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The branch of coding theory that is based on formal languages has produced several
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1. Introduction

The branch of coding theory that is based on formal languages [4, 39, 20, 43] has

matured to a point that allows one to express, mathematically, a wide variety of

code properties. In particular, several methods now exist for defining code proper-

ties. These include word relations [40, 39, 22, 44], (in)dependence systems [23, 20],

implicational conditions [18], trajectory sets [7, 8], and language inequations [24].

Of these, the latter three can be viewed as formal or close to formal methods in

the sense that a certain type of formal expression can be used to define/describe a

code property.

∗Research supported by NSERC.
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In this work we present a formal method which is based on transducers: each

transducer of a certain type describes a desired code property. This method can be

viewed as a formal approach to the binary word relations and inequations methods,

in which we employ transducer and automaton techniques to decide code proper-

ties. It provides a simple mechanism for describing code properties, as well as simple

and uniform algorithms for the basic decision problems of property satisfaction and

maximality for regular languages. Our work includes statements about the hardness

of deciding these problems and shows, in particular, that the property maximality

problem can be hard. We note that, unlike the property satisfaction problem, which

has been investigated considerably – e.g., [38, 33, 31, 20, 11] – the property maximal-

ity problem has been addressed systematically only recently [7, 24, 44] – for more

specific and deep contributions see [28, 29]. Our transducer methodology has led

to the partial development and implementation of a LAnguage SERver [30] which

is currently capable of deciding the satisfaction problem for a given code property

and regular language. In particular, via a web application, a user can enter two files

containing the description of the desired property (via a transducer or a regular

trajectory set) and the description of a regular language (via an NFA: nondeter-

ministic finite automaton), and the server decides whether the language satisfies

the property.

The paper is organized as follows. The next section contains the basic nota-

tion and terminology from automata, languages, and codes. Section 3 gives a brief

overview of existing methods defining code properties. In that section, we choose

the independence method as the most natural one for defining code properties in

the broad sense of the term, and we show that there are uncountably many indepen-

dence properties whose elements are infix codes. Then, we focus on existing formal

methods. In Section 4, we present our objectives in defining transducer based formal

methods. In particular, we consider two types of properties. The first one is based on

input-altering transducers, and the second one is based on input-preserving trans-

ducers. We relate these to some of the existing methods and present algorithms

for deciding the property satisfaction and maximality problems with our method.

As corollaries we obtain that the maximality problem for the properties of thin-

ness, error-detection and -correction is decidable. While the satisfaction problem is

polynomially decidable, the maximality problem is shown to be PSPACE-hard in

general. Section 5 follows up on the hardness of the maximality problem and focuses

on some fixed “classical” code properties for finite languages. It is shown that then

the maximality problem is coNP-hard. In Section 6, we discuss some aspects of the

functionality, user interface, and architecture of the language server. Finally, in the

last section we summarize our contributions and discuss possible future directions.
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2. Basic notation and background

2.1. Sets, words, iff, languages, properties, relations

If S is any set, the expressions |S| and 2S denote, respectively, the cardinality

and the power set of S. When there is no risk of confusion we denote a singleton

set {u} simply as u. For example, S ∪ u is the union of S and {u}. We use the

standard basic notation and terminology for alphabets, words and languages – see

[35], [42]. For example, Σ denotes an alphabet, Σ+ the set of nonempty words, λ

the empty word, |w| the length of the word w. We use the concepts of (formal)

language and concatenation between words, or languages, in the usual way. We say

that w is an L-word if w ∈ L and L is a language. The notation Lλ is shorthand

for L ∪ λ. The acronym iff stands for “if and only if”. A language property is any

set of languages, that is, a subset of 2Σ
∗

. If P is a language property and L ∈ P

then we say that L satisfies P , or has the property P . If in addition there is no

proper superset of L satisfying P , then L is called a P-maximal language, or a

maximal P language. A binary word relation ρ on Σ∗ is any subset of Σ∗ × Σ∗.

The domain of ρ is {u | (u, v) ∈ ρ for some v ∈ Σ∗}. The inverse of ρ is the relation

ρ−1 = {(v, u) | (u, v) ∈ ρ}.

2.2. Code properties

What constitutes a code property (or code-related property) is a matter of debate.

Here we take the approach of dependence systems [23, 20] and define a code property

to be any language property that is an independence (see the next section). Next

we list a few code properties that we shall refer to in this work – see [4, 39, 20, 43]

for information on “classical” code properties, and [16, 25] for DNA-related code

properties. A language K is called a uniquely decodable code, or simply a code, if,

for every word w ∈ K∗, there is a unique sequence of K-words whose concatenation

is equal to w. We write Pcode for the (uniquely decodable) code property. A language

K is called a prefix code (resp., suffix, infix code) if K contains no two different

words of the form u and ux (resp., xu, xuy). A language is called thin [36] if it

contains no two different words of the same length – in [4] the term thin has a

totally different meaning.

