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1 Introduction

A random matrix is a matrix whose elements are randomly distributed. A random matrix model
is characterized by a matrix ensemble E and a probability measure dµ(M) for M ∈ E (the random
matrix law), thus the matrix itself is a random variable.

Let M be a space of matrices of given size: e.g.

• Hermitian matrices (M = M †) of size n × n: M = {M ∈ Matn(C) |Mij = M∗ji } (Unitary
ensemble)

• Symmetric matrices (M = MT ) of size n× n: M = {M ∈ Matn(R) |Mij = Mji } (Orthog-
onal ensemble)

• Symplectic matrices: MTJ = JMT , with J =

[
0 1
−1 0

]
⊗ 1n of size 2n × 2n (Symplectic

ensemble)

• Rectangular matrices of size n×K

• M = Matn(C)

• etc.

Remark 1. The first three examples are extensively studied and their names refer to the compact
group that leaves the measure invariant.

A simple way to define a probability measure on these ensembles relies on the remark that each
of these spaces is a vector space and thus carries a natural flat Lebesgue measure (invariant by
translations) which we shall denote by dM .

Then, starting from dM , we can equip each of these spaces with a probability measure of the
form

dµ(M) = F (M)dM

where F : M→ R+ is some suitable (L1(dM)) function of total integral 1 (this is a measure which
is absolutely continuous with respect to Lebesgue measure).

The main objective in Random Matrix Theory typically is to study the statistical properties
of the spectra (for square matrices ensembles) or singular values (for rectangular ensembles). In
order to do so, we need to develop an understanding of the joint probability distribution functions
(jpdf) of the eigen-/singular-values.

Additional interest is the study of the properties of the said statistics when the size of the
matrix ensemble tends to infinity (under suitable assumption on the probability measure).

Random Matrices are one of those transversal theories who may appear in different fields of
Mathematics and Physics, providing unexpected links between for example Probability, Number
Theory and Integrable Systems.

Among the vast literature on Random Matrix Theory, we can mention the book by Mehta [5]
and the book by Anderson, Guionnet and Zeitouni [3].
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2 A little bit of history

The first appearance of the concept of a random matrix dates back to the Fifties and it is due to
the physicist E.P. Wigner. In the field of Nuclear Physics, Wigner wished to describe the general
properties of the energy levels of highly excited states of heavy nuclei, as measured in nuclear
reactions. In particular, he wanted to study the spacings between those energy levels.

Such a complex nuclear system is usually represented by a Hermitian operator H, called the
Hamiltonian, defined on an infinite-dimensional Hilbert space and governed by physical laws. How-
ever, except for very specific and simple cases, H is unknown or very hard to compute.

On the other hand, the real quantities of interest are the eigenvalues of H, which represent the
energy levels:

Hv = λv (1)

where v is the eigenfunction associated to the eigenvalue λ.
Wigner argued that one should regard a specific Hamiltonian H as behaving like a large-

dimension matrix with random entries. Such a matrix is thought as a member of a large class
of Hamiltonians, all of which would have similar general properties as the specific Hamiltonian H
in question ([12]). As a consequence, the eigenvalues of H could then be approximated by the
eigenvalues of a large random matrix and the spacings between energy levels of heavy nuclei could
be modelled by the spacings between successive eigenvalues of a random n×n-matrix as n→ +∞.

It turns out that the ensemble of the random eigenvalues is a determinantal point process.
Therefore, studying the spacings or gaps between eigenvalues means studying the gap probabilities
of the determinantal system. Furthermore, the distribution of the largest eigenvalue obeys a differ-
ent law on its own and is governed by the so called “Tracy-Widom” distribution ([11]), which can
still be considered as a gap probability on an interval of the type [s,+∞), s ∈ R (the eigenvalues,
or in general the points of a DPP, are always confined in finite positions on the real line).

3 Unitary matrices

We will focus from now on on the case of Hermitian matrices (Unitary ensemble). This is a vector
space with the real diagonal entries {Mii}ni=1 and the real and imaginary part of the upper diagonal
elements {<Mij , =Mij}i<j as independent coordinates:

Mij = <Mij + i=Mij , with <Mij = <Mji, =Mij = −=Mij , n = 1, . . . , n.

Its dimension is equal to

dimM =
n(n+ 1)

2
+
n(n− 1)

2
= n2

and the corresponding Lebesgue measure reads

dM =
n∏
i=1

dMii

n−1∏
i=1

n∏
j=i+1

d<Mijd=Mij . (2)

We also recall the following properties of Hermitian matrices:
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Theorem 2 (Spectral Theorem). Any Hermitian matrix can be diagonalized by a Unitary matrix

U ∈ U(n) = {U ∈ GLn(C) | U †U = UU † = 1n }

and its eigenvalues are real:

M = U †XU, X = diag {x1, . . . , xn} , xj ∈ R. (3)

Remark 3. The diagonalization is not unique even if X has distinct eigenvalues, because of the
ordering of the eigenvalues, so in general there are n! distinct diagonalizations.

