

Performance of Large Language Models

on the Universality Problem of Regular

Expressions

 Undergraduate Student Research Report, 2025

 By: Muhammad Arham Mussawar

 Supervisors: Stavros Konstantinidis and Argy Papageorgiou

LLM Consultant: Nikita Neveditsin

Introduction:

As large language models (LLMs) increasingly expand their capabilities

beyond natural language understanding and into domains requiring formal

reasoning, it becomes essential to examine their performance on classical

computational problems. Some of these problems are not only

algorithmically challenging but also provide a structured framework for

evaluating reasoning skills in a controlled and theoretically grounded setting.

Among the many possible starting points, this study focuses on the

universality problem for regular expressions, a foundational decision

problem in automata theory. Regular expressions are ubiquitous across

computer science, appearing in applications ranging from text processing to

network security [2], and their familiarity makes them an accessible yet non-

trivial testbed for evaluating the formal reasoning abilities of LLMs.

The universality problem offers a rigorous and well-characterized entry point

for investigating how LLMs engage with tasks that demand more than

surface-level pattern recognition. Although the syntactic construction rules

for regular expressions are relatively simple — involving operations like

union, concatenation, and Kleene star — determining universality requires

deeper computational understanding. Specifically, it asks whether a given

regular expression defines the entire set of possible strings over an alphabet.

This task is computationally non-trivial: the universality problem is classified

as PSPACE-complete [3], meaning that solving it may require space that

grows exponentially with the size of the input, making it challenging even for

any computing machine.

Unlike simple pattern-matching tasks, universality requires reasoning about

the absence of counterexamples and exhaustive coverage, involving

operations like complement and closure under union and concatenation. A

model must infer not only what strings are accepted, but critically, whether

any possible string might be excluded. These subtle logical requirements

make universality particularly revealing success or failure in solving it

provides early indicators of an LLM's capacity for structured reasoning,

implicit computation over combinatorially large spaces, and logical

consistency across exhaustively large domains. Beginning with a problem

that is decidable yet computationally demanding allows this project to

systematically probe the strategies and limitations of LLMs when faced with

algorithmically hard tasks requiring formal reasoning.

Summary of this research: This study investigates how large language

models handle the universality problem for regular expressions. We first

establish the theoretical background of universality and approximate

universality. Next, we construct a benchmark dataset of regular expressions,

including both universal and non-universal cases. We then evaluate the

performance of several state-of-the-art LLMs under different prompting

strategies, measuring both correctness and reasoning quality. Finally, we

conduct error analysis to identify common failure modes and propose fine-

tuning directions. Together, these results provide insight into the capabilities

and limitations of LLMs in tackling algorithmically hard problems.

We found that all four models performed remarkably well on the universality

problem, achieving near-perfect accuracy across both universal and non-

universal cases, with only minor variations observed in Gemini at certain

depths.

0. Preliminaries

Before addressing the universality problem, it is important to review key

concepts from automata theory and formal languages that form the

foundation of this study.

 0.1 Alphabet and Strings

An alphabet Σ is a finite, non-empty set of symbols.

A string over Σ is a finite sequence of symbols from Σ.

ε is the empty string.

The set of all strings (including the empty string ε) over Σ is denoted by Σ∗.

 0.2 Regular Expressions

A regular expression is a formal way to describe a set of strings, known as a

regular language.

If R is a regular expression, then 𝐿(R) denotes the language described by R.

Every regular expression defines a unique regular language as follows:

𝐿(σ) = {σ}, for any σ in Σ

𝐿(ε) = {ε},

Union (𝑅1 + 𝑅2): We have that 𝐿(𝑅1 + 𝑅2) = 𝐿(𝑅1) + 𝐿(𝑅2).

Concatenation (𝑅1𝑅2): 𝐿(𝑅1𝑅2) = a string from 𝑅1 followed by a string from

𝑅2.

Kleene star (𝑅∗): 𝐿(𝑅∗) = zero or more repetitions of a string from 𝑅.

