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Although the field of Orthogonal Polynomials is extremely vast, we will introduce here the
concept of OPs purely as a tool to compute meaningful quantities coming from the Random Matrix
world.

The goal will be to establish a powerful connection between the eigenvalue statistics of the
unitary ensemble (represented by the kernel K(x, y)) and the theory of OPs.

Recap: consider the Unitary Ensemble, i.e. the set of Hermitian matrices with probability
distribution

dµ(M) =
1

Zn
e−Λ Tr(V (M))dM
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where we inserted now a scaling parameter Λ and we will actually take it to be exactly n, the
dimension of the matrices in the ensemble (more generally, one can take Λ = n

T for some T > 0).
We saw that the induced joint probability distribution of the eigenvalues of this ensemble is

dµ(x1, . . . , xn) =
1

Zn
∆(x1, . . . xn)2

n∏
j=1

e−nV (xj)dx1 . . . dxn (1)

with Zn =
∫
Rn dµ(x1, . . . , xn) a suitable normalization constant (partition function) and a potential

V (x) sufficiently smooth and growing sufficiently fast at infinity.
For the rest of the notes, we shall choose V (x) to be a polynomial of even degree, with positive

leading coefficient (e.g. V (x) = x2).
We also saw that the jpdf can be crucially rewritten in a determinantal form:

1

Zn

∏
1≤i<j≤n

(x1, . . . xn)2
n∏
i=1

e−nV (xi) =
1

n!
det
[
Kn(xi, xj)

]
1≤i,j≤n

(2)

where

K(x, y) = e−
n
2

(V (x)+V (y))
n−1∑
j,k=0

xj [M]−1
jk y

k (3)

and the matrix M has entries

Mab =

∫
Rn
xa+be−nV (x)dx 0 ≤ a, b ≤ n− 1. (4)

1 Orthogonal polynomials

It can be shown that M is (for any size) positive definite (and symmetric). Consider the Lower-
Diagonal-Upper decomposition (keeping into account the symmetry)

M = LHLT

where L is a lower unipotent matrix (with ones on the diagonal) and H = diag{h1, . . . , hn}, then

K(x, y) = e−
n
2

(V (x)+V (y))
[
1 x . . . xn−1

]
L−TH−1L−1

[
1 y . . . yn−1

]T (5)

Definition 1. The polynomials 
p0(x)
p1(x)

...
pn−1(x)

 = L−1


1
x
...

xn−1

 (6)

are called orthogonal polynomials (OPs) for the measure e−V (x)dx.
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From the above definition and using formula (5), we can rephrase the kernel as

K(x, y) = e−
n
2

(V (x)+V (y))
n−1∑
j=0

pj(x)pj(y)

hj
(7)

Proposition 2. The following properties holds for the OPs pn(x) and are equivalent to the above
definition:

• deg pn(x) = n and pn(x) = xn + . . .;

•
∫
R
pn(x)pm(x)e−V (x)dx = hnδnm;

• {pj(x)} solve a three terms recurrence relation:

xpn(x) = pn+1 + αnpn(x) +
hn
hn−1

pn−1(x) ∀ n.

In addition we have

• hn > 0;

• Zn = n! detM = n!
∏n−1
j=0 hj.

Paradigma (GUE). In the case of GUE matrices, the kernel is

K(x, y) = e−
n
4

(x2+y2)
n−1∑
j=0

pj(x)pj(y)

hj

where the polynomials pn(x) are (a rescaled version of) the Hermite polynomials (Hermite poly-
nomials can be indeed defined as the set of polynomials that are orthogonal with respect to the
measure e−x2dx).