We note that, by identifying “code properties” with independence properties, we

can have languages having independence properties without being (uniquely decod-

able) codes – e.g., thin languages like {a, aa}.

A channel γ is a binary relation on Σ∗ that is domain-preserving (or input-

preserving); that is, γ ⊆ Σ∗ × Σ∗ and (w,w) ∈ γ for all words w in the domain of

γ. When (x, y) ∈ γ we say that the channel input x can result in, or be received as,

y. A language L is error-detecting for γ, if no channel input x ∈ Lλ can result in

a different output y ∈ Lλ: (x, y) ∈ γ ∩ (Lλ × Lλ) implies y = x. The language is

error-correcting for γ, if no two different channel inputs in Lλ can result into the

same output – see [26] for more details on these concepts.
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2.3. NFAs and transducers

A nondeterministic finite automaton with empty transitions, λ-NFA for short, is a

quintuple â = (Q,Σ, T, s, F ) such that Q is the set of states, Σ is the alphabet, s ∈ Q

is the start (or initial) state, F ⊆ Q is the set of final states, and T ⊆ Q×(Σ∪λ)×Q

is the finite set of transitions. Let (p, x, q) be a transition of â. Then x is called the

label of the transition, and we say that p has an outgoing transition (with label x).

A path of â is a finite sequence (p0, x1, p1, . . . , xℓ, pℓ), for some nonnegative integer

ℓ, such that each triple (pi−1, xi, pi) is a transition of â. The word x1 · · ·xℓ is called

the label of the path. The path is called accepting if p0 is the start state and pℓ is

a final state. The language accepted by â, denoted as L(â), is the set of labels of

all the accepting paths of â. The λ-NFA â is called trim, if every state appears in

some accepting path of â. The λ-NFA â is called an NFA, if no transition label is

empty, that is, T ⊆ Q × Σ × Q. A deterministic finite automaton, DFA for short,

is a special type of NFA where there is no state p having two outgoing transitions

with different labels.

A (finite) transducer [3] is a sextuple t̂ = (Q,Σ,∆, T, s, F ) such that Q, s, F

are exactly the same as those in λ-NFAs, Σ is now called the input alphabet, ∆

is the output alphabet, and T ⊆ Q × Σ∗ ×∆∗ × Q is the finite set of transitions.

We write (p, x/y, q) for a transition – the label here is (x/y), with x being the

input and y being the output label. The concepts of path, accepting path, and

trim transducer are similar to those in λ-NFAs. In particular the label of a path

(p0, x1/y1, p1, . . . , xℓ/yℓ, pℓ) is the pair (x1 · · ·xℓ, y1 · · · yℓ) consisting of the input

and output labels in the path. The relation realized by the transducer t̂, denoted

as R(t̂), is the set of labels in all the accepting paths of t̂. The transducer t̂ is said

to be in standard form, if each transition (p, x/y, q) is such that x ∈ (Σ ∪ λ) and

y ∈ (∆∪λ). We note that every transducer is effectively equivalent to one (realizing

the same relation, that is) in standard form. We write t̂(x) for the set of possible

outputs of t̂ on input x, that is, y ∈ t̂(x) iff (x, y) ∈ R(t̂).

3. Methods for defining code properties

The first mathematical method for studying code properties appears to be [40],

and uses the concept of binary word relation. This approach led to further research

developments – see e.g., [39, 43, 44]. In particular, for a binary word relation ρ,

a language L is called ρ-independent if no two distinct elements of L are related

with ρ. Thus, the relation ρ defines the property consisting of all ρ-independent

languages. For example, the prefix relation ρp, with (u, v) ∈ ρp iff u is a prefix of

v, defines the property of prefix codes. In [40], the authors consider binary word

relations satisfying certain natural constraints, and show that the property Pcode

is not definable by any such binary relation. In [22], the method of binary word

relations is generalized naturally to n-ary word relations ω, where n is a positive

integer. A language L is called ω-independent, if no tuple consisting of L-words is in

ω. Under certain natural constraints on the allowable relations ω, it is shown that
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the property Pcode is not definable by any such relation.

In our opinion, the most natural and, at the same time, general method for

defining code properties is the dependence systemsΣfootnote of [23] – see also [20].

For brevity we skip dependence itself and go directly to the concept of independence.

Let n be a positive integer, or ℵ0. A property P is called an n-independence if

L ∈ P iff ∀L′ ⊆ L : 0 < |L′| < n→ L′ ∈ P ,

that is, L satisfies P exactly when every nonempty subset of L of cardinality less

than n satisfies P . We also call P an independence property if it is an n-independence

for some n as above. It turns out that all properties considered in this paper are

independence properties. This fact is significant because then the concept of maxi-

mality is well-defined:

Theorem 1. [19] Let P be an independence property. Every language in P is in-

cluded in a maximal P language.