Additionally, the Lebesgue measure (2) is invariant under conjugation with a unitary matrix

dM = d(UMU †), U ∈ U(n) (4)

(more generally, for all ensembles of square matrices the Lebesgue measure is invariant under
conjugation: dM = d(CMC−1)).

In view of these properties, we can perform a strategic change of variables

M 7→ (X,U)

{Mii, i = 1, . . . , n; <Mij ,=Mij , i < j} 7→ {x1, . . . , xn; uij} , (5)

where uij are the parameters that parametrize the unitary group. Under such transformation, the
Lebesgue measure reads (thanks to the Weyl integration formula)

dM = cn ∆(X)2 dX dU (6)

where cn = πn(n−1/2)∏n
j=1 j!

,

∆(X) =
∏

1≤i<j≤n
(xi − xj) = det

[
xb−1a

]
1≤a,b≤n

(7)

is the Vandermonde determinant and dU is the Haar measure on U(n).

Remark 4. Similarly, for the other two main cases

Orthogonal dM ∼ |∆(X)|dXdU
Symplectic dM ∼ ∆(X)4dXdU

where dU is the Haar measure in the respective compact group (O(n) or Sp(2n)). Since the exponent
of the Vandermonde determinant ∆(X) is β = 1, 2, 4 (Orthogonal, Unitary, Symplectic ensembles),
they are also universally known as the β = 1, 2, 4 ensembles.

3.1 Eigenvalues distribution

We now want to equip the space M with a probability measure. Consider again a measure dµ(M)
that is absolutely continuous with respect to Lebesgue:

dµ(M) = F (M)dM (8)
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with F ∈ L1(M, dM) and
∫
F (M)dM = 1. Thus, under the “change of variable” performed before,

dµ(~x, U) = cnF (U †XU)∆(X)2 dx1 . . . dxn dU

If we are interested only on the eigenvalues one can study the reduced measure

dµ(~x) = ∆(X)2 dx1 . . . dxn ×

(∫
U(n)

cnF (U †XU) dU

)
= ∆(X)2 F̃ (x1, . . . , xn) dx1 . . . dxn (9)

where F̃ needs to be a symmetric function of the n arguments.
The connection to Orthogonal Polynomials becomes possible when F̃ is the product of a single

function of the individual eigenvalues:

F̃ (x1, . . . , xn) ∼
n∏
j=1

e−V (xj) (10)

(V (x) is called the potential).

Remark 5. A sufficient condition for the probability (9) to be well-defined is that

lim
|x|→+∞

V (x)

ln(1 + x2)
= +∞. (11)

A standard example is when V (x) is a polynomial of even degree, with positive leading coefficient
(e.g. V (x) = x2).

In conclusion, the probability measure on the space of matrices (8) induces a joint probability
density on the eigenvalues given by

dµ(x1, . . . , xn) =
1

Zn
∆(x1, . . . xn)2

n∏
j=1

e−V (xj)dx1 . . . dxn (12)

with Zn =
∫
Rn dµ(x1, . . . , xn) a suitable normalization constant (partition function).

Paradigma. The Gaussian Unitary Ensemble (GUE) is the ensemble on Hermitian matrices
equipped with the probability measure

dµ(M) =
1

Zn
e−

1
2
TrM2

dM. (13)

Since

TrM2 =

n∑
i=1

(M2)ii =

n∑
i=1

n∑
j=1

MijMji =

n∑
i=1

M2
ii + 2

n−1∑
i=1

n∑
j=i+1

|Mij |2 =

=
n∑
i=1

M2
ii + 2

n−1∑
i=1

n∑
j=i+1

[
(<Mij)

2 + (=Mij)
2
]
, (14)
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the probability measure (13) factorizes as a product of Gaussians

dµ(M) =
1

Zn

n∏
i=1

e−
1
2
M2
iidMii

n−1∏
i=1

n∏
j=i+1

(
e−(<Mij)

2

d<Mij

)(
e−(=Mij)

2

d=Mij

)
. (15)

Therefore, in GUE all the entries {<Mij , =Mij}i<j and {Mii} are mutually independent normal
random variable with zero mean and different variances for the diagonal and off-diagonal entries:

<Mij , =Mij ∼ N
(

0,
1

2

)
Mii ∼ N (0, 1) . (16)

Furthermore, the induced joint probability density of the eigenvalues is

dµ(x1, . . . , xn) =
1

Zn

∏
1≤i<j≤n

(xi − xj)2 e−
1
2

∑n
j=1 x

2
j dx1 . . . dxn. (17)