Furthermore, if we consider n non-intersecting Brownian paths X1(t), . . . , Xn(t), all starting at
x = 0 and finishing at x = 0 after time T > 0. Their transition probability is a Gaussian

pt(x, y) =
1√
2πt

e−
(x−y)2

2t (8)

and thanks to Karlin-McGregor Theorem, we have that the joint probability distribution of the
paths at any time 0 < t < T is proportional to

∼ det

[
Fj−1(xi)e

−x
2
i

2t

]n
i,j=1

det

[
Gj−1(xi)e

−
x2j

2(T−t)

]n
i,j=1

dx1 . . . dxn (9)

(up to the normalization constant) and Fj−1 and Gj−1 are polynomials of degree j − 1 obtained by
consecutive derivatives of the exponential function. We recognize here an equivalent formulation of
the Hermite polynomials.

Therefore, the positions of the paths at any time 0 < t < T are distributed as an ensemble of
GUE-eigenvalues (see Figure 1).

We can push the dependency of the kernel on OPs even further and get a simple formula for the
kernel.
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Figure 1: Numerical simulation of 50 non-intersecting Brownian paths in the confluent case with
one starting and one ending point.

Proposition 3 (Christoffel–Darboux formula). For any set of OPs we have

K(x, y) = e−
n
2

(V (x)+V (y)) 1

hn

pn(x)pn−1(y)− pn(y)pn−1(x)

x− y
(10)

Proof. Use the three terms recurrence relation and write it as a telescoping sum.

2 Riemann–Hilbert problem

A Riemann–Hilbert problem is a boundary–value problem for a k× k matrix–valued, piecewise
analytic function Y (z).

Riemann–Hilbert problem 4. Let Σ be an oriented union of curves and J(z) a (sufficiently
smooth) matrix function defined on Σ, called the jump matrix.

Find a function Y (z) such that

1. Y (z) is analytic on C \ Σ;

2. limz→∞ Y (z) = 1 (or some other normalization);

3. denoting by Y±(z) the (non-tangential) boundary values of Y (z) from the left/right of Σ
(according to the orientaiton), we have

Y+(z) = Y−(z)J(z), ∀ z ∈ Σ
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For the sake of simplicity, let’s assume that everything is smooth enough for all the statements
that follow and that the curves in Σ are either loops or they extend at infinity. We should add
another condition in the case where the curves have endpoints.

In the simple case where the RHP is scalar (k = 1), the solution can be easily found by applying
the following formula:

Theorem 5 (Sokhotsy–Plemelji formula). Let h(w) be α-Hölder continuous (for simplicity, we
can assume h to be Lipschitz) on Σ and

f(z) :=
1

2πi

∫
Σ

h(w)

w − z
dw

Then,
f+(z)− f−(z) = h(w)

and f+(z) + f−(z) = H[h](w) exists (the Cauchy Principal value).

In the 90’s Fokas, Its and Kitaev [3] proved a fundamental theorem establishing the relationship
between OPs and RHPs.

Riemann–Hilbert problem 6 (for Orthogonal Polynomials). Find a 2 × 2 matrix–valued
function Y (z) = Yn(z) such that

1. Y (z) is analytic ∀ z ∈ C± = {±=(z) > 0}

2. the boundary values of Y (z) on Σ = R (oriented in the natural direction) are

Y+(z) = Y−(z)

[
1 e−nV (z)

0 1

]
(11)

3. in the sectors arg(z) ∈ (0, π) and arg(z) ∈ (π, 2π), the matrix Y (z) has the following asymp-
totic expansion

Y (z) =

[
1 +O

(
1

z

)]
znσ3 , σ3 =

[
1 0
0 −1

]
(12)

The above asymptotic expansion is uniform in the sense that for any R > 0 there exists C > 0
such that for all z ∈ C \ R, |z| > R we have ‖Y (z)− 1‖ ≤ C 1

|z| .
Before stating the solution theorem, let’s assume that V (x) is real-analytic and in particular

let’s consider the case where V (x) is a polynomial of even degree and positive leading coefficient
(e.g. V (x) = x2).