In the next subsection we discuss the direction of some authors towards formal

methods.

3.1. Formal methods for describing code properties

While the previously discussed methods have been defined in rigorous mathematical

terms, they do not provide any obvious method to formally define/describe code

properties – in the sense that each of these properties is described via a formal

expression. Three formal, or close to formal, methods have been proposed in the

last decade or so.

Implicational conditions [18] In this method, code properties are described via

first order formulae of a certain syntax, which are called implicational conditions.

We refer the reader to [18] for details. Here we only show an implicational condition

describing the suffix property:

ϕs = “∀u, v, x : u ∈ L, v ∈ L, u = xv → x = λ”.

The formula describes all suffix codes because it is satisfied exactly when the lan-

guage L is a suffix code.

Regular Trajectories [7]Σfootnote This is probably the simplest and most com-

pletely defined formal method. A regular trajectory property is described via a

ΣfootnoteTo prevent misconceptions, we note that previous methods have played a fundamental

role in our understanding of code properties, and we believe that they contributed to the maturity
that was required in the research community to propose further methods. Moreover, the method
of partial word orders continues to be of importance as it provides appropriate tools for addressing
certain important problems, such as the embedding problem for code properties [44], whereas
dependence systems appear to be too general for these problems.
ΣfootnoteIn fact, [7] allows trajectory properties for which the defining set of trajectories is not
necessarily regular. Here, however, we focus on methods with the constraints (or objectives) listed
in Section 4.
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regular expression ē over the alphabet {0, 1} – in [7], words over this alphabet are

called trajectories – such that a language L has the desired property if

(L∐ē Σ
+) ∩ L = ∅. (1)

For example, the regular expression 1∗0∗ describes the suffix property and 1∗0∗1∗

describes the infix property. Here, ∐h is the shuffle operation on the trajectory h.

For any words u,w, (u ∐h w) is the word of length |h| = |u| + |w| resulting by

shuffling the two words according to h: 0’s in h mean to use letters from u and 1’s

in h mean to use letters from w – if this is not possible then (u ∐h w) = ∅. This

operation extends naturally to languages, so (L∐ēΣ
+) is the union of (u∐hw), for

all u ∈ L, h ∈ L(ē), w ∈ Σ+ – see [34, 7] for more details.

Language inequations [24] This method defines a code property via a binary

word operation ⋄ and a language R as the set of all languages L satisfying the

inequation (L ⋄R) ⊆ Lc. Usually the fixed language R is equal to Σ+. For example,

using the word operation of left quotient, →lq, the inequation (L →lq Σ+) ⊆ Lc

defines the suffix codes. Here, v ∈ (u →lq x) iff v results by removing the prefix x

from u, or equivalently, u = xv. As discussed in [24], some combinations of ⋄ and

R can be described via a transducer [⋄R] such that v ∈ [⋄R](u) iff v ∈ u ⋄R. In the

next section we follow-up on this idea and propose a formal method that is based

solely on transducers.

In a formal method, like the ones discussed above or in the next section, one of

the objectives is to have a well-defined set of formal expressions (descriptions), each

of which defines a language property. Thus, any formal method can describe count-

ably many properties. On the other hand, as shown next, the set of independence

properties is uncountable and, therefore, we cannot expect to formally describe all

possible code properties. One might protest that the independence method allows

one to define too many properties – for instance, thin languages that are not codes

in the sense of unique decodability. It turns out, however, that the situation will

not change even if we restrict our attention to independence properties containing

only infix codes:

Theorem 2. Let n be either ℵ0, or an integer greater than 1. There are uncountably

many n-independence properties whose elements are infix codes. Hence, also there

are uncountably many n-independence properties.

Proof. The proof relies on the following two claims.

Claim 1 If L is a language, then 2L is an n-independence property.

Claim 2 There are uncountably many infix codes.

To see how the statement follows from these claims, let {Ci | i ∈ I} be the family

of all infix codes, where I is an index set. As each Ci is an infix code, the property

2Ci consists of infix codes and, by the first claim, it is an n-independence property.

Moreover, if Cj 6= Ci, then 2Ci 6= 2Cj . Therefore, by the second claim, {2Ci | i ∈ I}

is uncountable. The proofs of the claims are left to the reader – see also [9].
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4. Transducer based properties

Here we propose transducer based formal methods with the following objectives in

mind.

• As much as possible, we wish to be compatible with other existing methods.

• We wish to decide efficiently the property satisfaction problem: given the

description of a code property P and the description of a regular language

L, decide whether L satisfies P .

