
f (18) = 108217. A rather convincing example of this kind corresponds to a = 5,
H = 22: here the smallest n for which the case d = 1 can be applied is n = 204,
yielding f (204) = 1732807009, whereas Theorem 1 proves the irreducibility with
n = 30, which gives f (30) = 7 · 118543, and with more than forty other values of n
less than 204.

Theorem 1 can also be applied if all values f (n) for n in Z are divisible by a
common factor d > 1. But in this case a straightforward transformation of f (x)

into a polynomial without this property may be more advisable than the direct ap-
plication of the theorem. For instance, d = 2 divides all values of the polynomial
f (x) = x4 + 9x2 + 4, and the fact that f (17) = 2 · 43063 establishes its irreducibil-
ity. On the other hand, the substitution x �→ 2x transforms this polynomial into
g(x) = 4x4 + 9x2 + 1, which is irreducible because g(7) = 2 · 5023.
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On a “Singular” Integration Technique
of Poisson

Robert J. MacG. Dawson

Most undergraduates will at some point come across the famous trick, popularly as-
sociated with Gauss but attributed to Poisson by his contemporary Sturm [4, vol. 2,
p. 16], for evaluating

∫ ∞
−∞ e−x2

dx :

(∫ ∞

−∞
e−x2

dx

)2

=
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−x2

e−y2
dy dx

=
∫ ∞

0

∫ 2π

0
e−r2

r dθ dr =
∫ 2π

0
dθ

∫ ∞

0
e−r2

r dr

= 2π

∫ ∞

0
e−u/2 du = π,

which gives ∫ ∞

−∞
e−x2

dx = √
π. (1)

Lord Kelvin is said to have once told a class [3, p. 1139] that a mathematician was
one to whom (1) was as obvious as “twice two is four” was to them. Probably few
mathematicians would accept this compliment without at least a slight blush!

Nonetheless, Kelvin’s words must certainly have added to the determination of
many beginning mathematicians to understand this ingenious calculation thoroughly.
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One question that must have occurred to many over the years is: What else can I do
with it? The surprising answer to this natural question is: Absolutely nothing! Specifi-
cally, we have:

Theorem. Let r(x, y) = √
x2 + y2. Any Riemann-integrable function f on (−∞, ∞)

such that f (x) f (y) = g(r(x, y)) for some g is of the form f (x) = keax2
.

The solution of this functional equation is not new (see, for instance, Aczél [1,
sec. 2.2]). Its application to (1) is quite possibly not new either, but does not appear to
be well known. In any case, the proof given here is elementary and a good example of
a technique, sometimes known as “hill climbing,” that can be used on other problems,
both practical and recreational.

Proof of theorem. First, letting y = 0, we obtain g(x) = f (0) f (x). Then for positive
u and v we have

f (
√

u ) f (
√

v ) = g(
√

u + v ) = f (0) f (
√

u + v ). (2)

Setting u = v = x/
√

2 in (2), we get

f (x/
√

2 )2 = f (x) f (0). (3)

If f (0) > 0 we have f (x) ≥ 0 for all x in R+. Similarly, f (0) < 0 implies that
f (x) ≤ 0 for all x in R+. If f (0) = 0, then f is identically 0.

Suppose that f (0) �= 0 but that f (a) = 0 for some a > 0. By (3) we have
f (a/

√
2 ) = f (a/2) = · · · = 0, ensuring that there are arbitrarily small positive a

for which f (a) = 0. Moreover, for any x > a, setting u = x2 − a2 and v = a2

in (2) gives f (x) f (0) = f (
√

x2 − a2 ) f (a) = 0, so f (x) = 0. We conclude that, if
f (a) = 0 for any a whatsoever, f is identically 0.

The function f is thus always 0, always strictly positive, or always strictly negative
on R+. In the first case, the result follows immediately, and the third case reduces to
the second upon replacing f with − f . It thus suffices to consider the case in which
f (x) > 0 for all x in R+.

Let h(x) = log( f (
√

x) ) for x > 0. Then (2) yields

h(x) + h(y) = h(0) + h(x + y).

This is essentially Cauchy’s functional equation, the solution of which is well known.
(For further discussion of this and related functional equations, the reader is referred
to [1] or [2].) By induction, the restriction of h to any set of the form Nα with α

a positive real number (hence also to any set of the form Q+α) must have the form
h(xα) = [h(α) − h(0)]x + h(0). It follows that the restriction of f to any such set has
the form f (x) = exp(ax2 + b). As f (x) f (0) = f (|x|) = f (−x) f (0) and f (0) > 0
by assumption, it follows that f (x) = f (−x) for all x . Thus, f (x) = exp(ax2 + b)

on all of Qα.
Finally, we extend this to R. Suppose to the contrary that there exist α and α′ such

that f restricts to exp(ax2 + b) on Qα and to exp(a′x2 + b′) on Qα′, where either
a′ �= a or b′ �= b. There are then at most two points, the solutions of (a′ − a)x2 =
(b − b′), for which exp(ax2 + b) = exp(a′x2 + b′). For any interval [c, d] avoiding
such points, there exists ε > 0 such that every subinterval of [c, d] contains x in Qα
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and x ′ in Qα′ with | f (x) − f (x ′)| > ε. We conclude that upper and lower Riemann
sums over this interval must differ by at least ε(d − c), with the consequence that∫ d

c f (x)dx �= ∫ d

c
f (x) dx . . Therefore, such an f cannot be Riemann integrable over

[c, d], much less over (−∞, ∞).

Corollary. The only nondegenerate definite integrals that can be evaluated by the
process used in (1) are those of the form∫ ∞

−∞
keax2

dx,

where k and a are constants and a < 0.

Proof. The only domains that are both “square” and “round”—that is, both of the
form {(x, y) : a ≤ x ≤ b, a ≤ y ≤ b} and of the form {(x, y) : x2 + y2 ≤ r}—are
the empty set, the singleton {(0, 0)}, and R2. Moreover,

∫ ∞
−∞ keax2

dx converges if and
only if a < 0.

Attempts to generalize Poisson’s method in other ways (for instance, by multiplying
more copies of the original definite integral to obtain a triple or quadruple integral that
can be evaluated using spherical polar coordinates) do not seem any more fruitful. It is
surprising that so elegant a trick should have one, and only one, application; and it is
gratifying that that one application should be one so vitally important to mathematics
and statistics.
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Solution to Puzzle on Page 211

(
4.4

4

)/√
.4̄

School pupils may well object to counting the number of ways in which four
objects may be chosen from 4 2

5 objects, but university students should be able to
recognise that(

4.4

4

)/√
.4̄ = �(5.4)

�(5)�(1.4)

/2

3
= · · · = 22 × 17 × 12 × 7

104
= 3.1416.
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