Theorem 7 (Fokas, Its, Kitaev). The unique solution to the RHP 6 is the following:

Yn(z) =

 pn(z)

∫
R

pn(x)e−nV (x)

x− z
dx

2πi
−2πi

hn−1
pn−1(z)

−1

hn−1

∫
R

pn−1(x)e−nV (x)

x− z
dx

2πi

 (13)

where pn(z), pn−1(z) are the OPs for the measure e−nV (x)dx on R and hn the corresponding squared
norms.
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Proof. To prove uniqueness:

1. show that detY (z) has no jump on R (so it is an entire function);

2. show that detY (z) → 1 as |z| → ∞ and hence (by Liouville’s theorem) it is identically one.
Thus any solution to the RHP 6 is invertible and with analytic inverse;

3. if Ỹ (z) is another solution, then show that R(z) = Ỹ (z)Y −1(z) has no jumps on R and hence
it is entire;

4. using the asymptotic behaviour show that R → 1 and hence (by Liouville’s theorem again)
R(z) ≡ 1.

Then, one shows directly that the proposed expression satisfies the conditions (using Sokhotsky–
Plemelji’s formula).

Getting back to our correlation kernel K(x, y) = Kn(x, y) for the eigenvalue distribution, we
have

Proposition 8. The kernel Kn(x, y) can be written as

Kn(x, y) =
e−

n
2

(V (x)+V (y))

2πi(x− y)

[
Y −1
± (y)Y±(x)

]
21

(14)

3 Asymptotics

We saw previously that a good deal of interest in Random Matrix Theory is focused on studying
the asymptotic behaviour of the eigenvalue statistics (in various ways). We will show here how to
prove the Sine-kernel Universality in the Bulk of the eigenvalue spectrum.

Theorem 9 (Bulk universality at the origin). For the Unitary Ensemble, the local behaviour
in the bulk of the spectrum is described by a DPP with correlation kernel given by

lim
n→+∞

1

nρ(x∗)
Kn

(
x∗ +

ξ

nρ(x∗)
, x∗ +

η

nρ(x∗)

)
=

sin (π(ξ − η))

π(ξ − η)
. (15)

where x∗ is any point belonging to the interior of the domain of the density of eigenvalues ρ(x).

Given the expression of our kernel Kn(x, y) (14), it is clear that in order to find its asymptotic
behaviour we need to analyze what’s the asymptotic behaviour of the corresponding OPs when their
degree gets large (n→∞). Going even further, it turns out that it is very convenient to study the
associated RHP in the large n regime by the use of a powerful technique called non-linear steepest
descent method.

For simplicity, we shall assume from now on that the potential V (x) is a polynomial of even
degree, positive leading coefficient and convex, but the theory holds for more general potentials.
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3.1 The Steepest Descent method

The (non-linear) steepest descent method was developed in the 90’s by Percy Deift and Xin Zhou
[2] for mKdV and other integrable wave equations and later applied to OPs by Deift, Kriecherbauer,
McLaughlin, Venakides, Zhou [1].

The method of Deift and Zhou is based upon the application of the following prototype theorem
(called the Small Norm Theorem). In words, it says that if we have a RHP problem with jumps
that are "close" to the identity in Lp-norm, then (as it would be natural to think) the solution itself
is close to the identity matrix, where the error is explicitly given.

Theorem 10 (Small Norm Theorem). Suppose the RHP is posed for a collection of contours Σ
for a matrix E(z) such that

E+(z) = E−(z)
[
1 + δJ(z)

]
z ∈ Σ (16)

E(z) = 1 +O
(

1

z

)
as z →∞ (17)

with det(1 + δJ(z)) ≡ 1. Then, if ∃ CΣ ∈ R+ such that

‖δJ‖L∞(Σ) < C−1
Σ ,

the solution of the RHP exists. Furthermore,

‖E(z)− 1‖ ≤ C

2π dist(z,Σ)
∀ z ∈ C (18)

where C is a constant depending on CΣ and ‖δJ‖Lp(Σ) for p = 1, 2,∞, and if the jump δJ(z) is
analytic in a neighbourhood of Σ the denominator can be replaced by 1 + dist(z,Σ).