3.2 Dyson’s Theorem

We start from the eigenvalue distribution. Calling W (X) the Vandermonde matrix

W (X) =


1 x1 . . . xn−11

1 x2 . . . xn−12
...
1 xn . . . xn−1n

 (18)

then, the Vandermonde determinant is ∆(X) = detW (X):

dµ(x1, . . . , xn) =
1

Zn
∆(x1, . . . xn)2

n∏
i=1

e−V (xi)dx1 . . . dxn

=
1

Zn

(
det
[
xj−1i

]
1≤i,j≤n

)2 n∏
i=1

e−V (xi)dx1 . . . dxn

=
1

Zn

n∏
i=1

e−
V (xi)

2 det
[
xj−1i

]
1≤i,j≤n

· det
[
xj−1i

]
1≤i,j≤n

n∏
i=1

e−
V (xi)

2 dx1 . . . dxn

=
1

Zn
det
[
e−

V (X)
2

]
det
[
xj−1i

]
1≤i,j≤n

· det
[
xj−1i

]
1≤i,j≤n

det
[
e−

V (X)
2

]
dx1 . . . dxn

=
1

Zn
det
[
xj−1i e−

V (xi)

2

]
1≤i,j≤n

· det
[
xj−1i e−

V (xi)

2

]
1≤i,j≤n

dx1 . . . dxn (19)

where we used V (X) = diag{V (x1), . . . , V (xn)}.

Proposition 6. The partition function is

Zn = n! detM, (20)

where the matrix M has entries

Mab =

∫
Rn
xa+be−V (x)dx 0 ≤ a, b ≤ n− 1. (21)
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Proof. From the definition of the constant Zn and (19), use the definition of the determinant of a
matrix to obtain the right-hand-side.

Even better,

Proposition 7.

1

Zn

∏
1≤i<j≤n

(x1, . . . xn)2
n∏
i=1

e−V (xi) =
1

n!
det
[
Kn(xi, xj)

]
1≤i,j≤n

(22)

where

K(x, y) = e−
V (x)+V (y)

2

n−1∑
j,k=0

xj [M]−1jk y
k (23)

Proof.

1

n!
det
[
Kn(xa, xb)

]
1≤i,j≤n

=
1

n!
det

∑
j,k

e−
V (xa)

2 xja[M]−1jk x
k
be
−V (xb)

2

 =
1

n!
det
[
e−

V (X)
2 WM−1W T e−

V (X)
2

]
=

1

n! detM
[detW (X)]2 e−TrV (X) =

1

Zn
∆2(X)e−TrV (X) (24)

Finally,

Proposition 8. The kernel K(x, y) has the following properties:

1. (reproducibility)
∫
RK(x, z)K(z, y)dz = K(x, y)

2. (normalization)
∫
RK(x, x)dx = n

3. (marginals)
∫
R det [K(xi, xj)]i,j≤r dxr = (n− r − 1) det [K(xi, xj ]i,j≤r−1

4. (marginals)
∫
Rn−r det [K(xi, xj)]i,j≤n dxr+1 . . . dxn = (n− r)! det [K(xi, xj ]i,j≤r−1

Conclusion 1: Dyson’s theorem says that the joint probability density function of the eigen-
values and all its marginals are in a determinantal form. Therefore, the set of random eigenvalues
of a (unitary) matrix ensemble is a determinantal point process!

Conclusion 2: As already seen in the DPP part of the notes, the whole statistical information
is contained in the kernel K(x, y).
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4 Asymptotics and universality

As it was said in the introduction, a typical question one asks when dealing with random matrices
is what happens to the statistical properties of the eigenvalues when the size of the matrix ensemble
tends to infinity (or equivalently, when the number of eigenvalues grows).

The goal is to find asymptotic behaviours or asymptotic properties of the probability distri-
bution and its related quantities.

A property is considered universal if it only depends on the matrix ensemble, and not – or
almost not – on the probability measure (in particular, we have independency with respect to the
choice of the potential V (x)).

This is a quite vague description of the picture and in fact there are different ways to study the
asymptotics of a matrix ensemble.

4.1 Macroscopic behaviour

We are interested in the distribution of the eigenvalues as a whole, when the dimension of the
matrix grows.

Consider a matrix ensemble and denote the (ordered) eigenvalues by x1 ≤ x2 ≤ . . . ≤ xn. The
empirical spectral distribution of the eigenvalues is defined by

dµn(x) =
1

n

n∑
i=1

δxi(x)dx (25)

where δx is the Dirac delta function centered at x.
Numerical evaluations shows that as we increase the size of the matrix and at the same time

we scale down the phase space by a suitable power of n, we can notice a limiting shape appearing
from the hystograms of the eigenvalues: see Figure 1.

This means that the (rescaled) eigenvalues do not escape at infinity. In many cases of interest
the eigenvalue density has a finite limit as n→ +∞, called the equilibrium density ρ(x).

