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Introduction: 

As large language models (LLMs) increasingly expand their capabilities 

beyond natural language understanding and into domains requiring formal 

reasoning, it becomes essential to examine their performance on classical 

computational problems. Some of these problems are not only 

algorithmically challenging but also provide a structured framework for 

evaluating reasoning skills in a controlled and theoretically grounded setting. 

Among the many possible starting points, this study focuses on the 

universality problem for regular expressions, a foundational decision 

problem in automata theory. Regular expressions are ubiquitous across 

computer science, appearing in applications ranging from text processing to 

network security [2], and their familiarity makes them an accessible yet non-

trivial testbed for evaluating the formal reasoning abilities of LLMs. 

The universality problem offers a rigorous and well-characterized entry point 

for investigating how LLMs engage with tasks that demand more than 

surface-level pattern recognition. Although the syntactic construction rules 

for regular expressions are relatively simple — involving operations like 

union, concatenation, and Kleene star — determining universality requires 

deeper computational understanding. Specifically, it asks whether a given 

regular expression defines the entire set of possible strings over an alphabet. 

This task is computationally non-trivial: the universality problem is classified 

as PSPACE-complete [3], meaning that solving it may require space that 

grows exponentially with the size of the input, making it challenging even for 

any computing machine. 

Unlike simple pattern-matching tasks, universality requires reasoning about 

the absence of counterexamples and exhaustive coverage, involving 



operations like complement and closure under union and concatenation. A 

model must infer not only what strings are accepted, but critically, whether 

any possible string might be excluded. These subtle logical requirements 

make universality particularly revealing success or failure in solving it 

provides early indicators of an LLM's capacity for structured reasoning, 

implicit computation over combinatorially large spaces, and logical 

consistency across exhaustively large domains. Beginning with a problem 

that is decidable yet computationally demanding allows this project to 

systematically probe the strategies and limitations of LLMs when faced with 

algorithmically hard tasks requiring formal reasoning. 

Summary of this research: This study investigates how large language 

models handle the universality problem for regular expressions. We first 

establish the theoretical background of universality and approximate 

universality. Next, we construct a benchmark dataset of regular expressions, 

including both universal and non-universal cases. We then evaluate the 

performance of several state-of-the-art LLMs under different prompting 

strategies, measuring both correctness and reasoning quality. Finally, we 

conduct error analysis to identify common failure modes and propose fine-

tuning directions. Together, these results provide insight into the capabilities 

and limitations of LLMs in tackling algorithmically hard problems. 

We found that all four models performed remarkably well on the universality 

problem, achieving near-perfect accuracy across both universal and non-

universal cases, with only minor variations observed in Gemini at certain 

depths. 

 



0. Preliminaries 

Before addressing the universality problem, it is important to review key 

concepts from automata theory and formal languages that form the 

foundation of this study. 

 

     0.1 Alphabet and Strings 

An alphabet Σ is a finite, non-empty set of symbols. 

A string over Σ is a finite sequence of symbols from Σ. 

ε is the empty string. 

The set of all strings (including the empty string ε) over Σ is denoted by Σ∗. 

 

     0.2 Regular Expressions 

A regular expression is a formal way to describe a set of strings, known as a 

regular language. 

If R is a regular expression, then 𝐿(R) denotes the language described by R. 

Every regular expression defines a unique regular language as follows: 

𝐿(σ) = {σ}, for any σ in Σ 

𝐿(ε) = {ε}, 

Union (𝑅1 + 𝑅2): We have that 𝐿(𝑅1 + 𝑅2) = 𝐿(𝑅1) + 𝐿(𝑅2). 

Concatenation (𝑅1𝑅2): 𝐿(𝑅1𝑅2)  = a string  from 𝑅1 followed by a string from 

𝑅2. 

Kleene star (𝑅∗): 𝐿(𝑅∗) = zero or more repetitions of a string from 𝑅. 