The reason of the name is because if the norms 1, 2 are small, then the solution E is close to the
identity (pointwise!). In practice, the jump δJ depends on some parameter (like n in our case) and
typically all Lp-norms tend to zero.

Application of the Small Norm Theorem. This is the plan for our asymptotic analysis of the
RHP for OPs 6: consider the solution

Yn(z) =

 pn(z)

∫
R

pn(x)e−nV (x)

x− z
dx

2πi
−2πi

hn−1
pn−1(z)

−1

hn−1

∫
R

pn−1(x)e−nV (x)

x− z
dx

2πi

 (19)

and suppose that we can transform it (in an invertible way) into an equivalent RHP with solution
W (z) with jump matrix M(z) on some contours Σ:

W+(z) = W−(z)M(z), z ∈ Σ; W (z) = 1 +O
(

1

z

)
., z →∞.

Suppose also that we can find an "approximate" and explicit solution W̃ (z), meaning that W̃
solves a RHP whose jumps M̃ are very similar to M in the sense that

M(z)M̃(z)−1 = 1 + δG(z).
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Then, consider the "error matrix": E(z) = W (z)W̃ (z)−1. E solves a RHP with jumps

E+(z) = W+(z)W̃+(z)−1 = W−(z)M(z)M̃(z)−1W̃−(z)−1 = E−(z)W̃ (z)
(
1 + δG(z)

)
W̃ (z)−1

= E−(z)
(
1 + δJ(z)

)
(20)

If δJ satisfies (as dependent on n) the conditions of the small norm theorem, then we can
rightfully consider the W̃ as a good approximation of Y (up to the backward transformationW 7→ Y )
and the Small Norm Theorem also gives the order of approximation.

3.2 Massaging the problem: the g function

3.2.1 Repairing the normalization condition

An evident difference between the RHP (19) and a near-identity problem as described in the Small
Norm Theorem is the normalization condition at infinity:

Yn(z) =

[
zn 0
0 z−n

]
+ { lower order terms. . . } as z →∞ (21)

which clearly states that the matrix Yn(z) does not resemble the identity matrix at least near
z = ∞. We can try to fix this problem by cooking up a scalar function g(z) that looks like log(z)
near z =∞. In this case, we could introduce the new function

W (z) = Vn(z)e−ng(z)σ3 = Vn(z)

[
e−ng(z) 0

0 eng(z)

]
which is close to the identity matrix in a neighbourhood of infinity: W (z) = 1+O

(
z−1
)
, as z →∞.

A straightforward (but naïve) choice would be to simply set g(z) = log(z). However, this way a
pole of order n would appear at the origin z = 0, while Vn(z) was analytic in the upper and lower
half-planes and had continuous boundary values.

The key observation is the following: think of the function log(z) as

log(z) =

∫
R

log(z − x) δx=0 dx

where δx=0 is the atomic measure supported at x = 0. But then we realize that any measure with
total mass (integral) equal to one would have the same asymptotic behaviour at infinity.

Let’s then set

g(z) =

∫
R

log(z − x)ψ(x) dx (22)

where ψ(x) is a suitable probability density function on R with some nice properties, say, compactly
supported and Hölder continuous for example.

This way g(z) is analytic on C \ R and takes continuous boundary values on R, and moreover
by expanding the integrand for large z,

g(z) =

∫
R

log
(
z
(

1− x

z

))
ψ(x) dx = log(z) +

∫
R

log
(

1− x

z

)
ψ(x) dx = log(z) +O

(
1

z

)
. (23)

We have then obtained an equivalent RHP:

8



Riemann–Hilbert problem 11. Find a 2× 2 matrix-valued function W (z) such that

1. W (z) is analytic ∀ z ∈ C \ R;

2. the boundary values are related by

W+(z) = W−(z)

[
e−n(g+(z)−g−(z)) e−n(V (z)−g+(z)−g−(z))

0 en(g+(x)−g−(z))

]
(24)

where g±(z) denote the boundary values taken by g(z) from C±;

3. W (z) = 1 +O
(

1
z

)
for z →∞.

