any computation containing exactly k turns. A DVQA performing at most k
turns in any computation is called k-turn DVQA and will be denoted by DVQAk.

In order to clarify our notions, we continue with an example.

Example 2. Let hp : {a, b}∗ → {a′, b′}∗ be the homomorphism that is defined by
hp(a) = a

′, hp(b) = b′. The language {whp(w)# | w ∈ {a, b}∗ } is accepted by
the DVQA1 M = 〈Q,Σ, Γ, q0, F,⊥, δe, δr, δi, 〉, where Q = {q0, q1, q2}, F = {q2},
Σi = {#}, Σe = {a, b}, Σr = {a′, b′}, Γ = {A,B}, and the transition functions
are as follows:

(1) δi(q0, #,⊥) = q2,
(2) δi(q1, #,⊥) = q2,

(3) δe(q0, a, Z) = (q0, A) for Z ∈ {A,B,⊥},
(4) δe(q0, b, Z) = (q0, B) for Z ∈ {A,B,⊥},
(5) δr(q0, a

′, A) = q1,
(6) δr(q0, b

′, B) = q1,
(7) δr(q1, a

′, A) = q1,
(8) δr(q1, b

′, B) = q1.
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Consider an accepting computation ofM . Basically, the transitions of δe enqueue
the prefix w. Subsequently, the infix hp(w) has to be matched with the contents
of the queue. When the first primed symbol appears in the input, it is matched
by the transitions δr. The first application switches from state q0 to q1 which is
kept during this part of the computation. The transition function is not defined
for q1 in connection with symbol a or b, and it is defined for q1 and the symbol #
only if the queue is empty. Exactly one application of this transition leads M
into the sole accepting state q2, for which no transition is defined. So, the input
is accepted if and only if the prefix w matches the infix hp(w) followed by a
single #. Clearly, M performs at most one turn in every computation. ��

3 Turn Hierarchy

In [11,12], extensions of pushdown automata called flip-pushdown automata are
investigated. Basically, a flip-pushdown automaton is an ordinary pushdown au-
tomaton with the additional ability to flip its pushdown during the computation.

Definition 3. A deterministic flip-pushdown automaton (DFPDA) is a system
M = 〈Q,Σ, Γ, q0, F,	, δ,Δ〉, where Q is the finite set of internal states, Σ
is the finite set of input symbols, Γ is the finite set of pushdown symbols,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, 	 ∈ Γ is a
particular pushdown symbol, called the bottom-of-pushdown symbol, which ini-
tially appears on the pushdown store, δ is the partial transition function mapping
Q× (Σ ∪ {λ})× Γ to Q×Γ ∗, and Δ is the partial flip function mapping from Q
to Q, so that, for all q ∈ Q, and Z ∈ Γ , if Δ(q) is not empty, then δ(q, a, Z)
is empty, for all a ∈ Σ ∪ {λ}, and if δ(q, λ, Z) is not empty, then δ(q, a, Z) is
empty, for all a ∈ Σ.

Here, it is understood that the transition function is such that the symbol 	
appears at most once, that is, at the bottom of the pushdown only. Moreover,
an application of δ is an ‘ordinary’ transition as for pushdown automata, and
an application of Δ flips the content of the pushdown up to the bottom-of-
pushdown symbol. So, for γ ∈ Γ ∗, the pushdown content γ	 becomes γR	.
Technical details can be found in [11,12]. However, it is worth mentioning that a
DFPDA has never more than one choice of action for any possible configuration.
A DFPDA performing at most k flips in any computation is called k-flip DFPDA
and will be denoted by DFPDAk.

Now, we turn to simulate DVQA by DFPDA where, as would seem to be
natural, the number of flips of the DFPDA depends on the number of turns of
the DVQA. The goal is to derive results from known properties of DFPDA. The
direct simulation is straightforward:

Lemma 4. Let k ≥ 1 be a constant and M be a k-turn DQA. Then, an equiva-
lent 2k-flip DFPDA can effectively be constructed.

Proof. The idea of the construction is to use one end of the pushdown store
as the front and the other end as the tail of the queue. So, whenever the queue
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automaton performs a turn, that is, changes from increasing to decreasing mode,
the flip-pushdown automaton flips the front end of the pushdown store to the top.
Similarly, whenever the queue automaton changes from decreasing to increasing
mode, the tail end has to be flipped to the top. So, for any turn of the queue, one
flip is necessary, plus one flip to change from one turn to the next, plus possibly
another one to change from the decreasing phase following the last turn to a
final increasing phase. Altogether, this makes 2k flips. ��

An essential technique for flip-pushdown automata is the ‘flip-pushdown input-
reversal’ technique, which has been developed and proved in [11]. It allows to
simulate flipping the pushdown by reversing the (remaining) input, and reads as
follows:

Theorem 5. Let k ≥ 0 be a constant. A language L is accepted by a (nondeter-
ministic) flip-pushdown automaton M1 = 〈Q,Σ, Γ, q0, F,	, δ,Δ〉 by final state
with at most k + 1 pushdown reversals if and only if the language

LR = {wvR | (q0, w,	) 4∗M1
(q1, λ, γ	) with at most k reversals, q2 ∈ Δ(q1),

and (q2, v, γ
R	) 4∗M1

(q3, λ, q4) without any reversal, q4 ∈ F }

is accepted by a (nondeterministic) flip-pushdown automaton M2 by final state
with at most k pushdown reversals.

In particular, given a DFPDAk M , the k-fold application of Theorem 5 yields a
context-free language L that is letter equivalent to L(M). An immediate conse-
quence of this theorem and Lemma 4 is that every language accepted by a DQA
with a constant number of turns obeys a semilinear Parikh mapping.

Corollary 6. Let k ≥ 0 be a constant and M be a k-turn DQA. Then L(M) is
semilinear. In particular, if L(M) is a unary language then it is regular.

To prove a tight turn hierarchy for DVQA, the straightforward simulation of
Lemma 4 is too weak. So, let hp : {a, b}∗ → {a′, b′}∗ be the homomorphism
defined as hp(a) = a

′, hp(b) = b
′. For all j ≥ 0, we define the sets

Cj = { #w#hp(w) | w ∈ {a, b}∗ }j · #

and, for all k ≥ 0, the language Lk =
⋃k

j=0 Cj .

Lemma 7. Let k ≥ 1 be a constant. Then, the language Lk is accepted by
a DVQAk.

However, the language Lk cannot be accepted by any queue automaton with less
than k turns.

Lemma 8. Let k ≥ 1 be a constant. Then, the language Lk is not accepted by
any DQAk−1.
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Proof. Assume, by contradiction, that Lk is accepted by some DQAk−1 Mk =
〈Q,Σ, Γ, q0, F,⊥, δ〉. We consider words from Ck ⊂ Lk.

If there exists at least one prefix w̄1 = #w1#hp(w1) so that the computa-
tion (q0, w̄1v, λ) 4+ (q, v, γ), for v ∈ Σ∗, contains at least one turn, we fix this
prefix and consider next the language Lk−1. This language is accepted by a
DQAk−2 Mk−1 as follows. Initially, Mk−1 enqueues γ by extra states and λ-
moves, and changes to state q. Then, it simulates Mk on the remaining input.
Since Mk performs at most k − 2 turns on the remaining input and the initial-
ization takes no additional turn,Mk−1 is in fact a DQAk−2. Further, all words v
leadingMk to acceptance belong to Lk−1. So, the language accepted byMk−1 is
Lk−1. Now, let Mk−i be some DQAk−i−1 accepting the language Lk−i. We iter-
ate this construction if there exists at least one prefix such that Mk−i performs
at least one turn on it.

Finally, we distinguish two cases. The first case is that we can iterate the
construction until i = k− 1, that is, we have a DQA0 accepting L1. Since 0-turn
DQA accept only regular languages and L1 is not regular, this is a contradiction.
The second case is thatMk−i does not perform a turn on all prefixes of the form
#w1#hp(w1). Since Mk−i accepts Lk−i, it accepts all words from C0∪C1. Simply
by counting the number of symbols #, from Mk−i one can construct a DQA M ′

accepting exactly (C0 ∪ C1) = L1. In particular, M ′ blocks after reading the
third #. So, M ′ accepts L1 without any turn, which is again a contradiction. ��
Lemma 7 and Lemma 8 prove the following two proper turn hierarchies for
general queue automata as well as input-driven queue automata.

Theorem 9. For all k ≥ 1, the family of languages accepted by determinis-
tic k-turn (input-driven) queue automata is properly included in the family of
languages accepted by (k + 1)-turn (input-driven) queue automata.

Though here we do not consider nondeterministic queue automata, it is worth
mentioning that Lk is even not accepted by any nondeterministic (k − 1)-turn
queue automaton. Thus, we obtain the proper turn hierarchy also for nondeter-
ministic queue automata.

4 Closure Properties

This section is devoted to investigating the closure properties of language families
defined by deterministic finite-turn input-driven queue automata. For pushdown
automata, strong closure properties have been derived in [1] provided that all
automata involved share the same partition of the input alphabet into enter,
remove, and internal symbols. Here we distinguish this important special case
from the general one. For easier writing, we call the partition of an input alphabet
a signature, and say that two signatures Σ = Σe∪Σr∪Σi and Σ

′ = Σ′e∪Σ′r∪Σ′i
are compatible if

⋃
j∈{e,r,i}(Σj \Σ′j) ∩Σ′ = ∅ and

⋃
j∈{e,r,i}(Σ

′
j \Σj) ∩Σ = ∅.

Lemma 10. Let k ≥ 0 be a constant. The language family L (DVQAk) is closed
under intersection with regular languages. Moreover, it is closed under union and
intersection if the signatures are compatible.
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On the contrary, due to turn restrictions, DVQAk are not closed under comple-
mentation despite their determinism:

Lemma 11. Let k ≥ 1 be a constant. The language family L (DVQAk) is not
closed under complementation.

Proof. The language Lk of the previous section witnesses the assertion. Lemma 7
shows that Lk is accepted by some DVQAk. In contrast to the assertion, assume
there is a DVQAk M accepting Lk. We consider the words of the form #am#a′n#
that belong to the complement, that is, with m �= n. For m large enough, M
will run into a cycle, say of length p ≥ 1, while processing am. Clearly,M has to
accept #am#a′m+p#. If a ∈ Σr ∪ Σi, then running through the cycle leaves the
queue unaffected. So one more cycle cannot lead to rejection, which implies that
#am+p#a′m+p# is accepted as well, though it belongs to Lk. So, we must conclude
that a ∈ Σe. If a

′ ∈ Σe ∪Σi, we argue similarly: While processing a′m, M runs
through cycles in which the queue is either unaffected or its length grows with m.
In any case, the final step processing the sole # at the end cannot distinguish
the number of cycles passed through. Therefore, the acceptance of #am+p#a′m#

implies the acceptance of #am+p#a′m+p#. So, we must have a′ ∈ Σr.
Finally, we consider the input (aa′)k+1 ∈ Lk that must be accepted by M .

However, since a ∈ Σe and a′ ∈ Σr, we have that M has to perform one turn on
each aa′ pair. Thus, it performs at least k + 1 turns, a contradiction. ��

The proof of the previous lemma implies the following stronger result:

Corollary 12. Let k ≥ 1 be a constant. The complement of the language Lk is
not accepted by any k′-turn DVQA, for any constant k′ ≥ 0.

Another non-closure result for finite-turn devices is contained in

Lemma 13. Let k ≥ 1 be a constant. The language family L (DVQAk) is not
closed under union.

Proof. Let us consider the languages L1 = { ambmcn# | m,n ≥ 0 } and L2 =
{ ambncn# | m,n ≥ 0 }. Clearly, we have that L1, L2 ∈ L (DVQA1). On the other
hand, we have that L1∪L2 �∈ L (DVQA). To prove this, assume by contradiction
that L1 ∪ L2 is accepted by a DVQA A. For such A, suppose that b ∈ Σe ∪Σi.
Then, by a pigeonhole argument on the accepting computation on ambm# for
sufficiently large m, we would get that A should accept all the strings of the
form ambm+kp#, for some p ≥ 1 and any k ≥ 0. Clearly, this cannot happen, so
we must have b ∈ Σr. On the other hand, a similar reasoning on an input of the
form bmcm# would lead to b ∈ Σe as well, which clearly contradicts the fact that
A is input-driven. ��

In contrast to the finite-turn case in Lemma 11, the general model of DVQA
turns out to be closed under complementation, as well as under union and inter-
section for compatible signatures, but not closed under union and intersection
for incompatible signatures:
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Lemma 14. The language family L (DVQA) is closed under intersection with
regular languages and complementation. Moreover, it is closed under union and
intersection if the signatures are compatible, and not closed under union and
intersection if the signatures are incompatible.

5 Decidability Problems

We recall (see, e.g., [13]) that a decidability problem is semidecidable (resp.,
decidable) if and only if the set of all instances for which the answer is “yes” is
recursively enumerable (resp., recursive).

Let us begin by showing some decidability results for finite-turn devices.

Theorem 15. Let k ≥ 0 be a constant and M be a DQAk. Then, the emptiness
and finiteness of M is decidable.

Proof. As in the discussion after Theorem 5, by applying Lemma 4 and, repeat-
edly, Theorem 5 to a given DQAk M , we obtain a context-free language that
is letter equivalent to L(M). Since emptiness and finiteness can be decided for
context-free languages [13], both questions can be decided for DQAk as well. ��

Theorem 16. Let k ≥ 0 be a constant andM be a DQAk. Then, the equivalence
with regular sets and, in particular, universality is decidable for M .

Proof. Let R be a regular set. Then, testing L(M) = R is equivalent to test
L(M) ∩ R = ∅ and R ∩ L(M) = ∅. Since R is regular, R is regular as well. By
reasoning as in Lemma 10, we have that L (DQAk) is closed under intersection
with regular sets. Hence, L(M)∩R is accepted by some DQAk whose emptiness
can be tested by Theorem 15. For testing R ∩ L(M) = ∅, we first construct a
DQAk M

′ accepting L(M). M ′ simulates M while counting in an additional
component the number of turns executed so far. M ′ accepts an input as soon
as it would require more than k turns. Additionally, M ′ accepts if the input is
rejected by M performing a number of turns which is less than or equal to k. All
other inputs are rejected. Clearly, M ′ is a DQAk accepting L(M). Due to the
closure under intersection with regular sets, we obtain again that R ∩ L(M) is
accepted by some DQAk whose emptiness can again be tested by Theorem 15.
We get equivalence if and only if both tests are positive. ��

Theorem 17. Let k ≥ 0 be a constant and M,M ′ be DVQAk with compatible
signatures. Then, inclusion and equivalence of M and M ′ is decidable.

Proof. We first show the decidability of the inclusion L(M) ⊆ L(M ′). The de-
cidability of the inclusion L(M ′) ⊆ L(M) can be shown analogously and implies
the decidability of equivalence. The inclusion L(M) ⊆ L(M ′) is equivalent to
L(M) ∩ L(M ′) = ∅. Since L (DVQAk) is not closed under complementation
due to Lemma 11 but L (DVQA) is due to Lemma 14, we obtain that L(M ′)
is accepted by some DVQA M ′′ possibly performing more than k turns but
having the same signature as M ′. Since L (DVQA) is closed under intersection
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with compatible signatures by Lemma 14, we obtain a DVQA N which accepts
L(M) ∩ L(M ′) by simulating M with at most k turns in its first component
and simulating M ′′ in its second component. Since M ′ andM ′′ have compatible
signatures, we can observe the following. If M ′ (resp., M ′′) accepts or rejects an
input with at most k turns, then M ′′ (resp., M ′) performs at most k turns as
well. Any computation requiring more than k turns is rejected by M and hence
by N . Thus, N is a DVQAk and its emptiness can be tested by Theorem 15. We
conclude that the inclusion L(M) ⊆ L(M ′) is decidable. ��

We now turn to undecidable problems. First, the undecidability of the emptiness
problem for DVQA is shown by reducing from the emptiness problem for deter-
ministic linearly space bounded one-tape, one-head Turing machines, so-called
linear bounded automata (LBA). It is well known that emptiness for LBA is
not semidecidable. See, e.g., [13] where also the notion of valid computations is
introduced. These are, basically, histories of LBA computations which are en-
coded into single words. We may assume that LBA get their inputs in between
two endmarkers, can halt only after an odd number of moves, accept by halting,
and make at least three moves.

Let Q be the state set of some LBAM , where q0 is the initial state, T ∩Q = ∅
is the tape alphabet, and Σ ⊂ T is the input alphabet. Then a configuration
ofM can be written as a string of the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn
is used to express that M is in the state q, scanning tape symbol ti+1, and the
string t1t2 · · · tn ∈ T ∗ is the tape inscription.

Let T ′ and T ′′ be copies of T and Q′ and Q′′ be copies of Q. Furthermore, let
S = T ∪Q ∪ {
,	}, S′ = T ′ ∪Q′ ∪ {
,	}, and S′′ = T ′′ ∪Q′′ ∪ {
,	}. Then,
consider two mappings f1 : S → S · S′ and f2 : S → S · S′′ such that f1(a) = aa
and f2(a) = aa, for all a ∈ S. The set VALC(M) of valid computations is now de-
fined to be the set of words of the form f2(w0)$f1(w1)$f1(w2)$ · · ·$f1(w2m+1)$,
where $ /∈ S∪S′∪S′′, wi ∈ T ∗QT ∗ are configurations ofM , w0 is an initial con-
figuration of the form q0Σ

∗, w2m+1 is a halting (hence accepting) configuration,
and wi+1 is the successor configuration of wi.

Lemma 18. Let M be an LBA. Then a DVQA accepting VALC(M) can effec-
tively be constructed.

At this point, we are ready to show non-semidecidability results.

Theorem 19. Emptiness, finiteness, infiniteness, universality, inclusion, equiv-
alence, regularity, and context-freeness are not semidecidable for DVQA.

Proof. Let us show exemplarily that emptiness is not semidecidable. Let M be
an LBA. According to Lemma 18, we can effectively construct a DVQA M ′

accepting VALC(M). Clearly, L(M ′) = VALC(M) is empty if and only if L(M)
is empty. Since emptiness is not semidecidable for LBA, we obtain our claim. ��

Next, we want to show that inclusion is not semidecidable for two DVQAk with
incompatible signatures. To this end, we consider the following variant of the
set of valid computations. Let Ŝ = T̂ ∪ Q̂ ∪ {
̂, 	̂}. We consider mappings
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g1 : S → S′, g2 : S → S′′, and g3 : S → Ŝ such that g1(a) = a, g2(a) = a, and
g3(a) = â, for all a ∈ S. The modified set VALC′(M) of valid computations is
then defined to be the set of words of the form

g2(w0)$w2$ · · ·$w2m#g1(w1)$g1(w3)$ · · · $g1(w2m−1)$g3(w2m+1)$,

where $, # /∈ S ∪ S′ ∪ S′′ ∪ Ŝ, wi ∈ T ∗QT ∗ are configurations of M , w0 is an
initial configuration of the form q0Σ

∗, w2m+1 is an accepting configuration, and
wi+1 is the successor configuration of wi.

Lemma 20. Let M be an LBA. Then, DVQA1 M1 and M2 can effectively be
constructed such that VALC ′(M) = L(M1) ∩ L(M2).

From Lemma 20, we obtain

Theorem 21. Let k ≥ 1 be a constant and M,M ′ be two DVQAk with incom-
patible signatures. Then, the inclusion L(M) ⊆ L(M ′) is not semidecidable.

Proof. Consider the DVQA1M1,M2 from Lemma 20 such that L(M1)∩L(M2) =
VALC′(M) for some LBAM . Let R be the regular language of all words correctly
formatted with respect to VALC′(M), and let M ′ be a DVQA1 accepting all
words in R which do not belong to L(M2). To M

′, the same construction as
in the proof of Lemma 20 can be applied. The only difference is that we have
to accept only if an error in some configuration is encountered. The correct
formatting of the input can be checked in the state set. Obviously, M1 and M ′

have incompatible signatures.
Let us now assume, by contradiction, that inclusion is semidecidable. Then,

we know that the inclusion L(M1) ⊆ L(M ′) = L(M2) ∩ R is semidecidable.
This latter inclusion holds if and only if L(M1) ⊆ (L(M2) ∩R) ∪R, since every
w ∈ L(M1) is correctly formatted and, hence, is not in R. Thus, we know that
L(M1) ⊆ L(M2) is semidecidable, which is equivalent to semidecide L(M1) ∩
L(M2) = ∅. This implies that the emptiness of VALC′(M), and hence of the
LBA M , is semidecidable. This is a contradiction. ��

Another consequence of Lemma 20 is

Lemma 22. Let k ≥ 1 be a constant. The language family L (DVQAk) is not
closed under intersection.

Proof. Consider the languages L(M1) and L(M2) from Lemma 20 for a given
LBA M . If L (DVQAk) was closed under intersection, then L(M1) ∩ L(M2) =
VALC′(M) could be accepted by some DVQAk. This together with Theorem 15
would lead to decidability of LBA emptiness, a contradiction. ��

We conclude this section with the result that there is no algorithm which either
tests whether a given DVQA is finite-turn or tests whether a given DVQA is
k-turn for some fixed k ≥ 0.

Theorem 23. Let M be a DVQA. It is not semidecidable whether M is finite-
turn. It is undecidable whether M is k-turn, for some fixed k ≥ 0.
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Abstract. A recent minimization technique, called hyper-minimization,
permits reductions of language representations beyond the limits imposed
by classical semantics-preserving minimization. Naturally, the semantics
is not preserved by hyper-minimization; rather the reduced representa-
tion, which is called hyper-minimal, can accept a language that has a finite
symmetric difference to the language of the original representation. It was
demonstrated that hyper-minimization for (bottom-up) deterministic tree
automata (dtas), which represent the recognizable tree languages, can be
achieved in time O(m · log n), where m is the size of the dta and n is the
number of its states. In this contribution, this result is complemented by
two results on the quantity of the errors. It is shown that optimal hyper-
minimization for dtas (i.e., computing a hyper-minimal dta that commits
the least number of errors of all hyper-minimal dtas) can be achieved in
time O(m · n). In the same time bound also the number of errors of any
hyper-minimal dta can be computed.

1 Introduction

In many application areas, large finite-state models are approximated automat-
ically from data. Classical examples in the area of natural language processing
include the estimation of tree automata [6,7] for parsing [18] and weighted finite-
state automata [19] for speech recognition [16]. To keep the size of those models
under control, minimization is used whenever possible and efficient. Unfortu-
nately, computing an equivalent minimal nondeterministic (unweighted) finite-
state automaton [21] is pspace-complete [8] and thus inefficient; this remains
true even if the input automaton is deterministic. However, given a deterministic
finite-state automaton (dfa) the computation of an equivalent minimal dfa is
very efficient [12]. Consequently, we restrict our focus to deterministic finite-state
devices. Exactly, the same situation exhibits itself for tree automata [17,3], which
are the finite-state models used in this contribution. We note that (bottom-
up) deterministic tree automata are as expressive as (nondeterministic) tree
automata (albeit the deterministic device might require exponentially more states
as in the string case), which recognize exactly the regular tree languages.
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In several applications it is beneficial to reduce the size even further at the
expense of errors. In hyper-minimization [2] we simply allow any finite number
of errors; i.e., the obtained representation might recognize a language that has a
finite symmetric difference to the language recognized by the original represen-
tation. While this error profile is rather simplistic, it allows a convenient theoret-
ical treatment [2], efficient minimization algorithms [1,4,11,14], and sometimes
finitely many errors are even absolutely inconsequential [20]. Moreover, more
refined error profiles often yield np-hard minimization problems [5] and thus
inefficient minimization procedures. Recently, an efficient hyper-minimization
algorithm [13] for (bottom-up) deterministic tree automata (dtas) was devel-
oped. It runs in time O(m · logn), where m is the size of the input dta and
n is the number of its states. Thus, it is asymptotically as efficient as the fastest
classical minimization algorithms [9] for dtas.

The existing hyper-minimization algorithm for dtas is purely qualitative in
the sense that it guarantees that the resulting hyper-minimal dta (a dta M is
hyper-minimal if there exists no dta with fewer states1 that recognizes a tree
language with a finite difference to the tree language recognized by M) commits
only finitely many errors, but provides no (non-trivial) bound on this number of
errors. Since there are (in general) many (non-isomorphic) hyper-minimal dtas
for a given tree language, returning simply any hyper-minimal dta is short-
sighted. In this contribution, we perform a more quantitative analysis in the
spirit of [15]. We develop a hyper-minimization algorithm that returns a hyper-
minimal dta (i.e., it has as many states as the dta returned by the existing
algorithm of [13]) that commits the least number of errors among all hyper-
minimal dtas. To this end, we first characterize all hyper-minimal dtas for a
given tree language. For dfas the structural differences between hyper-minimal
dfas for the same language were characterized in [2, Thms. 3.8 and 3.9]. Despite
the additional complications encountered in dtas hyper-minimization, we faith-
fully generalize the results for dfas to dtas. Thus, any two hyper-minimal dtas
for a given tree language permit a bijection between their states such that the
distinction into preamble (i.e., those states that can only be reached by finitely
many trees) and non-preamble (or kernel) states is preserved. Moreover, the dtas
behave equivalently on their preambles except for their acceptance decisions and
isomorphically on their kernels. Finally, the strange condition on the initial state
in [2, Thms. 3.8 and 3.9] disappears completely for dtas.

With the help of this characterization we can now easily compare different
hyper-minimal dtas provided that we can compute the number of errors that
they commit. Thus, we derive a method to compute the number of errors caused
by each relevant decision (finality decision for preamble states and transition
targets for transitions from the preamble into the kernel). For dfas the same
approach was used in [15], but our method is slightly more complicated because
we have to avoid counting errors several times (because an error tree can contain
multiple positions at which a switch from preamble to kernel states happens

1 Since we consider only deterministic devices, we can as well use the number of
transitions as a size measure.
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when processing it by the dta). We solve this problem by attributing the error
tree to the left-most such transition. It turns out that this change can easily
be incorporated, so that our approach closely resembles the approach of [15].
Overall, we obtain an algorithm that, given a dta M and a hyper-minimal
dta N that recognizes a finitely different tree language, can compute the number
of errors committed by N in time O(m · n), where m is the size of M and n is
the number of states of M . In addition, we can also compute an optimal hyper-
minimal dtaN ′ in time O(m·n), which is a hyper-minimal dta that commits the
least number of errors among all hyper-minimal dtas that recognize a finitely
different tree language. Of course, we can also compute the exact number of
errors committed by this optimal dta.

2 Preliminaries

The set IN consists of all nonnegative integers and [k] = {i ∈ IN | 1 ≤ i ≤ k} for
all k ∈ IN. The symmetric difference S5T of sets S and T is (S−T )∪(T −S). A
binary relation ∼= ⊆ S×S is an equivalence relation if it is reflexive, symmetric,
and transitive. Given such an equivalence relation ∼=, the equivalence class [s] of
s ∈ S is {s′ ∈ S | s ∼= s′}. If S is finite, then we write |S| for its cardinality.

An alphabet Σ is a finite set, and a ranked alphabet (Σ, rk) consists of an
alphabet Σ and a mapping rk: Σ → IN that assigns a rank to each symbol of Σ.
The set of all symbols of rank k ∈ IN isΣk = rk−1(k). We typically denote (Σ, rk)
by just Σ, and we let Σ(T ) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T } for every
set T . The set TΣ(Q) of Σ-trees with states Q is the smallest set T such that
Q∪Σ(T ) ⊆ T . We write TΣ for TΣ(∅). The mapping height ht(t) : TΣ(Q) → IN is
defined by ht(q) = 0 for all q ∈ Q and ht(σ(t1, . . . , tk)) = 1+max{ht(ti) | i ∈ [k]}
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). The subset CΣ(Q) ⊆ TΣ∪{�}(Q) of
contexts contains all trees in which the special nullary symbol � occurs exactly
once. Again, we write CΣ for CΣ(∅). For all c ∈ CΣ(Q) and t ∈ TΣ∪{�}(Q), we
write c[t] for the tree obtained from c by replacing � by t. The tree t is a subtree
of c[t] for all contexts c ∈ CΣ(Q).

A (total bottom-up) deterministic (finite-state) tree automaton (dta) [6,7]
is a tuple M = (Q,Σ, δ, F ) where Q is the finite, nonempty set of states, Σ is
the ranked alphabet of input symbols, δ : Σ(Q) → Q is the transition mapping,
and F ⊆ Q is the set of final states. The transition mapping δ extends to
δ : TΣ(Q) → Q by δ(q) = q for all q ∈ Q and

δ
(
σ(t1, . . . , tk)

)
= δ
(
σ(δ(t1), . . . , δ(tk))

)
for all σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). We let L(M)qq′ = {c ∈ CΣ | δ(c[q′]) = q}
for all q, q′ ∈ Q. Moreover, L(M)q′ =

⋃
q∈F L(M)qq′ contains all (stateless) con-

texts that take q′ into a final state, and L(M)q = δ−1(q)∩TΣ contains all (state-
less) trees that are recognized in the state q. A state q ∈ Q is a kernel (resp.,
preamble) state [2] if L(M)q is infinite (resp., finite). The sets KerM and PreM
contain all kernel and preamble states, respectively. The dta M recognizes the
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tree language L(M) =
⋃

q∈F L(M)q, and all dtas that recognize the same tree
language are equivalent. A dta is minimal if there exists no equivalent dta
with strictly fewer states. We can compute a minimal dta that is equivalent
to M using an adaptation [9] of Hopcroft’s algorithm [12], which runs in
time O(|M | · log n) where |M | =

∑
k∈IN k · |Σk| ·nk is the size of M and n = |Q|.

3 Structural Characterization of Hyper-minimal dtas

In this section we develop a characterization that points out the differences
between different hyper-minimal dtas for the same tree language. It will tell
us which alternatives to consider when we search for an optimal hyper-minimal
dta, which commits the least number of errors. However, before we start, we
recall the basic notions (e.g., almost equivalence and hyper-minimality).

Throughout the paper, let M = (Q,Σ, δ, F ) and N = (P,Σ, μ,G) be min-
imal dtas. Since we ultimately want to compare two dtas, we introduce all
basic notions for M and N . However, we often use them in the particular case
that M = N . Two states q ∈ Q and p ∈ P are almost equivalent [13, Def. 1],
written q ∼ p or p ∼ q, if Eq,p = L(M)q 5 L(N)p is finite. We also say that
q and p disagree on each element of Eq,p. If Eq,p = ∅, then q and p are equivalent,
which is written q ≡ p or p ≡ q. It is well-known [3, Sect. 1.5] that minimal dtas
do not have different, but equivalent states. Correspondingly, the dtasM and N
are almost equivalent, also written M ∼ N , if E = L(M)5 L(N) is finite.

Lemma 1 (see [13, Lm. 4]). If M ∼ N , then δ(t) ∼ μ(t) and δ(t′) ≡ μ(t′) if
ht(t′) > |Q× P | for all t, t′ ∈ TΣ.2

Proof. The property δ(t) ∼ μ(t) is proven in [13, Lm. 4]. For the other property,
we consider the product dta M ×N = (Q× P,Σ, δ × μ, F ×G), where

(δ × μ)
(
σ(〈q1, p1〉, . . . , 〈qk, pk〉)

)
=
〈
δ(σ(q1, . . . , qk)), μ(σ(p1, . . . , pk))

〉
for all σ ∈ Σk and 〈q1, p1〉, . . . , 〈qk, pk〉 ∈ Q×P . Clearly, (δ×μ)(t) = 〈δ(t), μ(t)〉
for all t ∈ TΣ. If ht(t) > |Q × P |, then (δ × μ)(t) is a kernel state of M × N
because the tree t can be pumped [6,7]. For the sake of a contradiction, suppose
that δ(t) �≡ μ(t); i.e., there exists c ∈ Eδ(t),μ(t). Since 〈δ(t), μ(t)〉 is a kernel state
ofM×N , there exist infinitely many u ∈ TΣ such that 〈δ(u), μ(u)〉 = 〈δ(t), μ(t)〉.
However, for each such tree u we have c[u] ∈ E, which contradicts M ∼ N . ��

The previous lemma shows that almost equivalent dtas are in almost equivalent
states after processing the same (stateless) tree. If the tree is tall, then they
are even in equivalent states. Before we proceed with the comparison of almost
equivalent dtas, we recall another notion and a related result. A dta is hyper-
minimal if all almost equivalent dtas have at least as many states.

Theorem 2 ([13, Thm. 7]). A minimal dta is hyper-minimal if and only if
all pairs of different, but almost equivalent states consist only of kernel states.
2 If M = N , then ht(t′) > |Q| is actually sufficient.
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Now we can investigate how almost equivalent hyper-minimal dtas differ.
We extend each mapping h : Q → P to a mapping h : TΣ(Q) → TΣ(P ) by
h(σ(t1, . . . , tk)) = σ(h(t1), . . . , h(tk)) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q).
Such a mapping h : Q→ P is a transition homomorphism3 if h(δ(s)) = μ(h(s))
for every s ∈ Σ(Q). Moreover, h is a dta homomorphism if additionally h(q) ∈ G
if and only if q ∈ F . As usual, a bijective homomorphism is called isomor-
phism. Next, we show that two almost equivalent hyper-minimal dtas have
dta-isomorphic kernels and transition-isomorphic preambles.

Theorem 3. If M ∼ N and both M and N are hyper-minimal, then there exists
a bijection h : Q→ P such that

1. h is bijective on KerM ×KerN ,
2. h(q) ∈ G if and only if q ∈ F for all q ∈ KerM , and
3. h(δ(s)) = μ(h(s)) for every s ∈ Σ(Q)− {s ∈ Σ(PreM ) | δ(s) ∈ KerM}.

Proof. Clearly, |Q| = |P | since M and N are both hyper-minimal. For every
q ∈ Q select tq ∈ L(M)q such that ht(tq) > |Q × P | whenever q ∈ KerM .4
We let h : Q → P be such that h(q) = μ(tq) for every q ∈ Q, which imme-
diately proves that h(q) ∈ KerN for all q ∈ KerM because ht(tq) > |Q × P |.
Moreover, for each q ∈ KerM the facts M ∼ N and ht(tq) > |Q × P | imply
q = δ(tq) ≡ μ(tq) = h(q) by Lemma 1. Thus, h is injective on KerM × KerN
because h(q1) ≡ q1 �≡ q2 ≡ h(q2) for all different q1, q2 ∈ KerM .5 Finally, for
every p ∈ KerN , select up ∈ L(N)p such that ht(up) > |Q × P |. Clearly,
δ(up) ∈ KerM and by Lemma 1 we obtain p = μ(up) ≡ δ(up) ≡ h(δ(up)).
Since N is minimal, we can conclude that p = h(δ(up)), which shows that h is
surjective on KerM ×KerN , thereby proving the first item.

Recall from the previous paragraph that q ≡ h(q) for every q ∈ KerM . Thus,
h(q) ∈ G if and only if q ∈ F , which proves the second item. For the third
objective, let s = σ(q1, . . . , qk) ∈ Σ(Q). Then

δ
(
s
)
= δ
(
σ(tq1 , . . . , tqk)

) †∼ μ(σ(tq1 , . . . , tqk)) = μ(σ(μ(tq1 ), . . . , μ(tqk )))
= μ
(
σ(h(q1), . . . , h(qk))

)
= μ
(
h(s)

)
,

where the step marked † is due to Lemma 1. In the following, assume that
s /∈ Σ(PreM ), which yields that there exists i ∈ [k] such that qi ∈ KerM .
Consequently, ht(σ(tq1 , . . . , tqk)) > |Q× P | by the selection of tqi , which can be
used in Lemma 1 to show that the step marked † is actually equivalence (≡). We
obtain that δ(s) ≡ μ(h(s)) and δ(s) ∈ KerM . Thus, h(δ(s)) ≡ δ(s) ≡ μ(h(s)) by
the argument in the previous paragraph. Since N is minimal, we can conclude
that h(δ(s)) = μ(h(s)) as desired.

Before we prove the missing case, in which s ∈ Σ(PreM ) with δ(s) ∈ PreM ,
we prove that h is bijective on PreM × PreN , which automatically also proves
3 Or a homomorphism between the Σ-algebras [6,7] associated with M and N .
4 Such trees exist because each state is reachable (by hyper-minimality) and L(M)q is

infinite for each kernel state q.
5 We have q1 �≡ q2 because M is minimal.
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that h : Q→ P is a bijection. Since h is bijective on KerM ×KerN by the proven
first item, which yields |KerM | = |KerN |, and additionally |Q| = |P |, we obtain
that |PreM | = |PreN |. Suppose that h(q) ∈ KerN for some q ∈ PreM . Then
q ∼ h(q) = μ(uh(q)) ∼ δ(uh(q)) with ht(uh(q)) > |Q × P | because h(q) ∈ KerN ,
where the almost equivalences are due to Lemma 1. Clearly, δ(uh(q)) is a ker-
nel state of M , which yields that q �= δ(uh(q)). Together with q ∼ δ(uh(q))
and q ∈ PreM , these facts contradict the hyper-minimality of M by Theo-
rem 2. It remains to prove that h is injective on PreM × PreN , which due to
|PreM | = |PreN | also proves that h is surjective. For the sake of a contradiction,
let q1, q2 ∈ PreM be such that q1 �= q2 but h(q1) = h(q2). Using Lemma 1 we ob-
tain q1 ∼ h(q1) = h(q2) ∼ q2, which together with q1 �= q2 contradicts the hyper-
minimality of M by Theorem 2. Consequently, h is bijective on PreM × PreN .