We saw that the ensemble of eigenvalues is a determinantal point process and in particular the
1-point correlation function (or density function) can be given in terms of the correlation kernel as

ρ1(x) = Kn(x, x). (26)

Proposition 9. The equilibrium density (if it exists) can be computed as

lim
n→+∞

1

n
Kn(x, x) = ρ(x). (27)

4.1.1 Wigner’s semicircle law

One notable example is the case where we consider the GUE ensemble. It is possible to show
that the second moment of the eigenvalue distribution measure of the matrix M behaves like n
(E
[
M2
]
∼ n) and therefore it is divergent. On the other hand, if we “smartly” rescale the matrices

M̃ =
1√
n
M, (28)

then the corresponding eigenvalue distribution density has finite moments. Its limit distribution
has a very peculiar shape as a semicircle.
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Figure 1: Histograms of the eigenvalues of GUE matrices as the size of the matrix increases (such
histograms are produced with rescaling the spectrum by a factor 1/

√
n). Numerical simulation

with MATLAB (courtesy of prof. Ken McLaughlin).
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Theorem 10 (Wigner’s semicircle law). Consider the GUE ensemble of size n with matrices
1√
n
M , then the spectrum distribution converges weakly as n → +∞ to the following deterministic

probability density

ρ(x) =

{
1
2π

√
4− x2 if |x| ≤ 2

0 otherwise.
(29)

More precisely, ∀ f ∈ C0(R) bounded, ∀ ε > 0

lim
n→+∞

P

[∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
f(t)ρ(t) dt

∣∣∣∣∣ ≥ ε
]

= 0. (30)

Observation on the proof. There are several ways to prove the theorem. Historically this was proven
using the so-called “moments method”, but it can also be proved using the Stieltjes transform (see
Appendix A) and other more recent methods.

The semicircle law is characteristic for a large class of random matrices. The minimum re-
quirements are that the matrices are hermitian (or symmetric, if we are considering matrices with
real entries), with mean zero and finite variance independent entries: E[Mij ] = 0, E[M2

ij ] < +∞,
i = 1, . . . n, j = i, . . . , n. Such type of matrices are generally called Wigner matrices.

This is already one example of the universality feature mentioned at the beginning of this
section.

Remark 11. If we consider random square matrices with independent entries but without symmetry
(i.e. the entries Mij are independent for all i, j) another universal pattern emerges, the so-called
circular law.

In particular, if the entries Mij have zero mean and finite variance, the empirical density of
eigenvalues converges to the uniform measure on the unit disk in the complex plane.

If independence is dropped, one can get many different density profiles.

4.2 Microscopic behaviour

Another aspect of interest about the distribution of eigenvalues is the local (infinitesimal) behaviour
of the eigenvalue distribution in specific points of the spectrum in the limit as n→ +∞.

Focusing on the GUE ensemble, the two settings that we can consider are points that lie in
the interior of the spectrum (the bulk) or that lie on the boundary of the spectrum (the edge,
meaning the largest or the smallest eigenvalue). In order to study their statistical behaviour we
will again make use of the results seen in the DPP theory.

We recall the following result about transformations of DPPs.

Proposition 12. Let P and Pn be determinantal point processes with kernels K and Kn respectively.
Let Kn converge to K

lim
n→∞

Kn(x, y) = K(x, y) (31)

uniformly over compact subsets of R× R. Then, the point processes Pn converge to P weakly.

Given a fixed reference point x∗ of the spectrum, center and scale the DPP of eigenvalues, i.e.
apply the change of variables

x 7→ Cnγ(x− x∗) (32)
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to the correlation kernel, with suitable values of C, γ > 0, depending on the RM model and on
where we are focusing on (the edges behaviour or the bulk behaviour). We can now perform the
limit:

lim
n→∞

1

Cnγ
Kn

(
x∗ +

x

Cnγ
, x∗ +

y

Cnγ

)
= K(x, y) (33)

with x, y the new local coordinates of the limit-DPP.

4.2.1 Bulk universality

A point x∗ lies in the bulk of the spectrum if the equilibrium density doesn’t vanish ρ(x∗) 6= 0 (we
are actually requiring that the density doesn’t vanish in a whole neighbourhood of x∗).

Pick a point x∗ in the bulk of the spectrum and introduce the following change of variables:

x = x∗ +
ξ

nρ(x∗)
y = x∗ +

η

nρ(x∗)
(34)

Theorem 13 (Bulk universality at the origin). For the Unitary Ensemble, the local behaviour
in the bulk of the spectrum is described by a DPP with correlation kernel given by

lim
n→+∞

1

nρ(x∗)
Kn

(
x∗ +

ξ

nρ(x∗)
, x∗ +

η

nρ(x∗)

)
= Ksine(ξ, η) (35)

with

Ksine(ξ, η) =
sin (π(ξ − η))

π(ξ − η)
. (36)

This results holds regardless on the choice of the potential V (x) (despite some reasonable
properties that we require V (x) to have). Here is another universality results.

