
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

STATE COMPLEXITY OF THE SUBWORD CLOSURE

OPERATION WITH APPLICATIONS TO DNA CODING∗

CEZAR CÂMPEANU

Department of Computer Science and Information Technology, The University of Prince

Edward Island,

550 University Avenue, Charlottetown, PE, C1A 4P3 Canada

cezar@sun11.math.upei.ca

and

STAVROS KONSTANTINIDIS

Department of Mathematics and Computing Science, Saint Mary’s University,

Halifax, Nova Scotia, B3H 3C3 Canada

s.konstantinidis@smu.ca

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We are interested in the state complexity of languages that are defined via the
subword closure operation. The subword closure of a set S of fixed-length words is the
set of all words w for which any subword of w of the fixed length is in S. This type
of constraint appears to be useful in various situations related to data encodings and
in particular to DNA encodings. We present a few results related to this concept. In
particular we give a general upper bound on the state complexity of a subword closed
language and show that this bound is tight infinitely often. We also discuss the state
complexity of DNA computing related cases of the subword closure operation.

Keywords: subword closure, state complexity, regular language, automaton, balanced
words, DNA languages, gc-ratio.

1. Introduction

A language L is any set of words over some alphabet Σ. Two examples of

alphabets are the binary alphabet {0, 1} and the DNA alphabet {a, c, g, t}. A

subword of L is any word that occurs in some word of L; that is, u is a subword of

L if there is a word of the form xuy in L. The expression Subk(L) denotes the set of

all subwords of L of length k. We are interested in languages L whose subwords of

length k, for some fixed parameter k, satisfy some desirable constraint. This topic

∗Research supported by NSERC.

1

is motivated by various questions related to DNA encodings and combinatorial

channels.

Definition 1 A subword constraint is any nonempty set S of words of length k,

for some fixed k ≥ 1. We say that a language L satisfies the subword constraint S

if every subword of L of length k belongs to S; that is, Subk(L) ⊆ S.

The symbols Σ∗, Σm, Σ≥m denote, respectively, the sets of all words; all words

of length m; and all words of length at least m. The empty word is denoted by λ.

If L ⊆ Σ∗, then Lm = {w ∈ Σ∗ | w = w1 . . . wm, wi ∈ L, 1 ≤ i ≤ m}.
In [1, 10], a particular type of subword constraint was used to model bond-free

DNA languages, and the study of this constraint led to the technical concept of

subword closure operation ⊗:

S⊗ = {w ∈ Σ∗ : Subk(w) ⊆ S}.

Thus, S⊗ is the language of all words w such that every subword of w of length

k belongs to S. In [10], it is required that all words in S⊗ must be of length at

least k. Here, however, we drop this requirement. This implies that S⊗ contains all

words of length less than k.

Remark 1 By the definition of the subword closure operation, it follows immedi-

ately that a language L satisfies the subword constraint S, that is Subk(L) ⊆ S, if

and only if L ⊆ S⊗.

Since λ ∈ S⊗, we have that S⊗ ⊆ (S⊗)n, for all n ≥ 1,

In this work we are interested in the state complexity of languages S⊗. The state

complexity sc(R) of a regular language R is the number of states in the minimal

complete deterministic automaton accepting R [15]. We recall from [10] that, for

any subword constraint S, the language S⊗ is regular.

We list now a few examples to demonstrate that the concepts of subword con-

straint and subword closure operation are interesting objects of study.

In [6], a language L is called a θ-k-code, where θ is an antimorphic involution, if

θ(x) 6= y for any subwords x, y in Subk(L). An antimorphic involution is a mapping

θ : Σ∗ → Σ∗ such that θ2(x) = θ(x) and θ(xy) = θ(y)θ(x) for all words x, y. The

relationship θ(x) = y indicates that the molecules corresponding to x and y can

form chemical bonds between them – see [10] for further details. Obviously, if a

language L is a θ-k-code, then L ⊆ S⊗, for some subword constraint S with θ(u) 6= v

for all u, v in S.

The gc-ratio of the strands involved in DNA computing is an important param-

eter for the success of the melting operation [8]. In particular, it is recommended

that each of the DNA blocks that make up DNA strands to contain a ratio of g and

c’s which is about 50% of the total length of the block. Here, let S be the set of all

DNA words of length k such that the ratio of g and c’s over k is about 50%. Then

a language L has a gc-ratio of about 50% for subwords of length k, if it satisfies the

subword constraint S; thus, L ⊆ S⊗.

