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extended abstract

Carry propagation is the nightmare of school pupils and the headache of
computer engineers: not only can the addition of two digits give rise to a carry,
but this carry itself, when added to the next digits to the left1 may give rise to
another carry, and so on, and so forth, and this may happen for an arbitrarily
long time. Since the beginnings of computer science, the evaluation of the carry
propagation length has been the subject of many works and it is known that the
average carry propagation length (or complexity) for addition of two uniformly
distributed n-digits binary numbers is log2(n) + O(1) (see [5, 7, 10]).

We consider here the problem of carry propagation from a more theoretical
perspective and in an apparently elementary case. We investigate the amortized
carry propagation of the successor function in various numeration systems. The
central case of integer base numeration system allows us to describe quickly what
we mean. Let us take an integer p greater than 1 as a base. In the representations
of the succession of the integers — which is exactly what the successor function
does — the least digit changes at every step, the penultimate digit changes
every p steps, the ante-penultimate digit changes every p2 steps, and so on and
so forth ... As a result, the average carry propagation of the successor function,
computed over the first N integers, should tend to the quantity
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when N tends to infinity. It can be shown that it is indeed the case. Motivated by
various works on non-standard numeration systems, we investigate the questions
of evaluating and computing the amortized carry propagation in those systems.
We thus consider several such numeration systems different from the classical
integer base numeration systems: the greedy numeration systems and the beta-
numeration systems, see [6], which are a particular case of the former, the rational
base numeration systems [1] which are not greedy numeration systems, and

1 We write numbers under MSDF (Most Significant Digit First) convention.



the abstract numeration systems [8] which are a generalization of the classical
positional numeration systems.

The approach of abstract numeration systems of [8], namely the study of a
numeration system via the properties of the set of expansions of the natural
integers is well-fit to this problem. Such systems consist of a totally ordered
alphabet A of the non-negative integers N and a language L of A∗, ordered
by the radix order deduced from the ordering on A. The representation of an
integer n is then the (n + 1)-th word of L in the radix order. This definition is
consistent with every classical standard and non-standard numeration system.

Given a system defined by a language L ordered by radix order, we denote
by cpL(i) the carry propagation in the computation from the representation of i
in L to that of i+ 1. The (amortized) carry propagation of L, which we denote
by CPL, is the limit, if it exists, of the mean of the carry propagation at the
first N words of L:

CPL = lim
N→∞
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cpL(i) . (1)

A further hypothesis is to consider prefix-closed and right-extensible lan-
guages, called ‘pce’ languages in the sequel: every left-factor of a word of L is
a word of L and every word of L is a left-factor of a longer word of L. Hence,
L is the branch language of an infinite labelled tree TL and, once again, every
classical standard and non-standard numeration system meets that hypothesis.

We first prove two easy properties of the carry propagation of pce languages.
First, CPL does not depend upon the labelling of TL, but only on its ‘shape’ which
is completely defined by the infinite sequence of the degrees of the nodes visited
in a breadth-first traversal TL, and which is called signature of TL (or of L)
in [9]. For instance, the signature of the representation language in base p is the
constant sequence pω. Second, we call local growth rate of a language L, and we
denote by γL, the limit, if it exists, of the ratio uL(`+1)/uL(`) , where uL(`) is
the number of words of L of length `. If CPL exists, then γL exists and it holds:

CPL =
γL

γL − 1
. (2)

Examples show that γL may exist without CPL exist. By virtue of this equality,
the computation of CPL is usually not an issue, the problem lies in proving its
existence. We develop three different methods of existence proof, whose domains
of application are pairwise incomparable: combinatorial, algebraic, and ergodic.,
and which are built upon very different mathematical backgrounds.

A combinatorial method shows that languages with eventually periodic signa-
ture have a carry propagation. These languages are essentially the rational base
numeration systems (including the integer base numeration systems), possibly
with non-canonical alphabets of digits ([9]).

We next consider the rational abstract numeration systems, that is, those
systems which are defined by languages accepted by finite automata. Examples
of such systems are the Fibonacci numeration system, more generally, beta-
numeration systems where beta is a Parry number ([6]), and other systems



different from beta-numeration. By means of a property of rational power series
with positive coefficients which is reminiscent of Perron-Frobenius Theorem, we
prove that the carry propagation of a rational pce language L exists if L has a
local growth rate and all its quotients also have a local growth rate.

The definition of carry propagation (Equation (1)) inevitably reminds of Er-
godic Theorem. We then consider the greedy numeration systems. The language
of greedy expansions in such a system is embedded into a compact set, and the
successor function is extended as an action, called odometer, on that compacti-
fication. This gives a dynamical system, but Ergodic Theorem does not directy
apply as the odometer is not continuous in general. Recently tools in ergodic
theory ([2]) allow us to prove the existence of the carry propagation for greedy
systems with exponential growth, and thus for beta-numeration in general.

This work was indeed motivated by a paper where the amortized (algorith-
mic) complexity of the successor function for some beta-numeration systems was
studied ([3]). Whatever the chosen computation model, the (amortized) complex-
ity is greater than the (amortized) carry propagation, hence can be seen as the
sum of two quantities: the carry propagation itself and an overload. The study
of carry propagation lead to quite unexpected and winding developments that
form a subject on its own, leaving the evaluation of the overload to future works.
A complete version of this present work ([4]) will appear soon.
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