Now we return to the final missing objective, which requires us to show that
h(δ(s)) = μ(h(s)) if δ(s) ∈ PreM . Recall that δ(s) ∼ μ(h(s)) for all s ∈ Σ(Q).
Moreover, if δ(s) ∈ Pre(M), then h(δ(s)) ∈ PreN by the results of the previous
paragraph and additionally h(δ(s)) ∼ δ(s) ∼ μ(h(s)) by Lemma 1. Consequently,
we have a preamble state h(δ(s)) of N that is almost equivalent to μ(h(s)). Since
N is hyper-minimal, we have h(δ(s)) = μ(h(s)) by Theorem 2. ��
The previous theorem states that two almost equivalent hyper-minimal dtas are
indeed very similar. They have a bijection between their states that preserves
the distinction between preamble and kernel states. Moreover, via this bijec-
tion the two dtas behave equally (besides acceptance) on the preamble states
and isomorphically on the kernel states. Thus, two such dtas can only differ in
two aspects, which mirror the corresponding aspects for deterministic finite-state
string automata [2]:

1. the finality (i.e., whether the state is final or not) of preamble states, and
2. transitions from exclusively preamble states to a kernel state.

4 Computing the Number of Errors

Now we can compute the number of errors made by a particular hyper-minimal
dta N that is almost equivalent to the reference dta M . In addition, we show
how to obtain a hyper-minimal dta that commits the least number of errors
among all almost equivalent hyper-minimal dtas. More precisely, let N be
hyper-minimal and almost equivalent toM , which itself is not necessarily hyper-
minimal. Recall that E = L(M)5L(N) is the set of error trees. We partition E
into (Ep)p∈P , where Ep = L(N)p ∩ E for every p ∈ P . In other words, we as-
sociate each error tree t ∈ E with the state μ(t). In the following development,
we distinguish errors associated to preamble and kernel states. Theorem 3 shows
that the preamble-kernel error distinction is stable among all almost equiva-
lent hyper-minimal dtas.6 Finally, [13, Sect. 4] shows how to obtain one hyper-
minimal dta N ′ that is almost equivalent to M . Roughly speaking, we identify
6 An error associated to a preamble state of N can only be associated to a preamble

state of another almost equivalent hyper-minimal dta N ′. Naturally, the error can
be avoided in N ′, but the same error cannot be associated to a kernel state of N ′.



250 A. Maletti

the almost equivalence ∼ on M and then merge each preamble state that is
almost equivalent to another state into this state. For every two different states
q, q′ ∈ Q, the dta merge(M, q → q′) is (Q−{q}, Σ, δ′, F −{q}) where δ′(s) = q′
if δ(s) = q and δ′(s) = δ(s) otherwise for every s ∈ Σ(Q − {q}). We start with
the errors Ep associated to a preamble state p ∈ PreN . Since the preambles of
N and N ′ are transition-isomorphic by Theorem 3, we can essentially compute
with N ′ and only need to remember that the preamble states of N and N ′ can
differ in finality.

Lemma 4 (see [13]). Let N ′ = merge(M, q → q′) for some q ∼ q′ with
[q] ⊆ PreM . Then L(N ′)q

′
= L(M)q∪L(M)q

′
. If N ′′ is the dta returned by [13]

and B ∈ {[q] | q ∈ Q} is such that B ⊆ PreM , Then L(N ′′)qB =
⋃

q∈B L(M)q.

By Theorem 3 there exists a mapping h : P ′ → P such that N ′ and N are
transition-isomorphic on their preambles via h. Together with Lemma 4 we thus
have

L(N)h(qB) = L(N ′)qB =
⋃
q∈B
L(M)q

for every B ∈ {[q] | q ∈ Q} with B ⊆ PreM .7 Next, we demonstrate how to
compute aq = |L(M)q| for each state q ∈ PreM .

Proposition 5. For every q ∈ PreM

aq =
∑

σ(q1,...,qk)∈δ−1(q)∩Σ(Q)

( k∏
i=1

aqi

)
.

It is clear that the equations in Proposition 5 yield a recursive algorithm that
runs in time O(|M |), if we do not recompute already computed values. With the
help of Lemma 4 and Proposition 5, we can now compute the number of errors
made due to the finality of preamble states. For every qB ∈ PreN ′ , we know
that its block B ⊆ PreM consists of exclusively preamble states. Consequently,
Lemma 4 can be applied to compute the number of errors associated to qB.

Theorem 6. For every p ∈ PreN ,

|Ep| =
{∑

q∈[δ(up)]−F aq if p ∈ G∑
q∈[δ(up)]∩F aq otherwise,

where up ∈ L(N)p is arbitrary.

Proof. The result follows from Theorem 3 and Lemma 4. ��

Since L(N)p and L(N)p
′

are disjoint if p �= p′, the total number of errors as-
sociated to preamble states is

∑
p∈PreN

|Ep|. To obtain the minimal number of
errors, we select the finality of p such that Ep is minimal (see Algorithm 1).8

7 The union is actually disjoint as (L(M)q)q∈Q is a partition of TΣ .
8 Clearly, the dta remains hyper-minimal and almost equivalent as only a finite num-

ber of errors is introduced by making p final or non-final.
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Finally, we need to compute the number
∑

p∈KerN
|Ep| of errors associated

to kernel states. Recall that N ′ is the hyper-minimal dta returned by [13].
Theorem 3 shows that the preambles of N and N ′ are transition-isomorphic and
the kernels are dta-isomorphic, but the transitions from exclusively preamble
to kernel states are not covered in this characterization. As in the string case,
we thus try to attribute errors to these preamble-to-kernel transitions because
we know what happens before (transition-isomorphic on preamble) and what
happens afterwards (dta-isomorphic on the kernel). However, in the tree case
this is complicated by the fact that such transitions can be taken several times
in a single error tree as the next example demonstrates.

Example 7. Consider the dta M = (Q,Σ, {qα}, δ) such that Q = {qα, qβ , qσ},
Σ = {α(0), β(0), σ(2)}, and

δ(α) = qα δ(β) = qβ δ(σ(qβ , qβ)) = qσ δ(σ(q, q′)) = qα

for all (q, q′) ∈ Q2−{(qβ, qβ)}. Obviously, L(M) = TΣ−{β, σ(β, β)}. An almost
equivalent hyper-minimal dta is N = ({�}, Σ, {�}, μ), where μ is such that
μ−1(�) = Σ({�}). Since L(N) = TΣ , we have that E = {β, σ(β, β)}. However,
when N processes the error tree σ(β, β), then it will take two transitions (both
times δ(β) = �) that switch from exclusively preamble states (no states in this
case as α is nullary) to the kernel state �.

We solve this problem by selecting the left-most occurrence of such a transition
and disregarding all other occurrences to avoid counting duplicates. To this end,
we first need to introduce positions. Let Δ be a ranked alphabet and t ∈ TΔ(Q).
The set pos(t) ⊆ IN∗ of positions in t is defined by pos(q) = {ε} for every q ∈ Q
and pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)} for all σ ∈ Δk and
t1, . . . , tk ∈ TΔ(Q). For every w ∈ pos(t), we write t|w for the subtree of t that
is rooted in position w. A position w1 ∈ pos(t) is to the left of another posi-
tion w2 ∈ pos(t), written w1 
 w2, if w1 � w2 and w1 �≤ w2, where � and ≤ are
the lexicographic and prefix order on IN∗, respectively. In a context c ∈ CΣ(Q)
the unique position of � is denoted by pos�(c). Now we can define the set LC
of left-most contexts, which have no subtree to the left of (the occurrence of) �
that is recognized (by M) in a state that is almost equivalent to a kernel state,
as follows:

LC = {c ∈ CΣ | ∀w ∈ pos(c) : w 
 pos�(c) implies [δ(c|w)] ⊆ PreM} .

With the help of the set LC we can now make the error attribution more formal.
We already know that each remaining error tree has a special transition that
switches from exclusively preamble states to a kernel state. Moreover, we will
now prove that every such error tree decomposes uniquely into a context of LC,
which encodes the part of the tree that is processed after a special transition,
and a tree that uses a special transition at the root. Due to the definition of LC,
we know that the decomposition selects exactly the left-most occurrence of a
special transition.
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Lemma 8. Every error tree t ∈ Ep with p ∈ KerN decomposes uniquely via
t = c[u] into a left-most context c ∈ LC and u ∈ TΣ such that μ(u) ∈ KerN , but
μ(u|w) ∈ PreN for all w ∈ pos(u) with w �= ε.

Proof. Since μ(t) ∈ KerN , there must exist positions w ∈ pos(t) such that
μ(t|w) ∈ KerN but μ(t|wv) ∈ PreN for all wv ∈ pos(t) with v �= ε. Let w be
the left-most such position (i.e., a minimal such position with respect to 
).
It remains to show that t[�]w ∈ LC, where t[�]w denotes the context obtained
from t by replacing the subtree rooted at w by �. By the selection of w, all
positions v 
 w are such that μ(t|v) ∈ PreN . Thus, [δ(t|v)] ⊆ PreM by Theorem 3
and the earlier discussion, which proves that t[�]w ∈ LC. Thus, we obtain the
suitable decomposition t = c[t|w] with c = t[�]w. The uniqueness is also easy
to show as each other suitable position w′ obeys w 
 w′ and μ(t|w) ∈ KerN ,
which by Lemma 1 yields that δ(t|w) ∼ q for some q ∈ KerM . Consequently,
t[�]w′ /∈ LC for all other suitable positions w′ �= w. ��

The decomposition t = c[u] already hints at the next steps. We can compute
δ(u) and μ(u), for which we know that δ(u) ∼ μ(u) by Lemma 1. The error is
then made between those two states, so c ∈ Eδ(u),μ(u) = L(M)δ(u) 5 L(N)μ(u)
is an error context of LC. To make the computation even simpler, we observe
that μ(u) ∈ KerN , which with the help of Theorem 3 yields that there exists a
state q ∈ Q such that q ≡ μ(u). Consequently, it is sufficient to compute Eδ(u),q

for all δ(u) ∼ q. In fact, for all q ∼ q′ we know that Eq,q′ is finite, but we need
the exact cardinality d(q, q′) of the subset Eq,q′ ∩LC. More exactly, for all q ∼ q′,
let d(q, q′) = |Eq,q′ ∩ LC| and

CM = CΣ(Q) ∩Σ(Q ∪ {�}) and CM = CM ∩CΣ(PreM ) ,

of which the elements are called transition and preamble transition contexts, re-
spectively. To compute d, we adjust the straightforward counting procedure [15].

Lemma 9. For all q ∼ q′ we have d(q, q) = 0 and

d
(
q, q′
)
=
( ∑
c∈CM

c=σ(q1,...,qi,�,qi+1,...,qk)
[q1],...,[qi]⊆PreM

aq1 · . . . · aqk · d
(
δ(c[q]), δ(c[q′])

))
+

{
1 if q ∈ F xor q′ ∈ F
0 otherwise.

Proof. The first equation is trivial and the second equation straightforwardly
formalizes |Eq,q′ |, but only counts the error contexts of LC. More precisely, the
final summand checks whether � ∈ LC is in the difference Eq,q′ . Every other
difference context c′′ = c′[c] ∈ Eq,q′ consists of (i) a context c obtained from a
transition context c = σ(q1, . . . , qi,�, qi+1, . . . , qk) of CM by replacing the states
q1, . . . , qk ∈ Q by t1 ∈ L(M)q1 , . . . , tk ∈ L(M)qk , respectively, which yields the
factors aq1 , . . . , aqk , and (ii) an error context c′ for the states δ(c[q]) and δ(c[q′]),
which yields the factor d(δ(c[q]), δ(c[q′])). We can immediately restrict ourselves
to preamble transition contexts because δ(c[q]) = δ(c[q′]) by [13, Prop. 18],
which yields that d(δ(c[q]), δ(c[q′])) = 0, for all c ∈ CM − CM . Moreover, if the
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states q1, . . . , qi to the left of � are not such that [q1], . . . , [qi] ⊆ PreM , then the
context c′′ is not in LC and thus discarded. ��

Since we now have a recursive procedure to compute d, let us quickly analyse
its time complexity. The analysis is based on the idea that entries in d are never
recomputed once they have been computed once.

Corollary 10 (of Prop. 5 and Lm. 9). For all q ∼ q′ we can compute d(q, q′)
in time O(m · n) where m = |M | and n = |Q|.

Proof. We can trivially compute all aq with q ∈ PreM in time O(m) as already
mentioned, and we can compute each entry in d in time O(mn ) without the time
needed to compute the recursive calls because there are

∑
k≥1 k · |Σk| · |Q|k−1

transition contexts.9 Since there are at most n2 entries in d, we obtain the stated
time-bound. ��

Thus, we can now identify and count the errors caused in kernel states of M . To
this end, we look at all the transitions that switch from exclusively preamble to
kernel states and compute the number of errors induced by this transition. Let
s = σ(p1, . . . , pk) ∈ Σ(PreN ) and μ(s) ∈ KerN be such a transition. The set Es

of errors caused by this transition s is

Es = E ∩ {c[σ(t1, . . . , tk)] | c ∈ L(N)μ(s) ∩ LC, ∀i ∈ [k] : ti ∈ L(N)pi} ,

which contains all errors that use the transition s as the left-most special tran-
sition.

Lemma 11. For every s = σ(p1, . . . , pk) ∈ Σ(PreN ) with μ(s) ∈ KerN

|Es| = es,q =
∑

q1∈[δ(up1)],...,qk∈[δ(upk
)]

aq1 · . . . · aqk · d
(
δ(σ(q1, . . . , qk)), q

)
,

where up ∈ L(N)p for every p ∈ PreN and q ∈ KerM is such that q ≡ μ(s).

Proof. Let N ′ = (P ′, Σ, μ′, G′) be the dta returned by [13], and for every i ∈ [k]
let p′i = μ′(upi). Then L(N)pi = L(N ′)p

′
i =

⋃
qi∈[δ(upi

)] L(M)qi by Theorem 3
and Lemma 4. Moreover, L(N)μ(s) = L(M)q by assumption. Together with these
statements, the equation is a straightforward implementation of the definition
of Es. ��

By Lemma 8 the sets Es for suitable s ∈ Σ(PreN ) are pairwise disjoint, so the
errors just add up. In addition, any state p ∈ P such that p ∼ μ(s) is a valid
transition target, so to optimize the errors, we can simply select the transition
target p ∈ P with p ∼ μ(s) that minimizes the number of caused errors. In
summary, this yields our main theorem (and Algorithm 1).
9 This actually needs another trick. Given a transition σ(q1, . . . , qk) ∈ Σ(Q) we obtain
k transition contexts c1, . . . , ck by replacing in turn each state q1, . . . , qk by �. To
avoid a multiplication effort of O(k) we once compute aq1 · . . . ·aqk and then compute
the value for the context ci by dividing this product by the value aqi .



254 A. Maletti

Algorithm 1. Optimal choice of preamble-to-kernel transitions.
Require: a minimal dta M , its almost equivalence ∼ ⊆ Q×Q, and

an almost equivalent hyper-minimal dta N
Return: an almost equivalent hyper-minimal dta N minimizing |L(M) � L(N)|

select up ∈ L(N)p for all p ∈ PreN
2: G← {p ∈ P |

∑
q∈[δ(up)]−F aq <

∑
q∈[δ(up)]∩F aq}

for all s ∈ Σ(PreN ) with μ(s) ∈ KerN do
4: select p ∈ P such that p ≡ argminq

(
e′s,q | q ∈ KerM , q ∼ μ(s)

)
μ(s)← p // reroute transition

6: return N

Theorem 12. Let m = |M | and n = |Q|. For every hyper-minimal dta N that
is almost equivalent to M we can determine |L(M) 5 L(N)| in time O(m · n).
Moreover, we can compute a hyper-minimal dta N ′ that minimizes the num-
ber |L(M)5 L(N ′)| of errors in time O(m · n).

Future Work

Recently, [10] showed results in the string case for other regular languages of
allowed differences. These should translate trivially to tree automata. The dif-
ference in the number of errors between the optimal dta and the worst dta can be
exponential, so the optimization can avoid a large number of errors. A practical
evaluation for dta remains future work, but a simple experiment was already
conducted in [15, Sect. 6] for the string case. A reviewer suggested to consider
the sum of the error tree sizes instead of the simple count of error trees, but
the optimization of that criterion seems closely related to bin packing already
in the acyclic case (i.e., the case where the automaton has no kernel states),
but the details should still be worked out. In addition, the reviewer suggested to
consider those languages L ⊆ TΣ, for which the minimal dta is hyper-minimal
and optimal and in addition no other dta of strictly smaller size recognizes a tree
language that is almost equivalent to L. Clearly, such tree languages exist (e.g.,
TΣ), but the author is unaware of the particular properties of those languages.
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Abstract. Clearing restarting automata are based on contextual rewrit-
ing. A word w is accepted by an automaton of this type if there is a
computation that reduces the word w to the empty word λ by a fi-
nite sequence of rewritings. Accordingly, the word problem for a clearing
restarting automaton can be solved nondeterministically in quadratic
time. If, however, the contextual rewritings happen to be λ-confluent,
that is, confluent on the congruence class of the empty word, then the
word problem can be solved deterministically in linear time. Here we
show that, unfortunately, λ-confluence is not even recursively enumer-
able for clearing restarting automata. This follows from the fact that
λ-confluence is not recursively enumerable for finite factor-erasing string-
rewriting systems.

Keywords: Clearing restarting automaton, limited context restarting
automaton, factor-erasing string-rewriting system, λ-confluence.

1 Introduction

Restarting automata were introduced in [8] to model the technique of analysis by
reduction, which is used in linguistics to analyze sentences of natural languages
with free word order. Interestingly, a restarting automaton is not only useful for
accepting a language, but it also enables error localization in rejected words (see,
e.g., [7]). Despite these nice properties, restarting automata are rarely used in
practice. One reason for this is certainly the fact that it is quite a complex task to
design a restarting automaton for a given language. Accordingly, methods have
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been studied for learning a restarting automaton from positive (and negative)
examples of sentences and/or reductions (see, e.g., [1,2,5,6,11]).

Specifically, Černo and Mráz introduced a restricted type of restarting au-
tomaton, the so-called clearing restarting automaton, in [6], which was later
extended to the limited context restarting automaton by Basovńık and Mráz
in [1,2]. A clearing restarting automaton M is defined through a finite set I(M)
of instructions of the form (x | z → λ | y). Based on the local context x and y,
this instruction erases the factor z from the tape contents cw$ of M , where c
and $ are the left and right delimiters of the tape. Now M repeatedly applies
its instructions, and it accepts if and when its tape contents has been reduced
to the word c$. For clearing restarting automata a simple learning algorithm
exists [5,6], but on the other hand, they are quite limited in their expressive
power. In fact, while these automata accept all regular languages and even some
languages that are not context-free, they do not even accept all context-free
languages (see [6]).

A limited context restarting automaton (lc-R-automaton, for short) M is de-
fined through a finite set of instructions of the form (x | z → t | y), where |z| > |t|.
Based on the local context x and y, this instruction replaces an occurrence of
the factor z of the tape contents by the word t. Several different types of lc-R-
automata have been defined in [2] and in [17] based on the form of the admissible
contexts x and y and the form of the word t. In an lc-R-automaton of type R1,
we have |t| ≤ 1 for each instruction, and for an lc-R-automaton of type R2, we
require in addition that x ∈ {c, λ} and y ∈ {$, λ} for all instructions, that is,
the left (right) context of each instruction is either the left (right) delimiter, or
it is empty. Obviously, the lc-R-automaton of type R1 is a proper extension of
the clearing restarting automaton, while those of type R2 are incomparable to
clearing restarting automata.

To test whether a word w belongs to the language L(M) accepted by a given
lc-R-automaton M , one has to check whether w can be reduced to the empty
word λ by a sequence of applications of the instructions ofM . As each instruction
is length-reducing, such a sequence is bounded in length by |w|, but as there
could be several instructions that are applicable to the same word, or there
could be several places at which a given instruction can be applied, all such
sequences must be checked. Accordingly, the membership problem for L(M)
is decidable nondeterministically in time O(n2). The situation would be much
better if it was known that each and every sequence of applications of instructions
of M reduces w to λ, if w does indeed belong to the language L(M). In this
case we could concentrate on leftmost sequences of reductions, and accordingly,
membership in L(M) would be decidable deterministically in time O(n).

With an lc-R-automaton M , we can associate a finite string-rewriting sys-
tem S(M) = { (xzy → xty) | (x | z → t | y) ∈ I(M) } ∪ {(c$ → λ)}. Obvi-
ously, for all input words w, w ∈ L(M) if and only if cw$ ⇒∗

S(M) λ holds,

where ⇒∗
S(M) denotes the reduction relation induced by S(M) (see below).

Now the lc-R-automaton M is called confluent, if the string-rewriting system
S(M) is confluent. In [17] the expressive power of the various types of confluent
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lc-R-automata has been investigated, but confluent lc-R-automata of type R1

(R2) are much less expressive than the non-confluent lc-R-automata of the same
type.

However, for solving the membership problem for the language L(M) in
linear time, confluence is actually not needed. In fact, it would suffice that
the string-rewriting system S(M) is λ-confluent, which means that all words
that are congruent to λ reduce to λ. And indeed, we will see below that for
lc-R-automata of type R2, λ-confluence is decidable.

If M is a clearing restarting automaton, then each rule of the string-rewriting
system S(M) simply erases a non-empty factor of its left-hand side. Thus, in
this case S(M) is a factor-erasing string-rewriting system. As our technical main
result we will show that it is undecidable in general whether a given finite factor-
erasing string-rewriting system is λ-confluent. In fact, we will see that this prob-
lem is not even recursively enumerable (r.e.). It will follow that it is undecidable
(in fact, not r.e.) in general whether a given clearing restarting automaton is
λ-confluent.

Our main result improves upon the result established in [15], which states that
λ-confluence is undecidable for finite length-reducing string-rewriting systems.
Observe that factor-erasing string-rewriting systems can be seen as a generaliza-
tion of special string-rewriting systems, for which λ-confluence is known to be
decidable in polynomial time [16].

This paper is structured as follows. In the next section we introduce the
necessary notation and notions on string-rewriting systems. Then we present
the clearing restarting automaton and the limited context restarting automaton
in short, and we state our results on λ-confluence for these types of automata.
In Section 4 we derive our main undecidability result, and in the final section
we present some open problems for further work.

2 String-Rewriting Systems

A (finite) string-rewriting system S on an alphabet Σ consists of (finitely many)
pairs of strings from Σ∗, called rewrite rules, which are written as (� → r).
By dom(S) we denote the set dom(S) = { � | ∃r ∈ Σ∗ : (� → r) ∈ S } of
left-hand sides of rules of S. The reduction relation ⇒∗

S on Σ∗ that is induced
by S is the reflexive and transitive closure of the single-step reduction relation
⇒S = { (u�v, urv) | (�→ r) ∈ S, u, v ∈ Σ∗ }. For a string u ∈ Σ∗, if there exists
a string v such that u ⇒S v holds, then u is called reducible mod S. If such a
string v does not exist, then u is called irreducible mod S. By IRR(S) we denote
the set of all irreducible strings mod S. As IRR(S) = Σ∗
 (Σ∗ ·dom(S) ·Σ∗), we
see that IRR(S) is a regular language, if S is finite. By ⇔∗

S we denote the Thue
congruence on Σ∗ that is induced by S. It is the smallest equivalence relation
on Σ∗ containing the single-step reduction relation ⇒S . For each word w ∈ Σ∗,
[w]S = { u ∈ Σ∗ | u⇔∗

S w } is the congruence class of w.
Here we are interested in certain restricted types of string-rewriting systems.

A string-rewriting system S is called
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– length-reducing, if |�| > |r| for each rule (�→ r) ∈ S,
– monadic, if it is length-reducing and |r| ≤ 1 for each rule (�→ r) ∈ S,
– special, if it is length-reducing and |r| = 0 for each rule (�→ r) ∈ S,
– erasing, if, for each rule (� → r) ∈ S, r is a proper scattered subword of �,

that is, r is obtained from � by erasing one or more letters of �,
– factor-erasing, if, for each rule (� → r) ∈ S, there exists a factorization
� = uxv such that |x| ≥ 1 and r = uv,

– confluent, if, for all u, v ∈ Σ∗, u⇔∗
S v implies that there exists some z ∈ Σ∗

such that u⇒∗
S z and v ⇒∗

S z hold,
– λ-confluent, if it is confluent on the congruence class of the empty word λ,

that is, for all w ∈ Σ∗, if w ⇔∗
S λ, then w⇒∗

S λ, and
– convergent, if it is confluent and terminating, that is, S does not admit any

infinite sequence of reductions of the form u⇒S u1 ⇒S u2 ⇒S . . ..

Obviously, each length-reducing system is terminating. Hence, a length-reducing
and confluent system is convergent. For a convergent system S, the set IRR(S)
of irreducible strings is a complete set of unique representatives for the Thue
congruence ⇔∗

S (see, e.g., [4]).
For each pair of rewriting rules �1 → r1 and �2 → r2, the set of critical pairs is

defined as the set { (xr1, r2y) | x, y ∈ Σ∗, x�1 = �2y and |x| < |�2| }∪{ (r1, xr2y) |
x, y ∈ Σ∗, �1 = x�2y }. We say that a critical pair (p, q) resolves if p and q
have a common descendant mod S. Finally, for checking that a terminating
system S is confluent, it suffices to determine all critical pairs (p, q) of S and to
check whether they all resolve mod S (see, e.g., [4]). In particular, it is known
that confluence is decidable in polynomial time for finite length-reducing string-
rewriting systems [10].

The problem of checking λ-confluence is much more difficult. It is shown in [15]
that λ-confluence is decidable in double exponential time for finite monadic
string-rewriting systems, but that it is undecidable in general for finite length-
reducing string-rewriting systems. On the other hand, λ-confluence is decidable
in polynomial time for finite special string-rewriting systems [16].

3 Clearing and Limited Context Restarting Automata

Let k be a positive integer. A k-context rewriting system is a triple C = (Σ,Γ, I),
where Σ is a finite input alphabet, Γ is a finite working alphabet containing Σ
but not the special symbols c and $, called sentinels, and I is a finite set of
instructions of the form (x | z → t | y), where x is called a left context, x ∈
Γ k ∪ c ·Γ≤k−1, y is called a right context, y ∈ Γ k ∪Γ≤k−1 · $, and z → t is called
a rule, where z, t ∈ Γ ∗. A word w = uzv can be rewritten into utv, denoted
as uzv →C utv, if and only if there exists an instruction i = (x | z → t | y) ∈ I
such that x is a suffix of c · u and y is a prefix of v · $. The reduction language
associated with C is defined as L(C) = {w ∈ Σ∗ | w→∗

C λ }, where →∗
C denotes

the reflexive and transitive closure of →C .
A k-clearing restarting automaton is a k-context rewriting system M =

(Σ,Σ, I) such that, for each instruction i = (x | z → t | y) ∈ I, we have z ∈ Σ+



260 F. Mráz and F. Otto

and t = λ. A clearing restarting automaton is a k-clearing restarting automaton
for some k ≥ 0.

A limited context restarting automaton, an lc-R-automaton for short, is a
k-context rewriting system M = (Σ,Γ, I) for some k ≥ 1, where I contains
instructions of the form (x | z → t | y) such that |z| > |t|.

We consider two restricted types of lc-R-automata. We say that an lc-R-
automaton M = (Σ,Γ, I) is of type

• R1, if all instructions of I are of the form (x | z → t | y), where t ∈ Γ ∪ {λ},
and z ∈ Γ+ such that |z| > |t|;

• R2, if all instructions of I are of the form (x | z → t | y), where t ∈ Γ ∪ {λ},
x ∈ {λ, c}, y ∈ {λ, $}, and z ∈ Γ+ such that |z| > |t|.

Obviously, clearing restarting automata are a subclass of the lc-R-automata of
type R1.

An lc-R-automaton M accepts exactly the set of input words which can be
reduced to λ. Obviously, λ is in L(M) for each lc-R-automaton M . Further, an
lc-R-automatonM is called λ-confluent if the reduction relation→M is confluent
on λ, that is, if w →∗

M λ and w →∗
M w

′, then also w′ →∗
M λ.

With a finite factor-erasing string-rewriting system S on some alphabet Γ ,
we can associate a clearing restarting automaton MS = (Γ, Γ, IS) by taking

IS = { (u |x→ λ | v) | (uxv → uv) ∈ S }.

Now S is λ-confluent iff, for all w ∈ Γ ∗, w ⇔∗
S λ implies that w ⇒∗

S λ, which in
turn holds iff, for all w ∈ Γ ∗, cw$ ⇔∗

S c$ implies that cw$ ⇒∗
S c$, which in turn

is equivalent to saying that, for all w,w′ ∈ Γ ∗, w →∗
MS
λ and w →∗

MS
w′ imply

that w′ →∗
MS
λ. Hence, S is λ-confluent iff MS is λ-confluent.

Below we will show that λ-confluence is not even recursively enumerable for
finite factor-erasing string-rewriting systems (Theorem 4). Thus, we immediately
obtain the following results.

Theorem 1.

(a) The problem of deciding λ-confluence for clearing restarting automata is not
recursively enumerable.

(b) The problem of deciding λ-confluence for lc-R-automata of type R1 is not
recursively enumerable.

Let M = (Σ,Γ, I) be an lc-R-automaton of type R2. Then the string-rewriting
system

R(M) = { (xzy → xty) | (x | z → t | y) ∈ I }
can be split into four disjoint subsystems:

(a) Rbif = { (cz$ → ct$) | (c | z → t | $) ∈ I }, the bifix rules of R(M),

(b) Rpre = { (cz → ct) | (c | z → t |λ) ∈ I }, the prefix rules of R(M),

(c) Rsuf = { (z$→ t$) | (λ | z → t | $) ∈ I }, the suffix rules of R(M),

(d) Rinf = { (z → t) | (λ | z → t |λ) ∈ I }, the infix rules of R(M).
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Here we can assume without loss of generality that |t| = 1 for all rules in Rinf ,
as each instruction of the form (λ | z → λ |λ) can be replaced by the set of
instructions { (λ |Az → A |λ) | A ∈ Γ } ∪ {(c | z → λ |λ)}. Then it can be shown
that the lc-R-automaton M is λ-confluent, if and only if the string-rewriting
system R(M) is confluent on the congruence class of c$.

As for each instruction (x | z → t | y) ∈ I, |z| > |t| and |t| ≤ 1, we see that Rinf

is a monadic string-rewriting system, and Rpre (Rsuf and Rbif ) is a monadic
string-rewriting system with added left (right, left and right) sentinel. In [15] it
is shown that it is decidable whether a finite monadic string-rewriting system is
confluent on a given congruence class. This is done as follows. First, it is shown
that a finite length-reducing string-rewriting system S is confluent on [w]S , where
w ∈ IRR(S), if and only if Lp(w) = Lq(w) holds for each unresolved critical pair
(p, q) of S. Here Lz(w) is the language Lz(w) = { x#y | x, y ∈ IRR(S), xzy ⇒∗

S,L

w }, where ⇒S,L denotes the leftmost reduction mod S. Secondly, it is shown
that, if S is monadic, then from S, z and w, a deterministic one-turn pushdown
automaton A(z, w) can be constructed that accepts the language Lz(w). As the
set of unresolved critical pairs can be computed in polynomial time from S,
and as it is decidable (in double exponential time) whether two deterministic
one-turn pushdown automata accept the same language [3,18], this shows that
confluence on [w]S is decidable for a finite monadic string-rewriting system S. On
close inspection it turns out that this very algorithm extends to string-rewriting
systems of the form of the system R(M) above, which yields the following.

Theorem 2. It is decidable in double exponential time whether a given
lc-R-automaton of type R2 is λ-confluent.

4 Undecidability of λ-Confluence

Here we are interested in the problem of deciding λ-confluence for finite factor-
erasing string-rewriting systems. These systems can be seen as a generalization
of special string-rewriting systems, as in each reduction step a non-empty factor
is simply erased, but in contrast to the situation for a special string-rewriting
system, the place of this factor is restricted by a two-sided context-condition for
a factor-erasing string-rewriting system. As we will see below, this restriction is
already sufficient to turn λ-confluence into a property that is not even recursively
enumerable.

We will prove this result by an extension of the corresponding result for finite
length-reducing string-rewriting systems. Therefore, we first outline the proof of
the latter result from [15] in short.

Let Σ be a finite alphabet, let L ⊆ Σ∗ be a language that is recursively
enumerable, but non-recursive, and let M = (Q,Σ, b, q0, qn, δ) be a single-tape
Turing machine that accepts the language L. Here Q = {q0, q1, . . . , qn} is the set
of states ofM , Σ is the input alphabet, b �∈ Σ is the blank symbol, q0 ∈ Q is the
initial state, qn ∈ Q is the unique halting state, and δ : ((Q
{qn})×(Σ∪{b})) →
(Q×Σ×{right, left}) is the transition function. A configuration of M is a word
of the form uqav for u ∈ Σ∗, q ∈ Q, a ∈ Σb, and v ∈ Σ∗, where Σb = Σ ∪ {b},
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the initial configuration on input w ∈ Σ∗ is q0w, and a final (or accepting)
configuration has the form uqnav. W.l.o.g. we may assume that for each final
configuration uqnav, |v| ≥ 1. Hence, w ∈ L if and only if q0w 4∗M uqnav holds
for some u ∈ Σ∗, a ∈ Σ, and v ∈ Σ+. Let Π = Σ ∪ {!, "}, where " and ! are
two new symbols that will be used as endmarkers. Further, let Q1 = Qp ∪ Qs,
where Qp = {p0, p1, . . . , pn} and Qs = {s0, s1, . . . , sn} are disjoint copies of the
set Q of states of M , and let

D = { 〈api〉, 〈sia〉 | a ∈ Π, i ∈ {0, 1, . . . , n− 1} } ∪ {〈A〉, 〈B〉}

be a set of additional letters called dummy symbols.
Following [12,13] a finite length-reducing string-rewriting system R(M) can

now be constructed that simulates the computations of M in reverse order.
Let CONFIG = ! · (Σ ∪ D)∗ · Q1 · (Σ ∪ D)∗ · " , and let HALTING =

! · (Σ∪D)∗ · {pn, sn} · (Σ∪D)+ ·" . The elements of CONFIG can be interpreted
as descriptions of possible configurations of M interspersed with occurrences of
dummy symbols, and the elements of HALTING correspond to possible halting
configurations of M . Now let Γ = Π ∪ Q1 ∪ D ∪ {〈C〉}, where 〈C〉 is another
new symbol, and let R(M) be the finite length-reducing string-rewriting system
on Γ that is defined as follows, where a ∈ Σ, c ∈ Σ, qi ∈ Q, pi ∈ Qp, sj ∈ Qs,
and 〈d〉 ∈ D:

〈api〉csj → api, if δ(qi, a) = (qj , c, right),

〈sia〉csj → sia, if δ(qi, a) = (qj , c, right),

pjc〈api〉 → api, if δ(qi, a) = (qj , c, left),

pjc〈sia〉 → sia, if δ(qi, a) = (qj , c, left),

!〈!pi〉csj → !pi, if δ(qi, b) = (qj , c, right),

〈si"〉csj" → si", if δ(qi, b) = (qj , c, right),

!pjc〈!pi〉 → !pi, if δ(qi, b) = (qj , c, left),

pjc〈si"〉" → si", if δ(qi, b) = (qj , c, left),

pi〈d〉〈A〉 → 〈d〉pi, 〈B〉〈d〉si → si〈d〉,
〈B〉pisj → 〈C〉, pisj〈A〉 → 〈C〉,
〈C〉〈A〉 → 〈C〉, 〈B〉〈C〉 → 〈C〉.

The string-rewriting system R(M) is even confluent, and it satisfies the following
properties (see, e.g., [12,14]):

(1) |�| ≤ 4 and |r| ≤ 2 for all rules (�→ r) ∈ R(M),
(2) !s0 ·Σ∗ · " ⊆ IRR(R(M)),
(3) if w ∈ CONFIG and w ⇒∗

R(M) z, then z ∈ CONFIG,

(4) if z ∈ CONFIG and w ⇒∗
R(M) z, then w ∈ CONFIG,

(5) for all x ∈ Σ∗, x ∈ L if and only if ∃w ∈ HALTING : w ⇒∗
R(M) !s0x".

Let ⊥ be another new symbol, let Δ = Γ ∪ {⊥}, and let

RL = R(M) ∪ { (pna→ ⊥), (sna→ ⊥) | a ∈ Σ ∪D }.
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Then RL is a finite length-reducing string-rewriting system on Δ, and it is easily
seen that RL is not confluent, as none of the critical pairs that result from
overlapping one of the new rules with a rule of R(M) resolves.

For x ∈ Σ∗, if x ∈ L, then there exist words z1, z2 ∈ (Σ ∪ D)∗, z2 �= λ, and
a symbol r ∈ {pn, sn} such that !z1rz2" ⇒∗

R(M) !s0x" holds (see (5)). Since

!z1rz2" ⇒RL !z1⊥z3" for some z3 ∈ (Σ ∪ D)∗, and since !s0x" and !z1⊥z3"
are both irreducible mod RL, we see that RL is not confluent on the congruence
class [!s0x"]RL . If, however, x �∈ L, then it can be shown that RL is confluent
on [!s0x"]RL (see [15]). Thus, RL is confluent on the congruence class [!s0x"]RL

if and only if x �∈ L.
Finally, for x ∈ Σ∗, we take the string-rewriting systems

RL(x) = RL ∪ {(!s0x"→ λ)}.

Then RL(x) is a finite length-reducing string-rewriting system, which satisfies
the following equivalences:

RL(x) is λ-confluent iff RL(x) is confluent on [λ]RL(x)

iff RL is confluent on [!s0x"]RL

iff x �∈ L.
From the choice of the language L it thus follows that the following problem is
not recursively enumerable:

INSTANCE: A word x ∈ Σ∗.
QUESTION: Is the finite length-reducing string-rewriting system RL(x)

λ-confluent?

