Name: Solutions A#: Section:

1.
$$\int_{-1}^{1} \frac{3}{e^{2t}} dt$$
= $3 \int_{-1}^{1} e^{-2t} dt$
= $3 \left(-\frac{1}{2} e^{-2t} \right) \Big|_{-1}^{1} = -\frac{3}{2} \left(e^{-2} - e^{2} \right)$
= $\frac{3}{2} \left(e^{2} - \frac{1}{2} e^{2} \right)$

2.
$$\int_{0}^{1} (1 - x^{2})^{2} dx$$

$$= \int_{0}^{1} \left(1 - 2x^{2} + x^{4} \right) dx$$

$$= \left(x - \frac{2}{3}x^{3} + \frac{1}{5}x^{5} \right) \Big|_{0}^{1} = \left(1 - \frac{2}{3} + \frac{1}{5} \right) - 0 = \boxed{\frac{8}{15}}$$

3. Given that
$$\int_{-1}^{2} f(x) dx = 3 \text{ and } \int_{-1}^{6} f(x) dx = 5, \text{ find } \int_{2}^{6} f(x) dx.$$

$$\int_{2}^{\ell} f(x) dx = \int_{-1}^{\ell} f(x) dx - \int_{-1}^{\ell} f(x) dx$$

$$= 5 - 3$$

$$= \boxed{2}$$

4. Find all real numbers b > 0 such that the area under the graph of $y = \frac{x^2 + 1}{2}$ over the interval $0 \le x \le b$ is equal to b..

The area is
$$\int_0^b \frac{x^2+1}{2} dx = \frac{1}{2} \int_0^b (x^2+1) dx$$

= $\frac{1}{2} (\frac{1}{3}x^3 + x) \Big|_0^b$
= $\frac{1}{2} (\frac{1}{3}x^3 + b)$

Since
$$b = \frac{1}{2}(\frac{b^3}{3}+b) \Rightarrow b^3-3b=0$$

 $\Rightarrow b(b^2-3)=0$
Since $b>0$, get $b=\sqrt{3}$

5. (a) Approximate the area under the graph of $y = 1/x^2$ between x = 1 and x = 3 by a Riemann sum, with N = 6 subintervals and using left endpoints. You can leave your answer as a sum of fractions.

$$\Delta x = \frac{3 - 1}{6} = \frac{1}{3}$$

$$= \frac{3 - 1}{6} = \frac{1}{3}$$

$$= \frac{1}{3} = \frac{1}{3$$

(b) Illustrate your approximation in (a) with a sketch. Use the sketch to determine whether you have over- or underestimated the area.

(c) Find the true value of the area described in (a).

Area =
$$\int_{1}^{3} \frac{dx}{x^{2}} = -\frac{1}{x} \Big|_{1}^{3}$$

= $-\frac{1}{3} - (-1)$
= $\frac{2}{3}$

6. A water tank is being drained. After t minutes of draining, the water level in the tank is decreasing at a rate of $(8-t)^{-2/3}$ metres per minute. How much does the water level decrease in the first 7 minutes?

Decrease =
$$\int_{0}^{7} (8-t)^{-2/3} dt$$

= $-3(8-t)^{1/3}\Big|_{0}^{7}$
= $-3(1^{1/3}-8^{1/3})$
= $(-3)(1-2)$
= $|3|$ metres.