Example: 

Let Σ={0,1} and R=(0+1)*. 

Then 𝐿(R)=Σ*, i.e., the set of all binary strings. 

      0.3 Regular Languages and Automata 

A regular language is a set of strings that can be described by a regular 

expression or accepted by a finite automaton. If A is a regular expression or a 

finite automaton then 𝐿(A) denotes the language of A. 

There are two types of finite automata: 

• Deterministic Finite Automata (DFA): exactly one transition per 

symbol from any state. 

• Nondeterministic Finite Automata (NFA): multiple possible 

transitions per symbol (or no transition at all). 

Both DFAs and NFAs recognize exactly the class of regular languages [1]. 

Two automata A and B are equivalent if 𝐿(A) = 𝐿(B). Language containment 

𝐿(A) ⊆ 𝐿(B) is a related decision problem used in compiler verification and 

model checking [10]. 

     0.4 Language Operations 

Some operations on languages that are useful in this context include: 

• Complement (𝐿𝑐): all strings over Σ that are not in L. 

• Intersection and Union of languages. 

• Emptiness Checking: determining whether a given automaton accepts 

any strings at all. 

These operations will be critical when reasoning about universality [2]. 



1. Problem Description: The Universality Problem 

Now, we define the universality problem. The universality problem is a 

fundamental question in automata theory and formal languages. 

The formal definition can be written as: 

Given a regular expression 𝑅 over a finite alphabet Σ, does 𝑅 describe all 

possible strings over Σ? 

Formally, is 𝐿(𝑅) =  Σ∗? 

In simpler terms, the task is to determine whether the language defined by 𝑅 

accepts every string that can be formed using the symbols from Σ, without any 

exceptions. This problem has certain properties associated with it: 

(1) Decidability: 

The universality problem for regular expressions is decidable [2]. 

This follows because regular expressions can be converted into finite 

automata, and finite automata have decidable universality. 

(2) Complexity: 

Although decidable, the problem is PSPACE-complete [3]. 

This means solving it requires a lot of computational resources (memory and 

time) in the worst case, and it is unlikely to be solvable efficiently for large 

expressions. 

This problem is important both theoretically — for understanding the limits of 

formal language models — and practically — in applications like program 

verification, compiler optimization, and security (e.g., ensuring that certain inputs 

are always accepted or rejected).  

 

 

 



1.1 Approximate Universality 

While the standard universality problem asks whether a regular expression (or 

equivalent automaton) accepts all strings over a given alphabet (i.e., L(R) = Σ*), it is 

often practical to ask a relaxed version of this question—namely, whether the 

language accepts “almost all” strings [4] under a given probabilistic distribution. 

This idea leads to the notion of approximate universality, wherein the language is 

deemed universal within a margin of error ε, accepting at least a (1 - ε) fraction of 

all strings. 

This approximation is particularly relevant in contexts such as coding theory [4], 

where constructing a maximally inclusive set of strings (e.g., valid codewords) is 

computationally expensive, but an ε-close approximation is sufficient for practical 

use. It also allows us to circumvent the PSPACE-hardness of the exact problem 

using randomized approximation algorithms (PRAX), which offer probabilistic 

guarantees within a tolerance threshold. 

 

 

 

 

 

 

 

 



2. Standard Solution Strategy for Universality 

To decide the universality of a regular expression, a standard algorithmic 

procedure is typically followed. This procedure systematically reduces the 

problem to emptiness checking on a finite automaton, leveraging the closure 

properties of regular languages. 

The steps are as follows: 

1. Conversion to NFA: 

The regular expression 𝑅 is first converted into an equivalent 

nondeterministic finite automaton (NFA), using methods such as 

Thompson’s construction [5]. This ensures that the structure of 𝑅 is 

preserved while enabling automaton-based analysis. 

 

2. Conversion to DFA: 

The resulting NFA is transformed into a deterministic finite automaton (DFA) 

using the subset construction (powerset construction) [6] method. This step 

creates a DFA that accepts the same language as the original NFA but with 

deterministic transitions. 