Next we extend the result above to finite erasing string-rewriting systems, and
then we extend it to finite factor-erasing string-rewriting systems. For the former
step we make use of a variant of an encoding introduced in [9].

We introduce a linear ordering on the alphabet Δ̂ = Δ
 {", !}. Accordingly,
we can write Δ̂ as Δ̂ = {d1, d2, . . . , dm}. In addition, we introduce a linear
ordering on the rules of the string-rewriting system RL, that is, RL can be
written as RL = { (�i → ri) | i = 1, . . . , s }. Let Ω = {!, ", c, d, 0, 1} be a new
alphabet, and let ψ : Δ∗ → Ω∗ be the morphism that is defined as follows, where
ŝ = s+ 1 and m̂ = m+ 1:

! �→ !, " �→ ", di �→ cŝ1m̂−i0i(cŝd1m̂0m̂)2, 1 ≤ i ≤ m.

Obviously, ψ is an encoding, that is, an injective mapping. In addition, it has
the following nice property.

Lemma 1. [9] For all u, v ∈ Δ̂∗, if |v| < |u| ≤ 3, then ψ(v) is a scattered
subword of ψ(u).

Proof. Let u = di1di2di3 and v = dj1dj2 . Then the encoded words ψ(u) and
ψ(v) look as follows:

ψ(u) = cŝ1m̂−i10i1(cŝd1m̂0m̂)2cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

ψ(v) = cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j2(cŝd1m̂0m̂)2.
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Now ψ(u) can be factored as follows:

ψ(u) = cŝ1m̂−i10i1 · cŝ · d1j1 · 1m̂−j10j1 · 0m̂−j1 · (cŝd1m̂0m̂) · cŝ1m̂−i20i2 ·
(cŝd1m̂0m̂)cŝ · d1j2 · 1m̂−j20j2 · 0m̂−j2cŝ1m̂−i30i3 · (cŝd1m̂0m̂)2,

and by erasing the six underlined factors, ψ(v) is obtained from ψ(u). The case
that |v| = 1 and |u| ∈ {2, 3} is dealt with analogously. �

Let R̂L be the string-rewriting system on Ω that is defined as

R̂L = { (ψ(�) → ψ(r)) | (�→ r) ∈ RL },

and for x ∈ Σ∗, let R̂L(x) be the string-rewriting system

R̂L(x) = { (ψ(�) → ψ(r)) | (�→ r) ∈ RL(x) } = R̂L ∪ {(!ψ(s0x)"→ λ)}.

Then R̂L(x) is a finite erasing string-rewriting system. Note that Lemma 1 can
also be applied to those rules �→ r of RL for which |�| = 4 holds, since for these
rules, � starts or ends with one of the sentinels " or !, which are mapped onto
themselves by ψ.

Lemma 2. For each x ∈ Σ∗, the system R̂L(x) is λ-confluent if and only if the
system RL(x) is λ-confluent.

Proof. From the definition of the encoding ψ we see that, for all w, z ∈ Δ̂∗,
!w" ⇒RL !z" if and only if !ψ(w)" ⇒R̂L

!ψ(z)". Further, (!ψ(s0x)" → λ) is

the only rule of R̂L(x) with right-hand side λ, while (!s0x" → λ) is the only
rule of RL(x) with right-hand side λ. It follows immediately that R̂L(x) is λ-
confluent, if and only if RL(x) is. �

This yields the following result.

Lemma 3. The following problem is not even recursively enumerable:

INSTANCE: A word x ∈ Σ∗.
QUESTION: Is the erasing string-rewriting system R̂L(x) λ-confluent?

Thus, we have the following undecidability result.

Theorem 3. The problem of deciding whether a finite erasing string-rewriting
system is λ-confluent is not recursively enumerable.

Each rule of the system R̂L is erasing, that is, its right-hand side is obtained
from its left-hand side by erasing up to six factors (see the proof of Lemma 1).

Finally we extend the above undecidability result to finite factor-erasing
string-rewriting systems by simulating the system R̂L by a factor-erasing string-
rewriting system R̃L. Essentially, the new system will simulate the application
of a rule of R̂L by up to seven separate steps that each erase a single factor only.
Accordingly, each rule of R̂L will be replaced by finitely many factor-erasing
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rules that each erase one of the factors deleted by the original rule. By adding
certain contexts to these rules it will be ensured that they can only be applied
in the correct order, and that rules corresponding to different rules of R̂L will
not interfere with each other.

We define the string-rewriting system R̃L as R̃L =
⋃s

i=1 R̃i, where, for i =

1, . . . , s, R̃i is a finite set of factor-erasing rules that is defined from the rule
(ψ(�i) → ψ(ri)) of R̂L. Finally, for each x ∈ Σ∗, we will consider the system

R̃L(x) = R̃L ∪ {(!ψ(s0x)"→ λ)}.

Then R̃L(x) is a finite factor-erasing string-rewriting system on Ω.
First, we define a finite set LC of left contexts by taking

LC = {!} ∪ ({!} · ψ(Δ̂)) ∪ ({!} · ψ(Δ̂2)) ∪ ψ(Δ̂3).

Then, for each rule (ψ(�i) → ψ(ri)) of R̂L, we define a finite collection of factor-
erasing rules R̃i.

Actually, there are five different cases based on the form of the rule considered.
Here we present the most involved case, that is, (�i → ri) is a rule of the form
�i = di1di2di3 and ri = dj1dj2 for some di1 , di2 , di3 , dj1 , dj2 ∈ Δ̃, that is,

ψ(�i) = c
ŝ1m̂−i10i1(cŝd1m̂0m̂)2cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

and

ψ(ri) = c
ŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j2(cŝd1m̂0m̂)2.

Then R̃i contains the following rules for all u ∈ LC:

(1) ucicŝ−i1m̂−i10i1−10(cŝd1m̂0m̂)2cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ u · ci0(cŝd1m̂0m̂)2cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

(2) ci0(cŝd1j11m̂−j10m̂)(cŝd1m̂0m̂)cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ ci0(cŝ1m̂−j10m̂)(cŝd1m̂0m̂)cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

(3) ci0cŝ1m̂−j10j10m̂−j1(cŝd1m̂0m̂)cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

(4) ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)cŝ1m̂−i20i2(cŝd1m̂0m̂)2cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)3cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

(5) ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ · d1j21m̂−j20m̂cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20m̂cŝ1m̂−i30i3(cŝd1m̂0m̂)2,

(6) ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j20m̂−j2cŝ1m̂−i30i3(cŝd1m̂0m̂)2

→ ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j2(cŝd1m̂0m̂)2,

(7) ci0cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j2(cŝd1m̂0m̂)2

→ cŝ1m̂−j10j1(cŝd1m̂0m̂)2cŝ1m̂−j20j2(cŝd1m̂0m̂)2.

For all other rules of (�k → rk) of RL, the rules of R̃k are defined analogously.
In particular, for a rule of the form (�k → rk) = (!di1di2di3 → !dj1) of RL,
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the rules in the corresponding group R̃k are defined with the restriction that
only the element ! ∈ LC is used in rule (1). Then R̃L =

⋃s
i=1 R̃i is a finite

factor-erasing string-rewriting system, and for each x ∈ Σ∗, so is the system
R̃L(x) = R̃L ∪ {(!ψ(s0x)"→ λ)}.

Obviously, for all w, z ∈ Δ̂∗, if !ψ(w)" ⇒∗
R̂L
!ψ(z)", then !ψ(w)" ⇒∗

R̃L

!ψ(z)". It follows that R̃L(x) is not λ-confluent, if R̂(x) is not λ-confluent.
Conversely, if !ψ(w)" ⇒∗

R̃L
!ψ(z)", then also !ψ(w)" ⇒∗

R̂L
!ψ(z)". Observe

that the rules of a subsystem R̃i are necessarily applied in the order given. If
the i-th rule of R̂L is to be simulated, then the first rule of the subsystem R̃i is
used to mark the first letter of the occurrence of the left-hand side ψ(�i) to be
rewritten by the factor ci0. The left context u ∈ LC of this rule ensures that no
still uncompleted simulation of an application of a rule of R̂L is currently being
executed on the factor of length at most three to the left of this position. Thus,
it is possible to interleave simulations of several rules of R̂L, but these rules must
be applied to factors of the current word that are sufficiently far apart from each
other. It follows that R̃L(x) is λ-confluent, if R̂L(x) is. Hence, we obtain the
following result.

Lemma 4. The following problem is not recursively enumerable:

INSTANCE: A word x ∈ Σ∗.
QUESTION: Is the factor-erasing string-rewriting system R̃L(x) λ-confluent?

Thus, we have the following result.

Theorem 4. The problem of deciding whether a finite factor-erasing string-
rewriting system is λ-confluent is not recursively enumerable.

5 Conclusion and Open Problems

It is known that lc-R-automata of type R2 accept the context-free languages [1].
Further, ifM is an lc-R-automaton of typeR2 such that the corresponding string-
rewriting system R(M) is confluent, then L(M) and its reversal, (L(M))R, are
both deterministic context-free languages [17]. What can be said about the class
of languages that are accepted by λ-confluent lc-R-automata of type R2?

For finite special string-rewriting systems, λ-confluence is decidable in poly-
nomial time. Here we have seen that λ-confluence becomes undecidable (in fact,
non-r.e.), if we add left and right contexts to special string-rewriting systems.
However, the contexts used in the proof of Theorem 4 are rather large. Does
λ-confluence remain undecidable even for finite factor-erasing string-rewriting
systems with left and right contexts of length at most one? If not, what is the
smallest positive integer constant k such that λ-confluence is decidable for finite
factor-erasing string-rewriting systems with left and right contexts of length at
most k − 1, but it becomes undecidable for finite factor-erasing string-rewriting
systems with contexts of length up to k?
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7. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart

operation. J. Autom. Lang. Comb. 4, 287–311 (1999)
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Malostranské nám. 25, 118 25 Prague 1, Czech Republic
frantisek.mraz@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We compare two types of automata for accepting picture
languages to each other: the two-dimensional one-marker automaton and
the sgraffito automaton. On the one hand, it is shown that deterministic
sgraffito automata are strictly more powerful than deterministic two-
dimensional one-marker automata. On the other hand, nondeterminis-
tic two-dimensional one-marker automata accept some picture languages
that cannot be accepted by sgraffito automata. However, if nondetermin-
istic two-dimensional one-marker automata were to accept all picture
languages that are accepted by (deterministic) sgraffito automata, then
the complexity classes NL (nondeterministic logarithmic space) and P
(deterministic polynomial time) would coincide. Accordingly, it is likely
that the classes of picture languages accepted by these two types of
nondeterministic automata are incomparable under inclusion.

Keywords: picture languages, two-dimensional one-marker automaton,
sgraffito automaton, recognizable picture languages.

1 Introduction

The two-dimensional one-marker automaton (2M1A) is a device for accepting
picture languages. It was introduced by Blum and Hewitt [1] as a four-way finite-
state automaton equipped with an additional marker (pebble). These devices are
able to recognize some important topological properties, e.g., whether a black-
and-white picture contains only a single component of black pixels.
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Ito et. al. gave a quantitative analysis of this model, studying the space re-
quired by a three-way Turing machine to simulate a 2M1A [10]. They also studied
two-dimensional one-marker Turing machines working in logarithmic space [8].
Also the one-dimensional variant of the 2M1A that is equipped with k dis-
tinguishable markers received much attention, as this model characterizes the
complexity classes L and NL of deterministic and nondeterministic logarithmic
space, similar to some other related devices like the two-way finite automaton
with multiple heads or linearly bounded counters [6].

On the other hand, the sgraffito automaton (2SA) was introduced only
recently [13]. It is a bounded two-dimensional Turing machine that in each step
replaces the currently scanned symbol by a symbol of smaller weight. Hence,
it can be seen as a two-dimensional variant of the Hennie machine [5], visit-
ing each of its tape positions just a bounded number of times independently
of the size of the input. It is more powerful than the on-line tessellation au-
tomaton [9], which characterizes the family of recognizable picture languages
REC [4]. Also it has recently been shown in [14] that the deterministic sgraffito
automaton is more expressive than the four-way alternating automaton [12], and
it accepts all sudoku-deterministically recognizable picture languages [2]. On the
other hand, the classes of picture languages accepted by the sgraffito automa-
ton, the one-marker automaton and the on-line tessellation automaton have the
same main closure properties with respect to language operations [11,13], and all
these classes collapse to the regular languages when restricted to one-dimensional
inputs, that is, strings.

Here we compare the expressive power of deterministic and nondeterminis-
tic two-dimensional one-marker automata to that of deterministic sgraffito au-
tomata, and we relate it to the family REC. We first show that a deterministic
2SA can simulate a deterministic 2M1A, and then we use a result by Hsia and
Yeh [7] on one-dimensional deterministic k-marker automata to derive a sepa-
ration between the two models. Next we turn to the nondeterministic variants
of these models. We provide examples of picture languages that are accepted
by 2M1A, but that are beyond the power of the 2SA or outside of REC. Finally,
we prove that the complexity classes NL (nondeterministic logarithmic space)
and P (deterministic polynomial time) would coincide if 2M1A could accept all
picture languages that are accepted by deterministic sgraffito automata. As it
is expected that NL is a proper subclass of P, this means that most likely the
classes of picture languages that are accepted by 2M1A and by 2SA (and in fact,
by 2DSA) are incomparable under inclusion.

The paper is structured as follows. In the next section we introduce the ba-
sic notation and notions on picture languages and the sgraffito automaton in
short. Then we separate the deterministic 2M1A from the deterministic 2SA in
Section 3, and in Section 4 we study the relation of the latter automata to the
nondeterministic 2M1A. The paper closes with a short summary and some open
problems in Section 5.
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2 Preliminaries

Here we use the common notation and terms on pictures and picture languages
(see, e.g., [4]). If Σ is a finite alphabet, then Σ∗,∗ is used to denote the set of
rectangular pictures over Σ, that is, if P ∈ Σ∗,∗, then P is a two-dimensional
array of symbols from Σ. If P is of size m×n, this is denoted by P ∈ Σm,n. For
1 ≤ i ≤ m and 1 ≤ j ≤ n, P (i, j) (or shortly Pi,j) identifies the symbol located
in the i-th row and the j-th column of P .

Two (partial) binary operations are used to concatenate pictures. Let P ∈
Σk,� and Q ∈ Σm,n. The column concatenation P �Q is defined iff k = m, and
the row concatenation P �Q is defined iff � = n. These products are specified
by the following schemes:

P �Q =

⎛⎜⎝P1,1 . . . P1,� Q1,1 . . . Q1,n

...
. . .

...
...

. . .
...

Pk,1 . . . Pk,� Qm,1 . . . Qm,n

⎞⎟⎠ and P �Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1,1 . . . P1,�
...

. . .
...

Pk,1 . . . Pk,�
Q1,1 . . . Q1,n

...
. . .

...
Qm,1 . . . Qm,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We use a set of five special markers (sentinels) S = {4,6,�,⊥,#}, where we
assumeΣ∩S = ∅ for any alphabetΣ considered. In order to enable an automaton
to detect the border of P easily, we define the boundary picture P̂ over Σ ∪S of
size (m+ 2)× (n+ 2), which is illustrated by the following scheme:

P

#

#

#

#

4

4...
6

6...

⊥ ⊥ ⊥ ⊥. . .

� � � �. . .

Here the symbols 4,6,� and ⊥ uniquely identify the corresponding borders (left,

right, top, bottom) of P̂ , while the symbol # marks the corners of P̂ . Actually,
our automata will not be able to visit these corner elements unless in the special
case of the empty picture P ∈ Σ0,0 (see below), but we include them anyway in

order to have a rectangular form for P̂ .
Let H = {R,L,D,U,Z} be the set of head movements, where the first four

elements denote directions (right, left, down, up) and Z represents no movement.

Definition 1. A two-dimensional sgraffito automaton (2SA) is given by a 7-
tuple A = (Q,Σ, Γ, δ, q0, QF , μ), where Q is a finite set of states, Σ is an input
alphabet, Γ is a working alphabet containing Σ, q0 ∈ Q is the initial state,
QF ⊆ Q is a set of final states, δ : (Q 
 QF ) × (Γ ∪ S) → 2Q×(Γ∪S)×H is a
transition relation, and μ : Γ → N is a weight function, such that the following
two properties are satisfied:
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1. A is bounded, that is, whenever it scans a symbol from S, then it immediately
moves to the nearest field of P without changing this symbol,

2. A is weight-reducing, that is, for all q, q′ ∈ Q, d ∈ H, and a, a′ ∈ Γ , if
(q′, a′, d) ∈ δ(q, a), then μ(a′) < μ(a).

Finally, A is deterministic (a 2DSA), if |δ(q, a)| ≤ 1 for all q ∈ Q and a ∈ Γ ∪S.

The notions of configuration and computation are defined as usual. In the initial
configuration on input P , the tape contains P̂ , A is in state q0, and its head
scans the top-left corner of P . If P is the empty picture, then the head initially
scans the bottom-right corner of P̂ . The automaton A accepts P iff there is a
computation of A on input P that finishes in a state from QF .

When designing a sgraffito automaton for a picture language, it suffices to
describe a bounded two-dimensional Turing machine that visits each tape cell
only a constant number of times (i.e., a two-dimensional Hennie machine [5]). In
[13] it was shown that any such machine can be transformed into an equivalent
sgraffito automaton (preserving determinism). This fact will be utilized in our
constructive proofs below.

When Blum and Hewitt introduced the marker automaton, they considered
two types of markers – physical and abstract markers, but they proved that k
physical markers can be simulated by k abstract markers and vice versa. Ac-
cordingly, we just concentrate on physical markers. To move a physical marker,
it is required that the head moves over the marker and transfers the marker by a
head movement to a neighbouring position. The deterministic 2M1A is denoted
here as 2DM1A. Note that 2M1As are bounded in the same way as 2SAs.

3 Comparing the Deterministic Models

Deterministic sgraffito automata are quite powerful. During a computation, they
can visit any tape field constantly many times. This makes it possible for a 2DSA-
automaton to perform a depth-first search (DFS) on a graph represented within a
two-dimensional picture P . Actually this property was used in [13] for searching
the graph of a computation of a nondeterministic four-way finite-state automaton
(4FA). In general, each tape field P (i, j) can contain a subset of constant size of
the vertices of a graph satisfying the property that all vertices adjacent to any
vertex from P (i, j) are located either in P (i, j) or in neighbouring fields P (i′, j′)
such that |i− i′|+ |j− j′| = 1. Hence, each tape field represents a set of vertices
and edges of size limited by a constant.

A 2DSA-automaton can now perform a DFS on graphs of this form [3]. During
DFS traversal the visited nodes and edges are marked. Initially, all vertices are
marked as fresh. When a vertex is visited for the first time, it is marked as open.
When the search backtracks from a vertex, it is marked as closed. Similarly, all
edges of the graph are initially marked as unexplored. When an edge is used by
the algorithm for the first time, its status is changed to discovery, if it leads to
to a fresh vertex, otherwise it is marked as back edge.
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During the DFS traversal through the graph, each vertex and each edge is
visited only a constant number of times, and so this DFS can be implemented
on a 2DSA using a finite number of symbols in its working alphabet.

In the proof below we will use a 2DSA to perform a DFS on a graph consisting
of nodes of the form (i, j, q), where (i, j) is a coordinate in a picture and q is a
state of a 2DM1A when visiting this coordinate.

Theorem 1. L(2DM1A) is contained in L(2DSA).

Proof. Let M be a 2DM1A, let Q be its set of states, let q0 ∈ Q be its initial
state, and let P be an input picture of size m× n. W.l.o.g. we can assume that
M is allowed to halt (and accept or reject) only when it scans the marker and
when it does not move the head. Otherwise it always performs an instruction.

The key idea of the presented construction is to design a 2DSA A that detects
all situations in which M leaves the marker, moves across some tape fields (with-
out the marker) and returns back to the marker. We write (i, j, q) �M q′ when
there is such a traversal of A starting at position (i, j) in state q and ending
at the same position in state q′. We define a directed graph GM = (VM , EM ),
where VM = {1, . . . ,m}× {1, . . . , n}×Q. We represent (i, j, q) �M q′ in GM by
the edge ((i, j, q), (i, j, q′)). Moreover, for every configuration in which M scans
the marker and performs a transition that either moves the marker or does not
move the head at all, we add the edge representing this transition.

Suppose GM has been created. Since M is deterministic, the outgoing degree
of each vertex is at most one. A can easily detect whether M accepts or not.
It starts at (1, 1, q0) and follows the path given by outgoing edges. The path
either ends in some (i, j, q) or it closes a loop onto itself (this can be detected
by marking the vertices traversed). A accepts in the former case if q ∈ QF .

To construct GM , we define an auxiliary graph G = (V,E) as follows. The
vertices are tuples of the form (i, j, q, r), where (i, j) is a position, q ∈ Q, and
r ∈ {0, 1}. The bit r indicates the presence of the marker (0 – not present, 1 –
present) at the time a transition is performed over the field (i, j) from state q.
We define V as the union of two subsets:

1. V1 contains each vertex (i, j, q, r) where r = 0;
2. V2 contains (i, j, q, 1) iff M in state q scanning the tape field (i, j) with the

marker makes a transition moving to a neighbouring field without moving
the marker.

Due to our assumption on computations of M above, each configuration given
by v = (i, j, q, r) ∈ V induces one transition. Let the transition move the head
to a position (i′, j′) and let it change the state to q′. Then, this transition is
represented by adding the edge ((i, j, q, r), (i′, j′, q′, 0)) to E. Each vertex in V2
is thus a source (with no incoming edges). Since each vertex has one outgoing
edge, each component of G has the form depicted in Figure 1(b): there is one
directed cycle and possibly several trees rooted in vertices of this cycle.

If there is a directed path in G from v1 = (i, j, q, 1) ∈ V to v2 = (i, j, q′, 0) ∈ V ,
and if this path does not contain any other vertex of the form (i, j, q′′, 0), then
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(i, j, q) �M q′. Note that the indicator bit in v2 is 0 even though following the
path the head of M will return to the marker. This is intensional for technical
reasons – v2 is the last element of the path considered, but it can be an inner ele-
ment of other paths which start in different configurations. We want to represent
both these situations just by a single vertex of G. Conversely, if (i, j, q) �M q′,
then G necessary contains a directed path with the aforementioned properties.

u

w

v

v′

(a)

C

wu

v

v′

(b)

Fig. 1. An example of a component of the graph G, displayed over a portion of the
tape (a), and also as an isomorphic graph without the tape (b). The vertices � and ⊗
are from V1 and V2, respectively. If the DFS on GR is started at v and it reaches w,
the stack in the corresponding field contains u and v, where u is the topmost element,
and thus, the directed path from w to u in G is detected. If the DFS is started at v′

and reaches in two steps w, the same path is found again, since u is contained in the
walk formed of the path from w to v′ and the cycle C.

Let C be the cycle of a component and let v be one of its vertices. Consider
the DFS on GR, the reversion of G, starting at v, and let w = (i, j, q, 1) ∈ V2.
Assume that the DFS detects a directed path from v to w in GR, i.e., a directed
path from w to v in G (all the vertices of the path have currently the status
open), see Figure 1(a). Take the walk in G created by prolonging the path by
adding the cycle C after v. Now, if (i, j, q) �M q′, then (i, j, q′, 0) is a vertex
contained in this walk. This observation helps us to design an algorithm for A
for finding all these situations. We use a stack T (i, j) in each tape field (i, j) to
record the order of vertices (from the tape field (i, j)) that appear in the walks
described. This information is important to guarantee that no directed path in G
that passes through the starting tape field multiple times will be used to produce
an edge in GM . This algorithm proceeds as follows:

1. Choose a vertex in G, follow its outgoing edges (and mark them) until a
directed cycle C is detected. Assume this happens at a vertex v. Mark v.

2. Traverse back through C until v is encountered again. During this process,
push every vertex visited at a tape field (i, j) onto T (i, j).

3. Starting at v, perform a DFS on GR. Whenever a vertex u = (i, j, q, r)
is visited and its status changes to open, push it onto T (i, j). When the
status is changed to closed, pop the vertex from T (i, j). Whenever a vertex
w = (i, j, q, 1) ∈ V2 is reached, check the topmost element in T (i, j) (before
pushing w onto it). This is the only vertex in which the directed path in G
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starting at w ends, without passing more vertices at the same tape field. If
the topmost element is u = (i, j, q′, 0), then (i, j, q) �M q′ (hence, add the
induced edge to GM ).

4. Return to step 1 to find the next component of G.

The number of operations performed over each stack is bounded by a constant,
since the corresponding field is visited constantly many times. Hence, all the
states of a stack T (i, j) can be represented in the tape field (i, j). ��
In order to prove that the inclusion in Theorem 1 is proper, we use a theorem
of Hsia and Yeh [7]. Here a two-way k-marker finite automaton (working over
strings) is denoted as MkA, while its deterministic variant is denoted as DMkA.

Proposition 1. [7] Let n ≥ 1, let L be a language over Σ that is accepted by an
always halting DMnA, but not by any DMn−1A, and let ρ(L, $) be the following
language over Σ ∪ {$}, where $ /∈ Σ:

ρ(L, $) = {w1$w2$ . . . $wm | m ≥ 2, |{ i | wi ∈ L }| = |{ j | wj �∈ L }| }.

Then ρ(L, $) is accepted by a DMn+1A, but it is not accepted by any DMnA.

For a string w ∈ Σ∗ and a symbol a ∈ Σ, let S(w, a) denote the square picture
over Σ of size |w| × |w|, where the first row equals w and all remaining fields
contain the symbol a. Moreover, for a (string) language L ⊆ Σ∗, let S(L, a) be
the picture language defined as S(L, a) = {S(w, a) | w ∈ L }.
Lemma 1. Let L be a string language over Σ, and let a ∈ Σ. If the picture
language S(L, a) is accepted by a 2DM1A, then L is accepted by a DM4A.

Proof. Let M1 be a 2DM1A accepting S(L, a). We design a DM4A M2 that
simulates M1 as follows. Let the four markers of M2 be denoted as K1, K2, K3,
and K4. A configuration of M1 is identified by the marker position (iM , jM ),
the head position (iH , jH), and the state of the finite control. M2 uses K1 and
K2 to represent the marker position by placing K1 on the iM -th field of the tape
and K2 on the jM -th field. Analogously, the head position is represented by K3

and K4, while the state of M1 is stored within the state of M2. Initially, all the
markers Ki are placed at the leftmost tape field. M2 now simulates M1 step by
step. The symbol scanned by M1 is retrieved from the tape iff its head is located
in the first row (i.e., K3 is at the first tape field), otherwise M1 is known to scan
the symbol a. Finally, M2 accepts, if and when M1 enters a final state. ��
Based on Proposition 1 we now construct a string language that is not accepted
by any DM4A. Let L1 = {w ∈ {0, 1}∗ | |w|0 = |w|1 }, which is not accepted by
any DM1A, as one-marker automata only accept regular (string) languages. Next
we define L2 to L4 by taking L2 = ρ(L1, $1), L3 = ρ(L2, $2), and L4 = ρ(L3, $3),
where $1, $2, and $3 are auxiliary separators. For each 1 ≤ k ≤ 4, the language
Lk is not accepted by any DMkA, and thus, L4 is the language we are looking
for. To illustrate these languages we give some examples:

011$110$11001$100 ∈ L2, u2 = 01$11$2100$101 /∈ L3,
u1 = 01$11$2101 ∈ L3, u1$3u2 = 01$11$2101$301$11$2100$101 ∈ L4.
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Lemma 2. The language S(L4, 0) is accepted by a 2DSA.

Proof. We describe a 2DSA A for S(L4, 0). Let P be an input picture over
Σ = {0, 1, $1, $2, $3}. A can easily check whether P is a square picture in which
all rows except the first one only contain the symbol 0.

Let R be the first row of P , and let x be a working symbol. The idea of the
computation consists in iteratively evaluating membership of substrings in R in
the languages Li. For this the following algorithm is used, starting with i = 1:

1. Check whether the consecutive substrings u from {0, 1, x}∗ in R (delimited
by $1, $2, $3 or by the left or right sentinel, respectively) contain the same
number of 0’s and 1’s. For each substring u, write the result into its leftmost
field (1 – yes, 0 – no), and replace the content of the other fields of u by x.

2. If i < 4, rewrite every occurrence of the symbol $i in R into x, increase i
by 1, and return to step 1.

Figure 2(a) illustrates the stages of this iteration on input u1$3u2.

0 1 $1 1 $2 1 0 1 $3 0 1 $1 1 $2 1 0 0 $1 0 1
1 x x 0 $2 0 x x $3 1 x x 0 $2 0 x x x 1 x
1 x x x x 0 x x $3 1 x x x x 1 x x x x x
1 x x x x x x x x 0 x x x x x x x x x x
1 x x x x x x x x x x x x x x x x x x x

(a)

1 0 0 1 0 0 0 1 1 0
x x 0 1 0 0 0 1 1 0
x x x x 0 0 0 1 1 0
x x x x x 0 0 x 1 0
x x x x x x 0 x x 0

(b)

Fig. 2. (a) The first row is the input, the other rows show the result after each of the
four iterations. (b) A comparison of the number of 0’s and 1’s in the string 1001000110.
Each partial product is written into a new row. The last row indicates that there are
more 0’s than 1’s.

It remains to show how A makes the evaluation in step 1. Consider a general
situation when R stores a string over Σ∪{x}. A detects the consecutive blocks of
symbols in {0, 1, x} by moving its head from left to right across R. Assume that
R′ ⊆ R stores such a complete block u. Then A uses the space below this block
to compare the numbers of 0’s and 1’s. First, it copies u to the row below. Then
it scans this copy, replacing one occurrence of the symbol 0 and one occurrence
of the symbol 1 by x. This subroutine is repeated until there is no occurrence
of 0 or of 1 left. At this point A detects whether the numbers match or not. An
evaluation of the string 1001000110 is demonstrated in Figure 2(b).

Since there are 4 iterations in the main algorithm and each of them visits
each tape field constantly many times, the above algorithm can be realized by
the 2DSA A. ��

From the choice of L4 and from Lemma 1 we see that S(L4, 0) is not accepted
by any 2DM1A. This yields the following improvement of Theorem 1.

Corollary 1. L(2DM1A) is properly contained in L(2DSA).
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4 Comparing the Nondeterministic Models

We define two picture languages that will allow us to separate L(2M1A) from
L(2SA) and REC. Let Lcopy be the picture language over Σ = {�,�,�} that
consists of all pictures U �C �U , where U is a square picture over {�,�}, and C
is a column of symbols �. Further, let Lcols be the subset of Lcopy containing
those pictures U �C �U in which each column of U contains exactly one black
pixel � (See Figures 3(a) and 3(b)). Lcols is a variant of a language used in [12]
to separate the languages accepted by four-way alternating automata from REC,
and Lcopy is a widely used example of a rather complicated picture language [4].
Already in [8] Ito et. al. noticed that this language is accepted by a 2M1A. Here
we give our own proof, as we use the same strategy to accept Lcols by a 2DM1A.

(a) (b)

Fig. 3. (a) A picture of size 4× 9 from Lcopy. (b) A picture of size 4× 9 from Lcols.

Lemma 3. Lcopy is accepted by a 2M1A.

Proof. A 2M1A M can accept Lcopy as follows. Let P be an input picture. First,
M checks whether P is of size n × (2n + 1) (starting at the top-left corner,
repeatedly move the head two fields to the right and one field down), marks
the topmost field of the central column (which is detected by M when moving
diagonally from the bottom-right corner), and checks whether the central column
only contains the symbol �, and whether the other columns do not contain this
symbol (done by scanning P column by column).

i n+1+i

...

Fig. 4. Finding the corresponding column in the second half of a picture of size
n× (2n+ 1). The walk is a composition of vertical, horizontal and diagonal moves.

If all these tests succeed, then P is of the form U �C �V , where U and V are
square pictures over {�,�} and C is a column of �’s. Next M moves its head
to the top-left corner. The marker is still at this position as it has not yet been
moved. Now the following algorithm is used to check whether U = V :
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1. Let the marker be placed at a position (i, j). Memorize the symbol U(i, j).
2. Leaving the marker at this position, use the movement depicted in Figure 4

to reach position (1, n+ 1 + i) (i.e., the topmost field of column i of V ).
3. Move downwards until the border is detected. During this movement, when-

ever V (r, j) = U(i, j) for a row r, then there is the nondeterministic choice
of moving leftwards along row r. If the marker is reached, then r = i and
U(i, j) = V (i, j), otherwise this branch of the computation fails.

4. If the marker is reached in step 3, then the marker is moved to the neigh-
bouring field in the same row. If the symbol � is scanned, then the marker
is moved to the leftmost field of the next row. If there is no next field of U ,
accept, otherwise continue with step 1. ��

Lemma 4. Lcols is accepted by a 2DM1A.

Proof. The construction of a 2DM1A M for Lcols is identical to the one given
in the proof of the previous lemma. However, no nondeterministic choices are
needed in step 3, as each column only contains a single black pixel. ��

For establishing some non-inclusion results below, we need a technical result on
crossing sequences for 2SA, which were already presented in [13].

Lemma 5. Let L be a picture language over Σ accepted by a 2SA, and let f :
Σ∗,∗ ×N → N be the function that is defined by taking f(L, n) to be the number
of pictures in L of size n× (2n+ 1). If L ⊆ Lcopy, then f(L, n) ∈ 2O(n logn).

An analogous counting argument applies to every language L in REC. The num-
ber of different placements of tiles along the border between two columns is
2O(n), which limits f(L, n) to be 2O(n) [4].

Theorem 2. L(2M1A) is not contained in L(2SA), and L(2DM1A) is not con-
tained in REC.

Proof. Lcopy contains 2n
2

pictures of size n× (2n+ 1), and so Lcopy �∈ L(2SA),
and Lcols �∈ REC, as it contains nn ∈ 2O(n logn) pictures of size n× (2n+ 1). ��

Thus, while L(2DM1A) is a proper subclass of L(2DSA) (Corollary 1), Theorem 2
shows that L(2M1A) is not contained in L(2SA). Does the converse inclusion
hold? Below we relate this question to the problem of whether the inclusion
NL ⊆ P is strict. For doing so, we first extend the simulation presented in
Lemma 1 to nondeterministic marker automata and to square pictures for which
the number of rows and columns is polynomial in the length of the input string.
For w ∈ Σ∗, a ∈ Σ and k ∈ N, we denote by S(w, a, k) the picture over Σ of
the size |w|k × |w|k that contains w in the first row, starting at column one.
The remaining fields all contain the symbol a. For a string language L ⊆ Σ∗, let
S(L, a, k) = {S(w, a, k) | w ∈ L }.

Lemma 6. Let L be a string language over Σ, let a ∈ Σ, and k ∈ N. If the
picture language S(L, a, k) is accepted by a 2M1A, then L is accepted by a M4kA.
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Proof. In comparison to the construction in the proof of Lemma 1, it is now
necessary to represent the vertical and horizontal positions of the head and the
marker, respectively, in the range from 1 to |w|k. This can be done using k
markers for each value, in this way representing each such value in the numeral
system with base |w|. Hence, in total 4k markers are sufficient. ��
The additional space provided by the picture language S(L, a, k) now allows us
to simulate a polynomial time-bounded one-dimensional Turing machine for L
by a 2DSA.

Lemma 7. Let L be a string language over Σ, and let a ∈ Σ. If L ∈ P, then
there is an integer k ∈ N such that the picture language S(L, a, k) is accepted by
some 2DSA.

Proof. Let T be a deterministic Turing machine that accepts the language L ⊆
Σ∗ in time t(n) ∈ O(nk). We can assume that the tape of T is infinite only to
the right. Moreover, we can assume that t(n) ≤ nk for all n ≥ n0, where n0 is a
suitable integer.

We design a 2DSA A for accepting the picture language S(L, a, k) as follows.
Let P be an input picture. First, A verifies whether row one of P contains a
word of the form war for some w ∈ Σ∗ and r ≥ 0, and whether all other rows
only contain the symbol a. Secondly, it checks whether P is of the correct size
nk × nk, where n = |w|. Polynomials are recognizable functions [4], and so this
check can be performed. If |w| < n0, then A decides whether T accepts w simply
by table-lookup. Otherwise, A simulates T on input w. For every 1 ≤ i ≤ nk, the
i-th configuration of the computation of T on input w is written to the i-th row
of P . There is sufficient space to represent all these configurations. Acceptance
is then decided based on the last of these configurations. ��
From this technical result we can now draw the following conclusion.

Theorem 3. If L(2DSA) ⊂ L(2M1A), then the complexity classes NL and P
coincide.

Proof. Let L1 be a problem from the complexity class P. For some input symbol a
and a suitable integer k, the picture language L2 = S(L1, a, k) is accepted by a
2DSA (Lemma 7). Hence, if L(2DSA) ⊂ L(2M1A), then L2 is accepted by some
2M1A. Thus, Lemma 6 implies that L1 is accepted by an M4kA, which in turn
yields that L1 belongs to the complexity class NL. Thus, NL = P follows. ��
As it is widely believed that NL is a proper subclass of P, we obtain the following
conjecture:

Conjecture: The classes of picture languages L(2DSA) and L(2M1A) are in-
comparable under inclusion.