The continuity constraint is also important in reliable DNA computing and

expresses the requirement that, no k consecutive identical bases (alphabet symbols)

2

appear in the DNA molecules (words) involved [14]. Let Ck be the set of all words

of length k containing at least two different symbols. A language L satisfies the

continuity constraint if L ⊆ C⊗
k .

Another example where the subword constraint and operation are relevant is

when describing a combinatorial channel [9] via a set of edit strings. Briefly, a

channel is a set of pairs (w, z) of words, where w is the input (or transmitted) word

and z is the output (or received) word. An edit string is a word over the alphabet

of basic edit operations E = {(x/y), (λ/y), (x/λ) : x, y ∈ Σ}, where λ is the empty

word over Σ. Any basic edit operation other than (x/x) is called an error. For

example, the edit string (a/t)(c/c)(g/g)(t/λ)(a/a)(c/c) says that the word acgtac

can be transformed to tcgac using one substitution, (a/t), and one deletion, (t/λ).

Now we only consider the alphabet E0 = {(x/y) : x, y ∈ Σ}. Let S be the following

subword constraint: all edit strings over E0 of length k containing at most m errors.

Then, the channel that permits at most m substitution errors in any subword of

length k of the input word is described by the subword closure of S, which is S⊗.

In [9] it is shown that

1 +

(

k − 1

m − 1

)

≤ sc(S⊗) ≤ 1 +

m
∑

i=0

(

k − 1

i

)

.

There are probably other situations where the subword constraint and closure

concepts might be useful. In cryptography, for example, a long message w is en-

crypted using some key s. The key s should have high complexity so that when an

attacker gets hold of any part of the encrypted message, that part should look too

complex for the attacker to analyze. Complexity here could be defined in terms of

random strings – see [11] for a relevant discussion. In this scenario, the subword

constraint is some set S of complex words and the key will be chosen from the

language S⊗.

The paper is organized as follows. The next section presents a general upper

bound on the state complexity of the subword closure language S⊗. It is also shown

that this upper bound is tight infinitely often. In Section 3, we focus on the case

of d-balanced binary words, that is, binary words for which the absolute difference

between the numbers of 0s and 1s in those words is at most d. This constraint is

directly related to the gc-ratio constraint for DNA words. Section 4 considers the

continuity constraint and discusses briefly the problem of combining constraints.

Finally, Section 5 contains a few concluding remarks.

2. A General Bound on the Subword Closure Complexity

In this section we obtain a general upper bound on the state complexity of S⊗,

for any subword constraint S of some length k. We also show that the bound is

tight infinitely often and also far from tight infinitely often.

For a set A, the expression |A| denotes the cardinality of the set A. For any

word w, the expression |w| denotes the length of the word w.

A trie is an automaton accepting a finite language F , and has the structure

of a tree. The states are all the prefixes of F with the root being the start state

3

(corresponding to the empty word) and the words of F are the final states – see [3]

for further details on tries.

Lemma 1 Let T be a trie accepting n words of length k. The number of states in

T is upper bounded by

|Σ|⌈log|Σ| n⌉ − 1

|Σ| − 1
+ (k − ⌈log|Σ| n⌉ + 1)n.

Moreover, this upper bound is tight infinitely often.

Proof. Let ni be the number of states in the trie at level i = 0, . . . , k, and let r

be the first level of the trie containing n states, that is, r = ⌈log|Σ| n⌉. Obviously

ni ≤ |Σ|i for all i. Hence,

r−1
∑

i=0

ni ≤ 1 + |Σ| + · · · |Σ|r−1.

Also, as ni ≤ ni+1 and nk = n, we have that

k
∑

i=r

ni ≤ (k − r + 1)n,

and the upper bound follows now easily from these observations. That the upper

bound is tight infinitely often follows from the fact that, for each k ≥ 2, the number

of states in the trie accepting the words Σk−1a, where a is in Σ, is equal to

1 + · · · + |Σ|k−1 + |Σ|k−1 = 1 + · · · + |Σ|r−1 + (k − r + 1)n,

where n = |Σ|k−1 and r = k − 1 = ⌈log|Σ| n⌉. 2

Theorem 1 For any subword constraint S of some length k, there is a complete

deterministic automaton accepting S⊗ with at most

U(S) =
|Σ|⌈log|Σ| |S1|⌉ − 1

|Σ| − 1
+ (k − ⌈log|Σ| |S1|⌉) · |S1| + 1

states, where S1 is the set of all prefixes of S of length k − 1. We denote this

automaton by [S]⊗.

