Saint Mary's University

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE

Name:	Solutions
Signature:	
ID.	

Math 1251: Calculus for Life Sciences II

Midterm Test February 28, 2018

Instructor: J. Irving

Instructions:

• No electronic devices, or aids of any kind, are permitted.

- There are 4 pages plus this cover page. Check that your test paper is complete.
- There are a total of 60 points. The value of each question is indicated in the margin.
- Answer in the spaces provided, using backs of pages for additional space if necessary.
- Show all your work. Insufficient justification will result in a loss of points.

Page	Maximum	Your Score
1	19	
2	13	
3	12	
4	16	
Total	60	

1. Compute:

[7] (a)
$$\int \left(1 - \frac{x}{2} + \frac{3}{x} - 4x^4 + \frac{5}{\sqrt[3]{x}} - e^{6x} + \sin 7x\right) dx$$

$$= x - \frac{1}{4}x^{2} + 3\ln|x| - \frac{4}{5}x^{5} + \frac{15}{2}x^{2/3} - \frac{1}{6}e^{6x} - \frac{1}{7}\cos^{7}x + C$$

[4] (b)
$$\int_0^1 t^2 (1 - \sqrt{t}) dt$$

$$= \int_0^1 \left(\frac{t^2 - t^{5/2}}{2} \right) dt$$

$$= \frac{1}{3} t^3 - \frac{2}{7} t^{7/2}$$

$$= \frac{1}{3} - \frac{2}{7} = \boxed{\frac{1}{7}}$$

[8]

2. Find the area of the region bounded between the curves y = x + 1 and $y = x^2 - x - 2$. Your solution should include an appropriately labelled sketch of the region.

Solve
$$x+1=x^2-x-2$$

=> $0=x^2-2x-3$
=> $0=(x-3)(x+1)$
=> $x=-1$ or $x=3$

Then Area =
$$\int_{-1}^{3} ((x+1)-(x^2-x-2)) dx$$

= $\int_{-1}^{3} (2x+3-x^2) dx$
= $x^2+3x-\frac{1}{3}x^3\Big]_{-1}^{3}$
= $(9+9-9)-(1-3+\frac{1}{3})$
= $11-\frac{1}{3}$

[4] 3. Approximate $\int_{1}^{3} \sqrt{1+x} \, dx$ by a Riemann sum with N=4 subintervals, using right-endpoints.

Do not evaluate the sum!

$$\Delta_{x} = \frac{3-1}{4} = \frac{1}{2}$$

$$\int_{1}^{3} \sqrt{1+x} \, dx \approx \left(\sqrt{1+\frac{3}{2}} + \sqrt{1+2} + \sqrt{1+\frac{5}{2}} + \sqrt{1+3} \right) \cdot \frac{1}{2}$$

$$= \left(\sqrt{\frac{5}{2}} + \sqrt{3} + \sqrt{\frac{3}{2}} + 2 \right) \cdot \frac{1}{2}$$

4. Give expressions in terms of definite integrals for the following.

Do not evaluate your integrals!

[3] (a) The distance travelled over the first 10 seconds by a particle moving in a straight line whose velocity after t seconds is $1 - e^{-t}$ m/s.

$$\int_{0}^{10} (1-e^{-t}) dt$$

[3] (b) The volume of the solid obtained by revolving the portion of the curve $y = \ln x$ between x = 1 and x = e around the x-axis.

[3] (c) The average value of the function $f(x) = \sqrt{1+x^2}$ over the interval [1, 4].

[4] 5. Compute $\frac{\partial}{\partial x} xy^2 \sin(yx^3)$.

$$y^{2} \sin(yx^{3}) + xy^{2} \cos(yx^{3}) \cdot 3x^{2}y$$

= $y^{2} \sin(yx^{3}) + 3x^{3}y^{3} \cos(yx^{3})$

[8] 6. Find all critical points of $f(x,y) = 10 - x^2 + 2xy - 3y^2 - 4x + 16y$ and use the second derivative test to classify them as maxima, minima, or neither. Clearly explain your reasoning.

$$\frac{2f}{5x} = -2x + 2y - 4, \quad \frac{2f}{5y} = 2x - 6y + 16$$
Set
$$\frac{2f}{5x} = \frac{2f}{5y} = 0: \quad \begin{cases} -2x + 2y = 4 \\ 2x - 6y = -16 \end{cases} \Rightarrow -4y = -12$$

$$\Rightarrow y = 3$$

$$\Rightarrow x = 1$$

So (x,y) = (1,3) is the only critical pt. Now: $\frac{3^2f}{3x^2} = -2$, $\frac{3^2f}{2y^2} = -6$, $\frac{3^2f}{3x^2y} = 2$ $\Rightarrow D(x,y) = (-2)(-6) - (2)^2$ = 8

Since D(1,3) = 8 > 0 and $\frac{2^2 + 1}{2 \times 2}(1,3) = -2 < 0$, conclude that (1,3) is a local maximum.

7. Compute:

[6]

[5] (a)
$$\int_0^1 \frac{x^3}{(1+3x^4)^2} dx$$
 Let $u = 1+3x^4$, so $du = 12x^3 dx$

$$= \int_1^4 \frac{1}{u^2} \cdot \frac{1}{12} du$$
 and $x = 0 \Rightarrow u = 1$

$$= -\frac{1}{12} \cdot \frac{1}{u} \int_1^4$$

$$= -\frac{1}{12} \left(\frac{1}{4} - 1\right) = \frac{1}{16}$$
[5] (b) $\int xe^{2x} dx$
Let $u = x$, $dv = e^{2x} dx$

$$du = dx$$
, $v = \frac{1}{2}e^{2x}$
Thun $\int xe^{7x} dx = \frac{1}{2} xe^{2x} - \int \frac{1}{2}e^{2x} dx$

8. The region R of the (x, y)-plane is shaded in the sketch below. Find the volume of the solid over R that is bounded above by $f(x, y) = 1 - 2x^2y$.

= 1 x e 2x - 1 e 2x + C

Volume = $\int_{0}^{1} \int_{0}^{x^{2}} (1-2x^{2}y) dy dx$ = $\int_{0}^{1} (y-x^{2}y) \Big|_{0}^{x^{2}} dx$ = $\int_{0}^{1} (x^{2}-x^{2}(x^{2})^{2}) dx$

Execulated "net volume" here, since
the function 1-2x2y can be
negative over R. (I intended
f(x,y)=1+2x2y.)

If you're curious, the true
volume here is

32-2972

See me if you want to know why.