5 Conclusion

While deterministic sgraffito automata are strictly more powerful than
deterministic two-dimensional one-marker automata, it appears that in the non-
deterministic case, the corresponding types of automata yield incomparable
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classes of picture languages. However, the question arises of whether the im-
plication in Theorem 3 is actually a characterization, that is, does NL = P hold
if and only if L(2DSA) is contained in L(2M1A)? Actually, Lemma 7 extends
to the nondeterministic case. Hence, it follows in analogy to Theorem 3 that
L(2SA) ⊂ L(2M1A) would imply that NL even coincides with the complexity
class NP (nondeterministic polynomial time). Also it remains to compare 2DSA
and 2DM1A for unary picture languages, that is, picture languages over a one-
letter alphabet. Are 2DSA still more expressive in this setting?
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Abstract. For the classical family of languages recognized by quasi-realtime
deterministic multi-counter machines of the partially blind type, we propose a
new implementation by means of matching finite-state computations, within the
model of consensually regular languages (recently introduced by the authors),
whose properties are summarized. A counter machine computation is mapped
on multiple DFA computations that must match in a precise sense. Such imple-
mentation maps the original counters onto a multiset over the states of the DFA.
By carefully synchronizing and mutually excluding counter operations, we prove
that the union of such counter languages is also consensual. This approach leads
to a new way of specifying counter languages by means of regular expressions
that define matching computations.

Keywords: formal languages, quasi-realtime partially blind counter machine,
consensual language, closure under union, multiset machine.

1 Introduction

Multi Counter Machines (MCM) have been used since half a century to model compu-
tation and formal languages, yet their theory is less established than, say, the theory of
pushdown machines and context-free languages. Several MCM types exist depending
on the operations permitted on counters, on determinism, and on other constraints on
reversals and spontaneous moves (see [5, 6, 11] among others). Other language fami-
lies offer a double characterization by grammars and by machines, but only the most re-
stricted MCM subfamilies (such as commutative semilinear and one-counter languages)
enjoy some sort of generative model. We present a new approach to study MCM lan-
guages that cuts across traditional classifications and offers some promise to clarify the
complex computations that have so far hindered their understanding. As a bonus we ob-
tain the possibility to specify counter languages with regular expressions that describe
the interacting computational threads in a rather perspicuous way.

This paper focuses on a rather rich family: the deterministic, quasi-realtime MCM
to be named det-QR-PBLIND: counters are nonnegative integers that can be tested for
zero value only in the final configuration, but the machine crashes whenever it tries to
decrement a zero counter (so-called partially blind condition). Although this model is
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deterministic, we know that also some nondeterministic MCM’s can be implemented
by the approach to be presented.

We spend a few words to informally introduce the model of consensual language
[2–4], whose initial inspiration came from the idea to model language processes that
interact and re-enforce each other. Consider the alphabet (called internal) obtained by
uniting the terminal alphabet with its marked copy. Two or more words on the internal
alphabet strongly match (metaphorically, they provide consensus to each other) if they
coincide when the marks are ignored, and in every position exactly one of the words
has an unmarked character. Thus a regular set – the base – over the internal alphabet
specifies another language over the terminal alphabet, called a Consensually Regular
Language (CREG): a word is accepted if a corresponding set of matching words is in
the base. Clearly, the family REG of regular languages is included in CREG.

Family CREG is known to be in NLOGSPACE, to include non-semilinear languages,
and to be incomparable with the family of context-free (CF) languages. Moreover, some
interesting results concern regular languages. First, the descriptional complexity of a
language (i.e., the size of its minimal NFA) can be exponentially larger than the size
of the minimal DFA for the base language. Second, family REG coincides with the
consensual languages generated by a strictly locally testable [10] base.

Our main result is that every det-QR-PBLIND language is also a CREG: the proof is
by simulation of the counter machine on a set of parallel threads that match. Since each
thread is a word of the base language, which is recognized by a DFA, the latter machine
is simultaneously active in multiple states. Therefore, the computational model for rec-
ognizing CREG is a multiset machine. Then the simulation creates as many copies of
the original states of the det-QR-PBLIND machine, as the number of counters. The sec-
ond result is that the union closure of det-QR-PBLIND languages is a CREG. The proof
relies on original constructions for obtaining the closure under union, not for the whole
CREG class, but only for the specific DFA’s used as base languages in the simulation.

Although the path is rather technical, in our opinion the final result is valuable, be-
cause it offers a new way of specifying such MCM languages and their union by means
of regular expressions (under the consensual interpretation). We hope that this novel
specification style will be convenient in the areas where counter machines are used.

Paper organization: Sect. 2 lists the basic definitions and introduces the CREG model
with its known properties and some examples; Sect. 3 presents the main result and its
proof. The conclusion mentions open problems.

2 First Definitions and Properties

LetΣ denote a finite terminal alphabet and ε the empty word. For a word x, |x| denotes
the length of x; the i-th letter of x is x(i), 1 ≤ i ≤ |x|, i.e., x = x(1)x(2) . . . x(|x|).

A finite automaton (FA)A is a tuple (Σ,Q, δ, q0, F ) where:Q is a finite set of states;
δ : Q × Σ → 2Q is the state-transition function, q0 is the initial state, and F ⊆ Q is
the set of final states. If, for every pair q, a, |δ(q, a)| ≤ 1 thenA is deterministic (DFA),
otherwise is nondeterministic (NFA). For a DFA we write δ(q, a) = q′ instead of {q′}.

We list some standard definitions for counter machines [6, 9]. Let x ∈ Nm be a
vector ofm nonnegative integer variables denoted by xi and called counters. A counter
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valuation is a mapping giving, for every element xi, a value in N. Notice that xi and
x denote both the variables and their valuation, at no risk of confusion. For an integer
m, let Im be the set of all words y in {−1, 0, 1}m. A word of Im may be viewed
as an increment vector y in Nm; intuitively, y, defines a m-tuple of moves in the set
{+1,−1, 0} applied tom counters, such that if yi = 1, 0,−1, counter i is, respectively,
incremented, unchanged or decremented.

Definition 1. A (nondeterministic) partially blind, multi-counter machine (PBLIND) is
specified by a tuple M = 〈Σ,S, γ,m, s0, Sfin〉 where

– S is a finite set of states, s0 ∈ S is initial, and Sfin ⊆ S are the final states;
– m ≥ 0 is the number of counters;
– γ ⊆ S × (Σ ∪ {ε})→ Im × S is the transition relation;
– A move of M is an element of the relation →M⊆ ((Σ ∪ {ε})× S × Nm)× (S ×

Nm) defined, ∀a ∈ Σ ∪ {ε}, s, s′ ∈ S,x,x′ ∈ Nm, as follows:

(s,x)
a−→M (s′,x′) if ∃y ∈ Im | (s, a,y, s′) ∈ γ and x′ = x+ y (1)

M is called deterministic, denoted det-PBLIND if, for all s, s′, s′′ ∈ S,y′,y′′ ∈ Im all
the following conditions hold:

1. for all a ∈ Σ, if (s, a,y′, s′) ∈ γ then (s, ε,y′′, s′′) �∈ γ;
2. for all b ∈ Σ ∪ {ε}, if (s, b,y′, s′) ∈ γ, (s, b,y′′, s′′) ∈ γ then (y′, s′) = (y′′, s′′).

Notice that the domain of γ does not refer to counters, which is reason to call this
machine partially blind.

A configuration is a pair in S × Nm. The initial configuration is (s0, 0
m), and a

final configuration is an element of Sfin × 0m. Relation →M is extended as usual to
Σ∗ × S × Nm × S × Nm: if w ∈ Σn for n > 0 then (s,x)

w−→M (s′,x′) is:

(s,x)
w(1)−→M (

ε−→M)k1
w(2)−→M · · · w(n)−→M (

ε−→M)kn(s′,x′) where each ki ≥ 0. (2)

When s = s0,x = 0m, sequence (2) is called a run of M with label w and length
|w|+ k1 + · · ·+ kn. If also s′ ∈ Sfin,x′ = 0m then the run is accepting.
The language accepted by a PBLIND M is the set L(M) of words w ∈ Σ∗ such that
(s0, 0

m)
w→M (s, 0m) for some s ∈ Sfin, i.e., the set of labels of accepting runs.

A PBLIND machine M works in quasi-realtime if there exists a constant c such that in
Eq. (2) the length of each subsequence (

ε−→M)∗ (of so-called spontaneous moves) is
bounded by c; it works in real-time if c = 0, i.e, γ ⊆ S×Σ → Im×S. Quasi-realtime
(resp. real-time) PBLIND machines are denoted by QR-PBLIND (resp. RT-PBLIND);
similarly the deterministic variants are called det-QR-PBLIND and det-RT-PBLIND.

2.1 Consensual Languages

We present the basic elements of consensual language theory following [2, 3]. LetΣ be
the alphabet obtained by marking each letter a ∈ Σ as a. The unionΣ∪Σ is named the
internal alphabet (because it is only used within the technical device of match functions)
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and denoted by Σ̃. To express a sort of agreement or consensus between words over
the internal alphabet, we first introduce a binary relation, called match, over Σ̃ then
extended to words. In our metaphor, such matching words provide mutual consensus on
the validity of the corresponding word overΣ, thereby justifying the name “consensual”
of the language family.

Definition 2. The partial, symmetrical, and associative binary operator, match, @ :
Σ̃ × Σ̃ → Σ̃, is defined, first for all a ∈ Σ, then for all words w,w′ ∈ Σ̃n, n ≥ 0 as:⎧⎨⎩

a@a = a@a = a
a@a = a
undefined, otherwise

{
ε@ ε = ε
w@w′ = (w(1)@w′(1)) · . . . · (w(n)@w′(n))

In words, the match is undefined if |w| �= |w′|, or whenever in some position i the
match w(i)@w′(i) is undefined, which happens when both letters are in Σ, when both
are in Σ and differ, and when either one is marked but is not the marked copy of the
other. For instance, aabb @ aabb = aabb while aabb @ aabb is undefined.

The match of a finite nonempty set of internal words w1, . . . , wm is denoted by
w = w1@w2@ . . .@wm or by @{w1, w2, . . . , wm}, and is a partially defined function.
The number m is called the degree of the match. The match result is further qualified
as strong if w ∈ Σ∗, or as weak otherwise. By Def. 2, if w is a strong match, in each
position 1 ≤ i ≤ |w|, exactly one word, say wh, is unmarked, i.e., wh(i) ∈ Σ, and
wj(i) ∈ Σ for all j �= h; we say that word wh places the letter at position i and the
other words consent to it. The match operator is extended to two (or more) languages
L′, L′′ ⊆ Σ̃∗ by means of

L′@L′′ = {w′@w′′ | w′ ∈ L′, w′′ ∈ L′′}

and its repeated application to a language is defined by{
L1@ = L
Li@ = L@L(i−1)@, i ≥ 2.

Definition 3 (Consensual language.). The closure under match, or @-closure, of a
language L ⊆ Σ̃∗ is L@ =

⋃
i≥1 L

i@. Let B ⊆ Σ̃∗. The consensual language with
baseB is defined as C(B) = B@∩Σ∗. The family of consensually regular languages,
denoted by CREG is the collection of all languages C(B) such that B is regular.

We note that [3, 4] consider also context-free and context-sensitive bases, but here we
only need regular bases, for which we resume the relevant known properties.

Proposition 1. Summary of known CREG properties, proved in [3, 4].

1. Family comparisons. CREG includes REG, is incomparable with the context-free
and deterministic context-free families, is included within the context-sensitive fam-
ily, and it contains non-semilinear (in the sense of Parikh) languages.

2. CREG is closed under reversal, union and intersection with regular languages, and
under reverse alphabetic homomorphism [8].
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3. REG coincide with the family of consensual languages having a strictly locally
testable base.

4. CREG is in NLOGSPACE (hence in polynomial time).

To illustrate, Tab. 1 specifies by means of “consensual regular expressions” some typical
languages recognized by counter machines of different types. The examples suggest
that counting operations controlled by a finite-state control unit can be simulated by
matching computations. The next section will formalize the translation from det-QR-
PBLIND counter machines to CREG.

Table 1. Specification of typical counter languages by consensual regular expressions

1. The det-RT-PBLIND 2-counter language {anbncn | n > 0} is a CREG with base

a∗a a∗b∗b b∗c∗c c∗

For instance, aabbcc is the (strong) match of a a b b c c and a a b b c c. See also the multiset
transition relation, Fig. 1.

2. The (non-deterministic) RT-PBLIND one-counter language {anbn | n ≥ 1} ∪ {amb2m |
m ≥ 1} (it is the union of two det-RT-PBLIND 1-counter languages) is a CREG with base

B1 ∪B2 ∪B3 ∪B4, where

⎧⎪⎪⎨
⎪⎪⎩

B1 = a+(b b)+

B2 = a∗a a∗ (b b)∗ b b (b b)∗

B3 = a∗a a∗(b b)∗b (b b)∗ ∪ a∗a a∗ (b b)∗ b b b (b b)∗

B4 = a∗a a∗ (b b)∗ b b (b b)∗

In fact, the words consensually generated by the above sets have the form arbs, r, s > 0.
The case s odd is dealt with by subexpression B3:

{
a2n+1b2n+1 | n ≥ 0

}
= C(B3). The

case s even is twofold. The sublanguage corresponding to s = 2r is consensually obtained
by B1 ∪ B2: the former expression places all even-positioned (within b+) b’s at once, and
the latter places one a and one odd-positioned b at a time. The sublanguage corresponding
to r = s is obtained by B2 ∪ B4: the two expressions place respectively one odd- and one
even-positioned b, as well as one a. Notice that the match of B1 and B4 is undefined.

3. The language {anbn | n > 0}+ is accepted by a 2-counter machine but not by any partially
blind multi-counter machine [7]. It is a CREG with base (a ∪ b)∗ a a∗b b∗ (a ∪ b)∗.

4. The language {ba1ba2ba3 . . . bak | k ≥ 1} has a non-semilinear Parikh image. It is specified
by the base (a ∪ b)∗ b a∗ a a∗ (b a∗ a a∗)+.

Recognition of Consensually Regular Languages. Consider now the DFA recognizing
a base language R and a word in C(R), which is the strong match of some words in R.
The matching words correspond to as many DFA computations, to be next formalized
by means of multisets of states: the multiplicity of a state in the multiset equals the
number of computations that have reached that state. In [3] a nondeterministic machine
is defined, called a multiset machine, having as auxiliary memory a multiset of states
of the DFA that recognizes the base language. To avoid confusion, we do not call such
device a “counter machine” although in reality it is; also, this machine should not be
confused with the “multiset” automata studied in [1]. Since the multiset cardinality is
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bounded by the length of the input word, using a binary encoding of multiplicities, the
machine operates in (nondeterministic) logarithmic space (as stated in Proposition 1).

To define a transition relation for the multiset machine, we need from [3] some no-
tation for multisets and multiple computations on a DFA.

A finite multiset over a given setQ is a total mapping Z : Q→ N. The cardinality of
multiset Z is |Z| =

∑
q∈Q Z(q). If Z(q) > 0 then we say that q ∈ Z with multiplicity

Z(q). For all multisets Z,Z ′ overQ, let the underlying set be �Z� = {q ∈ Q | Z(q) >
0} , let the inclusion Z ⊆ Z ′ hold if, for every q ∈ Q, Z(q) ≤ Z ′(q), and let the sum
Z&Z ′ and the differenceZ−Z ′ be the multisets specified by the following characteristic
functions, for all q ∈ Q:

(Z & Z ′) (q) = Z(q) + Z ′(q), (Z − Z ′) (q) = max (0, Z (q)− Z ′ (q)) .

LetA = (Σ̃, Q, δ, q0, F ) be a DFA. In the following, assume, without loss of generality,
that the transition relation of A is total, i.e, for every state q and every input symbol a,
|δ(q, a)| = 1. In order to define a transition relation on multisets of states, we extend
the (total) state transition function δ to multisets over Q, positing for every multiset Z
that δ(Z, a) is the multiset whose characteristic function is defined for every q ∈ Q by:∑

p∈Q|
δ(p,a)=q

Z(p).

Definition 4. The consensual transition relation ofA, denoted by �A⊆ NQ×Σ×NQ,
is defined, for a ∈ Σ and for multisets Z,Z ′ over Q, as:

Z
a�A Z

′ if ∃q ∈ Z : Z ′ = {δ(q, a)} & δ(Z − {q}, a) .

It is evident that if Z
a�A Z

′ then |Z| = |Z ′|, i.e., the cardinality does not change.
Relation

a�A can be extended as usual from a letter a to a word w ∈ Σ∗.
A special role is played by the initial multisets {(q0)k}, defined ∀k > 0, and by

the final multisets Z , defined by �Z� ⊆ F . The following crisp definition of CREG is
obtained.

q1 q2 q6q3 q4 q5
a b

b

c

c

c

a a b b c c

b

{q1, q1} a�A {q1, q2} a�A {q2, q2} b�A {q3, q4} b�A {q4, q4} c�A {q5, q6} c�A {q6, q6}

Fig. 1. DFA of the base language a∗a a∗b∗b b∗c∗c c∗, which defines language {anbncn | n > 0}
of Table 1, Ex. 1; a run of the multiset machine for word aabbcc is shown at bottom

Proposition 2. [3] Let R ⊆ Σ̃∗ and A = (Σ̃, Q, δ, q0, F ) be a DFA recognizing R.
Then C(R) = {w | ∃k > 0, ∃ a final multiset Z such that {(q0)k}

w�A Z}.

The transition relation and Prop. 2 are exemplified in Fig. 1.
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3 From Counter Machines to Matching Computations

As seen, CREG languages are recognized by multiset machines with the following char-
acteristics: they are nondeterministic real-time multi-counter devices that recognize a
word when certain specified multiplicity counters differ from zero and the others are
null; a move transfers the current multiplicity values to other counters and may incre-
ment or decrement one of the values. Such characteristics are quite different from any
class (known to us) of counter machines, including in particular the partially blind, so
that it is not obvious whether the latter can be simulated by such multiset machines. In
the rest of the paper we prove the next theorem.

Theorem 1. The closure under union of det-QR-PBLIND is strictly included in CREG.

Since the proof is based on several preparatory steps and lemmas, it is preferable to
outline first the overall logical path. Let M be a det-QR-PBLIND machine with m
counters. The first part of the proof (Par. 3.1), to reduce the conceptual distance from
multiset machines, normalizes M in several ways: real-time, at most one counter op-
eration per step, counter operations rarefied every so many steps, and provision of an
initialized extra counter. Such transformations are standard for counter machines and
we do not have to prove their correctness.

The second part (Par. 3.2) considers the regular bases of CREG languages and intro-
duces some constraints with two goals:

1. to allow a systematic simulation of any normalized det-QR-PBLIND machine, and
2. to ensure that, for any two such bases R′ and R′′ consensually defining det-QR-

PBLIND languages L′ and L′′, their union R′ ∪R′′ consensually defines L′ ∪ L′′.

Since CREG is not known to be closed under union, the constraints carefully synchro-
nize the steps that place a letter a ∈ Σ in such a way that words fromR′ andR′′ do not
make any false positive match.

After such preparation, the last part of the proof (Par. 3.3) presents the translation
from the normalized det-QR-PBLIND m-counter machineM to the constrained DFA
A of the base language. The key idea is simple (details apart):A’s state-transition graph
consists ofm+1 interconnected copies ofM ’s state-transition graph. Let the j-th copy
of state q be denoted by qj . When M is in state q and the j-th counter evaluates to
k, in the multiset machine controlled by A, state qj has multiplicity k. To finish, the
equivalence of L(M) and C (L(A)) is proved by induction on the length of the words.

3.1 Normal Forms of Counter Machines

First, we restrict the set of increment vectors. For an integer m, let Jm be the set
{1, 0,−1}m ∩ (0+ ∪ 0∗(+1)0∗ ∪ 0∗(−1)0∗); such increment vectors specify that
at most one counter is incremented or decremented and all other counters stay.

Lemma 1. If a language is recognized by a nondeterministic (resp., deterministic) QR-
PBLIND machine M = 〈Σ,S, γ,m, s0, Sfin〉, then it is recognized by a nondetermin-
istic (resp., deterministic) QR-PBLIND machine such that one or more of the following
restrictions apply:
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Real-time: γ ⊆ S ×Σ → Im × S, i.e., no ε move is allowed.
Simple-operation form: γ ⊆ S × Σ → Jm × S, i.e., the machine increments or

decrements at most one counter per move.
(h, b)-Rarefied operation form: Let h > 0 , with 0 ≤ b < h, and for all n > 0, let
s0, . . . , sn ∈ S, x0, . . . ,xn ∈ Nm, a1, . . . , an ∈ Σ be such that (s0,x0)

a1−→M
(s1,x1) · · ·

an−→M (sn,xn) is a run; then for every 1 ≤ i ≤ n if i �= b mod h,
xi = xi−1, i.e., the machine may alter its counters only at moves occurring at
positions b mod h.

The above normal forms (for machines allowing zero-testing of counters), are stated in
Th. 1.2 of [5]. The idea is that, given any c > 0, one can “compress” the machine: if an
original counter xi stores a value k > 0 then the compressed machine stores �k/c� in
xi and the residue of k − �k/c� in the states. In particular, compression can be applied
to make a QR-PBLIND M into a RT-BLIND machine M′ (by taking c as the length
of the longest sequence of ε-moves of M), and to make M′ also simple-operation (by
delaying the actual increment or decrement of a counter). Moreover, the (h, b)-rarefied
operation form can be obtained by considering c = h and using the finite memory also
to count modulo h, the steps of the run, to allow increments/decrements to occur only
at steps numbered b modulo h.

To simplify the proof of Lemma 3, for a m-counter machine of the types listed
in Lemma 1, we introduce the following technical arrangement. Every move that in-
crements or decrements a counter xi, 1 ≤ i ≤ m, must also decrement or increment
another counter xj at the same time. However, since the sum of all counters cannot
change, if all counters started at zero, this kind of machine would not be able to make
an increment. Hence, we assume that counter xm, called the initialized counter, starts
with a nonzero value: a configuration of M is an element of S × Nm, and a configura-
tion is initial if it is of the form (s0, 0

m−1k) for some k ≥ 0. All remaining definitions
(e.g., a move) are the same of QR-PBLIND machines, with the exception of accepting
runs and hence of recognized language: counter xm must start and end with the same
value k ≥ 0. Initialized (QR-)PBLIND machines withm+1 counters are equivalent to
QR-PBLIND machines withm-counters.

Definition 5 (Initialized PBLIND Machine). Given m > 0, define Jmm as the set of
all increment vectors y of lengthm in 0+ ∪ 0∗(+1)0∗(−1)0∗ ∪ 0∗(−1)0∗(+1)0∗. A
PBLIND machine M = 〈Σ,S, γ,m, s0, Sfin〉 is initialized if γ ⊆ S × (Σ ∪ {ε}) →
Jmm × S. For every integer k ≥ 0, for every state s ∈ Sfin, for every word w ∈ Σ+, a
run of M of the form (s0, 0

m−1k)
w−→M (s, 0m−1k) is accepting forw. The initialized

language of M is the set Lin(M) of words w such that M has an accepting run for w.

Given a simple-operation QR-PBLIND machine M with m counters, it is straightfor-
ward to define an equivalent initialized QR-PBLIND machine, initialized(M), with
m+1 counters, by adding one counter to be incremented (resp. decremented) for every
decrement (resp. increment) move of M. Notice that if M is in (h, b)-rarefied form
and/or operating in real time, then also initialized(M) enjoys the same properties. The
fact (to be next stated) that initialized(M) is equivalent to M, is trivial, since both
machines have essentially the same accepting runs, provided that initialized(M) is ini-
tialized with a value k in counter m + 1, at least as large as the maximum sum of all
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counters during the run, so that it cannot try to go below zero: all counters 1, . . .m go
back to zero at the end of the run if, and only if, counterm+ 1 goes back to k.

Proposition 3. Let M be QR-PBLIND (resp. det-QR-PBLIND) machine withm coun-
ters. For all h > 1, 0 ≤ b < h, there exists an initialized (m+ 1)-counter RT-PBLIND
(resp. det-RT-PBLIND) M′ in (h, b)-rarefied form such that L(M) = Lin(M′).

3.2 Constrained Form of Base Languages

This section casts the base languages needed for implementing det-RT-PBLIND ma-
chines in a disciplined form that ensures closure under union. A few definitions are
needed. For all h > 1, let R be a nonempty proper subset of {0, . . . , h− 1}. For every
X ⊂ Σ̃, define:

Rh,X =
{
x ∈ Σ̃hΣ̃∗ | ∀i, 1 ≤ i ≤ |x| : (i− 1 mod h) �∈ R =⇒ x(i) ∈ X

}
Hence, Rh,X is the set of words in Σ̃+, of length at least h, such that every position i
with i − 1 mod h is in R may be any symbol in Σ̃, while every remaining position is
a symbol in X . The two cases that are considered in the following are when X = Σ,
i.e., Rh,Σ , and whenX = Σ, i.e., Rh,Σ .

Example 1. Let h = 5, R = {0, 1, 3}, Σ = {a}. We show some words in Σ̃5, where
each position is reported, for simplicity, as an index ranging from 1 to 5: a1a2a3a4a5
and a1a2a3a4a5 are in Rh,Σ , since 2 and 4 are in R, hence positions 3 and 5 are in Σ;
a1a2a3a4a5 and a1a2a3a4a5 are in Rh,Σ since, again, 2 and 4 are in R, hence in this
case positions 3 and 5 are in Σ.

By definition, ΣhΣ∗ ⊆ Rh,Σ and ΣhΣ∗ ⊆ Rh,Σ , i.e., all words of length at least h
are: in Rh,Σ when they are over Σ; in Rh,Σ when they are over Σ; moreover, Rh,Σ

does not include any word over Σ, since R is a proper subset of {0, . . . , h− 1}. A few
simple properties of Rh,X follow, with their short proofs:

I) Rh,Σ@Rh,Σ = ∅.
Let x, y ∈ Rh,Σ , with |x| = |y| ≥ h. Since R ⊂ {0, . . . , h− 1}, the complement
ofR is not empty, i.e., there exists at least a position i, 1 ≤ i ≤ |x|, such that i−1
mod h �∈ R; then both x(i), y(i) ∈ Σ, hence x@y is undefined.

II) Rh,Σ@Rh,Σ = Rh,Σ .
Let x ∈ Rh,Σ@Rh,Σ , i.e., x = y@z for some y, z ∈ Rh,Σ . For all i, 1 ≤ i ≤ |x|,if
i − 1 mod h �∈ R then both y(i), z(i) ∈ Σ, hence also x(i) = y(i)@z(i) ∈ Σ,
i.e., x is still in Rh,Σ . The converse case is obvious, since ΣhΣ∗ ⊆ Rh,Σ .

III) if R′ ⊆ R, R′ �= ∅ andX ⊂ Σ̃, then R′h,X ⊆ Rh,X .
Let x ∈ R′h,X . For every i, 1 ≤ i ≤ |x|, if (i − 1 mod h) �∈ R then also i − 1
mod h �∈ R′, hence x(i) ∈ X . But this is the definition of Rh,X .

Definition 6. For all h ≥ 2 and for all nonempty sets R ⊂ {0, . . . , h− 1}, a language
B ⊆ Σ̃∗ is called (h,R)-counting if there exist a finite set B◦ ⊆ Σ+ and two sets
included in Σ̃hΣ̃+, denoted by Bh,Σ and Bh,Σ , such that:

B = B◦ ∪Bh,Σ ∪Bh,Σ , Bh,Σ ⊆ Rh,Σ , and Bh,Σ ⊆ Rh,Σ.
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By definition, it follows that every w ∈ C(B), of length at least h, is the match of
exactly one string z in Bh,Σ and of zero, one or more strings in Bh,Σ:

Proposition 4. If B ⊆ Σ̃+ is (h,R)-counting, for some h ≥ 2, R ⊂ {0, . . . , h − 1},
then for all x ∈ Σ+, x ∈ C(B) if, and only if, x ∈ B◦ ∪Bh,Σ or x ∈ Bh,Σ@(Bh,Σ)

@.

Lemma 2. Let B′, B′′ ⊆ Σ̃+ be, respectively, (h,R′)-counting and (h,R′′)-counting,
for some h ≥ 2 and some R′, R′′ ⊂ {0, . . . , h − 1}. If R′ ∩ R′′ = ∅ and R′ ∪ R′′ ⊂
{0, . . . , h− 1} then B = B′ ∪B′′ and R = R′ ∪R′′ are such that:

1. (B′h,Σ ∪B′′h,Σ)@ ⊆ Rh,Σ and B′h,Σ@B
′′
h,Σ = ∅;

2. B is (h,R)-counting, with B◦ = B′◦ ∪B′′◦ , Bh,Σ = B′h,Σ ∪B′′h,Σ and
Bh,Σ = B′h,Σ ∪B′′h,Σ;

3. C(B) = C(B′) ∪ C(B′′).

Proof. Part 1 follows immediately from above Properties (I), (II) and (III): (B′h,Σ ∪
B′′h,Σ)

@ ⊆ (R′h,Σ ∪R′′h,Σ)@ ⊆ (Rh,Σ)
@ ⊆ Rh,Σ , and B′h,Σ@B

′′
h,Σ ⊆ R′h,Σ@R′′h,Σ ⊆

Rh,Σ@Rh,Σ = ∅.
Part 2 also follows immediately, since B′h,Σ ∪ B′′h,Σ ⊆ Rh,Σ , and B′h,Σ ∪ B′′h,Σ ⊆

R′h,Σ ∪R′′h,Σ ⊆ Rh,Σ .
Part 3: The case C(B′) ∪ C(B′′) ⊆ C(B′ ∪ B′′) = C(B) is obvious by Def. 3. For

the converse case, let x ∈ C(B). By Part 2, B is (h,R)-counting. Then, by Prop. 4,
either x ∈ B◦ ∪Bh,Σ = B′◦ ∪B′′◦ ∪B′h,Σ ∪ B′′h,Σ , and hence x ∈ C(B′) ∪ C(B′′), or
x ∈ Bh,Σ@(Bh,Σ)

@. Hence, there exist w ∈ Bh,Σ and n ≤ |x| words with w1 ∈ Bh,Σ

and w2, . . . , wn ∈ Bh,Σ such that w1@w2@ . . . wn = x. We may assume that each
wi �∈ Σ+, 1 ≤ i ≤ n, since its removal does not affect the match result. We claim
that either every wi ∈ B′ or every wi ∈ B′′, from which the thesis follows. Without
loss of generality assume w1 ∈ B′h,Σ (the case w1 ∈ B′′h,Σ being symmetrical). By
contradiction, assume that there exists j, 2 ≤ j ≤ n, such that wj ∈ B′′. Since wj �∈
Σ+, there exists a position p, 1 ≤ p ≤ |x|, such that wj(p) ∈ Σ. But wj ∈ B′′h,Σ ⊆
R′′h,Σ: by definition of R′′h,Σ , (p− 1 mod h) ∈ R′′. Moreover, in order for match x to
be defined,w1(p) ∈ Σ; therefore, since w1 ∈ B′h,Σ ⊆ R′h,Σ and by definition of R′h,Σ ,
(p− 1 mod h) ∈ R′. But R′ ∩R′′ = ∅, which is a contradiction with (p− 1 mod h)
being in both R′′ and R′. ��

3.3 From Normalized Counter Machines to Constrained Base Languages

The next lemma says that det-QR-PBLIND machines recognize only consensually reg-
ular languages and paves the way to the proof of Th. 1.

Lemma 3. For every det-QR-PBLINDM , for all h ≥ 2, for all 0 ≤ b ≤ h − 1, there
exists an (h, {b})-counting languageB ⊆ Σ̃+ such that C(B) = L(M).

Proof (Sketch.). Let M = 〈Σ,S, γ,m, s0, Sfin〉 be a det-QR-PBLIND machine, for
some m ≥ 2, which, by Prop. 3, can be assumed to be an initialized det-RT-PBLIND
machine, in (h, b)-rarefied normal form, 0 ≤ b < h, h ≥ 2. In particular, M may
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increment or decrement a counter only at steps i such that i = b mod h; counterm is
the initialized counter. Let B◦ be the set of words in L(M) shorter than h.

For all 0 ≤ i ≤ m, let Si be a marked copy of S. If s ∈ S then its marked copy in
Si is denoted by si. Define a DFA A = (Σ̃, Q, δ, init, F ), where:

– the initial state init is a new symbol and Q = ∪0≤i≤mS
i ∪ {init};

– The transition function δ is defined as follows, for all a ∈ Σ, for all s ∈ S:
1. if (s0, a, 0

m, s) ∈ γ then δ(init, a) = s0 and δ(init, a) = sm, else both
δ(init, a) and δ(init, a) are undefined;

2. for all r ∈ S, for all 1 ≤ i, j ≤ m, if there exists y ∈ Jmm such that yj =
1, yi = −1 and (s, a,y, r) ∈ γ then δ(si, a) = rj , else δ(si, a) is undefined;

3. for all r ∈ S, if (s, a, 0m, r) ∈ γ then δ(s0, a) = r0, else δ(s0, a) is undefined;
4. for all r ∈ S, 0 ≤ i ≤ m, if there exists y ∈ Jmm such that (s, a,y, r) ∈ γ then
δ(si, a) = ri, else δ(si, a) is undefined;

The idea is that A is composed ofm+1 copies, numbered 0, 1, . . . ,m of the transition
graph γ of M. The i-th copy of γ, 1 ≤ i ≤ m, is intended to simulate counter i
of M during a computation on a multiset machine with base L(A). Let a move of γ
be (s, a, r,y), i.e., from state s to state r while reading a letter a and with increment
vector y. Then, for every copy i there is a transition from si to ri while reading a, thus
in the multiset machine the cardinality of si is transferred to the cardinality of rj . If
y increments counter i and decrements counter j (necessarily i �= j), then there is a
transition from si to rj while reading a (i.e., the cardinality of si is decremented of one
and the cardinality of rj is incremented of one). If y does not increment or decrement,
however, we include also a transition from s0 to r0 while reading a (since the multiset
machine needs to make a strong match at every step). In this way the multiset machine
associated with A is able to simulate the original det-QR-PBLIND machine: if M is
such that (s0, 0mk)

w→M (s,x), for some configuration (s,x), then {(init)k+1} �A

Z , where Z is a multiset such that: Z(s0) = 1, Z(si) = xi, for every i, 1 ≤ i ≤ m, and
for all j, 0 ≤ j ≤ m, Z(rj) = 0 for every r ∈ S, r �= s. The proof thatB = L(A)∪B◦
is (h, {b})-counting and that C (L(A)) ∪B0 = L(M) is omitted. ��

We finish with the proof of the main theorem.

Proof of Th. 1. Let L be the union of k > 0 deterministic QR-PBLIND languages.
The proof that L is consensual is by induction on k. The inductive hypothesis is that
if L is the union of k det-QR-PBLIND languages then for all h ≥ k + 1, for all R ⊂
{0, . . . , h − 1}, with |R| = k, there exists a (h,R)-counting language B ⊆ Σ̃+ such
that C(B) = L. The base case k = 1 is Lemma 3.

Let L = L′ ∪ L′′, where L′ is the union of k det-QR-PBLIND languages and L′′

is det-QR-PBLIND. By Lemma 3 applied to L′′ and by induction hypothesis applied
to L′, for all h > 1, for all R′, R′′ ⊆ {0, . . . , h − 1}, with |R′| = m and |R′′| = 1,
there exist a (h,R′)-counting language B′ and a (h,R′′)-counting language B′′ such
that C(B′) = L′ and C(B′′) = L′′. For all h ≥ k + 2, for all R ⊂ {0, . . . , h − 1},
with |R| = k + 1, we define a (h, r)-counting language B such that C(B) = L. Given
R, it is always possible to choose, among all R′, R′′ as above, two sets partitioning
R ⊂ {0, . . . , h− 1} (i.e., such that R′ ∪R′′ = R andR′ ∩R′′ = ∅). LetB = B′ ∪B′′;
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by Lemma 2, part 3, C(B) = C(B′) ∪ C(B′′), hence the inclusion in CREG follows.
The inclusion is strict, by considering Ex. 3 of Tab. 1. ��

4 Conclusion

The interest for multi-counter machines and their languages is almost as old as for
the Chomsky’s families of languages, yet they do not enjoy grammars or other forms
of declarative specification, and suffer by the annoying details of low-level operations
on finite-state counters and control states. Our present effort goes in the direction of
specifying MCM languages by means of consensual regular expressions, a notation we
(subjectively) find quite readable and amenable to language transformation and com-
position. The way to fully attain this goal is however still long and uncertain, after
the result presented, the systematic construction of a consensual regular specification
for deterministic QRT-partially-blind languages and their union. An immediate unan-
swered problem is whether the closure of det-QR-PBLIND languages under catenation
and Kleene star is in CREG. The last two examples in Table 1 suggest that other types of
counter machines, in particular the nondeterministic QRT-PBLIND and even some non-
PBLIND machines, can in some cases be simulated by multiset machines since they are
CREG. But a precise characterization of what counter languages belong to CREG re-
mains to be done. In fact, the CREG family cuts across traditional classifications of
languages recognized by counter machines.
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Abstract. Algorithms for answering XPath queries on Xml streams
have been studied intensively in the last decade. Nevertheless, there still
exists no solution with high efficiency and large coverage. In this paper,
we introduce early nested word automata in order to approximate earliest
query answering algorithms for nested word automata in a highly efficient
manner. We show that this approximation can be made tight in practice
for automata obtained from XPath expressions. We have implemented
an XPath streaming algorithm based on early nested word automata in
the Fxp tool. Fxp outperforms most previous tools in efficiency, while
covering more queries of the XPathMark benchmark.

1 Introduction

Xml is a major format for information exchange besides Json, also for Rdf

linked open data and relational data. Therefore, complex event processing for
Xml streams has been studied for more than a decade [12,7,19,20,5,17,13,9,18].
Query answering for XPath is the most basic algorithmic task on Xml streams,
since XPath is a language hosted by the W3C standards Xslt and XQuery.