Proof. First, we construct the trie for S1; hence, the states of the trie are exactly

all the prefixes of S1 (these include the words in S1). The automaton [S]⊗ results

when we add transitions between states of length k − 1 as follows:

• for any two states of the form ax, xb with a, b ∈ Σ the transition (ax, b, xb) is

added if the word axb is in S.

Note that state ax “remembers” the last k − 1 symbols read by the automaton.

All states of the automaton [S]⊗ are final. It is easy to see that the constructed

automaton accepts S⊗. We also note that this construction is similar to that of the

de Bruijn diagram for words of length |Σ|k containing only distinct occurrences of

4

00 01 10 11

0 1

λ

0

1

0
1

0
1

1

0

0 1

Figure 1: Automaton accepting all binary words for which every subword of length
3 is in {001, 011, 100, 110}. All states are final.

subwords of length k [12]. The bound on the number of states follows from Lemma 1

when we recall that the states of [S]⊗ are exactly those of the trie for S1 plus one

rejecting sink state. 2

The upper bound U(S) given in the above theorem is not tight, in general. In

particular, there are examples where the bound is tight and others where the bound

is far from tight. For example, let w be a word of some length k and consider the

language Σ∗−Σ∗wΣ∗ consisting of all words that contain no subword equal to w. For

simplicity, assume that |Σ| = 2. This language can be accepted by a deterministic

automaton of k + 1 states. Indeed, there is a complete deterministic automaton

of k + 1 states for Σ∗w (called the dictionary-matching automaton of {w} in [3])

having a single final state. This automaton can be modified easily to accept the

language Σ∗ −Σ∗wΣ∗ by adding no extra states. On the other hand, this language

is equal to S⊗, where S = Σk − {w}. As the set of prefixes of S of length k − 1

consists of |Σ|k−1 words, the automaton [S]⊗ in Theorem 1 has 2k−1−1+2k states,

which is far from k + 1.

Next we show that the upper bound U(S) of Theorem 1 is tight infinitely of-

ten. A particular case of our construction is shown in Fig. 1, where k = 3 and

the automaton in this figure accepts the language S⊗ over {0, 1}, where S =

{001, 011, 100, 110}.

Definition 2 Let k ≥ 3 and let S be a set of words of length k. We say that S is

k-ps-full if, for every word w ∈ Σk−1, the following two properties are satisfied:

1. there is exactly one a ∈ Σ such that aw ∈ S; and

2. there is exactly one b ∈ Σ such that wb ∈ S.

Let S be a k-ps-full set. By the above definition, for every possible word w of

length k − 1, we can find exactly two words x, y in S such that w is a prefix of x

5

and is also a suffix of y. Moreover, it follows that the set of prefixes of S is equal

to Σk−1.

Lemma 2 Let S be a k-ps-full set and let w ∈ S⊗. For every n ≥ 0 there is a word

z ∈ Σn such that wz ∈ S⊗.

Proof. For n = 0 the statement is obvious. Assume now the statement holds for

some n ≥ 0. One shows that it holds for n + 1 as well, using the definition of a

ps-full set. 2

Lemma 3 For every integer i ≥ 3, there exists an i-ps-full set S of words of length

i such that |S| = |Σ|i−1.

Proof. We prove the statement by induction on i. For i = 3 the set S = {001, 011,

100, 110} is 3-ps-full – see also Fig. 1.

Now we make the construction for the general case. Suppose the alphabet Σ

is equal to {a1, . . . , ap}, and let g : Σ −→ Σ be a bijective function with no fixed

point, i.e., g(x) 6= x for all x ∈ Σ. First we enumerate all words of length i − 1 in

lexicographical order as: w1, w2, . . . , wpi−1 . Of course, the first pi−2 words have a1

as the first letter, the next pi−2 words have a2 as the first letter, and so on; the last

pi−2 words have ap as the first letter. The first letter of a word w will be denoted

as f(w). We define the set S′ = {w ∈ Σi | w = wjg(f(wj)), j = 1, . . . , pi−1}, which

is obviously of cardinality pi−1.

We show that the set S′ is an i-ps-full set. Let w be any word of length i − 1.