Example:

Let Σ={0,1} and R=(0+1)*.

Then 𝐿(R)=Σ*, i.e., the set of all binary strings.

 0.3 Regular Languages and Automata

A regular language is a set of strings that can be described by a regular

expression or accepted by a finite automaton. If A is a regular expression or a

finite automaton then 𝐿(A) denotes the language of A.

There are two types of finite automata:

• Deterministic Finite Automata (DFA): exactly one transition per

symbol from any state.

• Nondeterministic Finite Automata (NFA): multiple possible

transitions per symbol (or no transition at all).

Both DFAs and NFAs recognize exactly the class of regular languages [1].

Two automata A and B are equivalent if 𝐿(A) = 𝐿(B). Language containment

𝐿(A) ⊆ 𝐿(B) is a related decision problem used in compiler verification and

model checking [10].

 0.4 Language Operations

Some operations on languages that are useful in this context include:

• Complement (𝐿𝑐): all strings over Σ that are not in L.

• Intersection and Union of languages.

• Emptiness Checking: determining whether a given automaton accepts

any strings at all.

These operations will be critical when reasoning about universality [2].

1. Problem Description: The Universality Problem

Now, we define the universality problem. The universality problem is a

fundamental question in automata theory and formal languages.

The formal definition can be written as:

Given a regular expression 𝑅 over a finite alphabet Σ, does 𝑅 describe all

possible strings over Σ?

Formally, is 𝐿(𝑅) = Σ∗?

In simpler terms, the task is to determine whether the language defined by 𝑅

accepts every string that can be formed using the symbols from Σ, without any

exceptions. This problem has certain properties associated with it:

(1) Decidability:

The universality problem for regular expressions is decidable [2].

This follows because regular expressions can be converted into finite

automata, and finite automata have decidable universality.

(2) Complexity:

Although decidable, the problem is PSPACE-complete [3].

This means solving it requires a lot of computational resources (memory and

time) in the worst case, and it is unlikely to be solvable efficiently for large

expressions.

This problem is important both theoretically — for understanding the limits of

formal language models — and practically — in applications like program

verification, compiler optimization, and security (e.g., ensuring that certain inputs

are always accepted or rejected).

1.1 Approximate Universality

While the standard universality problem asks whether a regular expression (or

equivalent automaton) accepts all strings over a given alphabet (i.e., L(R) = Σ*), it is

often practical to ask a relaxed version of this question—namely, whether the

language accepts “almost all” strings [4] under a given probabilistic distribution.

This idea leads to the notion of approximate universality, wherein the language is

deemed universal within a margin of error ε, accepting at least a (1 - ε) fraction of

all strings.

This approximation is particularly relevant in contexts such as coding theory [4],

where constructing a maximally inclusive set of strings (e.g., valid codewords) is

computationally expensive, but an ε-close approximation is sufficient for practical

use. It also allows us to circumvent the PSPACE-hardness of the exact problem

using randomized approximation algorithms (PRAX), which offer probabilistic

guarantees within a tolerance threshold.

2. Standard Solution Strategy for Universality

To decide the universality of a regular expression, a standard algorithmic

procedure is typically followed. This procedure systematically reduces the

problem to emptiness checking on a finite automaton, leveraging the closure

properties of regular languages.

The steps are as follows:

1. Conversion to NFA:

The regular expression 𝑅 is first converted into an equivalent

nondeterministic finite automaton (NFA), using methods such as

Thompson’s construction [5]. This ensures that the structure of 𝑅 is

preserved while enabling automaton-based analysis.

2. Conversion to DFA:

The resulting NFA is transformed into a deterministic finite automaton (DFA)

using the subset construction (powerset construction) [6] method. This step

creates a DFA that accepts the same language as the original NFA but with

deterministic transitions.

3. Complementation:

The DFA is complemented by swapping its accepting and non-accepting

states [2], [8]. As regular languages are closed under complement [2], the

resulting DFA accepts exactly the set of strings not accepted by the original

regular expression.