4.2.2 Soft-edge universality

In the case of points x∗ close to a spectral edge a, the definition of an edge microscopic limit will
depend on the behaviour of the equilibrium density ρ̄(x) near a.

For a generic potential V , we have regular edges or soft edges if the density vanishes as a
square root: ρ(x) ∼

√
x− a. On the other hand for special choices of the potential, we can have

that the vanishing of the density has a different regime ρ(x) ∼ (x− a)
p
q for some positive integers

p, q; in this case, the edges are called critical.
In the case of UE with regular one-cut potential (e.g. V (x) = x2), both edges (on a = ±2

√
n)

are regular and the microscopic limit is described as

Theorem 14 (Soft-edge universality).

lim
n→+∞

1

2n
1
6

Kn

(
±2
√
n+

ξ

2n
1
6

,±2
√
n+

η

2n
1
6

)
= KAiry(ξ, η) (37)

with

KAiry(ξ, η) =
Ai(ξ)Ai′(η)−Ai′(ξ)Ai(η)

ξ − η
. (38)
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Note 15. The function Ai(z) is the Airy function. It satisfies the second-order ODE

y′′ = zy, such that lim
z→+∞

y(z) = 0. (39)

It can be represented as a contour integral

Ai(z) =

∫
γ
e
ζ3

3
−zζ dζ

2πi
(40)

where the curve γ ⊆ C is an oriented contour starting at ∞ with argument −π
3 and ending at ∞

with argument π
3 .

The corresponding gap probabilities of this (limit) DPP describe the local behaviour of the
largest eigenvalue in the spectrum and it infinitesimal random oscillations are described by the
celebrated Tracy–Widom distribution:

Theorem 16 (Tracy–Widom distribution). Consider the semi-infinite interval [s,+∞), then
the distribution of the largest eigenvalue of the GUE ensemble obeys the following law

det

(
1L2(R) −KAi

∣∣∣∣
[s,+∞)

)
= exp

{
−
∫ ∞
s

(x− s)q2(x)dx

}
(41)

where q(x) is the Hasting-Mc Leod solution to the Painlevé II equation:

q′′(x) = 2q3(x) + sq(x)

q(x) ∼ Ai(x) x→ +∞. (42)

Remark 17 (food for thought). The Tracy–Widom distribution can be seen as the τ -function
of the Painlevé II integrable system.

5 A zoo of random matrix models

In these notes we only focused on unitary ensembles, i.e. squared Hermitian matrices with a given
(smooth) potential V (x). On the other hand, there is a vast variety of possible matrix models and
the sky is the limit.

Here we’ll mention just a few.

5.1 Wishart ensemble

The Wishart ensemble is the ensemble of matrices of the form M = XXT , where X is a rectangular
matrix X ∈ Matn×m(R) with i.i.d entries, E[Xij ] = 0, E[X2

ij ] = 1.
The corresponding eigenvalue distribution has the following expression

dµ(x) =
∏
i<j

|xi − xj |
∏
i

xαi e
1
2

∑
i xidx1 . . . dxn. (43)

If we properly rescale the ensemble by

M̃ =
1

n
M (44)
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and take the limit as n→ +∞, while assuming that n
m → κ (κ ∈ (0, 1]), then the limit distribution

of eigenvalues is defined on a bounded interval [a−, a+] depending on κ

a− =
(
1−
√
κ
)2
, a+ =

(
1 +
√
κ
)2

(45)

and it is equal to

ρMP(x) =
1

2πκ

√
(a+ − x)(x− a−)

x
. (46)

This distribution is called Marchenko-Pastur law (see Figure 2).
More formally,

Theorem 18 (Marchenko-Pastur law). Let X ∈ Matp,n(R) with i.i.d. zero mean, unit variance,
entries.

In the limit as p, n → +∞, with p
n → κ ∈ R, the empirical spectral distribution dµp of 1

pXX
T

converges weakly, in probability, as p→∞ to the distribution dµMP with density function

ρMP(x) =

 1

2πκ

√
(a+ − x)(x− a−)

x
x ∈ [a−, a+] \ {0}

max{0, 1− κ−1} x = 0
(47)

One way to prove this theorem is via Stieltjes transform (see Appendix A).
In particular, if κ = 1, then the distribution has a square-root singularity at x = 0:

ρMP,1(x) =
1

2π

√
4− x
x

x ∈ (0, 4]. (48)

In this configuration, the point x = 0 is called hard-edge and the local infinitesimal behaviour in
a neighbourhood of x = 0 (in the limit as n→ +∞) is described by a universal kernel called Bessel
kernel

KBessel(x, y) =
Jα (
√
x)
√
yJ ′α

(√
y
)
− J ′α (

√
x)
√
xJα

(√
y
)

2(x− y)
x, y ∈ R+, α > −1. (49)

Note 19. The function Jα(z) is the Bessel function (of first kind). It satisfies the second-order
ODE

z2y′′ + zy′ + (z2 − α2)y = 0, (50)

such that limz→0 y(z) < ∞ for integer or positive α. It admits a series expansion at x = 0 of the
form

Jα(z) =
∞∑
n=0

(−1)n

n!Γ(n+ α+ 1)

(z
2

)2n+α
(51)

(alternatively, it admits a representation in terms of a contour integral).
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Figure 2: Marchenko-Pastur distribution for different values of κ (picture taken from WolframAlpha
website).

