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Abstract

The Vortex Filament Equation, describing the self-induced motion of a vortex filament in
an ideal fluid, is a simple but important example of integrable curve dynamics. These notes
are a short introduction about VFE and the goal is to show its connection with the nonlinear
Schrödinger equation through the Hasimoto map. This is just the starting point for a wide
spectrum of research which is meant to study curve flows in R3 using powerful results borrowed
from soliton theory.

These notes are based on M. Girotti’s personal notes taken at the Grad Students working
group led by Prof. Annalisa Calini, during the conference “Integrable Systems, Random Matrices
and Combinatorics. Nicholas Ercolani’s 60th Birthday” University of Arizona, Tucson (AZ,
USA) in October 2013.

1 Physical (fluid dynamics) setting: vortices

Let’s consider a perfect fluid (incompressible, non-viscous) filling an unbounded domain Ω ⊆ R3.
The vorticity of a fluid is the rotational tendency of the fluid. Mathematically, the vorticity

is defined as
ω = ∇× v

If the curl vanishes throughout the domain Ω, no particle of the fluid has a rotational component,
and the fluid is called irrotational.

A vortex tube is a tubular region of the fluid that has a much higher vorticity than that of
the surrounding fluid. Common examples are smoke rings and whirlpools.

We will consider a slender vortex tube (with vanishingly small diameter) and approximate it
with a space curve γ representing the position of the core of the vortex. When the vorticity inside
the tube is very large (infinite vorticity)

ω = ∇× v = δγ(x),

the vortex tube is called a vortex filament.
For a more detailed description and derivation of the physical model, we refer to [2, Section

1.1].

2 Mathematical setting: curves and solitons

Curves. A curve in R3 is a vector-valued function γ(s, t) ∈ R3 where s is the arclength parameter
and t is the time parameter.
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To every point of the curve we can associate the Frenet frame:

Tangent T :=
dγ

ds

Normal κ N :=
d T

ds
Binormal B := T× N

with κ = κ(s, t) the curvature function of γ.
The behaviour of the curve γ is described by the Frenet-Serret equations

d

ds

T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B


with τ = τ(s, t) the torsion of the curve.

Solitons. Solitons are solitary wave (localized travelling waves) solution of a nonlinear dispersive
wave equation (e.g. KdV: ut + uxxx + 6uux = 0).

Their shape and velocity is constant in time (also their total energy) and their mutual interaction
is elastic, meaning that when two solitons interact their shape and velocity remain unchanged (but
the solution picks up a phase shift). As it was originally noticed in the numerical experiment by
Zabusky and Kruskal (’65), they “survive” collisions, despite lack of superposition principle.

Nonlinear integrable equations (giving rise to solitons) can be effectively described by the Lax
formalism:

L (x, t, u, ux, ut, . . .) = 0 ⇔

{
Ψx = AΨ

Ψt = BΨ
such that At −Bx + [A,B] = 0

where A = A(s, t, u;λ) and B = B(s, t, u;λ) are 2× 2 matrices (λ being the spectral parameter).
They can be solved through the (Direct and Inverse) Scattering methods, in particular with the

use of Riemann–Hilbert techniques. Other properties (stability, dynamics, asymptotics...) can also
be derived from the Riemann–Hilbert problems associated to such equations.
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What is a RH problem: Given a set of oriented contours Σ in the complex plane, find a
(matrix-valued) function X such that:

1. X is holomorphic in C \ Σ;

2. jump condition: there exists (finite) the limit of X as λ approaches the contours X±(λ) such
that

X+(λ) = X−(λ)J(λ) λ ∈ Σ;

3. normalization at infinity:

X(λ) = I +O
(

1

λ

)
λ→∞.

Remark 1. Explicit solutions are extremely rare!

3 The Vortex Filament Equation (VFE)

The first mathematical model of the evolution of a vortex filament in an ideal fluid was derived in
1906 by Luigi S. Da Rios. The PDE equation reads

γt = γs × γss

i.e.
γt = T× κN = κB

in the Frenet-Serret frame.

This implies that, assuming that the curvature never vanishes, the vortex filament curve moves
in time in the direction of the binormal.

The simplest non-trivial solutions of the VFE are

- a straight line γ(s, t) = (0, 0, s) (stationary solution);

- a circular filament with periodic boundary conditions

γ(s, t) =

(
1

κ
cos(κs),

1

κ
sin(κs), κt

)
.

with κ the constant curvature (κ−1 is the radius of the circle); the binormal vector B is the constant
unit vector e3, perpendicular to the (x, y)-plane containing the circular filament.

Thus, a planar circle moves in time under the VFE in the direction perpendicular to its osculat-
ing plane at speed κ: the smaller the radius of the circle, the faster the filament will travel through
the fluid.

We state here a few properties of the VFE.

Theorem 2. If a curve γ is a vortex filament at t = 0, then it remains so for all times (provided
it moves in a perfect fluid).
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Theorem 3 (Helmholtz’s second theorem). A vortex filament cannot end in a fluid; it must
extend to the boundaries of the fluid or form a closed path.

Theorem 4. The VFE is a locally arc-length-preserving vector field, i.e.