4. Emptiness Checking:

Finally, the complemented DFA is examined to determine whether its

language is empty [2]:

• If the complement accepts no strings, then 𝐿(𝑅) = Σ∗, and the

regular expression is universal.

• If the complement accepts any string, then 𝑅 does not describe

all possible strings.

This method provides a rigorous decision procedure based entirely on automata-

theoretic operations. While conceptually straightforward, practical

implementation can become computationally intensive due to potential

exponential growth during the subset construction phase [7].

Thus, the universality problem lies at the intersection of syntactic construction

and semantic verification, requiring a detailed analysis of the underlying structure

of the language described by the regular expression.

In contrast to exhaustive algorithms, randomized approximation (PRAX) [4]

methods estimate universality via statistical sampling. These methods sidestep

full determinization and offer polynomial-time approximations with probabilistic

guarantees.

3.Methodology

To rigorously evaluate how large language models (LLMs) handle the universality

problem for regular expressions, we employ a structured, multi-phase

methodology. This approach emphasizes clarity, reproducibility, and theoretical

alignment with automata theory. Each phase is designed to probe not only the

correctness of model outputs but also the depth and structure of the reasoning

processes underlying those outputs.

Next we give a quick summary of the parts of our methodology, and further below

we explain each part in a separate section.

 3.1 Model Selection:

We select a diverse set of large language models that differ in their training

objectives (e.g., general-purpose vs. code-oriented), architectural features (e.g.,

multimodal extensions, context length), and access mechanisms (e.g.,

proprietary APIs vs. open-source implementations). This diversity allows us to

investigate whether such differences influence formal reasoning performance on

the universality problem. Our goal is to include models known for their capacity to

engage in formal reasoning and structured problem solving. Priority is given to

models that support explanation-driven outputs and have demonstrated strong

performance on algorithmic, mathematical, and symbolic tasks [11]-[14]. The

selection is intended to represent a range of capabilities while ensuring that the

models are capable of interpreting formal language structures such as regular

expressions and finite automata.

 3.2 Use of Useful Equivalences:

In designing the problem set, we leverage known equivalences between regular

expressions [2], [8] to generate multiple structurally distinct but semantically

identical forms. These transformations are used to ensure that LLMs are not

merely relying on surface-level pattern recognition but are required to reason

about the underlying language defined by each expression. Examples of such

equivalences include the distributive property of union over concatenation,

simplifications of nested Kleene stars, and the elimination of redundant

components. By including these equivalent variants, we are able to test whether

models understand that different syntactic forms can define the same language

and whether they can apply or recognize such transformations during their

reasoning process.

 3.3 Problem Set Design:

A custom benchmark of regular expressions is constructed to reflect a wide

spectrum of structural complexity and semantic behaviors. The dataset includes

both universal and non-universal expressions, as well as adversarial cases and

expressions designed to test approximate universality. Examples vary in alphabet

size and structural composition, and where appropriate, equivalent forms derived

from Section 3.2 are incorporated. This diversity ensures that model evaluation

captures reasoning over both the syntax and semantics of regular languages.

 3.4 Prompting and Testing:

To examine the effect of prompt structure on model performance, we test each

model using multiple prompting approaches. These include direct zero-shot

prompts, illustrative few-shot examples, and chain-of-thought (CoT) prompts

that explicitly guide the model through the steps of transforming regular

expressions into automata and analyzing language coverage. These prompting

strategies build on established methods in large language model evaluation [11]–

[14]. All prompts are standardized across models to reduce variability and allow

for fair comparison, and are designed to elicit not just a binary decision but also an

accompanying explanation, enabling deeper insight into model reasoning.

 3.5 Evaluation Metrics:

Evaluation is conducted using both quantitative and qualitative criteria. Binary

accuracy is recorded based on whether the model correctly determines

universality. In addition, we assess the quality of explanations using a rubric

grounded in automata-theoretic principles, capturing whether the model refers to

concepts such as determinization, complementation, and closure properties.