5.2 (Gaussian) β-ensembles.

dµ(x) =
∏
i<j

|xi − xj |β e−
β
4

∑
i x

2
i dxi . . . dxn (52)

As seen before, for β = 1, the matrix ensemble is called Gaussian Orthogonal Ensemble and it is
the ensemble of real symmetric matrices (its distribution is invariant under orthogonal conjugation).
For β = 4, the ensemble is given by quaternionic Hermitian matrices (its distribution is invariant
under conjugation by the symplectic group) and it is called Gaussian Symplectic Ensembles.

For general β > 1, it is possible to realize this distribution as the distribution of eigenvalues of
certain random tri-diagonal matrices with independent entries (Dumitriu, Edelman [4]).

The adjective “Gaussian” refers to the fact that we’re still considering a quadratic potential
V (x) = x2 in the definition of the probability measure.

5.3 Multi-matrix models and external field.

The matrix models which we have considered so far could be called one-matrix models, as the
corresponding integrals involved only one matrix. A natural generalization is to consider integrals
over multiple matrices, and the corresponding multi-matrix models. For example, a two-matrix
model can be defined from the ensemble

E = M×M,

where M is the set of all n× n Hermitian matrices, with measure (for example)

dµ(M1,M2) = e−Tr
[
V1(M1)+V2(M2)−M1M2

]
dM1dM2 (53)

where V1 and V2 are two potentials. This can be generalized to the matrix chain on ⊗kM with
or without the so-called “external field”, a deterministic fixed matrix which breaks the invariance
under conjugation of the original model: for example,

dµ(M) = eTr(M
2)−AMdM. (54)
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6 Bonus: applications

We conclude these notes with a few applications of random matrices to Statistics and Machine
Learning.

6.1 Principal Component Analysis (PCA) [6]

Consider X ∈ Rp a random vector with covariance matrix

Σ = E
[
(X − E[X])(X − E[X])T

]
.

The goal of Principal Component Analysis is to learn a low dimensional representation of the vector
X such that the residual variance is minimized. This is solved by finding a sequence of orthonormal
eigenvectors {vk}k=1,...,p of Σ.

In practice we observe n i.i.d. realizations X(i), i = 1, . . . , n and Σ is unknown. We estimate
the vk’s by their empirical counterparts v̂k defined as as a sequence of orthonormal eigenvectors of
the empirical covariance matrix

S =
1

n

n∑
i=1

(
X(i) − X̄

)(
X(i) − X̄

)T
,

with eigenvalues {λ̂k}; here X̄ ∈ Rp is the mean of the X(i)’s over each entry/feature. Then, S can
be viewed as a random matrix.

In general, one can test the existence of a one-dimensional signal (i.e. correlation between the
features/entries of X) over a Gaussian white noise. In the case were there is no correlation, we can
reasonably argue that the n i.i.d. realizations of the random vector X ∈ Rp are sampled from a
multivariate distribution N (µ,Σ) and the corresponding empirical covariance matrix nS follows a
Wishart distribution Wp(n− 1,Σ).

We test the null hypothesis H0 : {Σ = Ip} (no correlations) against the alternative H1 : {Σ =

λθθT + Ip}, where θ ∈ Rp. Denote by λ̂ the largest eigenvalue of S. Under H0 the asymptotic

distribution of λ̂ is given by the Tracy-Widom law TW1. An asymptotic test of level 1−ε, 0 < ε < 1,
is to accept H0 if λ̂ is smaller or equal to the (1− ε)-quantile of TW1, and to accept it otherwise.

It is worth mentioning the following fact: consider i.i.d. data X1, . . . , Xn ∈ Rp with E[Xi] = 0,
E[X1X

T
1 ] = Σ. Then, the (strong) law of large numbers tells us that the sample covariance matrix

S converges almost surely in the limit as n→∞ to the true covariance matrix Σ:

S
a.s.→ Σ, equivalently ‖S − Σ‖ a.s.→ 0.

However, the law is not true anymore when considering the limit as both n, p → ∞, while
keeping their ratio constant (p/n→ c ∈ R): in this case ‖S − Σ‖9 0.