• We wish to decide the property maximality problem: given the description

of a code property P and the description of a regular language L, decide

whether L is P-maximal.

• We wish to build a LAnguage SERver allowing users to enter descriptions

of code properties and produce answers to questions about languages with

the desired code properties.

We note that the regular trajectory method [7] addresses successfully both the

property satisfaction and maximality problems. Although the transducer methods

cannot describe certain important properties, like Pcode, they have several advan-

tages: First, transducers are well understood objects in the formal language theory

community and have a simple description: start state, list of final states, list of

transitions. Second, the regular trajectories method is included in the transducer

methods. Third, one can utilize directly the abundant algorithmic constructions on

transducers and automata to obtain simple algorithms for the decision problems

involved. To avoid misconceptions, we emphasize that this work does not intend to

define the “best” or “most general” method, but rather to address the objectives listed

above, and to help bridge the gap between mathematical methods and implemented

systems.

The definitions of prefix, suffix and infix codes can be rephrased, respectively, as

follows

pp(L) ∩ L = ∅, ps(L) ∩ L = ∅, pi(L) ∩ L = ∅, (2)

where the operators pp, ps, pi return respectively, the proper prefixes, suffixes, and

infixes of L. We note that, on each word u, these operators return a set of words

not containing u. Moreover, each of these operators can be realized by a transducer.

Next we generalize this observation by defining input-altering transducers and then

we define the method of input-altering transducer properties. We assume that we

have agreed on a fixed set M of words (our maximum set) such that all languages

of interest are subsets of M. The most common value for M in the literature on

variable-length codes is Σ∗, but other values, such as Σn for some positive integer

n, are considered (e.g., in the area of error-control codes). In any case, we assume

that M is given via an automaton m̂.

Definition 3. A transducer t̂ is called input-altering if

w /∈ t̂(w), for all w ∈M. (3)
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0 1 2
σ/λ σ/σ

σ/λ σ/σ

Fig. 1. Input-altering transducer describing the “suffix” property. Each arrow represents
multiple transitions (one for each alphabet symbol σ). On input u, the transducer returns
one of the possible proper suffixes of u.

0 1
σ/σ′

σ/σ σ/σ′

σ/σ

Fig. 2. Input-altering transducer describing the “thin” property. Again, each arrow repre-
sents multiple transitions (σ/σ′ means one label for each combination of distinct alphabet
symbols σ, σ′). On input u, the transducer returns one of the possible words that have
the same length with u and differ from u in at least one position.

A language property is an input-altering transducer property if there is an input-

altering transducer t̂ such that the property consists of all languages L satisfying

t̂(L) ∩ L = ∅. (4)

We denote by Pal
t̂

the property defined by the input-altering transducer t̂.

Fig. 1 shows an input-altering transducer realizing the operation “ps” shown in

(2). Fig. 2 shows an input-altering transducer for the “thin” property.

It appears that the properties of error-detection and -correction are not definable

in the methodology of input-altering transducer properties. On the other hand, these

properties can be defined naturally using the input-preserving type of transducers.

Definition 4. A transducer t̂ is called input-preserving if

w ∈ t̂(w), for all w ∈M. (5)

A language property is an input-preserving transducer property if there is an input-

preserving transducer t̂ such that the property consists of all languages L satisfying

t̂(u) ∩ (L− u) = ∅, for all u ∈ L. (6)

We denote by Ppr

t̂
the property defined by the input-preserving transducer t̂.

Fig. 3 shows an input-preserving transducer defining the suffix property – com-

pare with Fig. 1. In Fig. 4 the input-preserving transducer defines the error-detection
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0 1 2
σ/λ σ/σ

σ/σ

σ/λ σ/σ

Fig. 3. Input-preserving transducer describing the “suffix” property. On input u, the
transducer returns one of the possible suffixes of u, including u.

00 1 2
σ/σ′ σ/σ′

σ/σ σ/σ σ/σ

Fig. 4. Input-preserving transducer describing the “2-substitution error-detection” prop-
erty.

property for the channel γ such that (u, v) ∈ γ iff u and v have equal lengths and

differ in at most two positions.

Remark 5. Let M = Σ∗. Deciding whether a given transducer t̂ is input-preserving

is a known undecidable problem – see [17]. It turns out that deciding whether a

given transducer t̂ is input-altering is an undecidable problem as well. To see this we

consider the complementary problem of whether t̂ is not input-altering and we reduce

the Post correspondence problem (PCP) [37] to that. In particular, for each instance

T = {(u1, v1), . . . , (un, vn)} of PCP, the single-state transducer with transitions T

is not input-altering iff T is a YES instance of PCP.