Approximate universality is also considered, allowing us to assess cases where

models recognize near-complete coverage. Full details of scoring procedures and

validation tools are provided in subsequent sections.

 3.6 Error Analysis and Fine-Tuning:

To better understand failure modes, incorrect model outputs are categorized into

distinct types, including syntactic errors (e.g., misinterpreting regular expression

structure), semantic errors (e.g., incorrect reasoning about automata behavior),

and logical errors (e.g., making unjustified generalizations). This categorization

helps reveal patterns in model performance and provides guidance for refining

prompt design or model selection in future work.

 3.7 Conclusion & Reporting:

A concluding section is included at the end of this paper to provide an overall

assessment of the study, summarizing how well the models performed and

highlighting directions for future work. In addition, the results of the experiments

are compiled into this structured report, which presents model performance

metrics, typical reasoning errors, and broader insights into the challenges LLMs

face when solving formal algorithmic problems.

4.Model selection

This phase of the project focuses on selecting a targeted subset of large language

models (LLMs) for empirical evaluation. The overarching goal is to investigate the

extent to which modern LLMs, even though they do not run formal algorithms

directly, can emulate or approximate reasoning strategies required to solve the

universality problem for regular expressions. As such, model selection is a critical

component that must balance capability, accessibility, and diversity in

architectural design.

The selected models are expected to engage with tasks that require more than

surface-level pattern recognition. Specifically, they must demonstrate a capacity

for symbolic manipulation, logical inference, and an understanding of formal

language constructs such as regular expressions, finite automata, and language

containment. These requirements naturally favor models that have shown strong

performance on tasks involving structured reasoning, formal logic, and

mathematical problem-solving.

To guide the selection process, we consider four key criteria. First, reasoning

competence is prioritized: we select models with demonstrated effectiveness on

benchmarks involving multi-step reasoning, algorithmic thinking, and formal

correctness, such as mathematical proofs or symbolic logic derivations. Second,

transparency and accessibility are important for ensuring reproducibility; we favor

models with well-documented capabilities and stable API access. Third,

architectural variety is sought to allow comparison across different training

regimes. This includes instruction-tuned, code-oriented, and general-purpose

models. Comparing these helps us see whether training style affects reasoning

ability. Fourth, explainability is a central concern. Since part of our evaluation

focuses on the reasoning process itself, models that support or respond well to

chain-of-thought prompting are preferred.

At this stage, we make no assumptions about the internal mechanisms of the

models or their explicit exposure to formal language theory during training.

Instead, our selection is based entirely on observable behaviors in structured

problem-solving tasks. The models are not merely tools for solving instances, but

are studied as systems that may internalize and approximate formal reasoning in

unique, architecture-dependent ways.

Following their selection, each model is subjected to a controlled series of

experiments involving both universal and non-universal regular expressions.

Performance is assessed based on overall correctness, alignment between

explanations and formal theory, and consistency across different prompting

strategies. Importantly, we evaluate models not only on their exact answers but

also on their ability to approximate correctness when exact universality is

infeasible. This allows us to capture a broader spectrum of reasoning behavior,

including heuristic or probabilistic strategies that may reflect latent understanding

even in the absence of full algorithmic precision.

The four models selected for this study represent a diverse cross-section of

current large language model architectures and training philosophies. Each was

chosen based on its alignment with the evaluation criteria outlined earlier,

including reasoning competence, architectural variety, transparency, and

explainability. A brief rationale for selecting each model is provided below.

(1) OpenAI’s ChatGPT-4:

Chosen for its widely demonstrated performance on complex reasoning

tasks, GPT-4 Turbo serves as a strong upper bound in our experiments [11].

Its instruction tuning, support for chain-of-thought prompting, and

consistency across mathematical and code-based benchmarks make it an

ideal reference point for formal reasoning tasks [11].