For example, consider X1, . . . , Xn ∈ Rp i.i.d., X1 ∼ N (0, Ip), and p = p(n) such that p/n →
c > 1. Then, we have joint pointwise convergence

max
i,j=1,...,p

|[S − Ip]ij | = max
i,j=1,...,p

∣∣∣∣ 1nXj,·X
T
i,· − δij

∣∣∣∣→ 0
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but the eigenvalues do not match:

0 = λ1(S) = . . . = λp−n(S) ≤ λp−n+1(S) ≤ . . . ≤ λp(S)

(indeed, the data matrix [X1|X2| . . . |Xn] ∈ Matp,n(R) a rectangular matrix with more rows than
columns, thus implying that its Gram matrix S = XXT is noninvertible) while

λ1(Ip) = λ2(Ip) = . . . = λp(Ip) ≡ 1.

6.2 Geometry of NN Loss Surfaces [7]

Consider a NN with one hidden layer, without biases, and with ReLU activation function:

ŷiµ =

n1∑
k=1

W
(2)
ik

[
z
(1)
kµ

]
+
, z

(1)
kµ =

n0∑
`=1

W
(1)
k` x`µ (55)

and consider the least-square-error loss function

L =
1

2m

n2,m∑
i,µ=1

(ŷiµ − yiµ)2 (56)

(with m the number of input samples). We are interested in the regime n = n1 = n2 = n0 and

n,m� 1, but constant ratio of parameter to to data points φ = 2n2

nm = 2n
m ∈ R.

The Hessian of L H[L]α,β = ∂2L
∂α∂β can be decomposed into the sum of two matrices

H[L] = H0 +H1 (57)

where

[H0]α,β =
1

m

[
JJT

]
α,β

[H1]α,β =
1

m

n2,m∑
i,µ=1

(ŷiµ − yiµ) · ∂ŷiµ
∂α∂β

Under some mild (justifiable) assumption, we can assume that H0 and H1 are respectively a real
Wishart matrix and a real Wigner matrix (at least locally near the critical points). Additionally
we assume that H0 and H1 are freely independent.

Therefore, the spectrum ρ (λ;L, φ) of the Hessian can be easily computed with the help of the
Stieltjes (and R) transform.

Of particular interest is the index α of the Hessian (i.e. the fraction of negative eigenvalues),

α (L;φ) =

∫ 0

−∞
ρ (λ;L, φ) dλ

because it measures the number of “descent directions”, which is crucial in optimization: previous
work showed that critical points with many descent directions have large loss value.
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Figure 3: Spectral distribution of the Wishart+Wigner approximation of the Hessian for different
values of φ. As the value of the loss function increases, the spectrum becomes more semi-circular
and negative eigenvalues emerge. (From [7])

It is then possible to derive a prediction (also supported by numerical simulations) that for
critical points of small index (i.e. possible good candidates for the minimizer of the cost function)
we have

α (L;φ) ≈ α0 (φ)

∣∣∣∣L − LcLc

∣∣∣∣ 32 (58)

where Lc is the value of the loss function below which all critical points are minimizers: in particular,

Lc = Lc (φ) =
1

16

(
1− 20φ− 8φ2 + (1 + 8φ)

3
2

)
(note that Lc → 0 as n

m → 1).

Note 20 (Food for thought). Note that the 3
2 -exponent appearing in (58) appears also in

a refined version of the model and, more remarkably, in the context of field theory of Gaussian
random functions. Could there be a KP-universality hidden here?

6.3 Nonlinear RMT for Deep Learning [8]

Consider a NN of the form

Y = f(WX) (59)

where f is the nonlinear activation function, W is a Gaussian random weight matrix, X is a
Gaussian random data matrix (both matrices have Gaussian entries with mean zero and prescribed
variance). We are assuming that the dimension of both the number of parameters n and the number
of samples m grows to infinity at the same rate (n0, n1,m→ +∞, n0

m = φ ∈ R, n1
n0

= ψ ∈ R). The
focus is on the spectral composition ρM of the Gram matrix

M :=
1

m
Y TY.
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As before, Stieltjes transform (Appendix A) comes into help:

G(z) :=
1

n1
E
[
Tr
[
(M − z1n1)−1

]]
,

where the expectation is taken w.r.t. W andX. After we take the large size limit (n0, n1,m→ +∞),
we’ll get back to the (limiting) spectral density via the Inverse Stieltjes Transform. As extra
ingredients, before computing the IS transform, we will first perform an asymptotic expansion of
G(z) as a power series

G(z) =
∞∑
k=0

mk

zk+1
, z →∞

where the coefficients mk are the moments of the distribution

mk =

∫
tkρM (t)dt =

1

n1
E
[
Tr[Mk]

]
(this is known as the ”moment methods”).