4.1. A note on the conjunction of transducer properties

As in the case of λ-NFAs, for any transducers ŝ and t̂, one can effectively construct

a transducer realizing the relation R(ŝ)∪R(t̂). We denote this transducer as (ŝ∪ t̂).

Let τ be either of the type names ‘al’ and ‘pr’. The closure under union implies

that Pτ
ŝ ∩P

τ
t̂

= Pτ
ŝ∪t̂

, that is, a language satisfies both Pτ
ŝ and Pτ

t̂
iff the language

satisfies Pτ
ŝ∪t̂

. To see this we simply note that the union of transducers preserves

the type τ , and that the following holds for all languages L:

ŝ(L) ∩ L = ∅ and t̂(L) ∩ L = ∅ ←→ (ŝ ∪ t̂)(L) ∩ L = ∅.

As an example, we have that bifix codes, codes that are both prefix and suffix, are

definable in the transducer methodology. We note that these codes are not definable

in the methodology of transitive and length-increasing binary relations [44].
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4.2. Some Theorems about Transducer Properties

This subsection contains the main results about the previously defined properties.

In the sequel, the size |ĝ| of a finite state machine ĝ is the sum of the numbers of

states and transitions involved in the machine.

Lemma 6. For every transducer t̂, there is an input-preserving transducer t̂pr such

that t̂pr(w) = t̂(w) ∪ w, for all w ∈ Σ∗, and t̂pr can be constructed from t̂ in linear

time.

Proof. We make a copy of t̂ and a new state f such that f is final, in addition to

those in t̂. We also add a (λ/λ)-transition from the start state of t̂ to f , and the

transitions (f, σ/σ, f) for all σ ∈ Σ. It follows that, for all words w, t̂pr(w) = t̂(w)∪w,

as required.

Theorem 7. The following statements hold true.

(1) Every regular trajectory property is an input-altering transducer property, ef-

fectively.

(2) Every input-altering transducer property is an input-preserving transducer prop-

erty, effectively.

(3) Every input-preserving transducer property is a 3-independence property.

Proof. The third statement follows from the definitions of 3-independence and

input-preserving transducer properties. For the second statement, consider any

input-altering transducer t̂. Using Lemma 6, one verifies that, for any language L,

t̂(L) ∩ L = ∅ ←→ ∀u ∈ L, t̂pr(u) ∩ (L− u) = ∅. (7)

This implies that, if L ∈ Pal
t̂

then L ∈ Ppr

t̂
, as required.

For the first statement, we consider any regular expression ē defining a trajectory

property. We construct an input-altering transducer t̂ such that, for any word u,

t̂(u) = (u ∐ē Σ
+). This will imply that, for any language L, (L ∐ē Σ

+) ∩ L = ∅

iff t̂(L) ∩ L = ∅, as required. For the transducer t̂, we first construct an NFA â

equivalent to ē. Consider a situation where v ∈ (u ∐h Σ+), for some trajectory

h ∈ L(â) and words u, v. The trajectory h is accepted in some path of â. In this

path, a transition of the form (p, 0, q) indicates that a symbol from u is added in v,

and a transition of the form (p′, 1, q′) indicates that some symbol from Σ is added

in v. It seems then that t̂ should have the same states with â, and transitions of

the form (p, σ/σ, q) and (p′, λ/σ, q′), corresponding to the above transitions of â.

However, we have to make sure that at least one symbol outside of u gets added

so that the transducer is input-altering. Thus, the construction is as follows. For

each state q of â, there are two states qyes and qno in t̂, indicating whether or not

the input has already been altered. The start state of t̂ is sno, where s is the start

state of â, and the final states of t̂ are all states fyes, where f is any final state

of â. For each transition, (p, 0, q) of â, we add the transitions (pno, σ/σ, qno) and
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(pyes, σ/σ, qyes) in t̂. Finally, for each transition (p, 1, q) in â, we add the transitions

(pno, λ/σ, qyes) and (pyes, λ/σ, qyes) in t̂. One verifies that, for every accepting path

of t̂ having (u, v) as a label, there is a “corresponding” trajectory h accepted by â

such that v ∈ (u∐h Σ+), and vice versa.

Theorem 8. The thin language property is definable in the input-altering trans-

ducer methodology, but it is not definable in the trajectory methodology.

Proof. Fig. 2 shows that indeed the thin property is an input-altering transducer

property. On the other hand, there is no regular expression describing the thin

language property. Indeed, assume that ē is an expression that does define thinness.

Then, as L = {aa, bb} is not a thin language, we have (L∐ēΣ
+)∩L 6= ∅. This implies

that there is a trajectory h ∈ L(ē) and a nonempty word w such that (aa∐hw) ∈ L,

or (bb ∐h w) ∈ L. Then, |h| = 2 + |w| > 2, which is impossible as |h| should also

be the length of the L-word returned by the shuffle operation. We note that the

same argument applies even if we assume that an arbitrary trajectory set (possibly

non-regular) can be used to define thin languages.