(2) Claude 3 sonnet (v 3.7):

Selected for its architectural novelty and emphasis on safety and

interpretability, Claude 3 is known to perform competitively on tasks

involving logical inference [12]. Its inclusion allows us to test whether

alignment-oriented training translates to improved formal reasoning.

(3) Gemini 2.5 Pro:

Gemini’s multimodal and code-informed training suggests a strong aptitude

for symbolic tasks [13]. We include it to evaluate whether models trained

with broader context windows and code datasets show improved

performance on automata-theoretic problems.

(4) DeepSeek-Coder R1 Chat:

Chosen for its code-oriented training and open-source accessibility,

DeepSeek performs well on tasks involving symbolic reasoning and formal

language analysis [14]. Its inclusion allows us to assess how instruction-

tuned, code-focused models generalize to problems like regex universality in

a reproducible, transparent setting.

5.Use of Useful Equivalences

Regular expressions, despite their compact syntax, can often be written in

multiple syntactic forms that define the same language. These equivalences,

rooted in the algebraic properties of regular languages, provide critical tools for

both simplification and transformation. In this study, we leverage a set of known

equivalences not only for preprocessing but also as an implicit test of model

understanding: can a large language model (LLM) recognize that two structurally

different expressions represent the same language?

To this end, we employ a curated collection of equivalence rules that are standard

in formal language theory and widely used in compiler construction and

automata-based verification. These include [2],[8]:

• Identity and Nullability:

α + ∅ ~ α

∅ . α ~ ∅

ϵ ⋅ α ∼ α

α* ∼ ϵ + α ⋅ α*

• Idempotence and Commutativity:

α + α ∼ α

α + β ∼ β + α

• Associativity:

α + (β+γ) ∼ (α+β) + γ

α (βγ) ∼ (αβ) . γ

• Distributivity:

α . (β+γ)∼α . β + α . γ

(α+γ) . β∼ α . β + γ . β

• Kleene Star Properties:

(α*)* ∼ α*

(ϵ+α)* ∼ α*

(α+β)* ∼ (α*β*)*

ϵ + 0 + (00+000)* ∼ 0*

6.Problem set design

To evaluate the formal reasoning capabilities of large language models (LLMs) on

the universality problem, we constructed a custom dataset of regular expressions

over the binary alphabet Σ = {0, 1} using a two-phase strategy:

(i) stochastic generation of syntactically diverse expressions by depth, and

(ii) targeted construction of semantically guaranteed universal expressions.

This approach adapts the randomized approximation framework for NFA

universality from [4], ensuring that the dataset captures a broad range of structural

patterns and universality behaviors while remaining reproducible.

Phase 1 — Random Generation by Depth

We implemented a recursive expression generator in Python using the FAdo library

[9].

The generator operates over Σ = {0, 1} with no ε or ∅ in the base step.

At depth 1, only atomic symbols are chosen (CAtom('0') or CAtom('1')).

For greater depths, the generator randomly selects one of four production types:

• symbol — atomic symbol from Σ

• star — Kleene closure of a recursively generated subexpression (CStar)

• union — disjunction of two recursively generated subexpressions (CDisj)

• concat — concatenation of two recursively generated subexpressions

(CConcat)

Depth corresponds to the maximum nesting level of these operators and serves as

a proxy for syntactic complexity.

Each generated regular expression was converted to an NFA via FAdo’s .toNFA()

method [9].

Universality was then approximately assessed using FAdo’s prax_univ_nfa

implementation [9] of the PRAX algorithm, instantiated with a Dirichlet length

distribution (t = 2.001) and tolerance parameter ε = 0.01:

GenWordDis(Dirichlet(t=2.001), {'0','1'}, EPSILON)

Expressions returning True from prax_univ_nfa were labeled as approximately

universal; others as non-universal.

This classification follows the probabilistic universality-index testing framework of

[4].

Phase 2 — Guaranteed-Universal Construction

To balance the dataset and ensure representation of known universal expressions

at every depth, we generated additional expressions using safe algebraic

templates that preserve universality.

