Name:	A#:	Section:
-------	------------	----------

1. Compute $\int \left(\frac{3}{x} - \frac{x}{4} + 5\right) dx$

2. Find all functions f(x) that satisfy $f'(x) = \sqrt{x} - e^x$ and f(0) = 1.

Name:	A#:	Section:
-------	-----	----------

1. Evaluate $\int_{1}^{2} x(1-2x^{2}) dx$.

2. Approximate $\int_0^2 \sqrt{x} \, dx$ by a Riemann sum with N = 4 subintervals, using right endpoints.

Leave your answer as a sum.

Name:	A#:	Section:
-------	-----	----------

1. Evaluate $\int_{-1}^{0} x^2 (1+3x) \, dx$.

2. Approximate $\int_{1}^{2} e^{x} dx$ by a Riemann sum with N = 4 subintervals, using right endpoints.

Leave your answer as a sum.

1. Find the area bounded between $y = x^2 + 1$ and y = -x over the interval $0 \le x \le 2$.

2. Find the volume of the solid obtained by revolving the segment of the curve $y = \sqrt{x}$ between x = 1 and x = 4 about the x-axis.

Winter 2018

Name:	A #:	Section:
-------	-------------	----------

1. Find the area bounded between y = 2x and $y = -x^2$ over the interval $1 \le x \le 3$.

2. Find the volume of the solid obtained by revolving the segment of the curve $y = e^x$ between x = 0 and x = 1 about the x-axis.

Name:	A#:	Section:
-------	------------	----------

1. Let $f(x, y) = y^3 - 3x^3y^2 + 2x^2 - x + 1$. Compute:

(a)
$$\frac{\partial f}{\partial x}$$

(b)
$$\frac{\partial f}{\partial y}$$

(c)
$$\frac{\partial^2 f}{\partial y \, \partial x}$$

2. The number of people who ride the bus in Halifax is a function B(p,t) of the city's population p and the price t of a bus ticket. At any given point (p,t), would we expect the value of $\frac{\partial B}{\partial t}$ to be be positive or negative? Why?

Name:	A#:	Section:
-------	------------	----------

- 1. Let $f(x,y) = 1 3x^2 + 6xy + y^2 5x 3y$.
 - (a) Find all possible points (x, y) at which f could have a local extremum.

(b) Apply the second-derivative test to determine whether the points found in (a) are local maxima, local minima, or neither.

Name:	A#:	Section:
-------	------------	----------

- 1. Let $f(x,y) = 2x^2 + 5xy + 5y^2 2x y + 3$.
 - (a) Find all possible points (x, y) at which f could have a local extremum.

(b) Apply the second-derivative test to determine whether the points found in (a) are local maxima, local minima, or neither.

Name:	A#:	Section:
-------	-----	----------

1. Compute $\int_0^1 \int_{-3}^3 (2x^3 - y^2 e^x) \, dy \, dx.$

2. Compute
$$\int \frac{x^3}{\sqrt{1+x^4}} dx$$

Winter 2018

Name:	A#:	Section:
-------	------------	----------

1. Use the trapezoid rule with n = 3 subintervals to estimate $\int_{1}^{4} \sqrt{x} \, dx$.

2. A machine is installed today. After t years, it will be generating income at a rate of $10000e^{-t/10}$ dollars per year. Find the present value of the income generated by this machine over the next 5 years using a discount rate of 5%.

Winter 2018

Name:	A#:	Section:

1. Determine whether the improper integral $\int_0^\infty \frac{dx}{(2+x)^3}$ converges or diverges.

2. Find the unique function y(t) that satisfies $y' = te^{-y}$ and y(0) = 1.

Winter 2018

Name:	A#:	Section:
-------	-----	----------

1. Use an integrating factor to solve the equation y' - 2ty = 4t.