First we show that ahw ∈ S′ for some ah ∈ Σ. Indeed, w can be written as w1a for

some a ∈ Σ. Let ah = g−1(a). As ahw1 ∈ Σi−1, we have that ahw1a must be in

S′. In fact, this ah is unique, as for any ah′ ∈ Σ with ah′w1a ∈ S′ it must be that

ah′ = g−1(a). This proves the first property of Definition 2. The second property

can be shown analogously. 2

Example 1 For i = 4 and Σ = {0, 1, 2}, we give two examples of 4-ps-full sets:

S′
1 = { 0001, 0011, 0021, 0101, 0111, 0121, 0201, 0211, 0221,

1002, 1012, 1022, 1102, 1112, 1122, 1202, 1212, 1222,
2000, 2010, 2020, 2100, 2110, 2120, 2200, 2210, 2220 },

using g = {(0, 1), (1, 2), (2, 0)}, and

S′
2 = { 0002, 0012, 0022, 0102, 0112, 0122, 0202, 0212, 0222,

1000, 1010, 1020, 1100, 1110, 1120, 1200, 1210, 1220,
2001, 2011, 2021, 2101, 2111, 2121, 2201, 2211, 2221 },

using g = {(0, 2), (1, 0), (2, 1)}.

Some Notation: We recall (see [15], for instance) that, for any given regular

language R, the minimal automaton accepting R consists of states [w] such that

[w] represents the class of all words w′ that are equivalent to w, w ≡R w′, which

means that wz ∈ R if and only if w′z ∈ R, for all words z. Moreover, the state [w]

represents the set of all words formed in all the paths from the start state [λ] to [w].

We also recall that, in this notation, when the automaton starts at some state [w]

with a word v as input, then it arrives at state [wv] after consuming the input v.

Lemma 4 Let S be a subword constraint of some length k. The following state-

ments hold true.

6

1. For every word u, if u /∈ S⊗, then xuy /∈ S⊗ for all words x, y.

2. For every word u, if u /∈ S⊗, then [u] = [xuy] for all words x, y.

Proof. Follows easily from the definitions. 2

Lemma 5 Let S be a subword constraint of some length k. For all words w ∈ Σk−1

and uw ∈ S⊗, we have that [uw] = [w].

Proof. The statement follows easily when we note that, for any word z, whether

uwz is in S⊗ depends on whether wz is in S⊗. 2

Theorem 2 For every integer k ≥ 3, there exists a subword constraint S of length

k such that sc(S⊗) = U(S).

Proof. Let S be a k-ps-full subword constraint of length k ≥ 3 according to

Lemma 3. The fact that sc(S⊗) ≤ U(S) follows from Theorem 1. Now consider the

set S⊗ and the equivalence relation ≡S⊗ associated with this language. We show

that, for every two different words x1, x2 that are proper prefixes of S, we have that

x1 6≡S⊗ x2.

Indeed, we can assume that |x1| ≤ |x2|. We distinguish two cases:

1. Case |x1| < |x2|. In this case, there exist y2 ∈ Σk−1−|x2| and a ∈ Σ such that

x2y2a ∈ S. Since S is k-ps-full, x2y2b /∈ S for any b ∈ Σ−{a}; hence as x2y2b

is of length k it is not in S⊗. On the other hand as |x1| < |x2|, it follows that

|x1y2b| < k, therefore, x1y2b ∈ S⊗.

2. Case |x1| = |x2|. In this case, x1 = y1ay and x2 = y2by, for some a, b ∈ Σ,

with a 6= b, and y ∈ Σ∗. As x1 is a proper prefix of S, there is a nonempty

word s such that x1s ∈ S. By Lemma 2, there is a word z ∈ Σk−|ays| such

that x1sz ∈ S⊗ ⇒ y1aysz ∈ S⊗ ⇒ aysz ∈ S ⇒ sz ∈ L[y1ay]. But as S is a

k-ps-full set, bysz /∈ S, therefore, y2bysz /∈ S. Then, as y2by ∈ S⊗, we have

that sz /∈ L[y2by].

It follows that S⊗ has at least 1 + |Σ| + . . . + |Σ|k−1 non-sink states (classes)

that are not pairwise equivalent. Moreover, as the set S1 of the length k − 1

prefixes of S is equal to Σk−1, we have that |S1| = |Σ|k−1, which implies that

1 + |Σ| + . . . + |Σ|k−1 + 1 = U(S). Hence, sc(S⊗) ≥ U(S). 2

3. Balanced languages

In this section, the set S is the d-balanced subword constraint of length k, that is,

the set of all words w of length k over {0, 1} such that ||w|0 − |w|1| ≤ d. Moreover,

we require that ||w|0−|w|1| = d for at least one word w in S. Here, for any alphabet

symbol b, |w|b is the number of b’s occurring in the word w. The quantity |w|0−|w|1
is called the balance of the word w and is denoted by bal(w).

Our study of the balance constraint is motivated by the importance of the gc-

ratio constraint in DNA computing as explained in the introduction. Although we

assume that the constraint S is over the alphabet {0, 1}, we can use the results

herein for other alphabets as well. For example, consider the gc-ratio constraint

T over the DNA alphabet {a, c, g, t} such that T consists of all words w of some

7

length k with −d ≤ |w|a + |w|t − |w|c − |w|g ≤ d. In the next theorem we establish

that the automata accepting T⊗ can be studied via the automata accepting S⊗.