Starting from the canonical universal expression (0 + 1)*, we applied operations

such as:

• Union with Σ* or with ε-accepting expressions

• Concatenation with ε-accepting subexpressions

• Kleene star of an already universal expression

These templates, grounded in regular-expression equivalences (see Section 5),

guarantee that the resulting language remains Σ* [8], regardless of subexpression

choice.

Final Dataset

For each depth d ∈ [1, 10], we generated 200 regular expressions, 100 Universal

and 100 Non-Universal, producing ~ 2,000 random expressions in total.

Depth and universality labels are stored alongside the original expression and its

structural parse, enabling stratified evaluation of LLM performance by both

syntactic complexity and universality status.

This structure allows analysis of reasoning patterns as depth increases and

supports reproducibility in future experiments.

7. Prompting and Testing

To evaluate the ability of large language models (LLMs) to solve the universality

problem, we designed a controlled prompting framework that tests multiple

prompting strategies across a standardized problem set. The goal was to assess

not only the correctness of the models' answers, but also the quality, structure,

and consistency of their reasoning. Each model was evaluated on the same set of

regular expressions, stratified by depth and universality status (both approximate

and exact), ensuring that performance comparisons reflect differences in model

reasoning rather than differences in input distribution.

We employed three primary prompting strategies: zero-shot, few-shot, and

chain-of-thought (CoT). In the zero-shot setting, models were directly asked

whether a given regular expression is universal over a specified alphabet (typically

{0,1}) without prior examples. This setup tests the model’s innate knowledge of

formal language concepts. In the few-shot setting, prompts included 2–3

annotated examples of universal and non-universal expressions, each

accompanied by a brief explanation. For example:

Prompt: “Is the regular expression (0+1)*(00+11)(0+1)*universal over the alphabet

{0,1}? Explain your reasoning.”

Answer: “No. This expression requires that every accepted string must contain

either the substring ‘00’ or the substring ‘11’. Therefore, it excludes strings such as

01, 10, or any string without consecutive identical symbols. Since not all binary

strings are accepted, the expression is not universal.”

By providing such examples, the few-shot strategy simulates in-context learning

and probes whether models can generalize from structural patterns. The most

detailed testing condition involved chain-of-thought prompting, in which models

were guided through the formal reasoning process step by step. These prompts

encouraged models to (i) convert the regex into an equivalent automaton [5][6], (ii)

describe the structure of accepted strings, (iii) consider whether any strings might

be excluded, and (iv) conclude universality status based on language coverage.

All prompts were kept structurally consistent across models and experiments to

reduce prompt-induced bias. Care was taken to avoid using surface-level patterns

that could trivially reveal universality; instead, prompts were designed to require

reasoning about semantic coverage and the absence of counterexamples. For

example, expressions like (0+1)∗ were mixed with deceptive non-universal

expressions such as (0+1)∗0(0+1)∗, which accept large but incomplete subsets of

Σ∗. Where applicable, model outputs were parsed to extract both a binary answer

("Yes"/"No") and an accompanying rationale, which was later evaluated

independently.

By varying the prompt type and capturing both decisions and justifications, we

were able to systematically probe whether model performance results from

superficial pattern recognition or deeper automata-theoretic reasoning. For

instance:

• Zero-shot prompt: “Is the regular expression (0+1)∗ universal over {0,1}?

Answer Yes or No, and justify your reasoning.”

• Few-shot prompt: Example 1 — (0+1)* is universal because it accepts all

binary strings. Example 2 — (0+1)*0(0+1)* is not universal because it

excludes strings that end in 1. Now, is (1*0*) universal? Explain your answer.

• Chain-of-thought prompt: “Convert the regex (0+1)*0(0+1)* into an

automaton. Describe what kinds of strings it accepts, then check whether

any binary strings are excluded. Conclude whether it is universal.”