Memory efficiency is essential for processing Xml documents of several giga
bytes that do not fit in main memory, while high time efficiency is even more
critical in practice. Nevertheless, so far there exists no solution for XPath query
answering on Xml streams with high coverage and high efficiency. The best
coverage on the usual XPathMark benchmark [8] is reached by Olteanu’s Spex
[19] with 24% of the use cases. The time efficiency of Spex, however, is only
average, for instance compared to Gcx [20], which often runs in parsing time
without any overhead (since the cpu can work in parallel with file accesses to
the stream). We hope that this unsatisfactory situation can be resolved in the
near future by pushing existing automata techniques forwards [12,17,9,18].

In contrast to sliding window techniques for monitoring continuous streams
[3,15], the usual idea of answering queries on Xml streams is to buffer only alive
candidates for query answers. These are stream elements which may be selected
in some continuation of the stream and rejected in others. All non-alive elements
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should be either output or discarded from the buffer. Unfortunately, this kind
of earliest query answering is not feasible for XPath queries [6], as first shown
by adapting counter examples from online verification [14]. A second argument
is that deciding aliveness is more difficult than deciding XPath satisfiability
[9], which is coNP-hard even for small fragments of XPath [4]. The situation
is different for queries defined by deterministic nested word automata (Nwas)
[1,2], for which earliest query answering is feasible with polynomial resources
[17,10]. Many practical XPath queries (without aggregation, joins, and nega-
tion) can be compiled into small Nwas [9], while relying on non-determinism
for modeling descendant and following axis. This, however, does not lead to an
efficient streaming algorithm. The problem is that a cubic time precomputation
in the size of the deterministic Nwa is needed for earliest query answering, and
that the determinization of Nwas raises huge blow-ups in average (in contrast
to finite automata).

Most existing algorithms for streaming XPath evaluation approximate earli-
est query answering. Most prominently, Spex’s algorithm on basis of transducer
networks [19], Saxon’s streaming Xslt engine [13], and Gcx [20] which imple-
ments a fragment of XQuery. The recent XSeq tool [18], in contrast, restricts
XPath queries by ruling out complex filters all over. In this way, node selec-
tion can always be decided with 0-delay [11] once having read the attributes
of the node (which follow its opening event). Such queries are called begin-tag
determined [5] if not relying on attributes. In this paper, we propose a new algo-
rithm approximating earliest query answering for XPath queries that is based
on Nwas. One objective is to improve on previous approximations, in order to
support earliest rejection for XPath queries with negation, such as for instance:

//book[not(pub/text()=’Springer’)][contains(text(),’Lille’)]

When applied to an Xml document for an electronic library, as below, all books
published from Springer can be rejected once its publisher was read:

<lib>...<book>...<pub> Springer </pub>

...<content>...Lille...</content>...</book>...</lib>

Spex, however, will check for all books from Springer whether they contain the
string Lille and detect rejection only when the closing tag </book> is met. This
requires unnecessary processing time and buffering space.

As a first contribution, we provide an approximation of the earliest query
answering algorithm forNwas [10,17]. The main idea to gain efficiency, is that se-
lection and rejection should depend only on the current state of an Nwa but not
on its current stack. Therefore, we propose early nested word automata (eNwas)
that are Nwas with two kinds of distinguished states: rejection states and se-
lection states. The query answering algorithm then runs eNwas for all possible
candidates while determinizing on-the-fly, and using a new algorithm for sharing
the runs of multiple alive candidates. Our stack-and-state sharing algorithm for
multi-running eNwas is original and nontrivial. As a second contribution, we
show how to compile XPath queries to eNwas by adapting the previous trans-
lation to Nwas from [9], mainly by distinguishing selection and rejection states.
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The third contribution is an implementation of our algorithms in the Fxp 1.1
system, that is freely available. It covers 37% of the use cases in XPathMark,
while outperforming most previous tools in efficiency. The only exception isGcx,
which does slightly better on some queries, probably due to using C++ instead
of Java. Our approximation of earliest query answering turns out to be tight for
XPath in practice: it works in an earliest manner in the above example and
for all supported queries from XPathMark with only two exceptions. These
are queries with nontrivial valid subfilter, similarly to the examples showing the
hardness of aliveness [9].

Outline. Section 2 starts with preliminaries on nested word automata and earli-
est query answering. Section 3 introduces eNwas. Section 4 recalls the tree logic
Fxp which abstracts from Forward XPath. Section 5 sketches how to compile
Fxp to eNwa queries. Section 6 presents our new query answering algorithm for
eNwas with stack-and-state sharing. Section 7 sketches our implementation and
exprimental results. We refer to the Appendix of the long version1 for missing
proofs and further details on constructions and experiments.

2 Preliminaries

Nested Words and XML Streams. Let Σ and Δ be two finite sets of tags
and internal letters respectively. A data tree over Σ and Δ is a finite ordered
unranked tree, whose nodes are labeled by a tag in Σ or else they are leaves
containing a string in Δ∗, i.e., any data tree t satisfies the abstract gram-
mar t ::= a(t1, . . . , tn) | ”w” where a ∈ Σ, w ∈ Δ∗, n ≥ 0, and t1, . . . , tn
are data trees. A nested word over Δ and Σ is a sequence of internal letters
in Δ, opening tags <a>, and closing tags </a>, where a ∈ Σ, that is well
nested so that every opening tag is closed properly. Every data tree can be lin-
earized in left-first depth-first manner into a unique nested word. For instance,
l(b(p(”ACM ”), c(...)), ...) becomes <l><b><p>ACM</p><c> . . . </c></b> . . .</l>.
We will restrict ourselves to nested words that are linearizations of data trees.
The positions of nested words are called events, of which there are three kinds:
opening, closing, and internal, depending on the letter at the event. Note also,
that every node in a data tree corresponds to a pair of an opening event and
a corresponding closing event. The correspondence is established by a parser
processing a nested word stream.

The Xml data model provides data trees with five different types of nodes:
element, text, comment, processing-instruction, and attributes.2 The latter four
are always leaf nodes. Any sequence of children of element nodes starts with a
sequence of attribute nodes, followed by a sequence of nodes of the other 4 types.
For an Xml data tree t the “child” relation cht relates all element nodes to their
non-attribute children. Attribute nodes are accessed by the attribute relation
@t, which relates all element nodes to their attribute nodes. The “next-sibling”

1 The long version can be found at http://hal.inria.fr/hal-00676178.
2 Attributes are nodes of data trees but not nodes in terms of the Xml data model.

http://hal.inria.fr/hal-00676178
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relation nst relates non-attributes nodes in t to their non-attribute next-sibling
node. In that sense attributes in the Xml data model are unordered. An Xml

stream contains a nested word obtained by linearization of Xml data trees.

Nested Word Automata. A nested word automaton (Nwa) is a pushdown
automaton that runs on nested words [2]. The usage of the pushdown of an
Nwa is restricted: a single symbol is pushed at opening tags, a single symbol is
popped at closing tags, and the pushdown remains unchanged when processing
internal letters. Furthermore, the stack must be empty at the beginning of the
stream, and thus it will also be empty at its end. More formally, a nested word
automaton is a tuple A = (Σ,Δ,Q, I, F, Γ, rul) where Σ and Δ are the finite
alphabets of nested words, Q a finite set of states with subsets I, F ⊆ Q of initial
and final states, Γ a finite set of stack symbols, and rul is a set of transition
rules of the following three types, where q, q′ ∈ Q, a ∈ Σ, d ∈ Δ and γ ∈ Γ :

(open) q
〈a〉:γ−−−→ q′ can be applied in state q, when reading the opening tag <a>.

In this case, γ is pushed onto the stack and the state is changed to q′.

(close) q
〈/a〉:γ−−−−→ q′ can be applied in state q when reading the tag </a> with γ

on top of the stack. In this case, γ is popped and the state is changed to q′.

(internal) q
d−→ q′ can be applied in state q when reading the internal letter d.

One then moves to state q′.

A configuration of an Nwa is a state-stack pair in Q× Γ ∗. A run of an Nwa on
a nested word over Σ and Δ must start in a configuration with some initial state
and the empty stack, and then rewrites this configuration on all events of the
nested word according to some rule. A run is successful if it can be continued
until the end of the nested word, while reaching some final state. Note that the
stack must be empty then. The language L(A) of an Nwa A is the set of all
data trees with some successful run on their linearization. See Figs. 1 and 2 for
an example of an Nwa and a successful run on the nested word of a data tree.

An Nwa is called deterministic or a dNwa if it is deterministic as a push-
down automaton. In contrast to more general pushdown automata, Nwas can
always be determinized [2], essentially, since they have the same expressiveness
as bottom-up tree automata. In the worst case, the resulting automata may have
2|Q|

2

states. In experiments, we also observed huge size explosions in the average
case. Therefore, we will mostly rely on on-the-fly determinization.

Automata Queries. We restrict ourselves to monadic (node selection) queries
for data trees with fixed alphabets Σ and Δ. A monadic query over these al-
phabets is a function P that maps all data trees t over these alphabets to some
subset P (t) of nodes of t. We will use Nwas to define monadic queries (as
usual for showing that tree automata capture MSO queries). The idea is that
an Nwa should only test whether a candidate node is selected by the query
on a given tree, but not generate the candidate by itself. Therefore, a unique
candidate node is assumed to be annotated on the input tree by some external
process. We fix a single variable x for annotation and set the tag alphabet of such
Nwas to {a, ax | a ∈ Σ}. Letters ax are called annotated (or “starred” in the
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〈book〉 : α
〈/book〉 : α

〈∗〉 : β 〈∗〉 : γ
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x 〉 : β
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〈/auth〉 : α
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〈∗〉 : γ
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〈∗〉 : α
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〈∗〉 : β
〈/∗〉 : β
∗Δ

〈∗〉 : α
〈/∗〉 : α
〈/∗〉 : β
〈/∗〉 : γ
∗Δ

Fig. 1. An Nwa for XPath query //book[starts-with(title,’XML’)]/auth, which
selects all authors of book nodes having a title that starts with “XML”. It runs on
well-formed libraries as in the introduction, where the children of book nodes contain
the sequence of authors followed by the title. We add the special symbol ∗ to Σ that
captures all infinitely many other tags non-specified at the same state, and similarly a
special symbol ∗Δ to Δ that captures all other internal letters not mentionned there.

lib

book

auth authx title

...q9 q9

“A”
q2 q3 q7 q8 q9

“B” “XML”

q0 γ
q0

α
q1

β
q2 q1

β α
q3 q4

q9

q9

q6 q9

Fig. 2. An example run of the Nwa in Fig. 1

terminology of [17]) while letters a are not. A monadic query P can then be
defined by all Nwas that recognize the set of all trees t annotated at some single
node belonging to P (t). An example for a deterministic Nwa is given in Fig. 1,
while a successful run of this Nwa is depicted in Fig. 2, on a library in which
the second author of the first book is annotated by x.

Earliest Query Answering. Let P be a query, t a data tree with node π, and
e an event of the nested word of t such that the opening event of π is before
or equal to e. We call π safe for selection at e if π is selected for all data trees
t′ (π ∈ P (t′)) whose nested word is a possible continuation of the stream of t
at event e, i.e., of the prefix of the nested word of t until e. We call π safe for
rejection at e if π is rejected for all data trees t′ (π �∈ P (t′)) such that the nested
word of t′ is a possible continuation of the stream of t beyond e. We call π alive at
e if it is neither safe for selection nor rejection at e. An earliest query answering
(eqa) algorithm outputs selected nodes at the earliest event when they become
safe for selection, and discards rejected nodes at the earliest event when they
become safe for rejection. Indeed, an eqa algorithm buffers only alive nodes. The
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problem to decide the aliveness of a node is exptime-hard for queries defined by
Nwas. For dNwas it can be reduced to the reachability problem of pushdown
machines which is in cubic time [9]. This, however, is too much in practice with
Nwas of more than 50 states, 50 stack symbols, and 4 ∗ 502 = 10.000 transition
rules, so that the time costs are in the order of magnitude of 10.0003 = 1012.

3 Early Nested Word Automata

We will introduce early Nwas for approximating earliest query answering for
Nwas with high time efficiency. The idea is to avoid reachability problems of
pushdown machines, by enriching Nwas with selection and rejection states3, so
that aliveness can be approximated by inspecting states, independently of the
stack. As we will see in Section 5, we can indeed distinguish appropriate selection
and rejection states when compiling XPath queries to Nwas.

A subset Q′ of states of an Nwa A is called an attractor if any run of A that
reaches a state of Q′ can always be continued and must always stay in a state
of Q′. It is easy to formalize this condition in terms of necessary and impossible
transition rules of A.

Definition 1. An early nested word automaton (eNwa) is a tripleE = (A,S,R)
where A is an Nwa, S is an attractor of A of final states called selection states,
and R an attractor of non-final states called rejection states. The query defined
by E is the query defined by A.

In the example Nwa in Fig. 1, we can define S = {q9} and R = ∅. We could add
a sink state to the automaton and to the set of rejection states. Also all selection
and respectively rejection states can be merged into a single state.

An eNwa defines the same language or query as the underlying Nwa. Let
us consider an eNwa E defining a monadic query and a data tree with some
annotated node π. Clearly, whenever some run of E on this annotated tree
reaches a selection state then π is safe for selection. By definition of attractors,
this run can always be continued until the end of the stream while staying in
selection states and thus in final states. In analogy, whenever all runs of E reach
a rejection state, then π is safe for rejection, since none of the many possible
runs can ever escape from the rejecting states by definition of attractors, so none
of them can be successful. For finding the first event, where all runs of E either
reach a rejection state or block, it is advantageous to assume that the underlying
Nwa is deterministic. In this case, if some run reaches a rejection state or blocks,
we can conclude that all of them do.

We call an eNwa deterministic if the underlying Nwa is. We next lift the
determinization procedure for Nwas to eNwas. Let E = (A,S,R) be an eNwa

and A′ the determinization of A. The deterministic eNwa E′ = (A′, S′, R′) is

3 The semantics of selection states is identical with the semantics of final states in
the acceptance condition for Nwas in [2]. The idea of analogous rejection states,
however, is original to the present paper to the best of our knowledge.
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Formulas F ::= F ∧ F | F ∨ F | ¬F | true | A(F) | L(F) | K(F) | O(T,s)
Axes A ::= @ | ch | ch+ | ch∗ | ns | fs | fo
Labels L ::= x | a | nspa
Types K ::= element | text | comment | processing-instruction
Comparisons O ::= equals | contains | starts-with | ends-with
Texts T ::= textx(F)

Fig. 3. Abstract syntax of Fxp where x ∈ V is a variable, a ∈ Σ is a label, attribute,
or namespace, and s ∈ Δ∗ a string data value

defined such that S′ contains all those sets of pairs such that some of them has
the second component in S, while R′ contains all those sets of pairs such that
all of them have their second component in R. From the construction of A′ it is
not difficult to see that S′ and R′ are attractors of A′. Notice that the selection
delay is preserved by eNwa determinization, so that we can decide whether all
runs of E reach a rejection state at event e, by running the determinized version
until event e.

Lemma 1. For any event e of the stream of a tree t, there exists a run of E
going into S at event e if and only if there is a run of E′ going into S′ at e.
Likewise all runs of E go into R at event e iff all runs of E′ go into R′ at e.

4 FXP Logic

Rather than dealing with XPath expressions directly, we first compile a frag-
ment of XPath into the hybrid temporal logic Fxp [9]. Even though the trans-
lation from XPath to Fxp is mainly straightforward, it leads to a great sim-
plification, mainly due to the usage of variables for node selection. We are go-
ing to compile a larger fragment of XPath than previously [9], since support-
ing node types, attributes, strings data values and patterns, and all forward
axes of XPath, we also need to extend Fxp accordingly. The XPath query
//book[starts-with(title,’XML’)]/auth, for example, will be compiled to
the following Fxp formula with one free variable x:

ch∗(book (starts-with(texty(ch(title(y(true)))), XML) ∧ ch(auth(x(true)))))

Fxp formulas will talk about data trees t satisfying the Xml data model based
on its typed relations: attribute @t, child cht, descendant (ch+)t = (cht)+,
descendant-or-self (ch∗)t = (cht)∗, next-sibling nst, following-sibling fst = (nst)∗,
and following fot = ((cht)∗)−1 ◦ (nst)+ ◦ (cht)∗. The abstract syntax of Fxp for-
mulas with alphabets Σ, Δ and a set of variables V is given in Fig. 3. There is a
single atomic formula true. A non-atomic formula can be constructed with the
usual boolean operators, or be a test for a variable x(F ), a node label a(F ), a
namespace nspa(F ), or an Xml node type K(F ). There are also formulas A(F )
for navigating with any typed relation At supported by the Xml data model. Fi-
nally there are various comparisons O(T, s) between string data values texty(F )
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�F1 ∧ F2�t,π,μ ⇔ �F1�t,π,μ ∧ �F2�t,π,μ

�F1 ∨ F2�t,π,μ ⇔ �F1�t,π,μ ∨ �F2�t,π,μ

�¬F �t,π,μ ⇔ ¬ �F �t,π,μ

�true�t,π,μ ⇔ true

�A(F )�t,π,μ ⇔ ∃π′∈ �A�t,π,μ s.t. �F �t,π′,μ

�L(F )�t,π,μ ⇔ �F �t,π,μ ∧ �L�t,π,μ

�K(F )�t,π,μ ⇔ �F �t,π,μ ∧ �K�t,π,μ

�O(T, s)�t,π,μ ⇔ O(�T �t,π,μ , s)

�A�t,π,μ = At(π)

�x�t,π,μ ⇔ π = μ(x)

�a�t,π,μ ⇔ label of π in t is a

�nspa�t,π,μ ⇔ namespace of π in t is a

�K�t,π,μ ⇔ π has type K in t

�textx(F )�t,π,μ = data value of μ(x): �F �t,π,μ

Fig. 4. Semantics of Fxp formulas F for an Xml data tree t with node π and variable
assignment μ to nodes of t

accessed from the y-node in the data tree and string constants s ∈ Δ∗, but no
more general comparisons as needed for join operations. The formal semantics of
Fxp is defined in Fig. 4. Given an Xml data tree t, a node π of t, and a variable
assignment μ to nodes of t, a formula F evaluates to a truth value �F �t,π,μ. For-
mulas F with one free variable define monadic queries. For compiling XPath,
we restrict ourselves to formulas where all subformulas contain at most one free
variable. Also there may be some bound variables y introduced by texty(F ).

5 Compiler from FXP to Early Nested Word Automata

We sketch a compiler from Fxp formulas to eNwas, that follows the usual
approach of compiling tree logics such as Mso into tree automata. Compared to
previous compilers into Nwas in [10,17], the most novel part is the distinction
of appropriate selection and rejection states. It should also be noticed, that our
compiler will heavily rely on non-determinism, in order to compile formulas A(F )
where A is a recursive axis such as the descendant or following axis. However,
we will try to preserve determinism as much as possible, so that we can compile
many formulas ¬F without having to determinize the eNwa for F .

The construction is by recursion on the structure of F . Given an Fxp formula
F with n free variables, the compiler produces an eNwa with node labels in
Σ × 2V that defines the same n-ary query. With n = 1 as for Fxp formulas
obtained fromXPath, this yields eNwas defining monadic queries by identifying
Σ×2{x} with {a, ax | a ∈ Σ}. Let F and F ′ be two formulas that were compiled
to E = (A,S,R) and E′ = (A′, S′, R′) with state sets Q and Q′ respectively.
The Nwa for a conjunction F ∧ F ′ is the product of A and A′. We choose
selection states S × S′, since a node is safe for selection for F ∧ F ′ iff it is
safe for selection for both F and F ′. As rejection states we choose (R × Q′) ∪
(Q×R′), which may lead to a proper approximation of earliest query answering.
Also a large number of conjunctions may lead to an exponential blow-up of
the states. The Nwa of a disjunction F ∨ F ′ is the union of A and A′. As
selection states we use S ∪ S′ which is exact, and as rejection states R ∪ R′.
Note that we compile conjunctions and disjunctions differently, since unions may
introduce non-determinism while products do not. For negations ¬F , where E
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is deterministic, we simply swap the final states of E, and exchange selection
and rejection states. This is correct since we maintain pseudo-completeness as an
invariant (see [9]), and remains exact, since a node is safe for selection for ¬F iff
it is safe for rejection for F , and conversely. Otherwise, we determinize E in a first
step, which is exact by Lemma 1, and second apply the previous construction.
The eNwas for navigation formulas A(F ) for the various axes A guess an A-
successor of the root and then run E starting from there. The selection and
rejection states remain unchanged except for the treatment of the root. A better
construction preserving determinism is available for formulas ch(F ) under the
condition that F contains only the axis ch and ch∗ (see [9] again). There is
also an optimized construction for attribute access @(F ) which uses internal
transitions only. Further optimizations are possible based on node typing of
the Xml data model (such as that attribute children precede all children of
other node types). Node label and type testers L(F ) and K(F ) work as usual.
They may add new rejection states to R while preserving the selection states
S. eNwas for string comparisons at the root O(texty(y), s) can be obtained
from a dfa with accepting and rejecting states that recognizes all strings s′ such
that O(s′, s). General string comparisons O(texty(F ), s) can be reduced to the
previous case, since they are equivalent to F [y/O(textz(z), s)].

6 Early Query Answering

We show how to use eNwas for evaluating monadic queries onXml streams. Our
basic algorithm generates all possible answer candidates, and runs the eNwa on
them based on on-the-fly determinization. We then improve this algorithm so
that configurations and runs of multiple answer candidates may be shared.

On-the-fly Determinization. Let E be an eNwa that defines a monadic
query, i.e., with tag alphabet {a, ax | a ∈ Σ} where x is a fixed variable. Rather
than running E, we want to run its determinization E′. This can be done while
generating E′ on the fly. At any time point, we store the subset of the states
and transitions of E′ that was used before. If a missing transition rule is needed
then one we compute it from E and adds it to E′. It should be noticed that each
transition can be computed in polynomial time (but not in linear time). Recall
also that the states of E′ are sets of pairs of states of E. For efficiency reasons,
we will substitute such sets by integers, so that the known transitions of E′ can
be executed as efficiently as if E was deterministic at beforehand. Therefore, we
will assume in the sequel that E is deterministic. We will also assume that it is
pseudo-complete, so that runs can never get blocked.

Buffering Possibly Alive Candidates. Suppose we are given a stream con-
taining a nested word of some data tree, and that we want to compute the answer
of the query defined by E on this data tree in an early manner. That is, we have
to find all nodes of the data tree that can be annotated by x, so that E can
run successfully on the annotated data tree. At any event e of the stream, our
algorithm maintains a finite set of candidates in a so called buffer. A candidate
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〈lib〉

〈book〉

〈auth〉

〈title〉

“XML”

x state stack out

• q0 ⊥
x state stack out

• q0 γ

x state stack out

• q1 γα

x state stack out

• q2 γαβ
3 q3 γαβ

...

...

x state stack out

• q2 γαβ
3 q6 γαα
4 q6 γαα

x state stack out

• q2 γαβ
3 q9 γαα 3
4 q9 γαα 4

1lib

2book ...

3auth 4auth 5title

“A” “B” “XML”

Fig. 5. Evolution of the buffer for the eNwa from Fig. 1 when answering the XPath

query //book[starts-with(title,’XML’)]/auth on a sample document

is a triple that contains a value for x, a state of E that is neither selecting nor
rejecting, and a stack of E. The value of x can either be a node opened before
the current event e, or “unknown” which we denote by •. At the start event,
there exists only a single candidate in the buffer, which is (•, q0,⊥) where q0 is
the unique initial state of E and ⊥ the empty stack. At any later event, there
will be at most one candidate containing the •.
Lazy Candidate Generation. New candidates are generated lazily under su-
pervision of the automaton. This can happen at all opening events for which
there exists a bullet candidate (which then is unique). Consider the <a> event of
some node π and let (•, q, S) be the bullet candidate in the buffer at this event.

The algorithm then computes the unique pair (γ, q′) such that q
〈ax〉:γ−−−−→ q′ is a

transition rule of E. If q′ is a selection state, then π is an answer of the query,
so we can output π directly. If q′ is a rejection state, then π is safe for rejection
(since E is deterministic), so we can ignore it. Otherwise, π may still be alive,
so we add the candidate (π, q′, Sγ) to the buffer.

Candidate Updates. At every event, all candidates in the buffer must be up-
dated except for those that were newly created. First, the algorithm updates the
configuration of the candidate by applying the rule of E with the letter of the
current event to the configuration of the candidate. If a selecting state is reached,
the node of the candidate is output and discarded from the buffer. If a rejection
state is reached, the candidate is also discarded from the buffer. Otherwise, the
node may still be alive, so the candidate is kept in the buffer.

Example. We illustrate the basic algorithm in Fig. 5 on the eNwa from Fig. 1
and the document from Fig. 2. Initially the buffer contains a single candidate
with an unknown node •, that starts in the initial state of the eNwa with
an empty stack. According to opening tags 〈lib〉 and 〈book 〉 we launch open
transitions and apply state and stack changes. At the opening event of node 3,
i.e. when reading the open tag 〈auth〉 in state q1, a new candidate is created. This

is possible, since there exists the transition rule q1
〈authx〉:β−−−−−−→ q3 in the eNwa and

since q3 is neither a rejection nor a selection state. Similarly a new candidate
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γ

state x-es

q2 {•}
q6 {3, 4}

Fig. 6. Buffer of <title>
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−−−−−→ q′′′

β′ β

α

state x-es

q {•}
q′′′ {2}
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Fig. 7. Data structures for the state sharing algorithm

will be created for node 4 at its opening event. Only after having consumed the
text value of the title node 5, a selection state is reached for the candidates with
node 3 and 4, such that they can be output and removed from the buffer.

Stack and State Sharing. For most queries of the XPathMark benchmark,
the buffer will contain only 2 candidates at every event, of which one is the • can-
didate. It may happen though that the number of candidates grows linearly with
the size of the document. An example is the XPath query /a[following::b]

on a document whose root has a large list of only a-children. There the process-
ing time will grow quadratically in the size of the document. All candidates (of
which there are O(n) for documents of size n) must be touched for all following
events on the stream (also O(n)). A quadratic processing time is unfeasible even
for small documents of some megabytes, so this is a serious limitation.

We next propose a data structure for state and stack sharing, that allows to
solve this issue. The idea is to share the work for all candidates in the same state,
by letting their stacks evolve in common. Thereby the processing time per event
for running the eNwa on all candidates will become linear in the number of states
and stack symbols of the eNwa, instead of linear in the number of candidates
in the buffer. In addition to this time per event, the algorithm must touch each
candidate at most three times, once for creation, output, and deletion. We will
use a directed acyclic graph (Dag) with nodes labeled in Γ for sharing multiple
stacks in the obvious manner. In addition, we use a table B : Q × Γ → Aggreg
relating a state and a root of the Dag through an aggregation of nodes or •. The
shared representation of the buffer at the <title>-event in Fig. 5 is illustrated
in Fig. 6 for instance. Here we have B(q6, α) = {3, 4}, B(q2, β) = {•}. In this
case, the aggregations are set of candidate nodes or the •, but this will not be
enough in general (see example below). Whenever a selection state is reached
in the B-table, the nodes in the aggregate of this state will be output and the
aggregate will be deleted from the data structure. For rejection states, we only
have to discard the aggregate. Note that rejected or selected nodes get deleted
entirely from the data structure this way, since no node may appear twice in
different aggregates, again due to determinism.

The precise functioning of our Dag-based buffering is illustrated by example
in Fig. 7. There one has to store enough information when sharing at opening
events, so that one can undo the sharing properly at closing events. From the first
configuration, we reach the second with the <a> event for node 2, for which a new
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candidate will be buffered. This candidate 2 will be created from the •-candidate
whose configuration has β on top of the stack, goes into state q′′, and pushes γ′.
However, there is also the candidate for node 1 which will go into the same state
q′′ while pushing the same stack symbol γ′, but from a configuration with β′ on
top of the stack. The pairs (2, β) and (1, β′) must be stored in the aggregation,
so we define B(q′′, γ′) = {(2, β), (1, β′)}. The next event has the letter </a>,
where we have to undo the sharing. Now we decompose the aggregate, to update
the data structure to B(q′′′, β) = {2}, B(q′′′, β′) = {1} and B(q, β) = {•}.

Theorem 1. For any deterministic eNwa E with state setQ defining a monadic
query P and data tree t, the time complexity of our streaming algorithm to com-
pute P (t) is in O(|E|+ |Q| |t|) and its space complexity in O(|E|+depth(t) |Q|+
C), where C is the maximal number of alive candidates of P on t at any event.

7 Implementation and Experimental Results

The Fxp tool is released under the version 1.1 and is available under the GPL
licence at http://fxp.lille.inria.fr. A compiler from XPath to Fxp is freely avail-
able in the QuiXPath tool at http://code.google.com/p/quixpath. It covers a
slightly larger fragment of XPath than discussed here. In particular it supports
top-level aggregations, which are reduced to earliest query answering for n-ary
queries (and not only monadic queries). QuiXPath also supports backwards axes
such as Spex. We eliminated them at the cost of forward axis and regular closure.
As noticed in [16] conditional regular axes are not enough.

We also implemented the static determinization algorithm for Nwas, which
explodes for most practical queries, even if restricted to accessible states, but
do not need it for evaluating the queries of the XPathMark benchmark. In
contrast, on-the-fly determinization explores only small fragments of the deter-
minized Nwas. One should also mention that we obtain high efficiency results
also due to projection, where parts of the input documents are projected accord-
ing to the content of the query. This precise projection algorithm is new and of
interest but out of scope of this present paper.

We tested our system against the revised4 version of XPathMark query
set [8]. It turns out that all queries are answered in an earliest manner with
two exceptions, that use valid and unsatisfiable subfilters. The query from the
introduction is also treated in an earliest manner, so Fxp improves on Spex

in this respect. We have also compared our Fxp tools to various systems on
XPathMark, such as Spex, Saxon, and Gcx. Input documents were produced
by the XMark generator. We give in Table 1 a collection of XPath queries,
where we report for each system the throughput obtained on a 1.1GB XMark
file. There “–” states that the query was not supported. Notice however that the
Gcx system competes very well. Nevertheless we believe that we obtain good
results with respect to that the Gcx system was done in C++, in contrast to
Fxp, developed in Java.

4 http://users.dimi.uniud.it/~massimo.franceschet/xpathmark/index.html

http://fxp.lille.inria.fr
http://code.google.com/p/quixpath
http://users.dimi.uniud.it/~massimo.franceschet/xpathmark/index.html
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Table 1. Throughput on XPathMark queries in millions of events per second

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B11 B12 B13 B14 B15
Fxp 2.7 2.5 2.4 2.3 3.5 3.4 3.4 2.4 2.8 2.2 3.3 3.7 2.1 2.4 1.9 1.9 2.2 2.2 2.0 1.6
Spex 0.7 1.5 1.1 0.9 0.9 0.9 0.8 0.9 0.9 1.1 0.4 0.8 – – – – – 0.6 – –

Saxon 1.7 1.8 1.8 – – 1.6 – – – – – – – – – – – – – –
Gcx 2.5 3.0 2.9 – – – – 3.3 – – – – – 2.3 3.3 – – – – –

Conclusion and Future Work. We have shown how to approximate earliest
query answering for XPath on Xml streams by using eNwas. An implementa-
tion of our algorithms is freely available in the Fxp system. Our practical solu-
tion outperforms existing algorithms in performance and coverage. In follow-up
work, we extended the coverage of our XPath fragment by aggregate queries,
arithmetic operations, and float comparisons. For this we propose networks of
automata registrations, such that each of them can evaluate one subquery in
a query decomposition. For future work we hope that we can extend this ap-
proach to cover database joins as well, and thereby reach over 90% coverage of
XPathMark.
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Abstract. We study natural computational problems associated with
iterated transductions defined by a class of invertible transducers over
the binary alphabet. The transduction semigroups of these automata are
known to be free Abelian groups and the orbits of words can be described
as affine subspaces in a suitable geometry defined by the generators of
these groups. We show how to compute the associated coordinates of
words in quadratic time and how to apply coordinates to the problem
of deciding whether two words generate the same orbit under a given
transduction. In some special cases our algorithms can be implemented
on finite state machines.

1 Invertible Transducers

We consider Mealy automata A where all transitions are of the form p
a/π(a)−−−−→ q;

here π = πp is a permutation of the alphabet 2 = {0, 1} that depends on the
source p of the transition. When π is the transposition we refer to p as a toggle
state, and as a copy state, otherwise. By selecting any state p in A as the ini-
tial state we obtain a transduction A(p) : 2� → 2� . A moment’s thought reveals
that A(p) is a length-preserving permutation of 2�. Moreover, the corresponding
inverse permutation can be obtained by interchanging 0 and 1 labels in all transi-
tions. Correspondingly, these automata are called binary invertible transducers .
The groups generated by the collection of all transitions A(p) as p ranges over
the state set of A have attracted considerable attention in the last two decades,
see [1,6,7,13]. One reason invertible transducers are relevant in group theory and
symbolic dynamics is that they afford very compact descriptions of surprisingly
complicated groups. For example, Grigorchuk has constructed a group of inter-
mediate growth that can be interpreted as the transduction group of a binary
invertible transducer on only 5 states and with a single toggle state.

Our objective here is the study of iteration and in particular the computational
complexity of problems associated with iterated transductions in an invertible
transducer. Write S(A) for the semigroup generated by the basic transductions
A(p). Each transduction f in S(A) defines its iterate f� ⊆ 2� × 2�, a length-
preserving equivalence relation on 2� that we will refer to as the orbit relation
of f : two words are related by f� if they have the same orbits (as sets) under f .

Any equivalence relation on 2� is associated with a number of natural decision
problems. First, there is the recognition problem, the problem of deciding xf�y

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 306–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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given two words x and y. In our context we will refer to this as the Orbit Problem.
Second, and closely related, is the first canonical form problem, the question of
how hard it is to compute the root function x �→ min

(
z ∈ 2� | z f� x

)
; here

the minimum is understood to be with respect to length-lexicographical order.
See [4] for a recent discussion of general complexity results relating to these
questions, and [8] for results relating to rational relations. Since our equivalence
relations are generated by iteration there are several other natural problems to
consider. The Iteration Problem asks for the complexity of computing x f t for
some transduction f , a word x and t ≥ 0. The recognition problem has a slightly
stronger variant that we refer to as the Timestamp Problem: given words x and
y, find the least number t ≥ 0 such that x f t = y, or determine that no such t
exists. Since f is length-preserving we only need to consider words of length k,
in which case the brute-force method takes O(k 2k) steps for either problem; of
course, we are interested in polynomial time solutions.

As Grigorchuk’s example shows, even small invertible transducers with a sin-
gle toggle state can produce very complicated transduction groups. In this pa-
per we will therefore focus on a class of simple binary invertible transducers
first introduced in [19] that we refer to as cycle-cum-chord transducers , or CCC
transducers for short. These transducers have state set {0, 1, . . . , n− 1} and
transitions

p
a/a−→ p− 1, p > 0 and 0

0/1−→ n− 1, 0
1/0−→ m− 1

where 1 ≤ m ≤ n. We write An
m for this transducer; the example A5

3 is shown in
figure 1. It is shown in [19] that the semigroups generated by CCC transducers
are in fact free Abelian groups. The argument is based on a normal form for
transductions proposed by Knuth. The normal form also allows one to define a
natural geometry on 2� that describes the orbits of words under a transduction f
as affine subspaces, see section 2 below. As a consequence, it is polynomial-time
decidable whether two transductions give rise to the same equivalence relation
and we can construct the minimal transition system recognizing f� in the sense
of Eilenberg [3]. The reference identifies some CCC transducers where this min-
imal transition system is finite, so that the orbit relation is rational and thus
automatic in the sense of [9,11].

In this paper we will show that for some CCC transducers timestamps can
be computed by a finite state machine; more precisely, there is a transducer
that computes the witness t in reverse binary. For arbitrary CCC transducers
our methods produce a quadratic time algorithm. It is known that there is a
natural coordinate system for the level sets 2k in the full binary tree 2�, based
on the elementary maps defined by the transducer, see [19]. We will show how
to compute coordinates in quadratic time algorithm in general. As before, some
CCC transducers admit faster algorithms and coordinates can be computed by
a suitable transducer.

This paper is organized as follows. In section 2 we provide background in-
formation on invertible transducers, introduce cycle-cum-chord transducers and
describe their basic properties, using Knuth normal form as a central tool. In
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the next section, we discuss the complexity of the timestamp and coordinate
problem for CCC transducers. Lastly, section 4 contains comments on related
decision problems and mentions open problems.

2 Transduction Groups and Iteration

We consider Mealy machines of the form A = 〈Q,2, δ, λ 〉 where Q is a finite
set, 2 = {0, 1} is the input and output alphabet, δ : Q× 2 → Q the transition
function and λ : Q× 2 → 2 the output function. We can think of 2� as acting
on Q via δ, see [2,16,10] for background. We are here only interested in invertible
transducers where λ(p, .) : 2 → 2 is a permutation for each state p. When this
permutation is the transposition in the symmetric group S2 on two letters, we
refer to p as a toggle state, and as a copy state, otherwise. Fixing a state p as
initial state, we obtain a transduction A(p) : 2� → 2� that is easily seen to be a
length-preserving permutation. If the automaton is clear from context we write
p for this function; S(A) denotes the semigroup generated by all the functions
A(p) as p ranges over Q.