Theorem 3 Let β be any surjective mapping of Σ onto {0, 1} that is extended to

a morphism of Σ∗ into {0, 1}∗. Let S be the d-balanced subword constraint of some

length k and let T be the subword constraint

{w ∈ Σk | −d ≤ bal(β(w)) ≤ d}.

We have that sc(T⊗) = sc(S⊗).

Proof. It is sufficient to show the following two statements: (i) for any automaton

A accepting T⊗ there is an automaton Aβ accepting S⊗ such that A and Aβ have

the same states; and (ii) for any automaton B accepting S⊗ there is an automaton

B−β accepting T⊗ such that B and B−β have the same states.

First note that S = β(T). Indeed, by the definition of T , β(T) ⊆ S. Conversely,

if z ∈ S, then one verifies that β−1(z) ⊆ T , therefore, z ∈ β(T). Now, for each

automaton A over Σ the automaton Aβ has exactly the same states and has the

transition (p, β(x), q) for each transition (p, x, q) of A. It is obvious that, if w ∈
L(A), then β(w) ∈ L(Aβ). Moreover, one can verify that if A accepts T⊗ the

automaton Aβ accepts S⊗. For the second statement, for each automaton B over

{0, 1} the automaton B−β over Σ has exactly the same states and, for each transition

(p, b, q) of B, the automaton has the transitions (p, x, q) for all x ∈ β−1(b). It should

be clear that, if β(z) ∈ L(B) then z ∈ L(B−β). Moreover one can verify that if B

accepts S⊗, the automaton B−β accepts T⊗. 2

If w is a word of length k such that |w|0 ≥ |w|1 and bal(w) = l, then |w|0 = k+l
2

and |w|1 = k−l
2 . If |w|0 ≤ |w|1 and bal(w) = −l then |w|0 = k−l

2 and |w|1 = k+l
2 .

Obviously, as the fraction k±l
2 evaluates to an integer, we have that l is odd when

k is odd and l is even when k is even.

Remark 2 1. For every binary word w, the integer |w| − bal(w) is even.

2. If S is the d-balanced subword constraint of some length k, then k and d are

either both even or both odd.

Lemma 6 Let S be the d-balanced subword constraint of some length k. For all

words u, v with uv ∈ S, we have that vuv ∈ S⊗.

Proof. Any subword w of vuv of length k is of the form sup for some words p, s

with ps = v. As bal(sup) = bal(ups), it follows that w must be in S, therefore

vuv ∈ S⊗. 2

Some Notation: For any state q of some automaton, we denote by Lq the language

accepted by the automaton when q is used as the start state. For any nonnegative

integer m and language L, the expression Prefm(L) denotes the set of all prefixes

of length m of the words in L.

Lemma 7 Let R be a regular language, and let w1, w2 be two non-equivalent words:

w1 6≡R w2. If there are a word v and two words u1, u2 such that [u1v] = [w1] and

[u2v] = [w2], then u1 6≡R u2.

8

Proof. We use the terminology in the paragraph preceding Theorem 2. As the states

(classes) [w1], [w2] are not equivalent we can assume, without loss of generality, that

there is a word w in L[w1] − L[w2]. Hence, [w1w] is a final state, but [w2w] is not.

Now the word vw must be in L[u1], but not in L[u2] – else [u2vw] = [w2w] would be

a final state. Hence, u2 is not equivalent to u1. 2

Lemma 8 Let S be the d-balanced subword constraint of some length k. For any

two different words w, w′ in Prefk−d(S), we have that w 6≡S⊗ w′.

Proof. First note that every word w ∈ Prefk−d(S) is of even length k − d and

there is a word x of length d such that wx is in S. Moreover, as bal(wx) =

bal(w) + bal(x) and −d ≤ bal(x) ≤ d, we have that bal(w) is an even integer

in {−2d,−2d + 2, . . . ,−2, 0, 2, . . . , 2d}. The statement follows from the following

sequence of facts.

1. If bal(w) = 2h, with h > 0, then 0d−h1h ∈ L[w] and 0d−h+11h−1 /∈ L[w], since

bal(w0d−h1h) = 2h + d− h− h = d and bal(w0d−h+11h−1) = 2h + d− h + 1−
h + 1 = d + 2.