These examples illustrate how prompts were designed to elicit different levels of

reasoning: from direct judgments in zero-shot, to in-context learning in few-shot,

to structured logical reasoning in chain-of-thought. This also allowed us to

measure how model behavior changes under cognitive load (as imposed by

syntactic depth or semantic ambiguity), and whether prompting strategy affects

consistency, reliability, or error types in LLM-generated outputs.

8.Evaluation Metrics:

Evaluation is conducted using both quantitative and qualitative measures to

capture the breadth of LLM performance on the universality problem. At the

quantitative level, we record binary accuracy—the proportion of cases where the

model’s universality judgment matches the ground truth label, obtained either

through exact automata-theoretic computation or high-confidence PRAX

classification. To account for the probabilistic nature of approximate universality,

we also compute tolerance-aware accuracy, crediting models for correctly

identifying expressions as “almost universal” when the measured universality

index meets or exceeds the (1−ε) threshold.

In addition to simple correctness, we track precision and recall [15]: precision

measures the share of predicted universal expressions that are actually universal,

while recall measures the share of true universal expressions that are correctly

identified. These two metrics together capture how well models balance false

positives (incorrectly labeling non-universal expressions as universal) and false

negatives.

At the qualitative level, model explanations are scored against a rubric grounded in

formal language theory. The rubric checks for reference to essential concepts

such as NFA/DFA conversion, closure properties, complementation, and

emptiness checking. It also evaluates whether the reasoning steps follow a

coherent and logically valid sequence, whether potential counterexamples are

considered, and whether the explanation demonstrates awareness of the

distinction between exact and approximate universality. For example, a strong

explanation for the regex (0+1)* might state: “Yes, this expression is universal

because it allows any sequence of 0s and 1s, including the empty string, which

covers all strings over the alphabet {0,1}.” By contrast, a weaker explanation might

simply say: “Yes, because it accepts everything,” without justifying why.

9. Error Analysis and Fine-Tuning:

Following initial evaluation, we conducted a systematic error analysis to

categorize the types of mistakes made by the models. Errors were grouped into

three main categories:

• Syntactic errors — misinterpreting the structure of the regular expression.

Example: A model treats (ab)* as accepting only the string “ab” instead of

repetitions such as “abab” or “ababab.”

• Semantic errors — incorrect reasoning about the language accepted by the

corresponding automaton.

Example: A model claims that (0+1)*0(0+1)* is universal, overlooking that it

excludes strings that have no “0’s”.

• Logical errors — drawing invalid conclusions despite otherwise correct

intermediate steps.

Example: A model correctly recognizes that (0+1)* generates all binary

strings but then incorrectly concludes that it is not universal.

For each error category, representative cases were examined to determine

whether failures stemmed from knowledge gaps, reasoning flaws, or prompt

misinterpretation.

Patterns observed during error analysis directly informed refinements to both

prompts and evaluation design. Frequent syntactic misreads prompted the

inclusion of explicit parenthesization and step-by-step parsing instructions in

chain-of-thought prompts. Semantic errors related to closure properties and

complement operations motivated the addition of targeted few-shot examples

covering these concepts. Logical inconsistencies were addressed by adding

verification steps to prompts, encouraging models to re-check intermediate

conclusions before finalizing answers.

Based on these findings, several fine-tuning strategies were considered to improve

performance. These included generating synthetic training data focused on

known failure patterns, incorporating equivalence-based reasoning exercises

(from Section 5), and designing curriculum-style prompts that gradually increase

expression complexity. While full fine-tuning was beyond the scope of this study,

these strategies provide a clear roadmap for enhancing model robustness and

supporting generalization in future work.