If we think of 2� as an infinite, complete binary tree in the spirit of [17], we
can interpret our transductions as automorphisms of this tree, see [13,18]. Any
automorphism f of 2� can be written in the form f = (f0, f1)s where s ∈ S2:
s describes the action of f on 2, and f0 and f1 are the automorphisms induced
by f on the two subtrees of the root, which subtrees are naturally isomorphic
to the whole tree. Write σ for the transposition in S2. The automorphisms f
such that f = (f0, f1)σ are odd , the others even. In terms of wreath products
the whole automorphism group can be written as

Aut(2�) 7 Aut(2�) 8S2 = (Aut(2�)× Aut(2�))�S2

with group operation (f0, f1)s (g0, g1)t = (f0gs(0), f1gs(1)) st, see [13,18]. The
collection I of all maps defined by invertible transducers is easily seen to be
closed under inverse and composition, and thus forms a subgroup I ⊆ Aut(2�).
For automata groups G ⊆ I the wreath form naturally induces three maps ∂0,
∂1 and par such that f = (∂0f, ∂1f) parf . The parity is simply determined by the
corresponding state being toggle or copy. The operations ∂s are the left residuals ,
see [15,5,13]: for any word x, define the function ∂xf by (x f) (z ∂xf) = (xz) f
for all words z (for transductions, we write function application on the right and
use diagrammatic composition for consistency with relational composition). It
follows that

∂xyf = ∂y∂xf ∂x(fg) = ∂xf ∂xfg

The transduction semigroup S(A) is naturally closed under residuals. In fact, we
can describe the behavior of all the transductions by a transition system C, much
the way A describes the basic transductions: the states are all transductions in

S(A) and the transitions are f
s/sf−→ ∂sf . Thus C contains A as a subautomaton.

Of course, this system is infinite in general; it is referred to as the complete
automaton in [13].
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We will focus on a class of invertible transducers called cycle-cum-chord trans-
ducers (CCC): their diagrams consist of a cycle plus one chord, the source of
the chord is the only toggle state, all others are copy states. More precisely,
a CCC transducer has state set {0, 1, . . . , n− 1} and wreath representation
0 = (n−,m−)σ and k = (k−, k−) for 0 < k < n. Here 1 ≤ m ≤ n and we
occasionally write p− rather than p− 1 to improve legibility. We will write An

m

for this transducer. The diagram of A5
3 is shown in figure 1.

0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

0 = (4, 2)σ

k = (k−, k−) 0 < k < 5

Fig. 1. The cycle-cum-chord transducer A5
3 and its representation in the wreath form

from section 2

It was shown in [19] that the semigroups associated with these transducers
are in fact free Abelian groups. More precisely, in the degenerate case n = m,
An

m generates the Boolean group 2n. For n > m let s = gcd(n,m), then An
m

generates the free Abelian group Zn−s. As explained in [19], one only needs to
be concerned with the case when n and m are coprime. Hence, from now on, we
assume s = 1. Commutativity of S(An

m) is easily seen. The reason we obtain a
group is that the following cancellation identity holds in the semigroup:

02 12 . . . (m−)2 m m+ 1 . . . n− = I.

It follows from the cancellation identity that S(An
m) is a quotient of Zn−1. To

establish isomorphism one can use the Knuth Normal Form of a transduction
suggested in [12]. To this end, we extend An

m to an infinite transducer with ad-
ditional copy states k where k ≥ n and transitions k = (k−, k−). This extension
does not change the (semi)group generated by the machine because of the shift
identities k2 = k +m k + n. One can then show that for every transduction f
there is a unique flat representation

f = k1 k2 . . . kr,

where k1 < k2 < . . . kr, the Knuth normal form (KNF) of f .
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Thus we have two natural representations for transductions: the semigroup
representation f = 0e01e1 . . . n− 1en−1 where ei ≥ 0, and the unique group
representation f = 0e

′
01e

′
1 . . . n− 2e

′
n−s−1 where e′i ∈ Z. Correspondingly, the

group representation of f is the integer-valued vector (e′0, . . . , e
′
n−s−1). We will

refer to
∑

|ei| as the weight of f .

2.1 Rational Orbits

Given a transduction f we can think of the associated orbit relation f� as a lan-
guage over (2× 2)

�
. One can then exploit the group representation to calculate

Brzozowski quotients of this language. We obtain a generally infinite transition
system that recognizes the orbits of f and whose states naturally are given by
pairs of transductions, see [19] for details. Somewhat surprisingly, for some CCC
transducers this transition system turns out to be finite for all the associated
transductions. Thus, f� is rational and hence automatic. For space reasons we
focus here on the CCC Transducer A3

2, see the reference for the following result
and some generalizations.

Theorem 1. For any transduction f in S(A3
2), the orbit relation of f is rational.

Accordingly, the root function can be computed by a length-preserving finite state
transducer.

This property is not shared by all CCC transducers; for example, the orbit
relation of 0 in A4

3 fails to be rational. It seems difficult to characterize CCC
transducers with rational orbits.

For A3
2, Knuth normal form has a number of interesting properties that will

be important in section 3. Let KNF(f) denote the Knuth normal form of f . For
any transduction f , write shs(f) for the transduction obtained by replacing any
term k in the KNF of f by k + s. In group representation, we have sh1(a, b) =
(−2b, a − 2b). Lastly, let γ0 = 0, γ1 = 01, γ2 = 0−1 and γ3 = 0−11−1 and set
γ′i = sh1(γi).

Lemma 1. Let 0 ≤ k and 0 ≤ i < 4. Then KNF(02
4k+i

) = sh8k+2i(γi). More

generally, for f = 0a1b, we have KNF(f2
4k+i

) = sh8k+2i(KNF(γai γ
′b
i )).

Proof. A straightforward computation shows that KNF(016) = 8 and it follows

by induction that KNF(02
4k

) = 8k for all k ≥ 0. But then KNF(02
4k+1

) =
KNF(8k2) = 8k + 2 8k + 3 = sh8k+2(γ1). The cases i = 2, 3 are entirely simi-
lar. The second claim follows immediately from the first. ��
The existence proof for KNF is based on a weakly confluent rewrite system;
other than a bound on the number of rewrite steps that is logarithmic in the
weight of the given transduction there is no further information on the complex-
ity computing the normal form. As it turns out, for A3

2, rewriting is not required
at all, a finite state transducer suffices to determine KNF in the following sense.
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For space reasons, let us focus on determining the KNF for 0t rather than the
general group elements 0t1s. Note that we can think of the KNF of f as an
ω-sequence κ ∈ 2ω where κi = 1 ⇐⇒ i appears in the normal form of f . Since
all but finitely many of the terms in κ are 0 we can also think of KNF as a finite
bit-vector u such that κ = u 0ω. We can pre-compute these finite bit-vectors of
0a for 0 ≤ a < 16 and pad to length 8 whenever necessary:

00000000 10000000 00110000 1011000 000010111 100010111
001110111 101110111 000000111 100000111 001100111 101100111
000010001 100010001 001110001 101110001

All but the first 4 entries have length 9 and require a “carry” to the next block.
According to lemma 1 we can now determine KNF of 0t as follows. Let T be
a 0-indexed table whose entries are the 16 KNFs, right-padded or truncated to
form blocks of length 8. If there is no carry, on input hex-digit d the correct
output is Td, but with a carry it is Td+1 mod 16. Figure 2 shows a sketch of
the appropriate transducer; input is hexadecimal, output is binary in blocks of
8 bits.

nc c h

d > 3/Td

d ≤ 2/Td+1

ε/1

d ≤ 3/Td d > 2/Td+1

Fig. 2. A transducer that determines the Knuth normal form of a transduction 0a for
CCC transducer A3

2

The state nc is the no-carry state, c is carry, and h takes care of pending
carries after the last input digit. For example, for a = 3921 = (15F )16r we get
three blocks plus one 1 because of the carry:

T1T5T0T1 = 10000000 10001011 00000000 1,

corresponding to KNF 0 8 12 14 15 24. Note that the KNF transducer can
be converted into a recurrence equation for the length of KNF(f), but it seems
difficult to obtain a closed form solution. Also, a similar construction works for
general group elements, but the machinery becomes considerably more compli-
cated since we now have to deal with both generators 0 and 1 of the transduction
group.
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2.2 Computing Iterates

Knuth normal form also suggests that x f t can be computed easily: we have
az f = a f(z ∂af) and residuation for a transduction written in KNF comes
down to a left shift, except possibly for a first term 0. Hence, after processing an
initial segment of x, the residuals of f t will have low weight and, from then on,
every single bit of x can be processed in constant time. In terms of the complete
automaton C from section 2 this means that there are only a few non-trivial
strongly connected components and every sufficiently long path winds up in one
of them. For example, in the case of A3

2 the complete automaton has 8 non-trivial
strongly connected components the largest of which as 6 states. Technically we
have the following results.

Proposition 1. Given a transduction f ∈ S(An
m) of weight w we can compute

its residuals in time O(n logw).

Proof. Let f = (e0, . . . , en−) be the semigroup representation where
∑
ei = w.

Then the semigroup representations of the residuals are

∂0f = (e1, e2, . . . , em + �e0/2�, . . . , en−1, �e0/2�)
∂1f = (e1, e2, . . . , em + �e0/2�, . . . , en−1, �e0/2�)

An entirely similar argument applies to group representation as well. Our claim
follows. ��
It follows that x f can be computed in O(|x|n logw) time. However, we can do
better than that.

Proposition 2. Given a transduction f ∈ S(An
m) we can compute x f in time

linear in |x|, with coefficients depending on f .

Proof. Suppose f has group representation (e0, e1, . . . , en−2) so that w =
∑

|ei|.
The first bit of az f depends only on the parity of e0. As we have seen in proposi-
tion 1, we can compute the residuals of f in O(n logw) steps, and these residuals
have weight at most w. Moreover, we can express residuation as an affine oper-
ation of the form

∂su =

{
A · u if u is even,

A · u− (−1)sa otherwise.

where u ∈ Zn−1 is the group representation of the transduction, see [14]. The
spectral radius of A is less than 1, hence residuation is a contraction and after
a transient part all weights are bounded by a constant depending only on n and
m. Since the length of the transient is independent of x our claim follows. ��
We do not know how to obtain more precise bounds on the cost of computing x f .
In particular there appears to be no easy way to determine the number and size
of the non-trivial strongly connected components of the complete automaton,
short of actual computation.
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3 Timestamps and Coordinates

One can show that for any CCC transducer An
m the group H of transductions

generated by p, 0 ≤ p < m, acts transitively on 2� (which set of words is often
referred to as a level set in connection with the infinite binary tree). For � = km,

the quotient group H ′ obtained by factoring with respect to i2
k

acts simply
transitively on the level set 2�. As a consequence, there is a natural coordinate
system for 2km: for every � = km there is a bijection

2� → Z/(2k)× . . .× Z/(2k)

where the product on the right has m terms. We will write 〈w 〉� ∈ (Z/(2k))m

for the coordinates of a word w: 〈w 〉� = (a0, . . . , am−) if, and only if, w =
0� 0a01a1 . . .m−am− . We use x ≡ y to express the fact that two integer vectors
of length m are componentwise congruent modulo 2k. Also, for a transduction
f , define the �-coordinates of f by 〈 f 〉� =

〈
0� f

〉
�
. For example, in A3

2, letting

f = 0−113 we get 〈 f 〉2k = (2k−1, 3) for k ≥ 2. By commutativity it follows that〈
0� f i

〉
�
≡ i · 〈 f 〉� and

〈
0� f�

〉
�
≡ N · 〈 f 〉�, so that the orbit of 0� is a linear

subspace of (Z/(2k))m. Again by commutativity general orbits can be described
as affine subspaces of (Z/(2k))m:

〈w f� 〉� ≡ 〈w 〉� + N · 〈 f 〉�

Thus, it is of interest to be able to calculate coordinates. More formally, we wish
to address the following problem, assuming a CCC transducer An

m is fixed.

Problem: Coordinate Problem
Instance: A word x ∈ 2� where � = km.
Output: The coordinates 〈x 〉� ∈ (2k)m of x.

Closely related is the question how many times a given transduction f must be
applied to obtain a particular point in the orbit of a given word x. We refer to
this as the Timestamp Problem:

Problem: Timestamp Problem
Instance: A transduction f , two words x, y ∈ 2k.
Output: The least t ≥ 0 such that y = x f t, if it exists; NO otherwise.

Clearly the Orbit Problem reduces to the Timestamp Problem, which, as we will
see shortly, in turn reduces to the Coordinate Problem. We will show that all
of them can be solved in quadratic time. Let us first deal with the Timestamp
Problem.

Theorem 2. The Timestamp Problem can be solved in quadratic time: given
two words x and y of length � = km and a transduction f ∈ S(An

m) we can find
a timestamp t ≥ 0 such that x f t = y, or determine that no such t exists, in
O(�2) steps.
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Proof. We may safely assume that m < n and gcd(n,m) = 1. Also, we only
need to consider the case where f is odd, since otherwise f simply copies the
first k1 bits in the input word, where k1 is the first term in the KNF of f .
Write x = x0 . . . x�−1 and y = y0 . . . y�−1 and let f = (e0, . . . , ed) ∈ Zd in
group representation where d = n− 2. We will determine the bits in the binary
expansion of the timestamp t =

∑
ti2

i, starting with the least significant digit.
Initialize a symbolic vector

V =
∑
i<k

ti2
i (e0, . . . , ed).

with entries in the polynomial ring Z[τ ], τ = t0, . . . , tk−1. We proceed in k
rounds r = 0, . . . , k − 1 , each consisting of m stages s = 0, . . . ,m− 1 . In round
r, stage s, perform the following actions. If s = 0, bind tr to 0 or 1 so as to
satisfy V1 + xmr = ymr (mod 2) where V1 is the first component of V . If s > 0,
check that V1 + xmr+s = ymr+s (mod 2) and exit returning NO if the test fails.
In either case, finish the stage by replacing V by ∂xmr+sV . If all rounds complete
successfully, return the required timestamp t =

∑
ti2

i.
To see that the algorithm is correct, write x[i] for the prefix of x of length i.

Induction shows that if the algorithm has not returned NO by the end of round
r, state s, then, letting p =

∑
i≤r ti 2

i ∈ N, we have

x[mr + s+ 1] fp = y[mr + s+ 1] and V = ∂x[mr+s+1]f
p+π

where π is a polynomial in variables tr+1, . . . , tk−1. The binding of tr at stage s =
0 of round r always exists since the transduction represented by V is guaranteed
to be odd by lemma 14 in [19].

First assume that indeed x f t = y for some 0 ≤ t < 2k. But then the algorithm
correctly determines the timestamp t: In each round another binary digit of t is
determined. Given the bindings for t, V initially represents the transduction f t,
and represents the appropriate quotients during execution, so that all the tests
succeed. If, on the other hand, y is not in the orbit of x, consider the longest
prefix x′ of x such that x′ fp = y′ for the corresponding prefix y′ of y and some
p ≥ 0. Writing the length of x′ as mr+ s, the algorithm will run up to round r,
stage s. However, at the next stage a mismatch will be found and the algorithm
returns NO, as required.

As to the time complexity of the algorithm, note that all numerical coefficients
have at most k bits. Since the polynomials have at most k terms, a brute-force
implementation will require time cubic in �. However, all entries in V during
round r are of the form c+d

∑
i≥r ti2

i−r where c, d ∈ N. Thus, there is not need
to maintain the full polynomials during the computation. As a consequence,
quadratic time suffices. ��
Here is an example that shows how the computation unfolds for A3

2, f = 0 and
x = 101110010010, y = 001000011000. In this case y = x f43. There are 6 rounds
with 2 stages each.
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r ti V1 V2
t0 + 2t1 + 4t2 + 8t3 + 16t4 + 32t5 0

0 t0 = 1 −2t1 − 4t2 − 8t3 − 16t4 − 32t5 1− t1 − 2t2 − 4t3 − 8t4 − 16t5
1 + t1 + 2t2 + 4t3 + 8t4 + 16t5 t1 + 2t2 + 4t3 + 8t4 + 16t5

1 t1 = 1 −1 −1− t2 − 2t3 − 4t4 − 8t5
1− t2 − 2t3 − 4t4 − 8t5 2

2 t2 = 0 2 + 2t3 + 4t4 + 8t5 1 + t3 + 2t4 + 4t5
−1− t3 − 2t4 − 4t5 −1− t3 − 2t4 − 4t5

3 t3 = 1 0 1 + t4 + 2t5
1 + t4 + 2t5 0

4 t4 = 0 −2− 2t5 −2− t5
t5 1 + t5

5 t5 = 1 2 1
−1 −1

The technique of the last theorem can be pushed slightly to provide a fast al-
gorithm to compute coordinates. Suppose x ∈ 2� where � = km. We need to
compute integers e0, . . . , em− such that

x = 0� 0e0 . . .m−em− .

Let us call the transduction on the right f . Then for any r < �

x = 0r f · 0�−r∂0rf.

Since the first bit of 0�−r∂0rf depends only on the parity of ∂0rf we can deter-
mine the coefficients of the binary expansions of the exponents ei.

Theorem 3. The Coordinate Problem can be solved in quadratic time: given a
word x of length � = km we can determine its coordinates in O(�2) steps.

Proof. Let x = x0 . . . x�1−1 and write the coordinates of x as ei =
∑

j<k ti,j2
j .

Initialize a vector
V = (

∑
j<k

t0,j2
j , . . . ,

∑
j<k

tm−,j2
j)

of linear polynomials, this time over the polynomial ringZ[τ ] where τ = (ti,j | i, j).
Again we proceed in k rounds r = 0, . . . , k − 1 , each consisting of m stages
s = 0, . . . ,m − 1 . In round r, stage s, perform the following actions. Bind ts,r
to 0 or 1 so as to make sure that V1 = xmr+s (mod 2) where V1 is the first
component of V . Then replace V by ∂0V where we interpret the arithmetic
operations involved in ∂0 in the obvious way on V .

Correctness and running time analysis are entirely analogous to the argument
in the preceding theorem. ��
Given the algorithm for the Coordinate Problem one can also tackle the Times-
tamp Problem via a reduction.
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Proposition 3. The Timestamp Problem reduces to the Coordinate Problem in
time O(� logw+ log2 k) where w is the weight of the transduction and km is the
length of the words.

Proof. We are given a transduction f and words x, y. We may safely assume
that the given words have length � = km, otherwise we can simply pad and
ignore some of the linear equations below. We need to find the least t such that
x f t = y. As we have seen,〈

x f t
〉
�
≡ 〈x 〉� + t · 〈 f 〉� .

Thus, given the �-coordinates of x, y and f we can simply solve a system of
modular equations. The computation of 0� f takes O(� logw) steps where w is
the weight of f . The linear system has m equations and all coefficients have at
most k bits. ��
For some CCC transducers the quadratic bounds from the last few results can be
improved upon: finite state machines sometimes suffice to calculate coordinates
and timestamps. As an example, consider again A3

2. The following algorithm
solves the Coordinate Problem in this case. Given a word x (here assumed to be
0-indexed) we calculate its coordinates in reverse binary as follows. The γi are
as in section 2.1.

// coordinate algorithm for CCC transducer A3
2

h = (0, 0);
for r = 0, . . . , n− 1 do

sr = h1 + x2r mod 2; // phase 1: bind sr
h = ∂0(h+ sr · γr);
tr = h1 + x2r+1 mod 2; // phase 2: bind tr
h = ∂0(h+ tr · γr);

return (s, t);

As stated, the algorithm appears to require quadratic time. However, it can be
implemented on a finite state machine because of the contraction property of
residuals spelled out in section 2.

Theorem 4. The Coordinate Problem for A3
2 can be solved by a transducer that

computes the coordinates in reverse binary.

Proof. Given a word x of length 2n the algorithm determines a transduction
f = 0s 1t where 0 ≤ s, t < 2n. We will show by induction on n that f(0|x|) = x
and ∂0|x|f = h. We only present the step from length 8n to 8n + 2 during one
round of the algorithm, the other cases are entirely similar and will be omitted.
During a particular round we denote s′, f ′ and h′ the new values of s, f and
h after the first phase in the execution of the algorithm, and t′′, f ′′ and h′′ for
the second phase. Write 0 for 08n and consider an extension u = xab of x. The
following argument relies on lemma 1.
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In phase 1, if 00 f = xa then f ′ = f and we have 00 f ′ = 00 f = xa. Also,
∂00f

′ = ∂0∂0f = ∂0h = h′. Otherwise s′ = s + 24n and f ′ = f 02
4n

. Then
00 f ′ = 00 f02

4n

= xa 02
4n

= x (a) 0 = xa. Furthermore, ∂00f
′ = ∂0(∂0f0

24n) =

∂0(h∂x0
24n) = h′ by lemma 1.

For phase 2 first consider the case f ′(000) = xab. Then t′′ = t and we have
000 f ′′ = 000 f ′ = xab. Also, ∂000f

′′ = ∂0(∂00f
′) = ∂0h

′ = h′′. In the re-

maining case t′′ = t + 24n and f ′′ = f ′ 12
4n

. Then 000 f ′′ = 000 f ′12
4n

=
xab 12

4n

= x (ab) 1 = xa(b)0 = xab. Furthermore, ∂000f
′′ = ∂0(∂00f

′12
4n

) =

∂0(h
′∂xa1

24n) = h′′, again by the lemma. ��
It is straightforward to modify this algorithm to deal with timestamps.

4 Open Problems

We have characterized the complexity of various computational problems asso-
ciated with a class of invertible binary transducers that relate to iteration of
transductions. Specifically, we have shown that for a cycle-cum-chord transduc-
ers iterates, time-stamps and coordinates can be computed quickly. The Knuth
normal form of a transduction is a critical technical device in all these arguments.
We do not know in general when Knuth normal form can be computed by a fi-
nite state transducer as in section 2.1. It appears that this property is quite rare
but we are currently unable to characterize the corresponding CCC transducers.
The situation is similar with respect to the rationality of the orbit relation; some
cases are discussed in [19] but no general characterization exists. In fact, we do
not even know whether orbit rationality is decidable for CCC transducers, much
less for arbitrary invertible transducers, even when the number of toggle states
is restricted to just one.

As already pointed out, our CCC transducers generate free Abelian groups.
Of course, there are other automata that also generate these groups. One well-
known example are the so-called “sausage automata” in [13], given in wreath
notation by 0 = (I, n)σ and k = (k − 1, k − 1) for 2 ≤ k ≤ n. Here we ignore
the identity I, as customary. In fact, [14] contains a detailed characterization
of invertible automata associated with free Abelian groups. It is natural to ask
whether and to what degree our results carry over to these automata.

It is straightforward to check whether S(A) is commutative, using standard
automata-theoretic methods. We do not know whether it is decidable whether
S(A) is a group, though this property is obviously semidecidable. Unsurprisingly,
many other decidability questions regarding transduction semigroups or groups
of invertible transducers are also open, see [7, chap. 7] for an extensive list.
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(2001)

11. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions.
J. Autom. Lang. Comb. 8(2), 287–301 (2003)

12. Knuth, D.: Private communication (2010)
13. Nekrashevych, V.: Self-Similar Groups. In: Math. Surveys and Monographs,

vol. 117. AMS (2005)
14. Nekrashevych, V., Sidki, S.: Automorphisms of the binary tree: state-closed sub-

groups and dynamics of 1/2-endomorphisms. Cambridge University Press (2004)
15. Raney, G.N.: Sequential functions. J. Assoc. Comp. Mach. 5(2), 177–180 (1958)
16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
17. Serre, J.-P.: Arbres, Amalgames, SL2. Astérisque, vol. 46. Société Mathématique
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Abstract. A variant of the dictionary matching problem is addressed
where the dictionary is given in an SLP-compressed form. An Aho-
Corasick automata-based algorithm is presented which pre-processes the
compressed dictionary D in O(n4 log n) time using O(n2 logN) space and
recognizes all occurrences of the patterns in D in amortized O(h + m)
running time per character, where n and N are, respectively, the com-
pressed and uncompressed sizes of D, and h is the height of D, and m is
the number of patterns in the dictionary.

1 Introduction

The classical pattern matching problem is, given two strings called the pattern
and the text, to find all occurrences of the pattern within the text. The (fully)
compressed pattern matching problem [5] is the pattern matching problem where
both the pattern and the text are given in compressed form. A variant of this
problem where the text is given in compressed form while the pattern is given
in uncompressed form, has been extensively studied for various compression
formats (see, e.g. [7]).

In this paper, we introduce a new, yet another variant of the problem, where
the pattern is given in compressed form while the text is given in uncompressed
form. In particular, we are interested in a setting where a set of patterns (called
the dictionary) is given in compressed form in advance, and the text is given in
a streaming fashion. A typical application would be an SDI (Selective Dissemi-
nation of Information) service.

A straight-line program (SLP) is a context-free grammar in the Chomsky
normal form which generates a single string. It is well known that outputs of
various grammar-based compression algorithms (e.g., [10,8]), as well as those of
dictionary-based compression algorithms (e.g., [16,14,15,12]), can be regarded
as, or be quickly transformed to, SLPs [11]. We use an SLP to represent a
dictionary consisting of m patterns, by designating m variables in the SLP as
the start symbols.

Given a compressed dictionary D represented as an SLP of size n, we consider
how to efficiently construct an Aho-Corasick (AC) automaton [1] for D. Since
the total length N of patterns in D can be as large as Θ(2n), a näıve method
which decompresses D takes exponential time and space in the worst case. By
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c© Springer-Verlag Berlin Heidelberg 2013



320 T. I et al.

exploiting some combinatorial properties on SLP-compressed dictionaries, we
present a compressed representation of AC automata which requires O(n2 logN)
space. Hence, our representation is useful when the patterns in the dictionary
are compressible. This representation allows us to recognize all occurrences of
the patterns in D in amortized O(h+m) running time per character, where h is
the height of the derivation tree of the SLP representing D, and m is the number
of patterns in D. We also show how to construct our compressed AC automata
in O(n4 logn) time using O(n2 logN) space.

A succinct representation of AC automaton has been proposed [2], which
requires S(log σ+3.443+o(1))+m(3 log(N/m)+O(1)) bits of space, where S is
the number of states in the AC automaton and σ is the alphabet size. Using this
succinct AC automaton one can conduct dictionary matching for a given text t
in O(|t|+ occ) time, where occ is the output size. To the best of our knowledge,
our data structure is the first which uses grammar-based string compression to
reduce space requirement of AC automata.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0, namely,
|ε| = 0. Strings x, y and z are, respectively, called a prefix, substring, and suffix
of the string w = xyz. A prefix (suffix) of a string w is said to be proper if it
is shorter than w. The i-th character of a string w is denoted by w[i], where
1 ≤ i ≤ |w|. For a string w and two integers i, j with 1 ≤ i ≤ j ≤ |w|, let w[i..j]
denote the substring of w that begins at position i and ends at position j, that
is, w[i..j] = w[i] · · ·w[j].

For any strings p, t ∈ Σ+, let Occ(p, t) denote the set of all positions of t at
which an occurrence of P begins, that is, Occ(p, t) = {k | k ∈ [1..|t|−|p|+1], p =
t[k..k + |p| − 1]}.

2.2 Periods and Runs of Strings

A period of a string w is a positive integer p such that w[p] = [i + p] for every
i ∈ [1..|w|] with i + p ≤ |w|. A run in a string w is an interval [i..j] with
1 ≤ i ≤ j ≤ |w| such that:

– the smallest period p of w[i..j] satisfies 2p ≤ j − i+ 1.
– the interval can be extended neither to the left nor the right, without vio-

lating the above condition, that is, w[i− 1] �= w[i+ p− 1] and w[j− p+1] �=
w[j + 1], provided that respective symbols exist.

Lemma 1 (Periodicity Lemma (see [4])). Let p and q be two periods of a
string x. If p+ q − gcd(p, q) ≤ |x|, then gcd(p, q) is also a period of x.

Lemma 2 ([4]). The periods of any x ∈ Σ+ are partitioned into O(log |x|)-
arithmetic progressions.
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2.3 Aho-Corasick Automata

The Aho-Corasick automaton (AC automaton for short) [1] is a finite state
machine which simultaneously recognizes all occurrences of multiple patterns in
a single pass through a text. The AC automaton for a dictionary Π consists of
three functions: goto, failure, and output. Fig. 1 displays an example of the AC
automata.

a b a b b
0 1 2 3 4 5

6 7

9

b

b

c aba

bb

abca

ababb, bb

Σ

8

a

a b a b b
0 1 2 3 4 5

6 7

9

b

b

c aba

bb

abca

ababb

8

a

Fig. 1. On the left the Aho-Corasick automaton for Π = {aba, ababb, abca, bb} is
displayed, where the circles denote states, the solid and the broken arrows represent
the goto and the failure functions, respectively, and the underlined strings adjacent to
states mean the outputs from them. On the right the g-trie for Π is shown.

The g-trie for a dictionary Π is a trie representing Π . There is a natural one-
to-one correspondence between the states (nodes) of the g-trie and the pattern
prefixes. State q is said to represent string u if the path from the initial state
0 to q spells out u. For example, the initial state 0 represents the empty string
ε and the state 4 represents the string abab in Fig. 1. Let Q denote the set of
states of the g-trie, and let ⊥ be an auxiliary state not in Q. The g-trie defines
the goto function g so that every edge q to r labeled c implies g(q, c) = r. In
addition, we set g(⊥, a) = 0 for all a ∈ Σ.

The output function λ and the failure function f are defined as follows.

Definition 1. Let q be any state. Suppose q represents string u. Then λ(q) is
the set of patterns in Π that are suffixes of u.

Definition 2. Let q be any state with q �= 0. Suppose q represents string u.
Then state f(q) represents the longest proper suffix of u that is also a prefix of
some pattern.

Let δ : Q×Σ → Q be the state-transition function defined by:

δ(q, a) =

{
g(q, a), if g(q, a) is defined;

δ(f(q), a), otherwise.

We extend δ to the domain Q×Σ∗ in the standard way. Then we have:

Lemma 3 ([1]). For any string w ∈ Σ∗, δ(0, w) is the state that represents the
longest suffix of w that is also a prefix of some pattern. The number of goto and
failure transitions required in computing δ(0, w) is at most 2|w|.
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X1 X2
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Fig. 2. The derivation tree of SLP D = {X1 → a, X2 → b, X3 → X1X2, X4 →
X1X3, X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string val(X7) =
aababaababaab

We say that a state is branching if it is of out-degree ≥ 2, and terminating if
it represents some pattern. We say that a state is explicit if it is branching or
terminating, and implicit otherwise.

Lemma 4. The number of explicit states is at most 2|Π |.

2.4 Straight Line Programs

A straight-line program (SLP) is a set of assignments D = {X1 → expr1, X2 →
expr2, . . . , Xn → exprn}, where each Xi is a variable and each expri is an
expression, where expri = a (a ∈ Σ), or expri = X�(i)Xr(i) (i > �(i), r(i)). It
is essentially a context-free grammar in the Chomsky normal form, that derives
a single string. Let val(Xi) denote the string derived from variable Xi. To ease
notation, we sometimes identify val(Xi) with Xi, and denote |val(Xi)| as |Xi|,
and val (Xi)[b..e] asXi[b..e] for any interval [b..e]. An SLP D represents the string
s = val(Xn). The size of D, denoted by |D|, is the number n of assignments in
D. Note that N = |s| can be as large as Θ(2n).

Our model of computation is the word RAM: We shall assume that the com-
puter word size is at least log2N , and hence, standard operations on values
representing lengths and positions of string s can be manipulated in constant
time. Space complexities will be determined by the number of computer words
(not bits).

We will use the following result.

Lemma 5 ([9]). We can pre-process an SLP D = {Xi → expr i}ni=1 in O(n3)
time to answer the following query in O(n2) time: given two variables Xi and
Xj (1 ≤ i, j ≤ n), compute the length of the longest common prefix of val (Xi)
and val (Xj).

The derivation tree of an SLP D = {Xi → expr i}ni=1 is a labeled ordered bi-
nary tree where each internal node is labeled with a non-terminal variable in
{X1, . . . , Xn}, and each leaf is labeled with a terminal character in Σ. The root
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node has label Xn. Fig. 2 displays an example derivation tree. Let height(Xi)
denote the height of derivation tree of Xi, and let height(D) = height (Xn).

For each variable Xi we store the length |Xi| of the string derived by Xi,
which can be computed in a total of O(n) time using O(n) space by a simple
dynamic programming algorithm.

The sorted index of an SLP D = {Xi → expr i}ni=1 is the permutation σ
of [1..n] such that the strings val (Xσ(1)), . . . , val (Xσ(n)) are arranged in the
lexicographical order.

Lemma 6. The sorted index σ of an SLP of size n can be computed in O(n3 logn)
time.

Proof. We compute the length � of the longest common prefix of two variables
Xi and Xj using Lemma 5. Then, comparing val(Xi) and val(Xj) reduces to
comparing the (�+1)-th leaves of the derivation trees ofXi and Xj, which can be
done in O(n) time using the length of the string that each variable derives (note
that the case where � = min{|Xi|, |Xj |} is easier). Hence the sorted index σ can
be computed in O(n3 + n3 logn) = O(n3 logn) time using any O(n log n)-time
comparison sort. ��
A variable X with Xi → XlXr ∈ D is said to stab an interval [b..e] ⊆ [1..|Xi|]
if b ∈ [1..|Xl|] and e ∈ [|Xl| + 1..|Xi|]. For any p ∈ Σ+, let Occ(p,Xi) denote
Occ(p, val (Xi)), and let Occξ(p,Xi) be the set of positions α ∈ Occ(p,Xi) such
that the interval [α..α+ |p| − 1] is stabbed by Xi.

Lemma 7 ([9]). Occξ(p,Xi) forms an arithmetic progression.

We will also use the following result:

Lemma 8 ([3]). Given an SLP D = {Xi → expr i}ni=1 that represents a string
T of length N , it is possible to pre-process D in O(n) time using O(n) space, so
that any substring T [i..i+m−1] of lengthm of T can be computed in O(logN+m)
time.

3 Problem and Compressed AC Automata

3.1 Problem Formulation

A dictionary is a non-empty, finite subset of Σ+. We extend SLPs so as to
represent dictionaries as follows: A dictionary SLP (DSLP) is an ordered pair
〈D,m〉 of an SLP D = {Xi → expr i}ni=1 and a positive integer m ∈ [1..n]. The
last m variables Xn−m+1, . . . , Xn of D are designated as the start variables. Let
Π〈D,m〉 denote the dictionary consisting of the strings derived from the start
variables. That is,

Π〈D,m〉 = {val(Xi) | i ∈ [n−m+ 1..n]}.
We note that DSLP 〈D, 1〉 is equivalent to SLP D.

Problem 1. Given a DSLP 〈D,m〉 of size n, build in polynomial time and space
w.r.t. n an automaton that recognizes all occurrences of patterns in Π〈D,m〉
within an arbitrary (uncompressed) string with polynomial time delay.
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Fig. 3. The AC automaton and the compact g-trie for ΠD are displayed on the upper
and on the lower, respectively, where D is identical to the SLP of Fig. 2

3.2 Compressed AC Automata

We consider the AC automaton for ΠD = Π〈D,n〉 = {val(Xi) | i ∈ [1..n]}, not for
Π〈D,m〉. Independently of m ∈ [1..n], we use the goto and the failure functions
of this automaton, and adjust the output function appropriately for Π〈D,m〉.

For a compact representation of the g-trie, we can adopt the so-called path
compaction technique like the suffix trees [13]. The compact g-trie for D = {Xi →
expr i}ni=1 is the path-compacted trie obtained from the g-trie for {val(Xi) | i ∈
[1..n]} by removing the implicit states, where every edge e from q to r is labeled
by 〈a,Xi〉 such that r represents string uv with v ∈ Σ+, a = v[1],Xi[1..|uv|] = uv
and Xi stabs [1..|uv|]. The next lemma directly follows from Lemma 4.

Lemma 9. There are at most 2n states in the compact g-trie for D of size n.

Fig. 3 displays the AC automaton and the compact g-trie for ΠD where D is
identical to the example SLP of Fig. 2.

An implicit state q′ on edge e = (q, r) can be specified by an integer h ≥ 1
such that q′ represents the string Xi[1..|u|+ h] and Xi stabs [1..|u|+ h], where
q represents string u and e is labeled by 〈a,Xi〉.
Lemma 10. The compact g-trie can be constructed in O(n3 logn) time using
O(n) space so that for any state q and any character c, g(q, c) can be determined
in O(logN) time.

Proof. We can compute in O(n3 logn) time the sorted index σ of D and an array
storing the longest common prefix length of val (Xσ(i)) and val (Xσ(i+1)) for all
i ∈ [1..n− 1]. Thus the compact g-trie can be constructed in O(n3 logn) time.
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When q is an explicit state, we can find the edge e = (q, r) labeled by 〈c,Xi〉
for some variable Xi in O(log |Σ|) time, if such e exists, and we thus determine
g(q, c) in O(log |Σ|) time. When q is an implicit state on edge e specified by
integer h, we can compute the (h+1)-th character in the string spelled out by e
in O(logN) time by using the technique of Lemma 8, and then compare it with
c to determine g(q, c). ��

Thus, we can represent the goto function compactly. A naive implementation of
the failure function, however, requires exponential space. In the following section,
we describe how to represent the failure and the output functions in polynomial
space with respect to n.

4 Compact Representation of AC Automaton for DSLP

Theorem 1. Given any DSLP 〈D,m〉 of size n that represents dictionaryΠ〈D,m〉
of total length N , it is possible to build in O(n4 logn) time using O(n2 logN)
space an automaton that recognizes all occurrences of patterns in Π〈D,m〉 within
an arbitrary string with O(height (D)+m) amortized running time per character.

Theorem 1 follows from Lemma 9, Lemma 10, Lemma 11, Lemma 13 and
Lemma 17, some of which will be proved in the following two subsections.