∂

∂t

(
‖γs‖2

)
= 0

Proof.

∂

∂t

(
‖γs‖2

)
= 2γs · γst = 2γs · (γs × γss)s = 2T× (κB)s = 2κ2T×B− 2κτT×N = 0

Remark 5. The VFE is actually a Hamiltonian system with Hamiltonian

H(γ) =

∫
γ
‖γs‖ds

i.e. the length of the curve.
As a consequence, the total length of the vortex filament is invariant during the evolution.

Furthermore, the local preservation property implies that the vortex filament moves in time without
stretching and the variables s and t are independent from each other.

3.1 VFE (2D case)

Theorem 6. γ is a solution to the Planar Filament Equation (PFE)

γt =
κ2

2
T + κsN,

if and only if κ is a solution to the modified KdV equation

κt =
3

2
κ2κs + κsss

Proof. Consider the relation κ2 = ‖Ts‖2 = γss · γss and take the derivative w.r.t. time:

2κκt = 2γss · γsst = 2 (κN) ·
(
κ2

2
T + κsN

)
ss

= 3κ3κs + 2κκsss

where we used the Frenet equations in 2-dimensions.

Remark 7. Notice that the MKdV equation is the second equation of the NLS hierarchy.
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3.2 VFE (3D case)

Theorem 8 (Hasimoto, ’72). γ is a solution to the VFE

γt = γs × γss

if and only if the function

ψγ(s, t) = κ exp

{
i

∫ s

τ(x)dx

}
solves the (focusing) nonlinear Schrödinger equation (NLS)

iψt = −ψss −
1

2
|ψ|2 ψ

(the map H : γ 7→ ψγ is the Hasimoto map).

3.2.1 Sketch of the proof

Introduce a new frame, called Relatively Parallel Frame:

〈 T, U, V 〉

with 
T = T

U = cos θ N− sin θ B

V = sin θ N + cos θ B

(this corresponds to a rotation of the normal and binormal vectors). To uniquely identify U and
V, we impose that their s-derivative are proportional to the tangent vector T.

It follows that the right rotational angle θ is such that ∂sθ = τ , meaning

θ =

∫ s

τ(η, t) dη

and the Frenet-Serret equations become

d

ds

T
U
V

 =

 0 κ1 κ2

−κ1 0 0
−κ2 0 0

T
U
V


where κ1 = κ cos θ, κ2 = κ sin θ are called “natural curvatures” (these equations are sometimes
called Darboux equations).

Lemma 9. Given the curve γ in the Relatively Parallel Frame, then

ψγ = κei
∫ s τ(x) dx = κ1 + iκ2.

Lemma 10. The VFE in the Relatively Parallel Frame reads

γt = −κ2U + κ1V.
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Given the VFE in the new frame

γt = −κ2 U + κ1 V

γss = κ1 U + κ2 V

the compatibility condition (γss)t = (γt)ss yields

(γt)ss = −κ2;ssU + κ1;ssV + (κ1κ2;s − κ2κ1;s) T

(γss)t = κ1;tU + κ2;tV + κ1Ut + κ2Vt

On the other hand, we notice that

1. taking the s-derivative of the VFE, we have

Tt = −κ2;sU + κ1;sV;

2. since T, U, V are mutually orthogonal, then Ut ·T = −U ·Tt and Ut ·V = −U ·Vt;

3. using the previous two points, we have

(Ut ·V)s = −κ1κ1;s − κ2κ2;s = −1

2

(
κ2

1 + κ2
2

)
s

meaning

Ut ·V = −1

2

(
κ2

1 + κ2
2

)
+A(t)

where A(t) is a real-valued function of t.

Getting bak to our derivatives (γt)ss = (γss)t and projecting them over the vectors U and V,
we obtain 

−k2;ss = κ1;t + κ2

[
1

2

(
κ2

1 + κ2
2

)
−A(t)

]
k1;ss = κ2;t − κ1

[
1

2

(
κ2

1 + κ2
2

)
−A(t)

]
where we used the fact that Ut ·U = 1

2
d
dt ‖U‖

2 ≡ 0 (U is a unit vector at all times).
Therefore, if we consider the quantity

ψ = κ1 + iκ2

the equations above are simply the real and imaginary part of the PDE for ψ, which reads

1

i
ψt = ψss + ψ

(
1

2
|ψ|2 +A(t)

)
The function A(t) can be easily eliminated from the PDE by the gauge transformation

ψ 7→ ψ exp

{
−i
∫
A(z)dz

}
.
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4 Geometric interpretation of the VFE

The idea is that the NLS and the VFE are the same Hamiltonian systems written in different
Poisson structure.

4.1 Connection with su(2)

Consider the Lie algebra su(2) = 〈E1, E2, E3〉 of skew-Hermitian (i.e. M∗ = −M) 2 × 2 matrices
where

E1 = iσ3 =

[
i 0
0 −i

]
, E2 = iσ2 =

[
0 1
−1 0

]
, E3 = iσ1 =

[
0 i
i 0

]
(σi’s are the Pauli matrices) with structure constants

[E1, E2] = −2E3, [E2, E3] = −2E1, [E3, E1] = −2E2

and endowed with scalar product and vector product

(A,B) = −1

2
Tr(AB), A ∧B = −1

2
[A,B] .