3.2.2 Logarithmic potential theory and equilibrium measure

How should we choose the measure ψ(x)dx in a smart way?
To answer the question, let’s first write out more explicitly the boundary values of g. Note that

for fixed y ∈ R

(log(x− y))± = lim
ε↘0

log(x± iε− y) =

{
log |x− y| x > y

log |x− y| ± iπ x < y
(25)

therefore, for x ∈ R

g±(x) =

∫
R

log |x− y|ψ(y) dy ± iπ
∫ ∞
x

ψ(y) dy (26)

and

g+(x)− g−(x) = 2πi

∫ ∞
x

ψ(y) dy (27)

V (x)− g+(x)− g−(x) = V (x)− 2

∫
R

log |x− y|ψ(y) dy (28)

The right-hand side of (28) is the variational derivative or Frechét derivative of a functional
of ψ(x)dx:

V (x)− g+(x)− g−(x) =
δE

δψ
(x) (29)

where

E[ψ] =

∫∫
R2

log

(
1

|x− y|

)
ψ(x) dxψ(y) dy +

∫
R
V (x)ψ(x) dx (30)

Physically, E[ψ] is the Coulomb energy of a distribution ψ(x)dx of positive electric charge confined
to the real line in a two-dimensional universe (the Green’s function for Laplace’s equation in two
dimensions is the kernel in the double integral). The charges are influenced by mutual repulsion
(the logarithmic term) and by being trapped in an external electrostatic potential V (x).
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Theorem 12 (Gauss-Frostman, see [4]). There is a unique probability measure ρ(x)dx (equi-
librium measure) minimizing the functional E[ψ].

The minimizer ρ(x)dx is characterized by

δE

δψ
(x) = V (x)− g+(x)− g−(x) ≡ ` x ∈ supp ρ (31)

δE

δψ
(x) = V (x)− g+(x)− g−(x) > ` x /∈ supp ρ (32)

where the constant ` is called Robin’s constant or Lagrange multilpier.

Theorem 13 (Deift, et al.). Suppose that V (x) is also real-analytic: then suppρis a finite union
of compact intervals.

Even better, if V (x) is strictly convex, then there is only one interval of support:

V ′′(x) > 0 ⇒ supp ρ = [α, β].

Physically speaking, it seems indeed reasonable that if V (x) is strictly convex then we have a
"single-well" rather than a "multiple-well" potential, and we expect the charges to all be lying in a
single lump.

3.2.3 Finding the g-function

We can now write out our g-function that we were originally looking for. Instead of analyzing g
directly, let’s consider its derivative. For z ∈ C \ R we have

g′(z) =

∫
R

ρ(x) dx

z − x
(33)

so g′(z) is a factor of −2πi away from the Cauchy transform of ρ. If we can find g′(z), then we will
know ρ(x) thanks to the Sokhotski-Plemelij formula

ρ(x) = − 1

2πi

(
g′+(x)− g′−(x)

)
x ∈ R;

this also means that g′+(x)− g′−(x) ≡ 0, for x /∈ supp ρ.
On the other hand, by differentiating (31) and from the behaviour at infinity,

g′+(x) + g′−(x) = V ′(x) x ∈ supp ρ (34)
g′+(x)− g′−(x) = 0 x /∈ supp ρ (35)

g′(z) =
1

z
+O

(
1

z2

)
z →∞. (36)