2. If bal(w) = −2h, with h > 0, then 1d−h0h ∈ L[w] and 1d−h+10h−1 /∈ L[w],

since bal(w1d−h0h) = −2h− d + h + h = −d and bal(w1d−h+10h−1) = −2h−
d + h − 1 + h − 1 = −d − 2.

3. If bal(w) = 2h, with h ≥ 0, then 1d ∈ L[w]. Indeed, we have that wx ∈ S,

hence, −d ≤ bal(wx) ≤ d. Also, as −d ≤ bal(x) ≤ d, we have that bal(wx) ≥
2h − d. Then, bal(w1d) = bal(w) − d = 2h − d ≤ bal(wx) ≤ d. On the other

hand, bal(w1d) = 2h − d ≥ −d.

4. If bal(w) = 0, then 0d, 1d ∈ L[w].

5. If two words w, w′ in Prefk−d(S) are such that bal(w) 6= bal(w′), then w 6≡S⊗

w′. Indeed, we distinguish the following cases:

(a) If 0 < bal(w) = 2h < bal(w′) = 2h′ then 0d−h1h ∈ L[w] and 0d−h1h /∈
L[w′], since bal(w′0d−h1h) = 2h′ + d − h − h = d + 2(h′ − h) ≥ d + 2.

(b) If 0 > bal(w) = −2h > bal(w′) = −2h′ then 1d−h0h ∈ L[w] and 1d−h0h /∈
L[w′], since bal(w′1d−h0h) = −2h′−d+h+h = −d−2(h′−h) ≤ −d−2.

(c) If bal(w) = 2h > 0 and bal(w′) = −2h′ < 0 then 1d ∈ L[w] and 1d /∈ L[w′],

since bal(w′1d) = −2h′ − d < −d.

(d) If bal(w) = 2h > 0 and bal(w′) = 0 then 0d /∈ L[w] and 0d ∈ L[w′], since

bal(w0d) = 2h + d ≥ d + 2 > d.

(e) If bal(w) = −2h < 0 and bal(w′) = 0 then 1d /∈ L[w] and 1d ∈ L[w′],

since bal(w1d) = −2h − d ≤ −d − 2 < −d.

6. Here we assume that the words w, w′ ∈ Prefk−d(S) are different and have the

same balance, that is, bal(w) = bal(w′). We show that w 6≡S⊗ w′. Indeed,

these words are of the form x0y and x1y′. We distinguish the following cases:

9

(a) bal(x0y) = bal(x1y′) = 2h ≥ 0: Here we have that

bal(y0d−h1hx0) = bal(x0y) + d − h − h = d

and bal(y′0d−h1hx0) = (bal(x1y′) + 1) + 1 + d − h − h = d + 2.

Hence, y0d−h1hx0 ∈ S and y′0d−h1hx0 /∈ S, which implies that y0d−h1hx0

6≡S⊗ y′0d−h1hx0. Also, Lemma 5 implies that

[x0y0d−h1hx0] = [y0d−h1hx0] and [x1y′0d−h1hx0] = [y′0d−h1hx1].

Hence, x0y 6≡S⊗ x0y′, using Lemma 7.

(b) bal(x0y) = bal(x1y′) = −2h < 0: this case is symmetric to the previous

one using the balance of the words y1d−h0hx1 and y′1d−h0hx1.

2

Theorem 4 Let S be the d-balanced subword constraint of some length k.

1. If d = 1 and k = 2r + 1 then sc(S⊗) ≥ 3r+1
r+1

(

2r
r

)

.

2. If d = 0 and k = 2r then sc(S⊗) ≥
(

2r
r

)

.

Proof. By Lemma 8, all the states (classes) [w] of S⊗ with w ∈ Prefk−d(S) are pair-

wise nonequivalent. Hence, sc(S⊗) ≥ |Prefk−d(S)|. For calculating |Prefk−d(S)|,
it is sufficient to count all words w of length k − d with bal(w) ∈ {−2d,−2d +

2, . . . , 0, 2, . . . , 2d}. This count is equal to

d
∑

h=−d

Bal(k − d, h),

where Bal(k − d, h) is the cardinality of {w ∈ Σk−d | |w|0 − |w|1 = 2h} which is

equal to

(

k − d
h + k−d

2

)

. Now, if d = 1 and k = 2r + 1, the first statement follows

when we note that
(

2r
r − 1

)

=

(

2r
r + 1

)

=
r

r + 1

(

2r
r

)

.