 

3. Complementation: 

The DFA is complemented by swapping its accepting and non-accepting 

states [2], [8]. As regular languages are closed under complement [2], the 

resulting DFA accepts exactly the set of strings not accepted by the original 

regular expression. 

 

4. Emptiness Checking: 

Finally, the complemented DFA is examined to determine whether its 

language is empty [2]: 



• If the complement accepts no strings, then 𝐿(𝑅) =  Σ∗, and the 

regular expression is universal. 

• If the complement accepts any string, then 𝑅 does not describe 

all possible strings. 

This method provides a rigorous decision procedure based entirely on automata-

theoretic operations. While conceptually straightforward, practical 

implementation can become computationally intensive due to potential 

exponential growth during the subset construction phase [7]. 

Thus, the universality problem lies at the intersection of syntactic construction 

and semantic verification, requiring a detailed analysis of the underlying structure 

of the language described by the regular expression. 

In contrast to exhaustive algorithms, randomized approximation (PRAX) [4] 

methods estimate universality via statistical sampling. These methods sidestep 

full determinization and offer polynomial-time approximations with probabilistic 

guarantees. 

 

 

 

 

 

 

 

 

 



3.Methodology 

To rigorously evaluate how large language models (LLMs) handle the universality 

problem for regular expressions, we employ a structured, multi-phase 

methodology. This approach emphasizes clarity, reproducibility, and theoretical 

alignment with automata theory. Each phase is designed to probe not only the 

correctness of model outputs but also the depth and structure of the reasoning 

processes underlying those outputs. 

Next we give a quick summary of the parts of our methodology, and further below 

we explain each part in a separate section. 

     3.1 Model Selection: 

We select a diverse set of large language models that differ in their training 

objectives (e.g., general-purpose vs. code-oriented), architectural features (e.g., 

multimodal extensions, context length), and access mechanisms (e.g., 

proprietary APIs vs. open-source implementations). This diversity allows us to 

investigate whether such differences influence formal reasoning performance on 

the universality problem. Our goal is to include models known for their capacity to 

engage in formal reasoning and structured problem solving. Priority is given to 

models that support explanation-driven outputs and have demonstrated strong 

performance on algorithmic, mathematical, and symbolic tasks [11]-[14]. The 

selection is intended to represent a range of capabilities while ensuring that the 

models are capable of interpreting formal language structures such as regular 

expressions and finite automata. 

     3.2 Use of Useful Equivalences: 

In designing the problem set, we leverage known equivalences between regular 

expressions [2], [8] to generate multiple structurally distinct but semantically 

identical forms. These transformations are used to ensure that LLMs are not 



merely relying on surface-level pattern recognition but are required to reason 

about the underlying language defined by each expression. Examples of such 

equivalences include the distributive property of union over concatenation, 

simplifications of nested Kleene stars, and the elimination of redundant 

components. By including these equivalent variants, we are able to test whether 

models understand that different syntactic forms can define the same language 

and whether they can apply or recognize such transformations during their 

reasoning process.      

     3.3 Problem Set Design: 

A custom benchmark of regular expressions is constructed to reflect a wide 

spectrum of structural complexity and semantic behaviors. The dataset includes 

both universal and non-universal expressions, as well as adversarial cases and 

expressions designed to test approximate universality. Examples vary in alphabet 

size and structural composition, and where appropriate, equivalent forms derived 

from Section 3.2 are incorporated. This diversity ensures that model evaluation 

captures reasoning over both the syntax and semantics of regular languages. 

     3.4 Prompting and Testing: 

To examine the effect of prompt structure on model performance, we test each 

model using multiple prompting approaches. These include direct zero-shot 

prompts, illustrative few-shot examples, and chain-of-thought (CoT) prompts 

that explicitly guide the model through the steps of transforming regular 

expressions into automata and analyzing language coverage. These prompting 

strategies build on established methods in large language model evaluation [11]–

[14]. All prompts are standardized across models to reduce variability and allow 

for fair comparison, and are designed to elicit not just a binary decision but also an 

accompanying explanation, enabling deeper insight into model reasoning. 