10. Conclusion:

As shown in the tables below, across all four models tested, performance on the

universality problem was consistently strong. ChatGPT-4o, Claude 3 Sonnet, and

DeepSeek achieved perfect accuracy (100%) on both universal and non-universal

regular expressions across all depths tested up to string length 12, showing

complete reliability within the evaluated range. Gemini v2.0 also performed at a

very high level, matching the other models in most cases, but showed slight drops

in universality accuracy at intermediate depths (97% at depth 4 and 99% at depth

5). These small deviations suggest that Gemini may occasionally struggle with

certain structural complexities, whereas the other three models remained

flawless. In addition to the tests reported in the tables, we also did a few isolated

tests that involved non-universal expressions whose language included all strings

of length up to 36. With proper initial prompts, the LLMs were able to correctly

report that the given regular expressions are indeed non-universal. Overall, the

results indicate that state-of-the-art LLMs are highly capable of reasoning about

regular expression universality at the tested scale, with only minor variability

across architectures.

Future Work: While the models performed exceptionally well on the tested

dataset, future research should extend these experiments to more complex

regular expressions, including larger alphabets, deeper nesting levels, and

adversarially constructed cases. Additional testing could also examine how fine-

tuning strategies and more varied prompting techniques influence model

robustness under increasing syntactic and semantic complexity.

CHATGPT-4o (Upto string length 12)

Depth LLM Accuracy for non-universal LLM Accuracy for universal

1 100% 100%

2 100% 100%

3 100% 100%

4 100% 100%

5 100% 100%

6 100% 100%

7 100% 100%

8 100% 100%

9 100% 100%

10 100% 100%

Claude 3 sonnet (v 3.7) (Upto string length 12)

Depth LLM Accuracy for non-universal LLM Accuracy for universal

1 100% 100%

2 100% 100%

3 100% 100%

4 100% 100%

5 100% 100%

6 100% 100%

7 100% 100%

8 100% 100%

9 100% 100%

10 100% 100%

DeepSeek (Upto string length 12)

Depth LLM Accuracy for non-universal LLM Accuracy for universal

1 100% 100%

2 100% 100%

3 100% 100%

4 100% 100%

5 100% 100%

6 100% 100%

7 100% 100%

8 100% 100%

9 100% 100%

10 100% 100%

Gemini v2.0 (Upto string length 12)

Depth LLM Accuracy for non-universal LLM Accuracy for universal

1 100% 100%

2 100% 100%

3 100% 100%

4 100% 97%

5 100% 99%

6 100% 100%

7 100% 100%

8 100% 100%

9 100% 100%

10 100% 100%

References:

[1] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM J.

Research and Development, vol. 3, no. 2, pp. 114–125, 1959.

[2] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation, 3rd ed., Addison-Wesley, 2006.

[3] M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “A New Algorithm for

Checking Universality of Finite Automata,” CAV 2006.

[4] S. Konstantinidis, M. Mastnak, N. Moreira, and R. Reis, “Approximate NFA

universality and related problems motivated by information theory,” Theoretical

Computer Science, vol. 972, p. 114076, 2023, doi: 10.1016/j.tcs.2023.114076.

[5] K. Thompson, “Programming Techniques: Regular expression search

algorithm,” Communications of the ACM, vol. 11, no. 6, pp. 419–422, 1968.

[6] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM J.

Research and Development, vol. 3, no. 2, pp. 114–125, 1959.

[7] “Powerset construction,” Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Powerset_construction

[8] D. Kozen, “A Completeness Theorem for Kleene Algebras and the Algebra of

Regular Events,” Information and Computation, vol. 110, no. 2, pp. 366–390, 1994.

[9] FAdo Documentation, v2.2, 2024. [Online]. Available: http://fado.dcc.fc.up.pt

[10] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press, 1999

[11] OpenAI, GPT-4 Technical Report, arXiv:2303.08774, 2023.

[12] Anthropic, Introducing Claude 3, Anthropic Blog, Mar. 2024. [Online].

Available: https://www.anthropic.com/news/claude-3

[13] Google DeepMind, Gemini 1.5: Unlocking Multimodal Reasoning at Scale,

Feb. 2024. [Online]. Available: https://deepmind.google/technologies/gemini/

[14] DeepSeek-AI, DeepSeek-Coder: Open Models for Code Intelligence,

arXiv:2401.14196, 2024.

[15] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval. Cambridge University Press, 2008.