If d = 0 and k = 2r the second statement follows immediately. 2

We note that for k even and d = 0, the above lower bound is of order Θ(2k/
√

k),

using the fact

(

2r
r

)

∼ c22r/
√

r, that is,

(

2r
r

)

is asymptotically equal to

c22r/
√

r, for some constant c. On the other hand, the upper bound U(S) of The-

orem 1 applied in this case is of order Θ(log k · 2k/
√

k). Indeed, first note that

U(S) = Θ(|S1|) + (k − ⌈log|Σ| |S1|⌉) · |S1| and the set S1 in Theorem 1 is of cardi-

nality equal to |S| =

(

2r
r

)

. This is because, if we drop the last symbol from any

10

two different words in S, the resulting words are also different. Now, as |Σ| = 2 and

log |S1| ∼ k−(1/2) log k+log c, we have that (k−⌈log|Σ| |S1|⌉)·|S1| = Θ(log k)|S1| =

Θ(log k · 2k/
√

k).

4. Other Subword Constraints

Let the alphabet be Σ = {a1, . . . , ap}, with p ≥ 2. The continuity constraint Ck

is the set of all words of length k containing at least two different letters. Then C⊗
k

is the set of all words containing no run of k identical symbols. Unlike the case of

balanced languages, the state complexity of C⊗
k can be found easily as shown next.

Theorem 5 For every k ≥ 2, sc(C⊗
k) = 2 + |Σ|(k − 1).

Proof. It is sufficient to demonstrate the minimal automaton A for the complement

of C⊗
k , which consists of all words containing at least one run of k identical symbols.

The states of A are: s, the start state; f , the only final state, which is also a sink

state; (ai, j), for every alphabet symbol ai and j ∈ {1, . . . , k−1}, which means that

A has just read j consecutive ai’s. The transition function is

δ((ai, j), ar) =

(ai, j + 1), if r = i and j < k − 1;
f, if r = i and j = k − 1;
(ar, 1), if r 6= i.

One verifies that the automaton A has exactly the required number of states and

is minimal. For example, if j < j′, we have that δ((ai′ , j
′), ak−j′

i′) = f , but

δ((ai, j), a
k−j′

i′) 6= f . 2

In practice, it is desirable to design DNA languages satisfying two or more

constraints. So let S1 and S2 be two subword constraints. Here we only discuss

briefly the case where both constraints are of the same word length k. We are

interested in the language S⊗
1 ∩S⊗

2 satisfying both S1 and S2. An automaton for this

language can be obtained by using the product construction for the intersection of

the two automata for S⊗
1 and S⊗

2 . The number of states in the resulting automaton

is at most equal to the product of the numbers of states in the automata for S⊗
1

and S⊗
2 . Thus,

sc(S⊗
1 ∩ S⊗

2) ≤ sc(S⊗
1)sc(S⊗

2).

The above upper bound for sc(S⊗
1 ∩ S⊗

2) is not particularly good, however. For

example, if S1 ⊆ S2, then sc(S⊗
1 ∩ S⊗

2) = (S⊗
2). A better estimate for the state

complexity of S⊗
1 ∩ S⊗

2 follows from the next lemma whose proof can easily be

verified using the definition of the subword closure operation.

Lemma 9 For any two subword constraints S1, S2 of the same length k, we have

S⊗
1 ∩ S⊗

2 = (S1 ∩ S2)
⊗.

The above equation raises the question of how the two languages involved are

related when the operation of intersection is replaced with union ‘∪’ or catenation

‘·’. In the case of union it is easy to see that

S⊗
1 ∪ S⊗

2 ⊆ (S1 ∪ S2)
⊗.

11

Obviously, if S1 = S2 the above containment becomes an equality. On the other

hand, there are cases where the containment is proper. For example, for the set S

of Fig. 1 we have that S = {001, 011} ∪ {100, 110}, and each of {001, 011}⊗ and

{100, 110}⊗ is finite, whereas S⊗ is infinite.

The case of catenation is more complex. Here we settle the case of catenation

when S1 = S2.

Theorem 6 Let S be a subword constraint of some length k. For every word w of

length other than 2k − 1 we have

w ∈ (SS)⊗ −→ w ∈ S⊗S⊗.

Proof. We consider three cases. First assume that w is of length at most 2k−2. Then

it can be written as w1w2 with each of w1, w2 being of length less than k. Hence,

w1w2 ∈ S⊗S⊗. Now assume that w is of length 2k + l for some l ∈ {0, . . . , k − 1}.
Then we can write w as

a1 · · · ak+lb1 · · · bk,

with each ai and bj being in Σ. Let w2 = b1 · · · bk. As al+1 · · · ak+lw2 is a subword

of w of length 2k we have that w2 ∈ S and, therefore, w2 ∈ S⊗. We show that

a1 · · · ak+l ∈ S⊗. Let

v = ai+1 · · ·ai+k

be any subword of a1 · · · ak+l of length k. As vai+k+1 · · · ak+lb1 · · · bi+k−l ∈ SS, we

have that v ∈ S as required. The third case is when w is of length at least 3k.