 



      3.5 Evaluation Metrics: 

Evaluation is conducted using both quantitative and qualitative criteria. Binary 

accuracy is recorded based on whether the model correctly determines 

universality. In addition, we assess the quality of explanations using a rubric 

grounded in automata-theoretic principles, capturing whether the model refers to 

concepts such as determinization, complementation, and closure properties. 

Approximate universality is also considered, allowing us to assess cases where 

models recognize near-complete coverage. Full details of scoring procedures and 

validation tools are provided in subsequent sections. 

     3.6 Error Analysis and Fine-Tuning: 

To better understand failure modes, incorrect model outputs are categorized into 

distinct types, including syntactic errors (e.g., misinterpreting regular expression 

structure), semantic errors (e.g., incorrect reasoning about automata behavior), 

and logical errors (e.g., making unjustified generalizations). This categorization 

helps reveal patterns in model performance and provides guidance for refining 

prompt design or model selection in future work. 

     3.7 Conclusion & Reporting: 

A concluding section is included at the end of this paper to provide an overall 

assessment of the study, summarizing how well the models performed and 

highlighting directions for future work. In addition, the results of the experiments 

are compiled into this structured report, which presents model performance 

metrics, typical reasoning errors, and broader insights into the challenges LLMs 

face when solving formal algorithmic problems. 

 

 



4.Model selection 

This phase of the project focuses on selecting a targeted subset of large language 

models (LLMs) for empirical evaluation. The overarching goal is to investigate the 

extent to which modern LLMs, even though they do not run formal algorithms 

directly, can emulate or approximate reasoning strategies required to solve the 

universality problem for regular expressions. As such, model selection is a critical 

component that must balance capability, accessibility, and diversity in 

architectural design. 

The selected models are expected to engage with tasks that require more than 

surface-level pattern recognition. Specifically, they must demonstrate a capacity 

for symbolic manipulation, logical inference, and an understanding of formal 

language constructs such as regular expressions, finite automata, and language 

containment. These requirements naturally favor models that have shown strong 

performance on tasks involving structured reasoning, formal logic, and 

mathematical problem-solving. 

To guide the selection process, we consider four key criteria. First, reasoning 

competence is prioritized: we select models with demonstrated effectiveness on 

benchmarks involving multi-step reasoning, algorithmic thinking, and formal 

correctness, such as mathematical proofs or symbolic logic derivations. Second, 

transparency and accessibility are important for ensuring reproducibility; we favor 

models with well-documented capabilities and stable API access. Third, 

architectural variety is sought to allow comparison across different training 

regimes. This includes instruction-tuned, code-oriented, and general-purpose 

models. Comparing these helps us see whether training style affects reasoning 

ability. Fourth, explainability is a central concern. Since part of our evaluation 

focuses on the reasoning process itself, models that support or respond well to 

chain-of-thought prompting are preferred. 



At this stage, we make no assumptions about the internal mechanisms of the 

models or their explicit exposure to formal language theory during training. 

Instead, our selection is based entirely on observable behaviors in structured 

problem-solving tasks. The models are not merely tools for solving instances, but 

are studied as systems that may internalize and approximate formal reasoning in 

unique, architecture-dependent ways. 

Following their selection, each model is subjected to a controlled series of 

experiments involving both universal and non-universal regular expressions. 

Performance is assessed based on overall correctness, alignment between 

explanations and formal theory, and consistency across different prompting 

strategies. Importantly, we evaluate models not only on their exact answers but 

also on their ability to approximate correctness when exact universality is 

infeasible. This allows us to capture a broader spectrum of reasoning behavior, 

including heuristic or probabilistic strategies that may reflect latent understanding 

even in the absence of full algorithmic precision. 