We can “translate” a curve γ ⊂ R3 into a curve in su(2) via the isometry

I :
(
R3, ·,×

)
−→ (su(2), (·, ·) ,∧)x1

x2

x3

 7→
3∑
i=1

xiEi =

[
ix1 x2 + ix3

−x2 + ix3 −ix1

]

Thanks to the transitivity action of SU(2) (the Special Unitary Group, i.e. the Lie group of
unitary matrices U∗U = I with determinant = 1) on su(2), ∃ Φ0 ∈ SU(2) such that

I(T) = T = Φ−1
0 E1Φ0

I(U) = U = Φ−1
0 E2Φ0

I(V) = V = Φ−1
0 E3Φ0

The Darboux equations in the su(2) representation become

d

ds
Φ0 =

[
0 i(κ2 − iκ1)

i(κ2 + iκ1) 0

]
Φ0 =

[
0 iψ
iψ 0

]
Φ0

We recognize the 1st equation of the NLS Lax pair when λ = 0:

dΦ

ds
=

[
iλ iψ
iψ −iλ

]
Φ λ ∈ R

with prescribed initial conditions Φ(0, 0;λ) = ISU(2) and Φ(s, t; 0) = Φ0.
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4.2 From NLS to VFE

Given ψ(s, t) solution to the NLS equation

iψt = −ψss − 2 |ψ|2 ψ,

(this can be deduced from the previous version of the NLS equation by the rescaling ψ 7→ 1
2ψ) with

associate the Lax pair

dΦ

ds
= AΦ =

(
iλσ3 +

[
0 iψ
iψ 0

])
Φ

dΦ

dt
= BΦ =

(
(2iλ2 − i |ψ|2)σ3 +

[
0 2iλψ + ψs

2iλψ − ψs 0

])
Φ

we can use standard techniques borrowed from spectral analysis (solve the AKNS spectral problem)
to find the fundamental solution matrix Φ (Jost solution).

Theorem 11. Define

Γ(s, t) = Φ−1
∣∣
λ=0

dΦ

dλ

∣∣∣∣
λ=0

∈ su(2).

Then, Γ is a curve in su(2) with tangent vector Γs := dΓ
ds equal to

Γs = Φ−1
0

dA

dλ

∣∣∣∣
λ=0

Φ0 = Φ−1
0 E1Φ0 = T.

Moreover, the time evolution of the curve Γ is

Γt = Φ−1
0

dB

dλ

∣∣∣∣
λ=0

Φ0 = −κ2U + κ1V.

where we can already recognize the VFE in the Relatively Parallel Frame.

Remark 12. It is a matter of straightforward calculations to also obtain the VFE (in su(2)):

Γt = −1

2
[Γs,Γss] ∈ su(2).

4.3 Example - The solitary wave

Consider the solution of the NLS equation which describes a soliton propagating steadily with
constant velocity c along the filament which is straight at ∞:

ψ(s, t) =
κ(s− ct)

2
exp

{
i

∫ s

0
τ(η − ct)dη

}
, with κ = 0 as s→∞.

Then, solving the real and imaginary part of the NLS equation, we get−cκ [τ(s− ct)− τ(−ct)] = κ′′ − κτ2 − 1

2

(
κ2 +A(t)

)
κ

cκ′ = 2κ′τ + κτ ′
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where the ′ means the derivative with respect to the variable z = s− ct.
The second equation is equivalent to

(
(c− 2τ)κ

2

2

)′
= 0, which implies

τ =
c

2
constant torsion

(we used the boundary condition κ = 0 as s→∞). With this value of τ , the first equation becomes

κ′′ +
1

2

(
κ2 − 2ν2

)
κ = 0

by choosing A(t) = 2
(
τ2 − ν2

)
, with ν ∈ R. The equation can be explicitly integrated, giving

κ = 2ν sech (ν(s− ct))

Knowing κ and τ , the VFE solution can be now explicitly recovered and numerically integrated.

5 Further models

• Fukumoto-Miyazaki model (finite vortex core and axial flow within the core):

γt = γs × γss + α

[
γsss +

3

2
γss × (γs × γss)

]
α ∈ R

Using Hasimoto map, it can be shown that γ is a solution of the above equation if and only
if ψγ is a solution to the Hirota equation (NLS hierarchy)

ψt = iψss +
i

2
|ψ|2ψ + α

(
ψsss +

3

2
|ψ|2ψs

)
• Gross-Pitaevskii Equation for Bose-Einstein Condensates: knots in superfluids are identified

with closed vortex lines, which can be described through the defocusing Gross-Pitaevskii
equation

2iψt + ∆ψ − |ψ|2ψ = 0

• Sine-Gordon equation: given a solution ψ(s, t) of the Sine-Gordon equation

ψst = sinψ

then the evolution of the corresponding curve Γ := Φ−1Φλ|λ=τ0 is a curve of constant torsion
τ0 and it describes a family of asymptotic lines of a pseudo-spherical surface.
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