Theorem 9. The following statements hold true.

(1) The satisfaction problem for input-preserving transducer properties is decidable

in polynomial time, assuming languages are described via NFAs.

(2) The satisfaction problem for input-altering transducer properties is decidable in

time O(|t̂| · |â|2), where t̂ and â are the given transducer and NFA, respectively.

(3) The maximality problem is decidable for both input-preserving and -altering

transducer properties, assuming languages are described via NFAs.

(4) For M = Σ∗, the maximality problem for either of input-altering and -

preserving transducer properties is PSPACE-hard.

Proof. For the first statement, we use results from [26]: For any transducer t̂ and

λ-NFA b̂, there are, effectively in polynomial time, a transducer t̂ ↓ b̂ realizing

R(t̂) ∩ (L(b̂) × Σ∗) and a transducer t̂ ↑ b̂ realizing R(t̂) ∩ (Σ∗ × L(b̂)). For the

satisfaction problem, let t̂ and â be the given transducer and NFA, and let L = L(â).

As t̂ is input-preserving, (6) is equivalent to ∀u ∈ L, |t̂(u)∩L| ≤ 1, which in turn is

equivalent to whether the transducer (t̂ ↓ â) ↑ â is functional. Thus (6) is decidable,

as transducer functionality is polynomially decidable [13] – see also [14], [2].

For the second statement, assume that t̂ is in standard form, and let L = L(â).

Deciding t̂(L) ∩ L = ∅ can be done as follows: First, use a product construction

between t̂ and â to get an automaton b̂ accepting t̂(L) [42]. Then, use again a

product construction between â and b̂ to get an automaton accepting t̂(L)∩L, and

test whether there is any accepting path in that automaton.

For the third statement, first consider any given input-preserving transducer

t̂ and NFA â, and let L = L(â). Assume that L ∈ Ppr

t̂
. We show that L is not
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Ppr

t̂
-maximal iff

M ∩ (t̂(L) ∪ t̂−1(L) ∪ L)c 6= ∅. (8)

The language on the left-hand side of (8) is an effectively regular language which

can be constructed from m̂, â and t̂, and therefore (8) is decidable. Now we have

that L is not Ppr

t̂
-maximal, iff there is a word w ∈ M − L such that ∀u ∈ (L ∪

w), t̂(u) ∩ ((L ∪ w)− u) = ∅. One verifies that

∀u ∈ (L ∪ w), t̂(u) ∩ ((L ∪w) − u) = ∅, iff

∀u ∈ L, t̂(u) ∩ ((L ∪ w)− u) = ∅, and t̂(w) ∩ ((L ∪ w)− w) = ∅, iff

∀u ∈ L, t̂(u) ∩ ((L − u) ∪ w) = ∅, and t̂(w) ∩ L = ∅, iff

∀u ∈ L, t̂(u) ∩ (L− u) = ∅, and ∀u ∈ L, t̂(u) ∩w = ∅, and t̂(w) ∩ L = ∅, iff

t̂(L) ∩ w = ∅ and t̂(w) ∩ L = ∅, iff w /∈ (t̂(L) ∪ t̂−1(L)),

where we have used the facts t̂(u) ∩ (L − u) = ∅, as L is in Ppr

t̂
, and t̂(w) ∩ L =

∅ ←→ w ∩ t̂−1(L) = ∅. Statement (8) follows from this derivation.

For the case where t̂ is input-altering, the maximality problem can be decided

by first constructing the input-preserving transducer t̂pr – see Lemma 6 – and then

deciding whether the given language L is Ppr

t̂pr
-maximal. For the correctness of this,

one verifies that L is not Pal
t̂
-maximal iff there is w ∈M − L with ∀u ∈ (L ∪ w) :

t̂(u)∩(L∪w) = ∅, iff there is w ∈M−L with ∀u ∈ (L∪w) : t̂pr(u)∩((L∪w)−u) = ∅.

For the fourth statement, it is sufficient to show that deciding (8), for t̂

input-preserving, is PSPACE-hard. First, recall that UniversalREX is PSPACE-

complete [15]. This is the problem of deciding whether L(ē) = Σ∗, for a given reg-

ular expression ē. Now UniversalREX is reducible to our maximality problem as

follows: Convert any given ē to an equivalent NFA â – hence, L = L(â) = L(ē). Con-

struct a transducer t̂ such that t̂(w) = w, for all words w. Then also t̂−1(w) = w, for

all words w. Obviously, t̂ is input-preserving, and L(ē) = Σ∗, iff (8) is false, iff L(â)

is Ppr

t̂
-maximal. As before, the input-altering case can be handled via Lemma 6.