The four models selected for this study represent a diverse cross-section of 

current large language model architectures and training philosophies. Each was 

chosen based on its alignment with the evaluation criteria outlined earlier, 

including reasoning competence, architectural variety, transparency, and 

explainability. A brief rationale for selecting each model is provided below. 

 

(1) OpenAI’s ChatGPT-4: 

Chosen for its widely demonstrated performance on complex reasoning 

tasks, GPT-4 Turbo serves as a strong upper bound in our experiments [11]. 

Its instruction tuning, support for chain-of-thought prompting, and 

consistency across mathematical and code-based benchmarks make it an 

ideal reference point for formal reasoning tasks [11]. 



 

(2) Claude 3 sonnet (v 3.7): 

Selected for its architectural novelty and emphasis on safety and 

interpretability, Claude 3 is known to perform competitively on tasks 

involving logical inference [12]. Its inclusion allows us to test whether 

alignment-oriented training translates to improved formal reasoning. 

 

(3) Gemini 2.5 Pro: 

Gemini’s multimodal and code-informed training suggests a strong aptitude 

for symbolic tasks [13]. We include it to evaluate whether models trained 

with broader context windows and code datasets show improved 

performance on automata-theoretic problems. 

 

(4) DeepSeek-Coder R1 Chat: 

Chosen for its code-oriented training and open-source accessibility, 

DeepSeek performs well on tasks involving symbolic reasoning and formal 

language analysis [14]. Its inclusion allows us to assess how instruction-

tuned, code-focused models generalize to problems like regex universality in 

a reproducible, transparent setting. 

 

 

 

 

 

 



5.Use of Useful Equivalences 

Regular expressions, despite their compact syntax, can often be written in 

multiple syntactic forms that define the same language. These equivalences, 

rooted in the algebraic properties of regular languages, provide critical tools for 

both simplification and transformation. In this study, we leverage a set of known 

equivalences not only for preprocessing but also as an implicit test of model 

understanding: can a large language model (LLM) recognize that two structurally 

different expressions represent the same language? 

To this end, we employ a curated collection of equivalence rules that are standard 

in formal language theory and widely used in compiler construction and 

automata-based verification. These include [2],[8]: 

• Identity and Nullability: 

α + ∅ ~ α 

∅ . α ~ ∅ 

ϵ ⋅ α ∼ α 

α* ∼ ϵ + α ⋅ α* 

• Idempotence and Commutativity: 

α + α ∼ α 

α + β ∼ β + α 

• Associativity: 

α + (β+γ) ∼ (α+β) + γ 

α (βγ) ∼ (αβ) . γ 

• Distributivity: 

α . (β+γ)∼α . β + α . γ 

(α+γ) . β∼ α . β + γ . β 



 

•  Kleene Star Properties: 

(α*)* ∼ α* 

(ϵ+α)* ∼ α* 

(α+β)* ∼ (α*β*)* 

ϵ + 0 + (00+000)* ∼ 0* 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.Problem set design 

To evaluate the formal reasoning capabilities of large language models (LLMs) on 

the universality problem, we constructed a custom dataset of regular expressions 

over the binary alphabet Σ = {0, 1} using a two-phase strategy: 

(i) stochastic generation of syntactically diverse expressions by depth, and 

(ii) targeted construction of semantically guaranteed universal expressions. 

This approach adapts the randomized approximation framework for NFA 

universality from [4], ensuring that the dataset captures a broad range of structural 

patterns and universality behaviors while remaining reproducible. 

Phase 1 — Random Generation by Depth 

We implemented a recursive expression generator in Python using the FAdo library 

[9]. 

The generator operates over Σ = {0, 1} with no ε or ∅ in the base step. 

At depth 1, only atomic symbols are chosen (CAtom('0') or CAtom('1')). 