The main result is the following: in the large size limit, the Stieltjes transform of the density
ρM Gram matrix satisfies a simple quartic polynomial expression depending exclusively on φ, ψ
and two quantities η, ζ that only depends on the nonlinearity f (see [8, Formula (10)]):

G(z) =
ψ

z
P
(
(zψ)−1

)
+

1− ψ
z

(60)

where P is the solution of a given (implicit) equation.
Consider two special cases:

1. ζ = η (theoretically interesting, but possibly with limited span of application): η = ζ if and
only if f is linear. In this case, M = (WX)(WX)T product of Gaussian random matrices.
The distribution of its singular values has been widely studied and derived in [1] and [2],
although these results were not mentioned in this paper.

2. ζ = 0: in this case the equation describing G(z) coincides with the Stieltjes transform of
the Marchenko-Pastur distribution with parameter κ = φ/ψ and in particular if ψ = 1, it
additionally coincides with the limiting distribution of XXT , implying that Y Y T and XXT

have the same limiting spectral distribution.

The interesting implication is that nonlinear functions f for which ζ = 0 are isospectral
transformations.

If we consider now a deep forward NN with `-th layer Y ` = f(W `Y `−1), Y 0 = X, we may
wonder whether (by smartly choosing the nonlinearity f so that ζ = 0) the distribution of
the eigenvalues of the `-th data covariance matrix Y `(Y `)T is (approximately) the same as
the distribution of the eigenvalues of the input Gram matrix XXT .

Indeed, having similar distribution, indicates that the input signals are not distorted or
stretched as they propagate through the network (highly skewed distribution shows poor
conditioning to the point that learning may not happen). Batch normalization techniques
arose to address this same issue. See Figure 4 for some numerical results.
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Figure 4: Statistical distance (i.e. the L1 norm of the difference) between the first-layer (a) and the
tenth-layer (b) empirical eigenvalue distributions of the data covariance matrices and the theoretical
prediction given by equation (60) for the first-layer limiting distribution ρ̄1, as the network width
increases. The different curves correspond to different piecewise linear activation functions (α = −1
is linear, α = 0 is ReLU, α = 1 is absolute value). We can see that in (a) for all α we have good
convergence to ρ̄1, while in (b) the convergence only happens when α = 1 (i.e., ζ = 0). (From [8])

An additional result presented in [8] is the following: consider the ridge-regularized least-
square loss function for a single-layer network

L(W2) :=
1

2n2m

∥∥Y −W T
2 Y
∥∥
F

+ γ ‖W2‖2F , Y = f(W1X)

where W1 is a matrix of random weights and W2 is the matrix of parameters to be learned
(a setting similar to the Random Kitchen Sinks [9]).

It can be shown that the training loss of this problem is related to −γ2G′(−γ): for fixed value
of γ, the training loss is lower (i.e. the memorization capacity is higher) if η

ζ is higher (ideally
going to infinity if ζ → 0?), a condition satisfied by a large class of functions, for example if
f is “close” to be an even function. See Figure 5.

A A few facts about the Stieltjes transform

For the sake of simplicity, consider a measure µ that is absolutely continuous with respect to the
Lebesgue measure (i.e. it admits a density function ρ(t) ∈ L1

loc(R) such that dµ(t) = ρ(t)dt)

Definition 21. For a (real) probability measure µ with support suppµ, its Stieltjes transform
mµ is defined for z ∈ C \ suppµ as

mµ(z) =

∫
1

t− z
dµ(t) (61)
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Figure 5: Memorization performance of random feature networks versus γ. Theoretical curves
are solid lines and numerical results are the points. β = log10(η/ζ − 1) distinguishes the class
of nonlinearities. In (a) there are more random features than data points, allowing for perfect
memorization, unless the function is linear (β = −∞). In (b) there are fewer features than data
points. For fixed γ, curves with larger values of β (i.e. smaller value of ζ) have lower training loss.
(From [8])
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Focussing on the special case of (symmetric) matrices, we have the following result:

Proposition 22. Given a symmetric matrix M ∈ Matp,p(R) with empirical spectral distribution
µ = 1

p

∑p
i=1 δλi(M), its Stieltjes transform is

mµ(z) =
1

p
Tr
[
(M − z1p)−1

]
. (62)

Proof.

mµ(z) =

∫
1

t− z
dµ(t) =

1

p

p∑
i=1

1

λi(M)− z
=

1

p
Tr
[
(diag{λi(M)} − z1p)−1

]
=

1

p
Tr
[
(M − z1p)−1

]
(63)

The measure itself can be recovered via the Inverse Stieltjes Transform:

Proposition 23. Given a measure µ with density function ρ(t) and its Stieltjes transform mµ,
then the following holds:

ρ(t) = lim
ε↘0

1

π
= [mµ(t+ iε)] (64)

The idea of the proof of Theorems 10 and 18 is the following: compute the Stieltjes transform
of the empirical spectral distribution, calculate its limit as n → ∞ (with p

n → κ) and finally “get
back” to the measure on the real line by calculating the Inverse Stieltjes transform.
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