Math 1215: Quiz #3

Name: SULUTIONS A#: Section:

1. Find the area bounded between $y = x^2 + 1$ and y = -x over the interval $0 \le x \le 2$.

2. Find the volume of the solid obtained by revolving the segment of the curve $y = \sqrt{x}$ between x = 1 and x = 4 about the x-axis.

Name: Solutions	A#:	Section:
-----------------	-----	----------

1. Find the area bounded between y=2x and $y=-x^2$ over the interval $1 \le x \le 3$.

Aren =
$$\int_{1}^{3} (2x - (-x^{2})) dx$$

= $\int_{1}^{3} (2x + x^{2}) dx$
= $(x^{2} + \frac{1}{3}x^{3})|_{1}^{3}$
= $(9 + 9) - (1 + \frac{1}{3})$
= $|\frac{50}{3}|$

2. Find the volume of the solid obtained by revolving the segment of the curve $y=e^x$ between x=0 and x=1 about the x-axis.

Volume =
$$\int_{0}^{1} \pi (e^{x})^{2} dx$$

= $\pi \cdot \int_{0}^{1} e^{2x} dx$
= $\pi \cdot \frac{1}{2} e^{2x}$