For greater depths, the generator randomly selects one of four production types: 

• symbol — atomic symbol from Σ 

• star — Kleene closure of a recursively generated subexpression (CStar) 

• union — disjunction of two recursively generated subexpressions (CDisj) 

• concat — concatenation of two recursively generated subexpressions 

(CConcat) 

Depth corresponds to the maximum nesting level of these operators and serves as 

a proxy for syntactic complexity. 

Each generated regular expression was converted to an NFA via FAdo’s .toNFA() 

method [9]. 

Universality was then approximately assessed using FAdo’s prax_univ_nfa 



implementation [9] of the PRAX algorithm, instantiated with a Dirichlet length 

distribution (t = 2.001) and tolerance parameter ε = 0.01: 

GenWordDis(Dirichlet(t=2.001), {'0','1'}, EPSILON) 

Expressions returning True from prax_univ_nfa were labeled as approximately 

universal; others as non-universal. 

This classification follows the probabilistic universality-index testing framework of 

[4]. 

Phase 2 — Guaranteed-Universal Construction 

To balance the dataset and ensure representation of known universal expressions 

at every depth, we generated additional expressions using safe algebraic 

templates that preserve universality. 

Starting from the canonical universal expression (0 + 1)*, we applied operations 

such as: 

• Union with Σ* or with ε-accepting expressions 

• Concatenation with ε-accepting subexpressions 

• Kleene star of an already universal expression 

These templates, grounded in regular-expression equivalences (see Section 5), 

guarantee that the resulting language remains Σ* [8], regardless of subexpression 

choice. 

 

 

 

 

 



Final Dataset 

For each depth d ∈ [1, 10], we generated 200 regular expressions, 100 Universal 

and 100 Non-Universal, producing ~ 2,000 random expressions in total. 

Depth and universality labels are stored alongside the original expression and its 

structural parse, enabling stratified evaluation of LLM performance by both 

syntactic complexity and universality status. 

This structure allows analysis of reasoning patterns as depth increases and 

supports reproducibility in future experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. Prompting and Testing 

To evaluate the ability of large language models (LLMs) to solve the universality 

problem, we designed a controlled prompting framework that tests multiple 

prompting strategies across a standardized problem set. The goal was to assess 

not only the correctness of the models' answers, but also the quality, structure, 

and consistency of their reasoning. Each model was evaluated on the same set of 

regular expressions, stratified by depth and universality status (both approximate 

and exact), ensuring that performance comparisons reflect differences in model 

reasoning rather than differences in input distribution. 

We employed three primary prompting strategies: zero-shot, few-shot, and 

chain-of-thought (CoT). In the zero-shot setting, models were directly asked 

whether a given regular expression is universal over a specified alphabet (typically 

{0,1}) without prior examples. This setup tests the model’s innate knowledge of 

formal language concepts. In the few-shot setting, prompts included 2–3 

annotated examples of universal and non-universal expressions, each 

accompanied by a brief explanation. For example: 

Prompt: “Is the regular expression (0+1)*(00+11)(0+1)*universal over the alphabet 

{0,1}? Explain your reasoning.” 

Answer: “No. This expression requires that every accepted string must contain 

either the substring ‘00’ or the substring ‘11’. Therefore, it excludes strings such as 

01, 10, or any string without consecutive identical symbols. Since not all binary 

strings are accepted, the expression is not universal.” 

By providing such examples, the few-shot strategy simulates in-context learning 

and probes whether models can generalize from structural patterns. The most 

detailed testing condition involved chain-of-thought prompting, in which models 

were guided through the formal reasoning process step by step. These prompts 

encouraged models to (i) convert the regex into an equivalent automaton [5][6], (ii) 



describe the structure of accepted strings, (iii) consider whether any strings might 

be excluded, and (iv) conclude universality status based on language coverage. 