Using Remark 1, it is sufficient to show that w ∈ S⊗. Let w = xvy with v being a

subword of length k. We show that v ∈ S. One at least of x and y, say y, must be

of length at least k. Thus we can write y = y1y2 with |y1| = k, therefore, vy1 is a

factor of w of length 2k. This implies that vy1 ∈ SS; hence, v ∈ S as required. 2

Consider the set S of Fig. 1. One can verify that 01010 ∈ (SS)⊗−S⊗S⊗, which

shows that, in the above theorem, the assumption that the length of w is not 2k−1

is essential. Using the same S we can show that the containment in the theorem

can be proper. Since (110)(010) /∈ SS, it follows (011001)(001) /∈ (SS)⊗, thus

(011001)(001) ∈ S⊗S⊗ − (SS)⊗.

5. Concluding Remarks

We have argued that the subword closure operation is an interesting concept

and deserves to be studied from the point of view of formal language theory. Here

in particular, we presented some initial results on the state complexity of this op-

eration, including cases related to DNA coding. We believe that similar studies

should be done for various other subword constraints such as those discussed in the

introduction.

In closing, we note that the set S⊗ is equal to

Σ∗ − Σ∗(Σk − S)Σ∗,

12

that is, the set of all words containing no subword in Σk − S. Given S, one can

construct an automaton accepting Σ∗ −Σ∗(Σk − S)Σ∗ and this could possibly lead

to another general bound for the state complexity of S⊗. As this question appears

to be non-trivial, we leave it to the reader for future research.

References

1. B. Cui and S. Konstantinidis, “DNA Coding using the Subword Closure Operation,”
in [4], pp. 284–289.

2. J. Chen and Reif (eds), Pre-proceed. 9th International Workshop on DNA-Based

Computers, Madison, Wisconsin, 2003; Lecture Notes in Computer Science 2943,
Springer-Verlag, Berlin Heidelberg New York, 2004.

3. M. Crochemore and C. Hancart,“ Automata for Matching Patterns,” in [13], vol. II,
pp. 399-462.

4. M.H. Garzon and H. Yan (eds), Proceed. 13th International Meeting on DNA Com-

puting, Memphis, USA, 2007; Lecture Notes in Computer Science 4848, Springer-
Verlag, Berlin Heidelberg, 2008.

5. M. Hagiya and A. Ohuchi (eds), Pre-proceed. 8th International Workshop on DNA-

Based Computers, Saporo, Japan, 2002; Lecture Notes in Computer Science 2568,
Springer-Verlag, Berlin Heidelberg New York, 2003.

6. N. Jonoska and K. Mahalingam, “Languages of DNA based code words,” in [2], pp.
58–68.

7. N. Jonoska and N.C. Seeman (eds), Pre-proceed. 7th International Workshop on

DNA-Based Computers, Tampa, Florida, 2001; Lecture Notes in Computer Science

2340, Springer-Verlag, Berlin Heidelberg, 2002.

8. S. Kobayashi, T. Kondo, and M. Arita, “On template method for DNA sequence
design,” in [5], pp. 205–214.

9. L. Kari and S. Konstantinidis, “Descriptional complexity of error/edit systems,”
Journal of Automata, Languages and Combinatorics 9 (2004) 2/3 293–309.

10. L. Kari, S. Konstantinidis and P. Sośık, “Bond-free languages: formalizations, max-
imality and construction methods,” International Journal of Foundations of Com-

puter Science 16 (2005) 1039–1070.

11. L. Robbins, “Modelling cryptographic systems,” Ph. D. Thesis, Department of
Computer Science, University of Western Ontario, London, Canada, 1999.

12. K.H. Rosen, J.G. Michaels, J.L. Gross, J.W. Grossman, and D.R. Shier (eds), Hand-

book of Discrete and Combinatorial Mathematics (CRC Press LLC, Boca Raton,
Florida, 2000).

13. G. Rozenberg and A. Salomaa (eds), Handbook of Formal Languages (Springer-
Verlag, Berlin, 1997).

14. F. Tanaka, M. Nakatsugawa, M. Yamamoto, T. Shiba, and A. Ohuchi, “Developing
support system for sequence design in DNA computing,” in [7], pp. 129–137.

15. S. Yu, “Regular Languages,” in [13], Vol I, pp. 41–110.

13