We now have a system of equations that can be solved for a function g′(z) analytic in C \ R.
Remember that in the convex V case the support is a compact interval [α, β], where α, β are

still to be determined. In view of the system of equations for g′, let’s introduce the function

R(z) = (z − α)
1
2 (z − β)

1
2 ; (37)

then, is it easy to see that
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1. R is analytic on C \ [α, β];

2. R(z) = z +O(1), as z →∞;

3. R+(x) = R−(x) for x ∈ R \ [α, β] and R+(x) = −R−(x) for x ∈ [α, β].

Define now the function h(z) := g′(z)
R(z) . From property 2. and the asymptotic condition of g, we see

that we must require that

h(z) =
1

z2
+O

(
1

z3

)
; (38)

from property 3. and the equations for g,

h+(x)− h−(x) =
V ′(x)

R+(x)
x ∈ [α, β]. (39)

We can now use Sokhotski-Plemelj formula again to get

h(z) =

∫ β

α

V ′(x)

R+(x)(x− z)
dx

2πi
⇒ g′(z) = R(z)

∫ β

α

V ′(x)

R+(x)(x− z)
dx

2πi
. (40)

Finally, by expanding the integral expression of h for large z and imposing the behaviour (38), we
have two equations to determine uniquely the endpoints α and β:∫ β

α

V ′(x) dx

R+(x)
= 0

∫ β

α

xV ′(x) dx

R+(x)
= −2πi. (41)

Paradigma (GUE). For V (x) = x2

2 the OPs involved are the Hermite polynomials: the equilib-
rium density is

ρ(x) =
1

π

√
2− x2 x ∈ [−

√
2,
√

2]. (42)

A quartic potential. For V (x) = x4, the equilibrium density is

ρ(x) =
1

π

[
2x2 +

(
4

3

) 1
2

]√(
4

3

) 1
2

− x2 x ∈

[
−
(

4

3

) 1
4

,

(
4

3

) 1
4

]
. (43)

3.3 "Opening lenses"

Getting back to the RHP, let’s perform one more transformation (the reason will be clear in the
next subsection): we define

X(z) = en
`
2
σ2W (z)e−n

`
2
σ2

then X solves the RHP with the same analyticity property and the same asympotic behaviour at
infinity as W and with jumps

X+(x) = X−(x)

[
e−n(g+(x)−g−(x)) e−n(V (x)−g+(x)−g−(x)+`)

0 en(g+(x)−g−(x))

]
, x ∈ R. (44)
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[
1 0

e−n(g+−g−) 1

]

[
1 0

en(g+−g−) 1

]

[
0 1
−1 0

] [
1 e−n(V−g+−g−+`)

0 1

][
1 e−n(V−g+−g−+`)

0 1

]
α β

Figure 2: Riemann-Hilbert problem for Φ. Opening lenses: the entries in gray in the jump matrices
are small in the regime as n→∞.

In particular, recall equations (31)–(32),

X+(x) = X−(x)

[
1 e−n(V (x)−g+(x)−g−(x)+`)

0 1

]
x ∈ R \ [α, β], (45)

where the exponential term is asymptotically small when n → ∞. Therefore, the jumps for X are
close to the identity, at least in this part of the contour.

Also, from equations (27) and (31),

X+(x) = X−(x)

[
e−n(g+(x)−g−(x)) 1

0 en(g+(x)−g−(x))

]
x ∈ [α, β] (46)

where θ(x) = 2π
∫∞
x ρ(x) dx is purely imaginary, since ρ(x) is real; even more, because ρ(x) > 0 in

the support, θ(x) is a real analytic function that is strictly decreasing.
According to the Cauchy–Riemann equations, e−inθ(z) is exponentially small as n→∞ when z

is fixed in the upper half-plane just above [α, β]. Similarly einθ(z) is exponentially small as n→∞
when z is fixed in the lower half-plane just below [α, β].

We now have a (linear algebra) miracle!