All prompts were kept structurally consistent across models and experiments to 

reduce prompt-induced bias. Care was taken to avoid using surface-level patterns 

that could trivially reveal universality; instead, prompts were designed to require 

reasoning about semantic coverage and the absence of counterexamples. For 

example, expressions like (0+1)∗ were mixed with deceptive non-universal 

expressions such as (0+1)∗0(0+1)∗, which accept large but incomplete subsets of 

Σ∗. Where applicable, model outputs were parsed to extract both a binary answer 

("Yes"/"No") and an accompanying rationale, which was later evaluated 

independently. 

By varying the prompt type and capturing both decisions and justifications, we 

were able to systematically probe whether model performance results from 

superficial pattern recognition or deeper automata-theoretic reasoning. For 

instance: 

• Zero-shot prompt: “Is the regular expression (0+1)∗ universal over {0,1}? 

Answer Yes or No, and justify your reasoning.” 

• Few-shot prompt: Example 1 — (0+1)* is universal because it accepts all 

binary strings. Example 2 — (0+1)*0(0+1)* is not universal because it 

excludes strings that end in 1. Now, is (1*0*) universal? Explain your answer. 

• Chain-of-thought prompt: “Convert the regex (0+1)*0(0+1)* into an 

automaton. Describe what kinds of strings it accepts, then check whether 

any binary strings are excluded. Conclude whether it is universal.” 

These examples illustrate how prompts were designed to elicit different levels of 

reasoning: from direct judgments in zero-shot, to in-context learning in few-shot, 



to structured logical reasoning in chain-of-thought. This also allowed us to 

measure how model behavior changes under cognitive load (as imposed by 

syntactic depth or semantic ambiguity), and whether prompting strategy affects 

consistency, reliability, or error types in LLM-generated outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.Evaluation Metrics: 

Evaluation is conducted using both quantitative and qualitative measures to 

capture the breadth of LLM performance on the universality problem. At the 

quantitative level, we record binary accuracy—the proportion of cases where the 

model’s universality judgment matches the ground truth label, obtained either 

through exact automata-theoretic computation or high-confidence PRAX 

classification. To account for the probabilistic nature of approximate universality, 

we also compute tolerance-aware accuracy, crediting models for correctly 

identifying expressions as “almost universal” when the measured universality 

index meets or exceeds the (1−ε) threshold. 

In addition to simple correctness, we track precision and recall [15]: precision 

measures the share of predicted universal expressions that are actually universal, 

while recall measures the share of true universal expressions that are correctly 

identified. These two metrics together capture how well models balance false 

positives (incorrectly labeling non-universal expressions as universal) and false 

negatives. 

At the qualitative level, model explanations are scored against a rubric grounded in 

formal language theory. The rubric checks for reference to essential concepts 

such as NFA/DFA conversion, closure properties, complementation, and 

emptiness checking. It also evaluates whether the reasoning steps follow a 

coherent and logically valid sequence, whether potential counterexamples are 

considered, and whether the explanation demonstrates awareness of the 

distinction between exact and approximate universality. For example, a strong 

explanation for the regex (0+1)* might state: “Yes, this expression is universal 

because it allows any sequence of 0s and 1s, including the empty string, which 

covers all strings over the alphabet {0,1}.” By contrast, a weaker explanation might 

simply say: “Yes, because it accepts everything,” without justifying why. 



9. Error Analysis and Fine-Tuning: 

Following initial evaluation, we conducted a systematic error analysis to 

categorize the types of mistakes made by the models. Errors were grouped into 

three main categories: 

• Syntactic errors — misinterpreting the structure of the regular expression. 

Example: A model treats (ab)* as accepting only the string “ab” instead of 

repetitions such as “abab” or “ababab.” 

• Semantic errors — incorrect reasoning about the language accepted by the 

corresponding automaton. 

Example: A model claims that (0+1)*0(0+1)* is universal, overlooking that it 

excludes strings that have no “0’s”. 

• Logical errors — drawing invalid conclusions despite otherwise correct 

intermediate steps. 