4.1 Compact Representation of Failure Function

As stated in the previous section we can represent any implicit state of the
compact g-trie as a pair of an edge e = (q, r) and an integer h. Here, we show
another representation of states in the compact g-trie: A reference-pair of ex-
plicit/implicit state q is defined to be 〈Xi, h〉 such that q represents stringXi[1..h]
and Xi stabs [1..h].

Lemma 11. A mutual conversion between the two state representations can be
performed in O(log n) time using some data structure of size O(n2).

Proof. Let q be any state that represents string u. Suppose q is an explicit state.
If q is terminating, let Xi be the variable corresponding to q, and otherwise,
let Xi be the variable such that some out-going edge e from q is labeled by
〈a,Xi〉. Then, 〈Xi, |Xi|〉 gives a reference-pairs of q. Suppose q′ is an implicit
state on edge e = (q, r) specified by integer h, and e is labeled by 〈a,Xi〉. Then,
〈Xi, |u|+ h〉 gives a reference-pairs of q.

Conversely, suppose we are given a reference-pair 〈Xi, h〉 of some state q′.
Then, it is possible to determine in O(log n) time the explicit state q that is
the nearest ancestor of q′, by using a simple binary search over the lengths of
strings represented by the explicit states on the path from the initial state to
the terminating state for Xi. ��

Let Prefix (D) denote the set of prefixes of val (Xi) for all variables Xi in D. For
any variable Xi → XlXr ∈ D, an f-interval of Xi is a maximal element in the
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set {[b, e] | 1 < b ≤ |Xl| < e ≤ |Xi|, Xi[b..e] ∈ Prefix (D)} with respect to the set
inclusion relation ⊆. The f-interval sequence of Xi, denoted F(Xi), is defined
to be the sequence {[bk..ek]}sk=1 of all f-intervals of Xi arranged in the increasing
order of bk. By definition e1, . . . , es are also arranged in the increasing order
of ek.

The set of f-interval sequences represents the failure function f as follows:

Lemma 12. Let q be any state. Suppose q represents string Xi[1..h]. If h = 1,
then f(q) is the initial state. Suppose h ≥ 2. Choose Xi so that Xi stabs [1..h].
Let {[bk..ek]}sk=1 be the f-interval sequence of Xi, and let k′ ∈ [1..h] be the
smallest integer such that h ∈ [bk′ ..ek′ ]. Then, the state f(s) represents the string
Xi[bk′ ..h]. If no such k′ exist, then f(q) represents the string Xr[1..h−|Xl|] where
Xi → XlXr ∈ D.

A naive way of encoding the f-interval sequence {[bk..ek]}sk=1 of a variableXi is to
have a linear-list of triples of 〈bk, ek, Xj〉 such that Xi[bk..ek] = Xj[1..ek−bk+1]
and Xj stabs [1..ek− bk+1]. The list length s can, however, be exponential with
respect to n.

Example 1. Consider the SLP D = {X1 → a} ∪ {Xi → Xi−1Xi−1}n−3
i=2 ∪

{Xn−2 → b, Xn−1 → Xn−2Xn−3, Xn → Xn−1Xn−3}. Then there are 2n−4 − 1
f-intervals of Xn. See Fig. 4.

X
n
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X
n-3

X
n-2

X
n-3

|X
n-1| |X

n
|1

[3..|X
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[4..|X
n-1|+2]

[|X
n-1|..|Xn|-1]

[5..|X
n-1|+3]... }F(Xn)

Fig. 4. The f-interval sequence F(Xn) of length 2n−4 − 1 in Example 1 is illustrated

Fortunately, we can prove the following lemma:

Lemma 13. The failure function f can be implemented in O(n4 logn) time us-
ing O(n2 logN) space so that given reference-pair of any state q, a reference-pair
of the state f(q) can be computed in O(log n) time.

In order to achieve Lemma 13, we focus on cyclic structures on f-intervals.
For any variable Xi → XlXr ∈ D and any f-interval [b..e] ∈ F(Xi), if there

is a run [α..β] with period p such that α ≤ b < e ≤ β and e − b + 1 ≥ 2p,
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we say that the run [α..β] subsumes the f-interval [b..e]. Note that if such run
exists, p is the smallest period of Xi[b..e] and the run is unique with respect to
[b..e]. If a run [α..β] subsumes two distinct f-intervals [b..e] and [b′..e′] such that
Xi[b..e] = Xi[b

′..e′] and b < b′ ≤ |Xl| − p, [α..β] is said to be f-rich.

Lemma 14. For any variable Xi → XlXr in D, there is at most one f-rich run.

Proof. The existence of an f-rich run [α..β] with period p implies that u =
Xi[|Xl| − p+ 1..|Xl|] = Xi[|Xl|+ 1..|Xl|+ p]. Also, from the definition of f-rich
run, there must exist an f-interval [b..e] such that [b..e] ⊇ [|Xl| − p+1..|Xl|+ p].

Assume on the contrary that there is another f-rich run [α′..β′] with p′ (w.l.o.g.
assume p′ < p). Since Xi[|Xl| − p′ + 1..|Xl|] = Xi[|Xl| + 1..|Xl| + p′], p − p′ is
a period of u. Since any interval contained in [b..e] cannot be an f-interval, at
least one of α′ < b ≤ |Xl| − p+ 1 or |Xl|+ p ≤ e < β′ must hold. In either case,
we can see that u has a period p′. It follows from the periodicity lemma that
gcd(p− p′, p′) is a period of u, which means that p is not the smallest period of
Xi[α..β], a contradiction. ��

Lemma 15. Let Xi → XlXr be any variable in D. Let [b..e] and [b′..e′] be the
first and the last f-intervals subsumed by a run [α..β] with period p, respectively.
For any d with p ≤ d < d+p < b′−b, [b+d..e′′] ∈ F(Xi) ⇐⇒ [b+d+p..e′′+p] ∈
F(Xi).

Proof. We remark that Xi[b..e
′] has period p.

Firstly, we show that [b + d..e′′] ∈ F(Xi) =⇒ [b + d + p..e′′ + p] ∈ F(Xi). It
is clear that Xi[b + d..e

′′] ∈ Prefix (D). Note that e′′ < e′′ + p < e′ holds, since
otherwiseXi[b+d+p..e

′] is a prefix ofXi[b+d..e
′′] and in Prefix (D), which implies

that [b′..e′] is not an f-interval. Assume on the contrary that [b+ d+ p..e′′+ p] /∈
F(Xi), i.e., at least one of Xi[b+ d+ p..e

′′+ p+1] ∈ Prefix(D) or Xi[b+ d+ p−
c..e′′+p] ∈ Prefix(D) with some c > 0 holds. IfXi[b+d+p..e

′′+p+1] ∈ Prefix (D),
we get Xi[b+d+p..e

′′+p+1] = Xi[b+d..e
′′+1] ∈ Prefix(D), which contradicts

that [b + d..e′′] is an f-interval. If Xi[b + d + p − c..e′′ + p] ∈ Prefix(D), we
consider two cases: When c > p, we get [b+ d..e′′] ⊂ [b+ d+ p− c..e′′+ p], which
contradicts that [b+d..e′′] ∈ F(Xi). When c ≤ p, we get Xi[b+d+p−c..e′′+p] =
Xi[b+ d− c..e′′] ∈ Prefix(D), a contradiction. Therefore [b+ d..e′′] ∈ F(Xi) =⇒
[b+ d+ p..e′′ + p] ∈ F(Xi) holds.

Next we show that [b + d..e′′] ∈ F(Xi) ⇐= [b + d + p..e′′ + p] ∈ F(Xi).
Note that e < e′′, since otherwise Xi[b..e

′′] = Xi[b + p..e
′′ + p] is in Prefix (D),

which implies that [b + d + p..e′′ + p] is not in F(Xi). Assume on the contrary
that [b + d..e′′] /∈ F(Xi), i.e., at least one of Xi[b + d..e

′′ + 1] ∈ Prefix (D) or
Xi[b+d−c..e′′] ∈ Prefix (D) with some c > 0 holds. IfXi[b+d..e

′′+1] ∈ Prefix (D),
we get Xi[b+d..e

′′+1] = Xi[b+d+p..e
′′+p+1] ∈ Prefix(D), which contradicts

that [b+d+p..e′′+p] is an f-interval. If Xi[b+d−c..e′′] ∈ Prefix(D), we consider
two cases: When c > d, we get [b..e] ⊂ [b+d−c..e′′], which contradicts that [b..e] ∈
F(Xi). When c ≤ d, we get Xi[b+d−c..e′′] = Xi[b+d+p−c..e′′+p] ∈ Prefix (D),
a contradiction. Therefore [b + d..e′′] ∈ F(Xi) ⇐= [b + d + p..e′′ + p] ∈ F(Xi)
holds. ��
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Lemma 15 implies that f-intervals subsumed by the f-rich run are cyclic except
for O(n) f-intervals around the first and the last f-intervals in the run. Then we
consider storing cyclic f-intervals in a different way from the naive list of F(Xi).
Since information of f-intervals for the first period is enough to compute failure
function for any state within the cyclic part, it can be stored by an O(n)-size list
Lc(Xi). Let L(Xi) denote the list storing F(Xi) other than cyclic f-intervals.

Lemma 16. For any Xi → XlXr ∈ D, the size of L(Xi) is bounded by
O(n logN).

Proof. Let Xj be any variable and let c0, . . . , cs (c0 < · · · < cs) be the positions
of val(Xl) at which a suffix of val (Xl) overlaps with a prefix of val (Xj). We note
that each ck is a candidate for the beginning position of an f-interval of Xi. It
follows from Lemma 2 that c0, . . . , cs can be partitioned into at most O(log |Xl|)
disjoint segments such that each segment forms an arithmetic progression.

Let 0 ≤ k < k′ ≤ s be integers such that C = ck, . . . , ck′ is represented by
one arithmetic progression. Let d be the step of C, i.e., ck′ = ck′−1 + d = · · · =
ck + (k′ − k)d. We show that if more than two of C are related to the beginning
positions of f-intervals of Xi, the f-rich run subsumes all those f-intervals but the
last one.

Suppose that for some k ≤ h1 < h2 < h3 ≤ k′, ch1 , ch2 , ch3 ∈ C are cor-
responding to f-intervals, namely, [ch1 ..e], [ch2 ..e

′], [ch3 ..e
′′] ∈ F(Xi) with e −

ch1 + 1 = LCP(Xi[ch1 ..|Xi|], Xj), e
′ − ch2 + 1 = LCP(Xi[ch2 ..|Xi|], Xj) and

e′′− ch3 +1 = LCP (Xi[ch3 ..|Xi|], Xj). It is clear that d is the smallest period of
Xi[ch1 ..|Xl|] and |Xl|−ch1+1 > 2d. Let β be the largest position of val(Xi) such
that Xi[ch1 ..β] has period d, i.e., there is a run [α, β] with α ≤ ch1 < |Xl| < β.
Let β′ be the largest position of val(Xj) such that Xj[1..β

′] has period d.

– If β < e′′. Note that this happens only when β− ch3 +1 = β′. Consequently,
LCP(Xi[ch1 ..|Xi|], Xj) = LCP(Xi[ch2 ..|Xi|], Xj) = β

′.
– If β ≥ e′′. It is clear that β′ < e′′ − ch2 + 1, since otherwise [ch3 ..e

′′] would
be contained in [ch2 ..e

′]. Then, LCP(Xi[ch1 ..|Xi|], Xj) = LCP(Xi[ch2 ..|Xi|],
Xj) = β

′.

In either case Xi[ch1 ..e] = Xi[ch2 ..e
′] = Xj [1..β

′] holds, which means that except
for at most one f-interval [c..e] satisfying β < e the others are all subsumed by
the f-rich run [α..β].

Since in each segment there are at most two f-intervals which are not subsumed
by the f-rich run, the number of such f-intervals can be bounded by O(logN).
Considering every variable Xj , we can bound the size of L(Xi) by O(n logN).

��

We are now ready to prove Lemma 13.

Proof of Lemma 13. Karpinski et al. considered in [6] a compressed overlap
table OV for an SLP of size n such that for any pair of variables X and Y ,
OV (X,Y ) contains O(logN)-size representation of overlaps between suffixes of
val(X) and prefixes of val(Y ). They showed how to compute OV in O(n4 logn)
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time. Actually, their algorithm can be used to compute L(Xi) and Lc(Xi) for all
variable Xi ∈ D in O(n4 logn) time. From Lemma 15 and Lemma 16, the total
size for L(Xi) and Lc(Xi) for all variable Xi ∈ D is bounded by O(n2 logN).

Using L(Xi) and Lc(Xi), we can compute f(q) for any state q = 〈Xi, h〉 in
O(log n) time. If q is not in cyclic part of f-intervals, we conduct binary search
on L(Xi), otherwise on Lc(Xi) with proper offset. It takes O(log(n logN)) =
O(log n) time. ��

4.2 Compact Representation of Output Function

Lemma 17. The output function λ can be implemented in O(n3 logn) time us-
ing O(nm) space so that given any state q = 〈Xi, h〉 we can compute λ(q) in
O(height (Xi) +m) time.

Proof. First we construct a tree with nodes Π∪{ε} such that for any p ∈ Π〈D,m〉
the parent of p is the longest element of Π〈D,m〉 ∪ {ε} which is also a suffix of
Xi[1..h]. The tree can be constructed in O(n3 logn) time in a similar way to the
construction of the compact g-trie. Note that λ(q) can be computed by detecting
the longest member p of Π〈D,m〉 which is also a suffix of Xi[1..h], and outputting
all patterns on the path from p to the root of the tree. In addition, we compute
in O(n3) time a table of size O(nm) such that for any pair of p ∈ Π〈D,m〉 and

variable Xj the table has Occξ(p,Xj) in a form of one arithmetic progression.
Now we show how to compute the longest member ofΠ〈D,m〉 which is also a suf-

fix ofXi[1..h]. We search for it in descending order of pattern length. We use three
variables p′, i′ and h′, which are initially set to the longest pattern in Π〈D,m〉, i
and h, respectively. We omit the case when |p′| = 1 or |p′| > h since it is trivial.
If the end position of Xi[1..h] is contained in Xr(i′) and |p′| > h′ − |X�(i′)|, using
arithmetic progression of Occξ(p′, Xi′), we can check if p′ is a suffix of Xi[1..h]
or not in constant time by simple arithmetic operations. If the above condition
does not hold, we traverse the derivation tree of Xi′ toward the end position of
Xi[1..h] updating i

′ and h′ properly until meeting the above situation, where h′

is updated to be the length of the overlapped string between Xi′ and Xi[1..h].
It is not difficult to see that the total time is O(height (Xi) +m). ��

5 Discussion

Our method of Section 4 builds the goto and the failure functions of the AC au-
tomaton for the dictionaryΠ〈D,n〉 independently ofm. This introduces redundant
states and edges into the compact g-trie, and unnecessary failure transitions.

Another possible solution would be to divide the input DSLP into m SLPs
and then build KMP-type automata for them, respectively. Concerning such
KMP-type automata, we can prove:

Theorem 2. For an SLP D of size n representing string P of length N , it is
possible to build in O(n4 logn) time using O(n logN) space a KMP-type automa-
ton that recognizes all occurrences of pattern P within an arbitrary string with
O(height (D)) amortized running time per character.
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Proof. Some technique similar to the proof of Lemma 13 can be used. The details
are omitted. ��

Constructing m KMP-type automata for the m SLPs takes O(n4 logn) time and
O(mn logN) space, with O(m height (D)) amortized running time per character.
Notice that the solution proposed in Section 4 is more efficient than this one.
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Abstract. This paper introduces two mechanisms for computing over-
approximations of sets of reachable states, with the aim of ensuring
termination of state-space exploration. The first mechanism consists in
over-approximating the automata representing reachable sets by merg-
ing some of their states with respect to simple syntactic criteria, or a
combination of such criteria. The second approximation mechanism con-
sists in manipulating an auxiliary automaton when applying a transducer
representing the transition relation to an automaton encoding the initial
states. In addition, for the second mechanism we propose a new approach
to refine the approximations depending on a property of interest. The
proposals are evaluated on examples of mutual exclusion protocols.

1 Introduction and Problem Statement

Reachability analysis is a challenging issue in formal software verification. Since
the reachability problem is in general undecidable in most formalisms, several
ad-hoc approaches have been developed, such as symbolic reachability analy-
sis using finite representations of infinite sets of states. Regular model checking
(RMC for short) – a symbolic approach using regular sets to represent sets of
states – tackles undecidability in either of two ways: pointing out classes of
regulars sets and relations for which the reachability problem is decidable (see
for instance [21]), or developing semi-algorithmic and/or approximation-based
approaches (see for instance [15,16]) to semi-decide the reachability problem.

In this paper we present new approximation techniques for RMC, with the
aim of providing quite efficient (semi-)algorithms. The first technique consists in
over-approximating the automata representing reachable sets by merging some
of their states with respect to simple syntactic criteria, or a combination of
such criteria (Section 2). The second approximation technique consists in using
an auxiliary automaton when applying a transducer representing the transition
relation to an automaton encoding the initial states (Section 3). Moreover, for the
second technique we develop a new approach to refine the approximations, close
to the well-known CEGAR technique (Section 4). The proposals are evaluated
on examples of mutual exclusion protocols.

Omitted proofs are available online1.
1 http://disc.univ-fcomte.fr/~adreyfus/ciaa13/version_longue.pdf

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 331–339, 2013.
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Related Work. Regular model-checking remains an active research domain in
computer science (see [14] and [4] for a thorough overview). In [23] the authors
propose to use regular sets of strings to represent states of parametrized arrays
of processes, and to represent the effect of performing an action by a predi-
cate transformer (transducer). In this work only transducers representing the
effect of a single application of a transition are considered, and consequently
the reachability analysis does not terminate for a lot of protocols. To bypass this
problem and still reach a fixpoint, the principal methods are acceleration (provid-
ing exact computations) [22,11,15,16,3,8], widening (extrapolating) [11,25,24],
and automata abstraction [10]. Recently, new results in RMC have been ob-
tained for specific protocols (i.e., CLP [19], communicating systems [20], tree
language [1,12], or relational string verification using multi-track automata [26]),
using domain-specific techniques [7]. Our contributions aim at improving the
generic method in [10] by giving means to build over-approximations by merg-
ing abstract states of the system (and not of the transducer, which is never
modified).

Unlike [11,10], our proposals do not require the subset-construction,
minimization and determinization of the obtained automaton at each RMC step.

Formal Background. We assume the reader familiar with basic notions of lan-
guage theory. (Q,Σ,E, I, F ) where Q is the finite set of states, E ⊆ Q×Σ ×Q
is the set of transitions, I ⊆ Q is the set of initial states and F ⊆ Q is the
set of final states. We define the size of A by |A| = |Q| + |E|. An automaton
is deterministic [resp. complete] if I is a singleton and for each (q, a) ∈ Q × Σ
there is at most [resp. at least] one p ∈ Q such that (q, a, p) ∈ E. A path in
A is a (possibly empty) finite sequence of transitions (p1, a1, q1) . . . (pn, an, qn)
such that for each i, qi = pi+1. The integer n is the length of the path and the
word a1 . . . an is its label. A path is successful if p1 is initial and pn is final. A
word w is accepted by A if w is the label of a successful path. The set of words
accepted by A is denoted L(A). If A is deterministic and complete, for every
state q and every word w, there exists a unique state of A, denoted q ·Aw reach-
able from q by reading a path labeled by w. If there is no ambiguity on A, it
is simply denoted q · w. By convention, q · ε = {q}. A state q is accessible [resp.
co-accessible] if there exists a path from an initial state to q [resp. if there exists
a path from q to a final state]. An automaton whose states are all both accessible
and co-accessible is called trim. If A is not a trim automaton, removing from A
all states that are not both accessible and co-accessible together with all related
transitions provides an equivalent trim automaton. Let A1 = (Q1, Σ,E1, I1, F1)
and A2 = (Q2, Σ,E2, I2, F2) be two automata over the same alphabet, the prod-
uct of A1 and A2 is the automaton (Q1 × Q2, Σ,E, I1 × I2, F1 × F2), denoted
A1 × A2, where E = {((p1, p2), a, (q1, q2)) | (p1, a, q1) ∈ E1 ∧ (p2, a, q2) ∈ E2}.
By definition, L(A1 × A2) = L(A1) ∩ L(A2). Let Â = (Q̂, Σ, Ê, Î, F̂ ) be the
trim automaton obtained from A, given an equivalence relation ∼⊆ Q × Q,
A/∼ denotes the automaton (Q̂/∼, Σ,E

′, Î/∼, F̂ /∼) where E′ = {(p̃, a, q̃) | ∃p ∈
p̃ and ∃q ∈ q̃ s.t. (p, a, q) ∈ Ê}. One can easily check that L(A) ⊆ L(A/∼). Two
automata A1 = (Q1, Σ,E1, I1, F1) and A2 = (Q2, Σ,E2, I2, F2) are isomorphic
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if there exists a one-to-one function f : Q1 → Q2 satisfying (p, a, q) ∈ E iff
((f(p), a, f(q)) ∈ E, and f(I1) = I2, f(F1) = F2 when lifted to sets. Informally,
two automata are isomorphic if they are equal up to state names.

Let Σ1 and Σ2 be two alphabets, a transducer on Σ1, Σ2 is an automaton
on Σ1 × Σ2. Each transducer T on Σ1, Σ2 induces a relation RT on Σ∗1 × Σ∗2
defined by: for the ai’s in Σ1 and the bj’s in Σ2, (a1 . . . an, b1 . . . bm) ∈ RT iff
n = m and the word (a1, b1) . . . (an, bn) is accepted by T . The reflexive transi-
tive closure of RT is denoted R∗T . Let A = (Q1, Σ,E1, I1, F1) be an automaton
on Σ1, and T = (Q2, Σ1 × Σ2, E2, I2, F2) a transducer on Σ1 × Σ2, we de-
note by T (A) the automaton (Q1 × Q2, Σ2, E, I1 × I2, F1 × F2) on Σ2 where
E = {((p1, p2), b, (q1, q2)) | (p1, a, q1) ∈ E1 ∧(p2, (a, b), q2) ∈ E2}. By definition,
L(T (A)) is the set of words v satisfying (u, v) ∈ RT for some words u ∈ L(A). If
T = (Q2, Σ1 ×Σ2, E2, I2, F2) is a transducer, we denote by T −1 the transducer
(Q2, Σ2 × Σ2, E

′
2, I2, F2) with E′2 = {(p, (a, b), q) | (p, (b, a), q) ∈ E2}. One can

check that (u, v) ∈ RT iff (v, u) ∈ RT −1 .

Regular Reachability Problem. The following regular reachability problem – cen-
tral for RMC – is known to be undecidable in general.
Input: Two finite automata A and B on Σ, and a transducer T on Σ ×Σ.
Output: 1 if R∗T (L(A)) ∩ L(B) = ∅, and 0 otherwise.

Since the problem is concerned with the reflexive-transitive closure, we may
assume without loss of generality that for every u ∈ Σ∗, (u, u) ∈ RT . In the rest
of the paper, all considered relations contain the identity.

2 Quotient-Based Approximations

This section introduces the first mechanism for computing over-approximations
of sets of reachable states, which consists in over-approximating the automata
representing reachable sets by merging some of their states. For doing this, basic
elementary policies as well as their combinations are introduced.

Given an automaton A, we define an approximation as a function mapping
each automaton A to an equivalence relation ∼A over the states of A. The
approximation function F is isomorphism-compatible if for every pair of automata
A1 and A2, every isomorphism ϕ from A1 to A2, p ∼A1 q iff ϕ(p) ∼A2 ϕ(q). We
denote F[A] the automaton Â/F(Â), where Â is the trim automaton obtained
from A. We inductively define Fn[A] by F0[A] = A, and Fn[A] = F[Fn−1[A]].

Let us now introduce two isomorphism-compatible approximation functions.
They are easily computable, and represent simple criteria naturally used by
the specifier, as for example in [10] for computing equivalence relations, or
in [5] for monitoring LTL properties. The function Left maps each automaton
(Q,Σ,E, I, F ) to the reflexive-transitive closure of the relation Rleft, defined by
pRleftq iff L(Q,Σ,E, I, {p}) ∩ L(Q,Σ,E, I, {q}) �= ∅. The function Right maps
each automaton (Q,Σ,E, I, F ) to the reflexive-transitive closure of the relation
Rright, defined by pRrightq iff L(Q,Σ,E, {p}, F )∩ L(Q,Σ,E, {q}, F ) �= ∅.
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Semi-Algorithm FixPoint
Input: A, T , B, F

If L(CF(T (A))) ∩ L(B) �= ∅ then
return Inconclusive

EndIf
If L(CF(T (A))) = L(A) then

return Safe
EndIf
Return FixPoint(CF(T (A)), T ,B,F)

(a) FixPoint

Semi-Algorithm FixPointT
Input: A, T , B, C
Variable: k

k:=0
While (L(T k+1

C (A)) �= L(T k
C (A))) do

k := k + 1
EndWhile
If (L(T k

C (A)) ∩ L(B) = ∅) then
Return Safe

Else
Return Inconclusive

EndIfElse
(b) FixPointT

Fig. 1. Fixpoint algorithms

Proposition 1. For each automaton A, if F is an isomorphism-compatible ap-
proximation function, then the sequence (Fn[A])n∈N is ultimately constant, up to
isomorphism. Let CF(A) denote the limit of (Fn[A])n∈N. Moreover, if for each
automaton A and each pair of states p, q of A, one can check in polynomial time
whether p ∼A q, then CF(A) can be computed in polynomial time as well.

In the FixPoint algorithm depicted in Fig. 1(a), given a finite automaton A,
a transducer T , a finite automaton B, and an isomorphism-compatible func-
tion F, the first check (emptiness) can be performed in polynomial time. Then,
unfortunately, the equality of the languages cannot be checked in polynomial
time, since the involved automata are not deterministic. Nevertheless, recently
developed algorithms [17,2,9] allow solving this problem very efficiently. Note
also that the equality test can be replaced by another test – e.g., isomor-
phism or (bi)simulation – implying language equality or inclusion, as L(A) ⊆
L(CF(T (A)))) by construction.

Proposition 2. The FixPoint semi-algorithm is correct: if it returns Safe, then
R∗T (L(A)) ∩ L(B) = ∅.

Given two approximation functions F and G, we denote F.G the approximation
function defined by (F.G)(A) = F(A)∩G(A) for every automaton A. In addition,
the approximation function F + G is defined by: for every automaton A, (F +
G)(A) is the smallest equivalence relation containing both F(A) and G(A). Then
using several approximation functions and combining them allow us to obtain
new – stronger or weaker – approximations.

The approach has been experimented on classical mutual exclusion protocols:
the Bakery algorithm by Lamport, the token ring algorithm, Dijkstra’s, and
Burns protocols. Using combinations of the Left, Right approximations func-
tions and two other functions corresponding to 1-(in, out)-simulations, all these
protocols have been proven safe in few computation steps (at most 6).
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3 Transducer-Based Approximations

This section introduces another approximation mechanism consisting in reason-
ing about the application of k copies of a transducer representing the transition
relation to an automaton representing the initial states. The states reached in
the transducers are encoded as a finite word, and an additional automaton is
used for specifying what are the combinations of transducer states that have
to be merged. This technique is inspired by an automata theoretic construction
in [11], with the difference concerning the equivalence relation, and the use of
automata at step k (the transducer is never modified).

Let A = (Q,Σ,E, I, F ) be a finite automaton, T = (QT , Σ × Σ,ET , IT , FT )
a transducer, and C = (QC , QT , EC , {qinit}, ∅) a deterministic complete finite
automaton on QT (i.e., the transitions of C are labeled with states of T ). Let
ϕk be a one-to-one mapping from the set (((Q ×QT )×QT ) . . .×QT ) of states
of T k(A) to Q × Qk

T , where Qk
T is the set of words of length k on QT . We

set a relation ∼C on states of T k(A) as follows: if p and q are states of T k(A)
such that ϕk(p) = (p0, wp) and ϕk(q) = (q0, wq), then p ∼C q iff p0 = q0 and
qinit ·wp = qinit ·wq. The automaton T k(A)/∼C is denoted T k

C (A). One can easily
check that ∼C is an equivalence relation.

Proposition 3. An automaton isomorphic to T k(A)/∼C can be computed in
polynomial time in k and in the sizes of A, T and C.

Now, given a finite automaton B, we can use the computed automata when
applying the FixPointT semi-algorithm described in Fig. 1(b). It may provide
an over-approximation of reachable states: if FixPointT stops on a not too coarse
approximation we can deduce that R∗T (L(A)) ∩ L(B) = ∅.

Proposition 4. The FixPointT semi-algorithm is correct: if it returns safe then
R∗T (L(A)) ∩ L(B) = ∅.

4 Refining Transducer-Based Approximations

In this section we propose to refine transducer-based approximations when the
approximate iteration is inconclusive. Intuitively, this happens when the se-
quence of approximations is too coarse: the result intersects with the set of bad
states after k steps while the backward iteration of k copies of the transducer
from the bad states does not intersect with the initial states. Our algorithm can
be seen as a kind of CEGAR algorithms – the paradigm introduced in [13] and
intensively studied during the last decade (see for example [10,6]), with the aim
of obtaining finer approximations/abstractions by exploiting counter-examples.

Proposition 5. If L(T k
C (A)) ∩ L(B) �= ∅, then either L(A) ∩ L(T −k(B)) �=

∅, or there exists j, 0 ≤ j ≤ k such that L(T j
C (A)) ∩ L(T j−k(B)) �= ∅ and

L(T (T j−1
C (A))) ∩ L(T j−k(B)) = ∅.
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Algorithm Split
Input: S = (QS, QT , ES, {q0}, ∅) a deterministic automaton, p, q ∈ QS and α, β ∈ QT

such that p ·S α = q ·S β
Q′

S := QS ∪ {r} where r /∈ QS; I ′S := {q0}; E′
S := ES \ {(q, β, q ·S β)};

E′
S := E′

S ∪ {(q, β, r)} ∪ {(r, a, s) | (p · α, a, s) ∈ ES and s ∈ QS \ {p ·S α}}
E′

S := E′
S ∪ {(r, a, r) | (p · α, a, p · α) ∈ ES}

Return (Q′
S, QT , E

′
S, I

′
S, ∅)

Fig. 2. Algorithm Split

Algorithm Refine
Input: T (transducer), C a deterministic automaton, S = (QS ×QC , Q,E, {q0}, FS) a
finite automaton, a relation ≡ such that ≡⊆∼C and L(TC(A))/≡ ∩ L(T −1(B)) = ∅

While (∼C �⊆≡) do
Choose (p, q, α) and (p, q′, α′) states of T (S) such that

(p, q, α) ∼C (p, q′, α′) but (p, q, α) �≡ (p, q′, α′)
C :=Split(C, q, α, q′, α′)

EndWhile
Return C

Fig. 3. Algorithm Refine

Assume that L(T j
C (A))∩L(T j−k(B)) �= ∅ and L(T (T j−1

C (A)))∩L(T j−k(B)) = ∅.
As it is classically done in the CEGAR framework, one can compute a relation ≡
on T j

C (A) such that ≡⊆∼C and L(T j
C (A))/≡∩L(T k−j(B)) = ∅. The existence of

≡ is trivial since the results hold for the identity relation. However, when using
the CEGAR approach, our goal is to compute a relation ≡ as large as possible,
with the aim of ensuring termination of state-space exploration.

To achieve this goal, several heuristics may be used. Instead of computing
the ≡ relation, building the corresponding T j

C (A)/≡ automaton, and then per-
forming the fixpoint computation, we propose to use a dynamic approach. More
precisely, we prefer to modify C according to ≡ to avoid similar states merging
which may lead to a coarser over-approximation. To modify C according to ≡,
we propose to use the algorithms in Figs. 2 and 3. The Split algorithm modifies
the given deterministic automaton to provide a weaker abstraction. Its idea is
quite natural: if two equivalent states must be distinguished, the automaton C
is refined to take this constraint into account.

Proposition 6. The Refine algorithm always terminates.

If L(T k
C (A)) ∩ L(B) �= ∅ and L(A) ∩ L(T −k(B)) = ∅, then we denote by

J(A,B, C, T , k) the maximal integer j such that 0 ≤ j ≤ k and L(T j
C (A)) ∩

L(T j−k(B)) �= ∅ and L(T (T j−1
C (A)))∩L(T j−k(B)) = ∅. Now, the Reach-CEGAR

semi-algorithm in Fig. 4 encodes the whole approach: each time a too strong
approximation is detected, it is refined. This semi-algorithm may terminate
by returning Safe if an over-approximation of accessible states that does not
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Semi-Algorithm Reach-CEGAR
Input: A,B finite automata, T (transducer), C a deterministic automaton, an integer �
Variables: integers j, k, and equivalence relation ≡

k := �
While (L(T k

C (A)) ∩ L(B) = ∅ and L(T k+1
C (A)) �= L(T k

C (A)) ) do
k := k + 1

EndWhile
If (L(T k+1

C (A)) = L(T k
C (A)) and L(T k

C (A)) ∩ L(B) = ∅ ) then
Return Safe

EndIf
If L(A) ∩ L(T −k(B)) �= ∅ then

Return Unsafe
EndIf
j := J(A,B, C, T , k)
Let ≡ be such that ≡⊆∼C and L(T j

C (A))/≡ ∩ L(T k−j(B)) = ∅
Return Reach-CEGAR(A, T −k(B), T , Refine(T , C, T j(A),≡), j)

Fig. 4. Semi-algorithm Reach-CEGAR

contain any bad states. It may also terminate by returning Unsafe if it detects
a reachable bad state. It may also diverge if the computed approximations have
to be refined again and again.

The approach has been experimented using a three-state-automaton for C.
The Bakery algorithm by Lamport, the token ring algorithm, Dijkstra’s, and
Burns protocols have been proven safe in few steps. The obtained automata
have sizes similar to the sizes of the input automata: there is no state explosion.

5 Conclusion

Developing efficient approximation-based techniques is a critical challenging is-
sue to tackle reachability problems when exact approaches do not work. In this
paper two new approximation techniques for the regular reachability problem
have been presented. Our techniques use polynomial time algorithms, provided
that recent algorithms for checking automata equivalence are used; the only ex-
ception being language inclusion testing as in [17,2,9]. As a future direction, we
plan to upgrade our refinement approach, both on the precision of the approx-
imations and on computation time. Another possible direction is to generalize
our approximation mechanisms and to apply them to other RMC applications,
e.g., counter systems or push-down systems.
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Abstract. We present a new efficient algorithm to generate all
nonisomorphic automata with given numbers of states and input let-
ters. The generation procedure may be restricted effectively to strongly
connected automata. This is used to verify the Černý conjecture for all
binary automata with n ≤ 11 states, which improves the results in the
literature. We compute also the distributions of the length of the shortest
reset word for binary automata with n ≤ 10 states, which completes the
results reported by other authors.

Keywords: Černý conjecture, synchronizing word, nonisomorphic
automata.

We consider deterministic finite automata A = 〈Q,Σ, δ〉, where Q is the set of
the states, Σ is the input alphabet, and δ : Q × Σ → Q is the (complete)
transition function. The cardinality n = |Q| is the size of A, and if k = |Σ| then
A is called k-ary.

If there exists a w such that the image of Q by w consists of a single state,
then w is called a reset (or synchronizing) word for A, and A itself is called
synchronizing. The length of a shortest reset word of A is called its reset length.

The Černý conjecture states that every synchronizing automaton A with n
states has a reset word of length ≤ (n− 1)2. This conjecture was formulated by
Černý in 1964, and is considered the longest-standing open problem in combina-
torial theory of finite automata. So far, the conjecture has been proved only for
a few special classes of automata and a cubic upper bound has been established
(see Volkov [19] for an excellent survey). It is known (and not difficult to prove)
that to verify the conjecture it is enough to consider only strongly connected
automata, that is, those whose underlying digraph is strongly connected.

Trahtman [17,18] reports that, using a computer program, he has verified the
Černý conjecture for all strongly connected k-ary automata of size n with k = 2
and n ≤ 10, k ≤ 4 and n ≤ 7, and k = 3 and n = 8. Unfortunately, no method of
generating such automata is described and no details of computations are given.
There are 1020 binary automata of size n = 10, and it is out of reach of the present
computer technology to generate all of them, so some methods to generate only
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strongly connected automata (or a restricted class containing all the strongly
connected automata) must be used. Such a method is described in [1], the authors
restrict themselves to the class of initially-connected automata (with each state
reachable from a single start state), using a special string representation for such
automata and parallel programming. With these tools, they are able to verify
the Černý conjecture only for binary automata with n ≤ 9 states. (For 9 states,
there are about 700 billions initially-connected automata with 2 input letters.)

The theoretical part of Trahtman’s work [17,18] is devoted mainly to the prob-
lem of efficiently finding the shortest (or a short) reset word. A number of good
algorithms are known at present for solving this problem (see [7] and references
given therein). We found however that the main problem arising in verifying the
Černý conjecture for small automata is to overcome somehow the huge num-
ber of automata involved rather than to compute the reset length fast. Ideally,
one would like to consider only all nonisomorphic strongly connected automata
for such verification, but no efficient method to generate only automata from
this class is known. There are formulas enumerating the number of nonisomor-
phic automata (see [6] and [5,11,13]), and methods to enumerate nonisomorphic
strongly connected automata ([8,14]) Unfortunately, the ways they approach the
problem do not seem useful in the task of efficient generation of the objects.