As an application of the above theorems we obtain the following decidability

results which, to our knowledge, are new.

Corollary 10. The following problems are decidable.

Input: An NFA â; Return: Is L(â) thin-maximal?

Input: A channel transducer t̂ and NFA â; Return: Is L(â) maximal error-

detecting for R(t̂)?

Input: A channel transducer t̂ and NFA â; Return: Is L(â) maximal error-

correcting for R(t̂)?

Proof. The first statement follows from the fact that thinness is an input-altering

transducer property. Now recall that a channel is an input-preserving relation, so

a channel transducer is simply an input-preserving transducer. The error-detection
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case follows from the previous theorem when we observe that the “error-detection

for R(t̂)” property is the input-preserving transducer property Ppr

t̂
, i.e., the property

obtained using exactly t̂ as the defining transducer. The error-correction case follows

from the fact that a language is error-correcting for a channel γ iff it is error-

detecting for γ−1 ◦γ, [27], and the fact that transducers are effectively closed under

inverse and composition [3, 42].

5. More on the complexity of the maximality problem

The hardness results for the property maximality problem concern the general case

where languages are described via NFAs and the property is part of the input.

Here we show that the cause of the hardness is nondeterminism: even if we fix

the property and restrict our attention to acyclic NFAs, i.e., those accepting finite

languages, many of the problems remain hard. In particular, the hardness includes

the “classical” code properties of unique decodability, prefix, suffix, bifix, and infix.

Theorem 11. Let M = Σ∗ = {a, b}∗, and let τ be any of the code property names

“uniquely decodable”, “prefix”, “suffix”, “bifix”, “infix”, “hypercode”. The problem

of deciding whether a finite τ code, given via an acyclic NFA, is a maximal τ code

is coNP-hard.

Proof. Let us call the decision problem in question τ -FinNfaMax, and let

FullFinNfa be the problem of deciding whether a given acyclic NFA accepts Σn,

for some n. One verifies that the statement is an immediate logical consequence of

the following two claims.

Claim 1 FullFinNfa is coNP-complete.

Claim 2 FullFinNfa is polynomially reducible to τ -FinNfaMax.

The first claim follows from the proof of the following fact on page 329 of [32]:

Deciding whether two given star-free regular expressions are inequivalent is an NP-

complete problem. Indeed, in that proof the first regular expression can be arbitrary,

but the second regular expression represents the language Σn, for some positive

integer n. Moreover, converting a star-free regular expression to an acyclic NFA is

a polynomial time problem.

For the second claim, consider any acyclic NFA â and assume that it is already

trim. To decide whether L(â) = Σn, for some n, we first make sure that all words

in L(â) are of the same length by simply testing (using e.g. a breadth first search

algorithm) whether all paths from the start state to any final state of â have equal

lengths. If yes, we have that L(â) ⊆ Σn, for some n, and that already L(â) is a τ code

(for all values of τ). Then we continue by deciding whether â is in τ -FinNfaMax.

This decision settles our problem because of the following.

Claim 3 A τ code K with words of some fixed length n is maximal iff K = Σn.

The claim can be verified for each case of τ . For example, let τ = “prefix”. For

the ‘if’ part, as K = Σn, any word w outside of K must be a prefix of some word
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in K (if |w| < n), or must contain a word of K as a prefix (if |w| > n). Hence, no

new word can be added in K. The other cases can be handled analogously – for the

“uniquely decodable” case, see page 41 of [4]. The ‘only if’ part follows from the ‘if’

part and the definition of maximality: K and Σn are maximal, and K ⊆ Σn; hence,

K = Σn.

We discuss maximality questions a little more in the last section of this paper.

Next, we close this section with the observation that even for thin languages, testing

maximality via NFAs is hard.

Remark 12. Let Σ = {a} and M = a∗. The problem of deciding whether a lan-

guage L (given via an NFA) is maximal is coNP-complete. To see this, first note

that, as Σ = {a}, L is always thin, and L is thin-maximal iff L = a∗. In [41], it is

shown that deciding whether the language represented by a given regular expression

ē is not equal to a∗ is an NP-complete problem. We also note that converting a

regular expression to an NFA can be done in polynomial time.

6. LAnguage SERver

Here we give a brief description of the architecture, current functionality and user

interface of a web server for deciding the satisfaction problem about given languages

and code properties. We call it LaSer [30], an acronym for Language Server. As

customary with these applications, this is an ongoing project. However, at this

point, the server is capable of performing the following tasks.

Task 1 Given NFA â and input-altering transducer t̂, decide whether L(â) satisfies

Pal
t̂
.

Task 2 Given NFA â and NFA b̂ over {0, 1}, decide whether L(â) satisfies the

regular trajectory property described by b̂ – in fact by any regular expression

equivalent to b̂.