Example: A model correctly recognizes that (0+1)* generates all binary 

strings but then incorrectly concludes that it is not universal. 

For each error category, representative cases were examined to determine 

whether failures stemmed from knowledge gaps, reasoning flaws, or prompt 

misinterpretation. 

Patterns observed during error analysis directly informed refinements to both 

prompts and evaluation design. Frequent syntactic misreads prompted the 

inclusion of explicit parenthesization and step-by-step parsing instructions in 

chain-of-thought prompts. Semantic errors related to closure properties and 

complement operations motivated the addition of targeted few-shot examples 

covering these concepts. Logical inconsistencies were addressed by adding 

verification steps to prompts, encouraging models to re-check intermediate 

conclusions before finalizing answers. 



Based on these findings, several fine-tuning strategies were considered to improve 

performance. These included generating synthetic training data focused on 

known failure patterns, incorporating equivalence-based reasoning exercises 

(from Section 5), and designing curriculum-style prompts that gradually increase 

expression complexity. While full fine-tuning was beyond the scope of this study, 

these strategies provide a clear roadmap for enhancing model robustness and 

supporting generalization in future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10. Conclusion: 

As shown in the tables below, across all four models tested, performance on the 

universality problem was consistently strong. ChatGPT-4o, Claude 3 Sonnet, and 

DeepSeek achieved perfect accuracy (100%) on both universal and non-universal 

regular expressions across all depths tested up to string length 12, showing 

complete reliability within the evaluated range. Gemini v2.0 also performed at a 

very high level, matching the other models in most cases, but showed slight drops 

in universality accuracy at intermediate depths (97% at depth 4 and 99% at depth 

5). These small deviations suggest that Gemini may occasionally struggle with 

certain structural complexities, whereas the other three models remained 

flawless. In addition to the tests reported in the tables, we also did a few isolated 

tests that involved non-universal expressions whose language included all strings 

of length up to 36. With proper initial prompts, the LLMs were able to correctly 

report that the given regular expressions are indeed non-universal. Overall, the 

results indicate that state-of-the-art LLMs are highly capable of reasoning about 

regular expression universality at the tested scale, with only minor variability 

across architectures. 

Future Work: While the models performed exceptionally well on the tested 

dataset, future research should extend these experiments to more complex 

regular expressions, including larger alphabets, deeper nesting levels, and 

adversarially constructed cases. Additional testing could also examine how fine-

tuning strategies and more varied prompting techniques influence model 

robustness under increasing syntactic and semantic complexity. 

 

 

 

 



CHATGPT-4o (Upto string length 12) 

Depth LLM Accuracy for non-universal LLM Accuracy for universal 

1 100% 100% 

2 100% 100% 

3 100% 100% 

4 100% 100% 

5 100% 100% 

6 100% 100% 

7 100% 100% 

8 100% 100% 

9 100% 100% 

10 100% 100% 

 

 

Claude 3 sonnet (v 3.7) (Upto string length 12) 

Depth LLM Accuracy for non-universal LLM Accuracy for universal 

1 100% 100% 

2 100% 100% 

3 100% 100% 

4 100% 100% 

5 100% 100% 

6 100% 100% 

7 100% 100% 

8 100% 100% 

9 100% 100% 

10 100% 100% 

 



DeepSeek (Upto string length 12) 

Depth LLM Accuracy for non-universal LLM Accuracy for universal 

1 100% 100% 

2 100% 100% 

3 100% 100% 

4 100% 100% 

5 100% 100% 

6 100% 100% 

7 100% 100% 

8 100% 100% 

9 100% 100% 

10 100% 100% 

 

 

Gemini v2.0 (Upto string length 12) 

Depth LLM Accuracy for non-universal LLM Accuracy for universal 

1 100% 100% 

2 100% 100% 

3 100% 100% 

4 100% 97% 

5 100% 99% 

6 100% 100% 

7 100% 100% 

8 100% 100% 

9 100% 100% 

10 100% 100% 
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