Lemma 14.[
e−n(g+(x)−g−(x)) 1

0 en(g+(x)−g−(x))

]
=

[
1 0

en(g+(x)−g−(x)) 1

] [
0 1
−1 0

] [
1 0

e−n(g+(x)−g−(x)) 1

]
(47)

The jump matrix on [α, β] splits into three jump matrices to which we can associate three
contours (see Figure 2): an upper rim (or lens), a straight segment (i.e. the interval [α, β]) and

a lower rim. Indeed, we can analytic extend the matrices
[

1 0

e∓n(g+(z)−g−(z)) 1

]
in the upper and

12



lower half planes (respectively). This allows us to redefine X as

Φ(z) =



X(z) outside the lenses

X(z)

[
1 0

−e−n(g+(x)−g−(x)) 1

]
in the upper lens L+

X(z)

[
1 0

en(g+(x)−g−(x)) 1

]
in the lower lens L−

Then, Φ satisfies the RHP

Riemann–Hilbert problem 15. 1. Φ(z) is analytic ∀ z ∈ C \ {R ∪ L+ ∪ L−};

2. the boundary values are related by

Φ+(z) = Φ−(z)

[
1 e−n(V (z)−g+(z)−g−(z)+`)

0 1

]
x ∈ R, x < α or x > β (48)

Φ+(z) = Φ−(z)

[
0 1
−1 0

]
x ∈ [α, β] (49)

Φ+(z) = Φ−(z)

[
1 0

e∓n(g+(x)−g−(x)) 1

]
x ∈ L± (50)

3. Φ(z) = 1 +O
(

1
z

)
for z →∞.

Conclusion: the function Φ(z) has jumps that are asymptotically equal to the identity matrix
everywhere except on the interval [α, β], where they are constant.

3.4 The model problem

Suppose that jumps outside the interval [α, β] and on the two lenses are actually equal the identity,
not only asymptotically equal (meaning, there is no jump at all): then, we would be able to find an
explicit solution!

We’ll do it now and later we’ll deal with showing that what we find is a quite decent approxi-
mation of Φ.

Define the matrix Ψ(z) as a matrix-valued function that has the same jump as Φ(z) on the
support of the measure and its same asymptotic at infinity:

Ψ+(z) = Ψ−(z)

[
0 1
−1 0

]
z ∈ [α, β] (51)

Ψ(z) = 1 +O
(

1

z

)
z →∞ (52)

And also Ψ should have the "minimal" growth at z = α, β compatibly with the jump.
This RHP can be easily and explicitly solved!
We first notice that the jump matrix is constant and can be diagonalized:[

0 1
−1 0

]
= F ·

[
i 0
0 −i

]
· F−1, with F = F−1 =

1√
2

[
1 −i
i −1

]
. (53)
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Thus, the matrix Ψ̂ = F−1ΨF has jumps

Ψ̂+(z) = Ψ̂−(z)

[
i 0
0 −i

]
(54)

and same behaviour at infinity. This RHP decouples into two scalar RHPs, which can be solved
easily using Sokhotski–Plemelji formula:

Ψ̂(z) =


(
z − β
z − α

) 1
4

0

0

(
z − β
z − α

)− 1
4

 =

(
z − β
z − α

) 1
4
σ3

(55)

and the solution Ψ(z) is

Ψ(z) =
1

2

[
1 −i
i −1

](
z − β
z − α

) 1
4
σ3 [1 −i

i −1

]
. (56)

3.4.1 The error

We are now in a position of using the Small Norm Theorem: define the error matrix as

E(z) = Φ(z)Ψ−1(z)

It solves a RHP with no jumps on [a, b] (because Φ and Ψ have the same jump there) and on the
rest of the contours (i.e. the rest of the real line and the upper/lower lenses) we have

E+(z) = E−(z)Ψ(z) [1 + δJ(z)] Ψ−1(z)

where we checked that ‖δJ(z)‖ ∈ O
(
n−1

)
for n→∞. Therefore,

E = 1 +O
(

1

n

)
in the limit as n→∞. (57)

Remark 16. There is a not-negligible problem at the endpoints z = α, β where Ψ and Φ do not
really match. This can be fixed by introducing a local approximation that fits well in the picture of
the "model problem" with Ψ.