Task 3 If the answer to either of the above problems is negative, LaSer also returns

two L(â)-words violating the desired property.

Although our presentation of the regular trajectory properties involves regular ex-

pressions, the current version of the server accepts the trajectory set via an NFA

(Task 2). At this point a user would have to use another software (or set of libraries)

to convert regular expressions to NFAs – one can use Grail [12] or the freely avail-

able FAdo set of libraries [10]. To our knowledge, there is no server of this type

available on the internet – in particular with the capability to accept as input an

unknown code property. In any case, we invite readers and users to test the server

and send us their comments. We note that in [1], a C++ program is presented that

is capable of generating DNA languages of a given cardinality satisfying various

combinations of properties from a certain fixed set of properties. One of our next

goals is to incorporate in our server a similar capability.

The user interface is very simple – see Fig. 5. The user provides the files contain-
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Fig. 5. The main user interface of LaSer

ing the NFA and transducer (Task 1), or the two NFAs (Task 2), and presses the

submit button. In case the answer is NO, LaSer returns two words of the language

violating the property (Task 3). The format for NFAs is the Grail format [12]. Here

is an example of a Grail NFA accepting the language ab∗:

(START) |- 1

1 a 2

2 b 2

2 -| (FINAL)

For transducers, we assume that they are always in standard form. We use a Grail-

like format, where we write lambda for the empty word. Here is an example of the

Grail-like form of the transducer shown in Fig. 1:

(START) |- 0

0 a lambda 1

0 b lambda 1

1 a lambda 1

1 b lambda 1

1 a a 2

1 b b 2

2 a a 2

2 b b 2

1 -| (FINAL)

2 -| (FINAL)
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LaSer consists of two layers, a web based user interface (UI) and an implementa-

tion of algorithms. UI was built using Django [6], a web framework for the Python

programming language. The algorithms were implemented in the C++ program-

ming language. We used features available in BOOST [5] (a set of open source C++

libraries) to integrate the implementation of algorithms with UI. It allowed us to

take advantage of the execution speed of C++ and, at the same time, the conve-

nience of Python and Django. Our application is hosted on a virtual machine with

Ubuntu 8.10 and Apache server.

A limit: LaSer decides instances of the satisfaction problem using an incremen-

tal product construction of an NFA accepting the language t̂(L(â)) ∩ L(â) – see

Theorem 9. As the size of this NFA could grow very large, we have currently set

500,000 as the largest number of transitions that can be processed. So if more

than this number of transitions need to be processed, LaSer simply interrupts the

computation and returns a message.

7. Concluding remarks

We have presented a formal method for defining code properties, which fits well

between the broad independence method and the formal regular trajectory method.

We have discussed the decision problems of property satisfaction and maximality in

the transducer methods, and presented some aspects of the related language server.

We hope that our contribution will help bridging the gap between mathematical

methods and implemented systems, a task that is often neglected.

We believe that the research direction of formal methods for language properties

is a fruitful area with many interesting problems. We discuss this point in this

and the next paragraphs. First, whether the property satisfaction and maximality

problems can be answered for properties not definable in existing formal methods.

Moreover, the problem of computing languages satisfying a given property is a

natural next step – see [44, 1] for related works. The research on formal methods

could lead to new and possibly better language servers.

Regarding the maximality problem, our hardness results concern the case where

languages are described via NFAs. However, for fixed code properties and different

descriptions for languages the problem can be of polynomial complexity. For exam-

ple, in [24] it is shown that the problem can be decided in linear time for prefix

codes described via DFAs, and in quadratic time for finite infix codes described

via a list of words. At this point, we are not aware of the complexity of deciding

the maximality of the suffix or infix property when the languages are described via

DFAs, so we propose this as a question for future research.

Recall that the maximality problem requires testing the emptiness of the com-

plement of the language t̂(L)∪t̂−1(L)∪L, which results from the given L by applying

transductions. Even when L is described via a DFA, applying transductions nor-

mally results in NFAs for which complementation is, in general, an exponential

operation, and this appears to be the source of hardness for the maximality prob-
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lem. A possible line of research then is to study the state complexity of the basic

transduction operations that are needed in defining various code properties.

In analogy to a question of [7] about regular trajectory expressions, it is natural

to ask whether it is decidable, for given transducers t̂ and ŝ, if Pal
t̂

= Pal
ŝ (or for

what types of transducers this question is decidable). Furthermore, regarding code

properties defined via multiple regular trajectory sets [8], it is known that already

the property satisfaction problem is undecidable, which implies that that method

is too general for the objectives set in this paper. However, it seems interesting to

investigate types of multiple regular trajectory sets defining transducer properties.

Finally, it would be interesting to investigate how the property maximality prob-

lem can be decided in the formal method of implicational conditions [18].
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