In this paper we present a new algorithm to generate efficiently all nonisomor-
phic automata with given numbers of states and letters, and to compute the reset
length for them. The method can be extended to generate only specific classes of
automata without much additional cost. In particular, a version of the algorithm
generates all nonisomorphic strongly connected automata. While the algorithm
still produces isomorphic copies (and some not strongly connected automata for
the second version), it greatly reduces the number of considered automata as
well as the overall computation cost. Also we are able to speed-up computation
of reset length making use of the specific properties of the generating method.

Our method allows us us to verify and extend the known computational re-
sults. In particular, we prove that the Černý conjecture is true for all binary
automata with n ≤ 11 states. We obtain complete distributions of the reset
length for all automata of size n ≤ 10. For n = 11 a new gap in the distribution
is observed, leading to a new conjecture concerning reset lengths.

1 Generating Automata

The algorithm is recursive. Given n > 1, we use known lists of all nonisomorphic
automata of size n and arity 1 (which are equivalent to certain digraphs). For
k ≥ 2, having two lists of all nonisomorphic automata of size n and of arity k−1
and 1, respectively, our algorithm generates a list of automata of size n and arity
k. To this aim, for each pair of automata, A from the first list, and B from the
second list, a special procedure, called Permutation procedure, is applied. It (1)
takes as an input the pair of automata A and B, from the first and the second
list, respectively, (2) generates all automata isomorphic to B (by permutations
of the states of B), and (3) matches each resulting automaton with A. In this
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way, we obtain all the automata of arity k whose restriction to the first k − 1
letters is isomorphic to A, while the restriction to the last letter is isomorphic
to B. Matching all the pairs A,B, we obtain all nonisomorphic k-ary automata
of size n. Yet, many of these automata may appear in isomorphic copies.

Using more specific ideas we design a few variant of the algorithm with dif-
ferent task. They generate all nonisomorphic automata of a given size either
without isomorphic pairs or (for lower computational cost) with the number of
such pairs relatively small. We also show how the generation process can be re-
stricted effectively to strongly connected automata. The latter is used to verify
the Černý conjecture for automata of a given size. Because of the space limit,
in this paper, we describe only the theoretical aspects of the procedure, called
Permutation procedure, which is designed to skip efficiently permutations of B
leading to isomorphic copies. Other variants and the details of the algorithm will
be given in the extended version of the paper.

1.1 Permutation Procedure

We say that two automata A = 〈QA, ΣA, δA〉 and B = 〈QB, ΣB, δB〉, are iso-
morphic, if there exist two bijections φ : QA → QB and ψ : ΣA → ΣB such
that for all q ∈ QA and a ∈ ΣA

φ(δA(q, a)) = δB(φ(q), ψ(a)). (1)

In other words, isomorphic automata are equal up to renaming the states and
the letters. In particular, two isomorphic automata have the same reset lengths,
and the classes of shortest reset words differ only up to renaming the letters
(given by ψ).

We note that various authors use various terminology here. For example, Har-
rison [6] calls such automata equivalent with respect to input permutations, and
reserves the term "isomorphic automata" for the situation when the bijection
ψ in (1) is the identity. If ΣA = ΣB, and A and B are isomorphic with ψ be-
ing the identity, we will say that A and B over the same alphabet are strongly
isomorphic. Then the bijection φ itself is called a strong isomorphism or simply
isomorphism (meaning that it forms an isomorphism itself with the second bijec-
tion being the identity). In the case, when A = B, φ is called an automorphism.

We consider now an automorphism that fixes the states in a given set. For an
automaton A = 〈Q,Σ, δ〉, and a subset S of Q, we say that the states u, v ∈ Q,

u, v �∈ S are conjugate under S, and write u
S7 v, if there exists a (strong)

automorphism φ : Q→ Q such that

φ(w) = w for each w ∈ S,
φ(u) = v.

(2)

Figure 1 shows an example of an automaton over a one-letter alphabet with
some states conjugate under S = ∅ and S = {5}. Namely, we have 1

S7 2 and

3
S7 4 for S ⊆ {5}. Note that there are no two different conjugate states under

any other S in this automaton.
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1

2

3

4

5

Fig. 1. An unary automaton with nontrivial automorphisms and conjugate states

The following facts are routine to prove.

Lemma 1. For each S ⊆ Q, the conjugation under S is an equivalence relation.
Moreover, if R ⊆ S, then the relation

R7 ⊇ S7.

Checking whether two states are S-conjugate may be done by computing the
corresponding group of automorphisms (fixing the states from S) or by gener-
ating and checking permutations with suitably prescribed images for S and u.
During the generation of permutations, natural conditions for a permutation to
be an automorphism, such as equality of indegrees, may be taken into account.
Although it has an exponential cost in the worst case, our experiments show
that for most of automata of small size, it works pretty fast.

In our procedure, to be able to skip superfluous permutations effectively we
do some preprocessing. We assume that the set of states of the automata on both
the input lists is Q = {1, 2, . . . , n}. Before running the procedure, the following
structures are created for each pair A and B of automata (with k−1 and 1 letter
alphabet, respectively):

1. The structure PrevB. For each of the 2n subsets S ⊆ Q and for each j ∈
Q \ S, PrevB[S][j] contains true, if and only if there exists some state

h ∈ Q \ S (1 ≤ h < j) for which h
S7 j in B.

2. The structure PrevA. For each i (1 ≤ i ≤ n) the entry PrevA[i] contains

the largest index h (1 ≤ h < i) such that i
Sh7 h in Awith Sh = {1, . . . , h− 1}.

It is possible that the index does not exist.

The first structure requires computing automorphisms of B for as many as 2n
(
n
2

)
conditions (in the worst case) fixing a set S and unordered pair {i, j} with
i, j /∈ S. For each automaton B (which is of arity 1) we compute it only once
and then we process all the pairs with B. The second structure requires com-
puting automorphisms only for

(
n
2

)
pairs of states (determining the set of fixed

elements). For small n, this preprocessing can be done quickly and takes only a
negligible amount of time compared with processing the resulting automata.

Let A = 〈Q,ΣA, δA〉 and B = 〈Q,ΣB, δB〉 be two automata with Q =
{1, 2, . . . , n}, |ΣA| = k − 1 for some k > 1, and ΣB = {b} for some b /∈ ΣA.
Let π be a permutation of Q. Then, by U(A,B, π) we denote the automaton
〈Q,ΣA ∪ΣB, δ〉, where δ is an extension of δA given by

δ(q, b) = π−1(δB(π(q), b)). (3)
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We call it the (disjoint) union of A and B under permutation π. The condition
b /∈ ΣA is purely technical, so we may assume it always without further mention.
Note that this construction may be viewed as identifying each state q in B with
the state π−1(q) in A. An example is given in Figure 2 (loops are omitted).

1

2

3

4

1

2

3

4

2

3

1

4

1

2

3

4

A B U(A,B, π)π−1

Fig. 2. The union U(A,B, π) with π = (1, 3, 2)

The main part of our algorithm is the PermutB procedure presented as Algo-
rithm 1. It takes as the input two automata A and B on Q = {1, 2, . . . , n}, with
alphabets of arity k − 1 and 1, respectively. It starts from the empty (partial)
permutation π0 = ∅ and extends it in a recursive manner. A partial permuta-
tion πi is an injective function from {1, . . . , i} to {1, . . . , n}. For each complete
permutation πn the automaton U(A,B, πn) is generated. The permutations are
generated in the lexicographical order subject to two restrictions (reducing the
number of isomorphic automata):

1. Let h = PrevA[i+1]. If such h exists and πi(h) > j then matching (i+1) → j
is skipped, since (as we prove below) a suitable isomorphic automaton has
been generated earlier. This results in starting the corresponding “for loop”
from m = πi(h) + 1.

2. For each j, if PrevB[SB][j] is true then matching (i + 1) → j is skipped.
Again, we will prove that a suitable isomorphic automata have been already
generated.

In the theorem below we use the notation A|Γ for the automaton obtained from
A = 〈Q,ΣA, δA〉 by restricting its alphabet to a subset Γ of Σ.

Theorem 1. Let A = 〈Q,ΣA, δA〉 and B = 〈Q,ΣB, δB〉 be two automata with
disjoint alphabets ΣA and ΣB (where |ΣB| = 1) and the same set of states
Q = {1, 2, . . . , n}. Then, for each automaton C over the alphabet ΣA ∪ ΣB

such that C|ΣA
∼= A and C|ΣB

∼= B, PermutB(0, ∅, ∅) generates at least one
isomorphic copy of C.

The proof will be given in the extended version of the paper.
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Algorithm 1. Permutation Procedure
Require: A,B – the input automata.
Require: PrevA,PrevB – preprocessed structures.
1: procedure PermutB(i,πi,S)
2: if i = n then
3: Report automaton U(A,B, πn) – the union of A and B under πn

4: else
5: m← πi(PrevA[i + 1]) + 1, or m← 1 if PrevA[i + 1] does not exist.
6: for j = m, . . . , n do
7: if j �∈ S and not PrevB[S][j] then
8: Extend πi to πi+1(x) putting πi+1(i+ 1) = j.
9: PermutB(i+ 1,πi+1,S ∪ {j})

10: end if
11: end for
12: end if
13: end procedure

2 Some Experimental Results

The problem of computing the reset length of an automaton is computationally
hard (see [12], and [3] for approximating hardness). In spite of this the expo-
nential algorithms used so far can work efficiently enough. Yet, they can vary in
efficiency for different automata (see [7,9,15,17,19]).

To compute the reset length for each of the generated automata we use the
standard BFS algorithm in the power automaton with storing visited subsets of
states in an array (see [15,19,9]), and with preprocessing transitions (comput-
ing the images of subsets) allowing faster computations for a huge number of
automata. We have found this the fastest method for considered small n values
when using bit-vector encoding for sets, allowing to represent them as integers.
It can also report that an automaton is not synchronizing, without separately
using the standard synchronization checking algorithm on the pair automaton
([4,17]). Further technical improvements applied are described in the extended
version.

We have computed the exact numbers of all nonisomorphic binary automata
and those strongly connected and/or synchronizing for sizes n ≤ 10. Also com-
plete distributions of the reset length in this range are computed. Our results
confirm all the results reported in [1] and particular facts formulated in [17]. For
n = 11 we have computed a partial distribution proving, in particular, that all
binary DFA of size 11 satisfy the Černý conjecture. We plan also to perform
similar computations for k > 2.

2.1 The Number of Nonisomorphic Automata

The results up to 10 states are shown in Table 1. The total number of DFA is
known due to the formula in [6], and we have obtained computationally exactly
the same numbers. We have computed also the numbers of synchronizing DFA,
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strongly connected, and the number of synchronizing strongly connected DFA.
The numbers of nonisomorphic strongly connected DFA on 2 labeled letters (up
to strong isomorphism) have been considered in [10] (up to n ≤ 6). They are
about 2 times larger than those with unlabeled (for example, there are 658,885
such DFA for n = 6).

We can see that the fraction of synchronizing DFA to all DFA grows, and
we may conjecture that it tends to 1 as it has been conjectured for the labeled
model (P. Cameron and [16]). This growth is more rapid in strongly connected
DFA; the corresponding fraction here is about 0.999 for n = 10.

Table 1. The exact numbers of nonisomorphic binary DFA of size n in the classes of
all, synchronizing, strongly connected, and strongly connected synchronizing DFA. In
the last column there is the fraction of the number of synchronizing DFA to all DFA.

n Total Synchronizing Strongly connected S. c. and synchronizing Synch./Total
2 7 4 4 2 0.57
3 74 51 29 21 0.69
4 1,474 1,115 460 395 0.76
5 41,876 34,265 10,701 10,180 0.82
6 1,540,696 1,318,699 329,794 322,095 0.86
7 68,343,112 60,477,844 12,310,961 12,194,323 0.88
8 3,540,691,525 3,210,707,626 538,586,627 536,197,356 0.91
9 209,612,916,303 193,589,241,468 26,959,384,899 26,904,958,363 0.92
10 13,957,423,192,794 13,070,085,476,528 1,518,185,815,760 1,516,697,994,964 0.94

Let us compare our method of generating all strongly connected DFA with
that of [1,2] by generating of all ICDFA (initially connected DFA). There are
about 7×1011 and 4.4×1013 of ICDFA with n = 9 and n = 10 states, respectively.
In our method we have generated only about 3×1010 and 1.7×1012 DFA in these
cases. In fact there are about 2.7× 1010 and 1.5× 1012 nonisomorphic strongly
connected DFA, so in our method the relative number of extra generated DFA
is really low. This is confirmed by statistics we have made.

2.2 The Distribution of Reset Lengths for n = 10.

Since generating automata for each pair in Algorithm 1 can be computed inde-
pendently we performed paralleled computations on a small computer grid. Our
computations have been done on 16 computers with Intel(R) Core(TM) i7-2600
CPU 3.40GHz 4 cores and 16GB of RAM. Computing the complete distribu-
tion for all DFA with n = 10 states took above 800 days of total CPU time

Table 2. The exact numbers N(�) of all and Nsc(�) of strongly connected nonisomor-
phic binary automata of size 10 with the shortest reset word of length � ≥ 56

� 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
N(�) 607 369 168 49 18 10 8 9 106 21 3 0 0 0 0 0 2 1 1 0 0 0 0 0 0 1
Nsc(�) 343 160 58 38 18 10 8 9 18 10 3 0 0 0 0 0 2 1 1 0 0 0 0 0 0 1
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(∼ 13 days of paralleled computations). Restricting to the class of strongly con-
nected DFA reduced this time to about 80 days of CPU (∼ 2 days of paralleled
computations).

2.3 The Distribution of Reset Lengths for n = 11.

In order to verify the Černý conjecture for all binary DFA of size n = 11 it is
sufficient to restrict the tested class of DFA to strongly connected. We have not
obtained the complete distribution of reset lengths because of the huge number
of DFA. In this case, we were performing the isomorphism test only for DFA with
long reset length. We have also excluded the automata with a single synchronizing
letter. The number of remaining strongly connected DFA we have to check was
79,246,008,127,339. The total CPU time of this experiment was above 4 years (∼
25 days of parallel computations). Note that for n = 11 there are about 3 × 1015

of ICDFA, so we really needed a different method than that used in [1].

Table 3. The exact numbers Nsc(�) of strongly connected nonisomorphic binary au-
tomata of size 11 with the reset length � ≥ 76

� 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Nsc(�) 3 2 0 0 9 22 12 2 1 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 1

Classes – – Dn Hn Gn – – – – – En Wn D ′
n – – – – – – – Cn

. . . ˙Hn D ′′
n Fn

Bn

Table 3 presents the obtained exact numbers of all nonisomorphic binary
DFA of size n = 11 with large reset lengths. Also some slowly synchronizing
DFA classes are presented in the table. The notation here follows [1] (this topic
is discussed in more detail in the extended version of the paper). The most
interesting observation is a gap between � = 77 and 80: there exist no binary
automaton of size n = 11 with the reset length equal to 78 or 79. First, Trahtman
[17] noted that the reset length (n− 1)2 corresponding to the class of the Černý
automata is separated from the second large reset length by a gap (in the classes
of considered DFA of small size). Then the authors of [1] observed that there is
a second gap in the distribution for n = 9. They called the DFA between the
two gaps slowly synchronizing. There is no other gap for n ≤ 10.

We suppose that this kind of irregularity in the upper part of the reset length
distributions occur also for larger numbers of states and that more gaps for larger
number of states appear. We state the following:

Gap Conjecture. For any natural number g ≥ 1, there exists a big enough
natural number n such that there are at least g gaps in the distribution of the
reset length of all binary automata of size n.



348 A. Kisielewicz and M. Szykuła

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and di-
graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65.
Springer, Heidelberg (2010)

2. Ananichev, D., Gusev, V., Volkov, M.: Primitive digraphs with large exponents
and slowly synchronizing automata. In: Zapiski Nauchnyh Seminarov POMI
(Kombinatorika i Teorija Grafov. IV), vol. 402, pp. 9–39 (2012) (In Russian)

3. Berlinkov, M.: Approximating the minimum length of synchronizing words is hard.
In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 37–47. Springer,
Heidelberg (2010)

4. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on
Computing 19, 500–510 (1990)

5. Harary, F., Palmer, E.M.: Graphical Enumeration. Academic Press (1973)
6. Harrison, M.: A census of finite automata. Canadian Journal of Mathematics 17,

100–113 (1965)
7. Kisielewicz, A., Kowalski, J., Szykuła, M.: A Fast Algorithm Finding the Shortest

Reset Words. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936,
pp. 182–196. Springer, Heidelberg (2013)

8. Koršunov, A.D.: On the number of non-isomorphic strongly connected finite au-
tomata. Journal of Information Processing and Cybernetics 22(9), 459–462 (1986)

9. Kudałcik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Systems with Applications 39(14), 11746–11757 (2012)

10. Liskovets, V.A.: Enumeration of non-isomorphic strongly connected automata.
Vesci Akad. Navuk BSSR Ser. Fiz.-Téhn. Navuk 3, 26–30 (1971)

11. Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Discrete
Applied Mathematics 154(3), 537–551 (2006)

12. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 568–579. Springer, Heidelberg (2010)

13. Read, R.C.: A note on the number of functional digraphs. Mathematische
Annalen 143, 109–110 (1961)

14. Robinson, R.W.: Counting strongly connected finite automata. In: Graph Theory
with Applications to Algorithms and Computer Science, pp. 671–685 (1985)

15. Sandberg, S.: Homing and synchronizing sequence. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of
Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

16. Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random
automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D.
(eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)

17. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples con-
cerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

18. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

19. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)



Incomplete Transition Complexity

of Basic Operations on Finite Languages�

Eva Maia��, Nelma Moreira, and Rogério Reis
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Abstract. The state complexity of basic operations on finite languages
(considering complete DFAs) has been extensively studied in the liter-
ature. In this paper we study the incomplete (deterministic) state and
transition complexity on finite languages of boolean operations, concate-
nation, star, and reversal. For all operations we give tight upper bounds
for both descriptional measures. We correct the published state complex-
ity of concatenation for complete DFAs and provide a tight upper bound
for the case when the right automaton is larger than the left one. For
all binary operations the tightness is proved using family languages with
a variable alphabet size. In general the operational complexities depend
not only on the complexities of the operands but also on other refined
measures.

1 Introduction

Descriptional complexity studies the measures of complexity of languages and
operations. These studies are motivated by the need to have good estimates of
the amount of resources required to manipulate the smallest representation for
a given language. In general, having succinct objects will improve our control
on software, which may become smaller and more efficient. Finite languages are
an important subset of regular languages with many applications in compilers,
computational linguistics, control and verification, etc. [9,1,8,3]. In those areas
it is also usual to consider deterministic finite automata (DFA) with partial
transition functions. As an example we can mention the manipulation of com-
pact natural language dictionaries using Unicode alphabets. This motivates the
study of the transition complexity of DFAs (not necessarily complete), besides
the usual state complexity. The operational transition complexity of basic op-
erations on regular languages was studied by Gao et al. [4] and Maia et al. [7].
In this paper we continue that line of research by considering the class of finite
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languages. For finite languages, Salomaa and Yu [10] showed that the state com-
plexity of the determinization of a nondeterministic automaton (NFA) with m
states and k symbols is Θ(k

m
1+log k ) (lower than 2m as it is the case for general

regular languages). Câmpeanu et al. [2] studied the operational state complexity
of concatenation, Kleene star, and reversal. Finally, Han and Salomaa [5] gave
tight upper bounds for the state complexity of union and intersection on finite
languages. In this paper we give tight upper bounds for the state and transi-
tion complexity of all the above operations, for non necessarily complete DFAs
with an alphabet size greater than 1. For the concatenation, we correct the up-
per bound for the state complexity of complete DFAs [2], and show that if the
right automaton is larger than the left one, the upper bound is only reached
using an alphabet of variable size. The transition complexity results are all new,
although the proofs are based on the ones for the state complexity and use
techniques developed by Maia et al. [7]. Table 1 presents a comparison of the
transition complexity on regular and finite languages, where the new results are
highlighted. Note that the values in the table are obtained using languages for
which the upper bounds are reached. All the proofs not presented in this paper
can be found in an extended version of this work1.

Table 1. Incomplete transition complexity for regular and finite languages, where m
and n are the (incomplete) state complexities of the operands, f1(m,n) = (m− 1)(n−
1)+1 and f2(m,n) = (m−2)(n−2)+1. The column |Σ| indicates the minimal alphabet
size for each the upper bound is reached.

Operation Regular |Σ| Finite |Σ|

L1 ∪ L2 2n(m+ 1) 2 3(mn-n-m) +2 f1(m,n)

L1 ∩ L2 nm 1 (m− 2)(n− 2)(2+
∑min(m,n)−3

i=1 (m−
2− i)(n− 2− i)) + 2

f2(m,n)

LC m+ 2 1 m+ 1 1

L1L2

2n−1(6m+ 3) − 5,
3

2n(m− n+ 3)− 8, if m+ 1 ≥ n 2

if m,n ≥ 2 See Theorem 3 (4) n− 1

L� 3.2m−1 − 2, if m ≥ 2 2
9 · 2m−3 − 2m/2 − 2, if m is odd

3
9 · 2m−3 − 2(m−2)/2 − 2, if m is even

LR 2(2m − 1) 2
2p+2 − 7, if m = 2p

2
3 · 2p − 8, if m = 2p− 1

2 Preliminaries

We assume that the reader is familiar with the basic notions about finite
automata and regular languages. For more details, we refer the reader to the

1 http://www.dcc.fc.up.pt/Pubs/TReports/TR13/dcc-2013-02.pdf

http://www.dcc.fc.up.pt/Pubs/TReports/TR13/dcc-2013-02.pdf
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standard literature [6,12,11]. In this paper we consider DFAs to be not neces-
sarily complete, i.e. with partial transition functions. The state complexity of L
(sc(L)) is equal to the number of states of the minimal complete DFA that ac-
cepts L. The incomplete state complexity of a regular language L (isc(L)) is the
number of states of the minimal DFA, not necessarily complete, that accepts L.
Note that isc(L) is either equal to sc(L)−1 or to sc(L). The incomplete transition
complexity, itc(L), of a regular language L is the minimal number of transitions
over all DFAs that accepts L. We omit the term incomplete whenever the model is
explicitly given. A τ -transition is a transition labeled by τ ∈ Σ. The τ -transition
complexity of L, itcτ (L) is the minimal number of τ -transitions of any DFA rec-
ognizing L. It is known that itc(L) =

∑
τ∈Σ itcτ (L) [4,7]. For determining the

transition complexity of an operation, we also consider the following measures
and refined numbers of transitions. Let A = ([0, n − 1], Σ, δ, 0, F ) be a DFA,
τ ∈ Σ, and i ∈ [0, n− 1]. We define f(A) = |F |, f(A, i) = |F ∩ [0, i− 1]|, tτ (A, i)
as 1 if exist a τ -transition leaving i and 0 otherwise, and tτ (a, i) as its com-
plement. Let sτ (A) = tτ (A, 0), eτ (A) =

∑
i∈F tτ (A, i), tτ (A) =

∑
i∈Q tτ (A, i),

tτ (A, [k, l]) =
∑

i∈[k,l] tτ (A, i), and the respective complements sτ (A) = tτ (A, 0),

eτ (A) =
∑

i∈F tτ (A, i), etc. We denote by inτ(A, i) the number of transitions
reaching i, aτ (A) =

∑
i∈F inτ (A, i) and cτ (A, i) = 0 if inτ (A, i) > 0 and 1 oth-

erwise. Whenever there is no ambiguity we omit A from the above definitions.
All the above measures, can be defined for a regular language L, considering
the measure values for its minimal DFA. We define s(L) =

∑
τ∈Σ sτ (L) and

a(L) =
∑

τ∈Σ aτ (L). Let A be a minimal DFA accepting a finite language,
where the states are assumed to be topologically ordered. Then, s(L(A)) = 0
and there is exactly one final state, denoted π and called pre-dead, such that∑

τ∈Σ tτ (π) = 0. The level of a state i is the size of the shortest path from the
initial state to i, and never exceeds n− 1. The level of A is the level of π.

3 Union and Intersection

Given two incomplete DFAs A = ([0,m − 1], Σ, δA, 0, FA) and B = ([0, n −
1], Σ, δB, 0, FB) adaptations of the classical cartesian product construction can
be used to obtain DFAs accepting L(A) ∪ L(B) and L(A) ∩ L(B) [7].

Theorem 1. For any two finite languages L1 and L2 with isc(L1) = m and
isc(L2) = n, one has:

1. isc(L1 ∪ L2) ≤ mn− 2 and

itc(L1 ∪ L2) ≤
∑
τ∈Σ

(sτ (L1)� sτ (L2)− (itcτ (L1)− sτ (L1))(itcτ (L2)− sτ (L2)))

+ n(itc(L1)− s(L1)) +m(itc(L2)− s(L2)),

where for x, y boolean values, x� y = min(x+ y, 1).
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2. isc(L1 ∩ L2) ≤ mn− 2m− 2n+ 6 and

itc(L1 ∩ L2) ≤
∑
τ∈Σ

(sτ (L1)sτ (L2) + (itcτ (L1)− sτ (L1) −

aτ (L1))(itcτ (L2)− sτ (L2)− aτ (L2)) + aτ (L1)aτ (L2)) .

All the above upper bounds are tight but can only be reached with an alphabet
of size depending on m and n.

4 Concatenation

Câmpeanu et al. [2] studied the state complexity of the concatenation of a m-
state complete DFA A with a n-state complete DFA B over an alphabet of size
k and proposed the upper bound

m−2∑
i=0

min

⎧⎨⎩ki,
f(A,i)∑
j=0

(
n− 2

j

)⎫⎬⎭+min

⎧⎨⎩km−1,

f(A)∑
j=0

(
n− 2

j

)⎫⎬⎭ , (1)

which was proved to be tight for m > n − 1. It is easy to see that the second

term of (1) is

f(A)∑
j=0

(
n− 2

j

)
if m > n− 1, and km−1, otherwise. The value km−1

indicates that the DFA resulting from the concatenation has states with level
at most m − 1. But that is not always the case, as we can see by the example2

in Figure 2. This implies that (1) is not an upper bound if m < n. With these
changes, we have

Theorem 2. For any two finite languages L1 and L2 with sc(L1) = m and
sc(L2) = n over an alphabet of size k ≥ 2, one has

sc(L1L2) ≤
m−2∑
i=0

min

⎧⎨⎩ki,
f(L1,i)∑
j=0

(
n− 2

j

)⎫⎬⎭+

f(L1)∑
j=0

(
n− 2

j

)
. (2)

Given two incomplete DFAs A = ([0,m − 1], Σ, δA, 0, FA) and B = ([0, n −
1], Σ, δB, 0, FB), that represent finite languages, the algorithm by Maia et al.
for the concatenation of regular languages can be applied to obtain a DFA C =
(R,Σ, δC , r0, FC) accepting L(A)L(B). The set of states of C is contained in
the set ([0,m − 1] ∪ {ΩA}) × 2[0,n−1], the initial state r0 is (0, ∅) if 0 /∈ FA,
and is (0, {0}) otherwise; FC = {(i, P ) ∈ R | P ∩ FB �= ∅}, and for τ ∈ Σ,
i ∈ [0,m − 1], and P ⊆ [0, n − 1], δC((i, P ), τ) = (i′, P ′) with i′ = δA(i, τ),
if δA(i, τ) ↓ or i′ = ΩA otherwise, and P ′ = δB(P, τ) ∪ {0} if i′ ∈ FA and
P ′ = δB(P, τ) otherwise. For the incomplete state and transition complexity we
have

2 Note that we are omitting the dead state in the figures.
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Theorem 3. For any two finite languages L1 and L2 with isc(L1) = m and
isc(L2) = n over an alphabet of size k ≥ 2, and making Λj =

(
n−1
j

)
−(

tτ (L2)−sτ (L2)
j

)
, Δj =

(
n−1
j

)
− sτ (L2)

(
tτ (L2)−sτ (L2)

j

)
one has

isc(L1L2) ≤
m−1∑
i=0

min

⎧⎨⎩ki,
f(L1,i)∑
j=0

(
n− 1

j

)⎫⎬⎭+

f(L1)∑
j=0

(
n− 1

j

)
− 1. (3)

and

itc(L1L2) ≤ k
m−2∑
i=0

min

⎧⎨⎩ki,
f(L1,i)∑
j=0

(
n− 1

j

)⎫⎬⎭+

+
∑
τ∈Σ

⎛⎝min

⎧⎨⎩km−1 − sτ (L2),
f(L1)−1∑

j=0

Δj

⎫⎬⎭+

f(L1)∑
j=0

Λj

⎞⎠ . (4)

Proof. The τ -transitions of the DFA C accepting L(A)L(B) have three forms:
(i, β) where i represents the transition leaving the state i ∈ [0,m − 1]; (−1, β)
where −1 represents the absence of the transition from state πA to ΩA; and
(−2, β) where −2 represents any transition leaving ΩA. In all forms, β is a set of
transitions of DFA B. The number of τ -transitions of the form (i, β) is at most∑m−2

i=0 min{ki,
∑f(L1,i)

j=0

(
n−1
j

)
} which corresponds to the number of states of the

form (i, P ), for i ∈ [0,m− 1] and P ⊆ [0, n− 1]. The number of τ -transitions of

the form (−1, β) is min{km−1 − sτ (L2),
∑f(L1)−1

j=0 Δj}. We have at most km−1

states in this level. However, if sτ (B, 0) = 0 we need to remove the transition
(−1, ∅) which leaves the state (m − 1, {0}). On the other hand, the size of β
is at most f(L1) − 1 and we know that β has always the transition leaving the
initial state by τ , if it exists. If this transition does not exist, i.e. sτ (B, 0) = 1, we
need to remove the sets with only non-defined transitions, because they originate
transitions of the form (−1, ∅). The number of τ -transitions of the form (−2, β)

is
∑f(L1)

j=0 Λj and this case is similar to the previous one.

To prove that the bounds are reachable, we consider two cases depending whether
m+ 1 ≥ n or not.

Case 1: m+1 ≥ n The witness languages are the ones presented by Câmpeanu
et al. (see Figure 1).

(A)
0 1 m− 1· · ·

a, b a, b a, b

(B)
0 1 n− 1· · ·b a, b a, b

Fig. 1. DFA A with m states and DFA B with n states
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Fig. 2. DFA resulting of the concatenation of DFA A with m = 3 and DFA B with
n = 5, of Fig. 1. The states with dashed lines have level > 3 and are not accounted for
by formula (1).

Theorem 4. For any two integers m ≥ 2 and n ≥ 2 such that m+1 ≥ n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages,
such that any DFA accepting L(A)L(B) needs at least (m−n+3)2n−1−2 states
and 2n(m− n+ 3)− 8 transitions.

Case 2: m + 1 < n Let Σ = {b} ∪ {ai | i ∈ [1, n − 2]}. Let A = ([0,m −
1], Σ, δA, 0, [0,m − 1]) where δA(i, τ) = i + 1, for any τ ∈ Σ. Let B = ([0, n −
1], Σ, δB, 0, {n− 1}) where δB(i, b) = i + 1, for i ∈ [0, n− 2], δB(i, aj) = i + j,
for i, j ∈ [1, n − 2], i + j ∈ [2, n− 1], and δB(0, aj) = j, for j ∈ [2, n− 2]. Note
that A and B are minimal DFAs.

Theorem 5. For any two integers m ≥ 2 and n ≥ 2, with m + 1 < n, there
exist an m-state DFA A and an n-state DFA B, both accepting finite languages
over an alphabet of size depending on m and n, such that the number of states
and transitions of any DFA accepting L(A)L(B) reaches the upper bounds.

Proof. We need to show that the DFA C accepting L(A)L(B) is minimal, i.e.,
(i) every state of C is reachable from the initial state; (ii) each state of C defines
a distinct equivalence class. To prove (i), we first show that all states (i, P ) ⊆ R
with i ∈ [1,m − 1] are reachable. The following facts hold for the automaton
C: 1) every state of the form (i+ 1, P ′) is reached by a transition from a state
(i, P ) (by the construction of A) and |P ′| ≤ |P |+ 1, for i ∈ [1,m− 2]; 2) every
state of the form (ΩA, P

′) is reached by a transition from a state (m− 1, P ) (by
the construction of A) and |P ′| ≤ |P |+1; 3) for each state (i, P ), P ⊆ [0, n−1],
|P | ≤ i+1 and 0 ∈ P , i ∈ [1,m−1]; 4) for each state (ΩA, P ), ∅ �= P ⊆ [0, n−1],
|P | ≤ m and 0 /∈ P .

Suppose that for a 1 ≤ i ≤ m− 2, all states (i, P ) are reachable. The number
of states of the form (1, P ) is m − 1 and of the form (i, P ) with i ∈ [2,m − 2]
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is
∑i

j=0

(
n−1
j

)
. Let us consider the states (i + 1, P ′). If P ′ = {0}, then

δC((i, {0}), a1) = (i+1, P ′). Otherwise, let l = min(P ′\{0}) and Sl = {s−l | s ∈
P ′\{0}}. Then, δC((i, Sl), al) = (i+1, P ′), if 2 ≤ l ≤ n−2; δC((i, {0}∪S1), a1) =
(i + 1, P ′), if l = n − 1; and δC((i, S1), b) = (i + 1, P ′), if l = 1.. Thus, all∑i+1

j=0

(
n−1
j

)
states of the form (i+1, P ′) are reachable. Let us consider the states

(ΩA, P
′). P ′ is always an non empty set by construction of C. Let l = min(P ′)

and Sl = {s − l | s ∈ P ′}. Thus, δC((m − 1, Sl), al) = (ΩA, P
′), if 2 ≤ l ≤

n−2; δC((m−1, {0}∪S1), a1) = (ΩA, P
′), if l = n−1; and δC((m−1, S1), b) =

(ΩA, P
′), if l = 1 Thus, all

∑m
j=0

(
n−1
j

)
−1 states of the form (ΩA, P

′) are reach-

able. To prove (ii), consider two distinct states (i, P1), (j, P2) ∈ R. If i �= j, then
δC((i, P1), b

n+m−2−i) ∈ FC but δC((j, P2), b
n+m−2−i) /∈ FC . If i = j, suppose

that P1 �= P2 and both are final or non-final. Let P ′1 = P1 \P2 and P ′2 = P2 \P1.
Without loss of generality, let P ′1 be the set which has the minimal value, let
us say l. Thus δC((i, P1), a

n−1−l
1 ) ∈ FC but δC((i, P2), a

n−1−l
1 ) /∈ FC . The proof

corresponding to the number of transitions is similar to the proof of Theorem 3.

Theorem 6. The upper bounds for state and transition complexity of concate-
nation cannot be reached for any alphabet with a fixed size for m ≥ 0, n > m+1.

Proof. Let S = {(ΩA, P ) | 1 ∈ P} ⊆ R. A state (ΩA, P ) ∈ S has to satisfy the
following condition:

∃i ∈ FA∃P ′ ⊆ 2[0,n−1]∃τ ∈ Σ : δC((i, P
′ ∪ {0}), τ) = (ΩA, P ).

The maximal size of S is
∑f(A)−1

j=0

(
n−2
j

)
, because by construction 1 ∈ P and

0 /∈ P . Assume that Σ has a fixed size k = |Σ|. Then, the maximal number

of words that reach states of S from r0 is
∑f(A)

i=0 k
i+1 since the words that

reach a state s ∈ S are of the form wAσ, where wA ∈ L(A) and σ ∈ Σ. As
n > m, for some l ≥ 0 we have n = m + l. Thus for an l sufficiently large∑f(A)

i=0 k
i+1 :

∑f(A)−1
j=0

(
m+l−2

j

)
, which is an absurd. The absurd resulted from

supposing that k is fixed.

5 Star and Reversal

Given an incomplete DFA A = ([0,m − 1], Σ, δA, 0, FA) accepting a finite lan-
guage, we obtain a DFA accepting L(A)� using an algorithm similar to the one
for regular languages [7] and a DFA that accepts L(A)R, reversing all transi-
tions of A and then determinizing the resulting NFA. Note that if f(A) = 1 then
the minimal DFA accepting L(A)� has also m states. Thus, for the Kleene star
operation, we will consider DFAs with at least two final states.

Theorem 7. For any finite language L with isc(L) = m one has

1. if f(L) ≥ 2, isc(L�) ≤ 2m−f(L)−1 + 2m−2 − 1 and

itc(L�) ≤ 2m−f(L)−1

(
k +

∑
τ∈Σ

2eτ (L)

)
−
∑
τ∈Σ

2nτ −
∑
τ∈X

2nτ ,

where nτ = tτ (L)− sτ (L)− eτ (L) and X = {τ ∈ Σ | sτ (L) = 0}.
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2. if m ≥ 3, k ≥ 2, and l is the smallest integer such that 2m−l ≤ kl, isc(LR) ≤∑l−1
i=0 k

i + 2m−l − 1 moreover if m is odd,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑
τ∈Σ

2
∑l−1

i=0 tτ (L,i)+1,

and, if m is even,

itc(LR) ≤
l∑

i=0

ki − 1 + k2m−l −
∑
τ∈Σ

(
2
∑l−2

i=0 tτ (L,i)+1 − cτ (L, l)
)
.

6 Final Remarks

In this paper we studied the incomplete state and transition complexity of basic
regularity preserving operations on finite languages. Note that for the comple-
ment operation these descriptional measures coincide with the ones on regular
languages. Table 1 summarizes some of those results. For unary finite languages
the incomplete transition complexity is equal to the incomplete state complexity
of that language, which is always equal to the state complexity of the language
minus one.
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Duret-Lutz, Alexandre 122

Ferrari, Gian-Luigi 109

Gauwin, Olivier 292
Genet, Thomas 134
Grathwohl, Niels Bjørn Bugge 60

Han, Yo-Sub 146
Hasan, Md. Mahbubul 158
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