One needs to add two fixed (small) disks around the endpoints. It can be shown that inside these
disks the RHP can be solved exactly. The local solution is called the local parametrix. In the
generic case this can be constructed with the aid of Airy functions, but in non-generic situations
(transitions of genus etc.) one needs special functions (Painlevé).

We will not explain this part of the method in these notes.

3.5 Reaping the harvest and back to the kernel

Wrapping up, the chain of transformations we performed so far is:

Y 7→W 7→ X = e−n
`
2
σ3Y e−n(g(z)−

`
2)σ3 7→ Φ =


X
[
1− e−n(g+(x)−g−(x))σ−

]
upper lens L+

X outside
X
[
1 + en(g+(x)−g−(x))σ−

]
lower lens L−

14



Then we have argued (using the Small Norm Theorem) that

Φ(z) ≈ Ψ(z) =
1

2

[
1 −i
i −1

](
z − β
z − α

) 1
4
σ3 [1 −i

i −1

]
, (58)

Getting back to Y , we have that outside the lenses

Y (z) ≈ en
`
2
σ3Ψ(z)en(g(z)−

`
2)σ3 (59)

and inside the lenses (in particular, in the interior of the support of the equilibrium measure)

Y (z) ≈ en
`
2
σ3Ψ(z)

[
1 0

±e∓n(g+(x)−g−(x)) 1

]
en(g(z)−

`
2)σ3 . (60)

Now, recall that

Kn(x, y) =
e−

n
2

(V (x)+V (y))

2πi(x− y)

[
Y −1

+ (y)Y+(x)
]

21
; (61)

writing out explicitly the product Y −1
+ (y)Y+(x) and considering the (2, 1)-entry, we have:

e−
n
2

(V (x)+V (y))
[
Y −1

+ (y)Y+(x)
]

21
≈ en(−

1
2
V (y)+g+(y)− `

2)
[
en(V (y)−2g+(y)+`) − en(V (x)−2g+(x)+`)

]
en(−

1
2
V (x)+g+(x)− `

2)

= e−
n
2
φ+(y)

[
enφ+(y) − enφ+(x)

]
e−

n
2
φ+(x)

= e−
n
2

(φ+(x)−φ+(y)) − e
n
2

(φ+(x)−φ+(y)). (62)

where we called φ+(x) = V (x)− 2g+(x) + ` and recalling (31). Now, using the fact that φ+(z) =
−g+(z) + g−(z) = −2πi

∫∞
z ρ(t) dt:

e−
n
2

(φ+(x)−φ+(y)) − e
n
2

(φ+(x)−φ+(y)) = eiπn
∫ y
x ρ(t)dt − e−iπn

∫ y
x ρ(t)dt = 2i sin

(
πn

∫ y

x
ρ(t)dt

)
(63)

Finally, we use the change of variables

x = x∗ +
ξ

nρ(x∗)
y = x∗ +

η

nρ(x∗)

to conclude:

e−
n
2

(V (x)+V (y))

2πi(x− y)

[
Y −1

+ (y)Y+(x)
]

21
≈ 2i

2πi(ξ − η)
sin

(
πn

∫ x∗+ η
nρ(x∗)

x∗+ ξ
nρ(x∗)

ρ(t)dt

)
≈ sin (π(ξ − η))

π(ξ − η)
(64)

Et voilà:

lim
n→+∞

1

nρ(x∗)
Kn

(
x∗ +

ξ

nρ(x∗)
, x∗ +

η

nρ(x∗)

)
=

sin (π(ξ − η))

π(ξ − η)
. (65)
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