Problem

Find all solutions to

$$
b-a=c-b=a c-d=\sqrt{d-a-b-c}
$$

where a, b, c, d are primes. Show that the systems

$$
\begin{aligned}
& b-a=c-b=a c-d \\
& b-a=c-b=\sqrt{d-a-b-c}
\end{aligned}
$$

each admit more solutions in primes than the first.

Solution

It is easy to verify that $(3,5,7,19)$ is a solution to the first system, while $(3,7,11,29)$ and $(3,7,11,37)$ are solutions to the second and third respectively but not the third and second respectively.

Let

$$
s=b-a=c-b=a c-d=\sqrt{d-a-b-c}
$$

for convenience.
Since d is prime, $s=a c-d \neq 0$. Since $s=\sqrt{d-a-b-c} \geq 0$, it must be true that $s>0$ Then $a<b<c$.

Note that $2 b=a+c$. Then $a \neq 2$, for if it were then c would be an even prime >2, which is absurd. So a is odd, and since b, c are primes $>a$ they are also odd. Then $s=a c-d$ is even, and so d is odd.

Now s is congruent to one of $0,2,4(\bmod 6)$ since it is even and a is congruent to one of $1,3,5(\bmod 6)$ because it is odd. The only prime equivalent to 3 is 3 , and since 3 is the least odd prime and $a<b<c, b$ and c are never equivalent to 3 . Then the two broad cases are

$$
\begin{aligned}
a=3 \text { and } s & \equiv 2,4 \quad(\bmod 6) \\
a \equiv 1,5 \quad(\bmod 6) \text { and } s & \equiv 0 \quad(\bmod 6)
\end{aligned}
$$

Suppose towards contradiction the latter case is true. Then $\sqrt{d-a-b-c}=s \equiv 0$ $(\bmod 6)$ and $a+b+c \equiv 3(\bmod 6)$. Substituting and squaring, we have $d-3 \equiv 0$ $(\bmod 6)$ and so $d=3$. But then $d-a-b-c<0$, so the square root is not defined; contradiction.

So $a=3$ and $s \equiv 2,4(\bmod 6)$. Then $d-a-b-c=s^{2} \equiv 4(\bmod 6)$ and since $a+b+c \equiv 3(\bmod 6), d \equiv 1(\bmod 6)$. Now $s=a c-d \equiv 3 c-1 \equiv 2(\bmod 6)$.

Write $s=6 t+2$ and note that $a=3, b=6 t+5, c=12 t+7$. Furthermore $d=a c-s=3(12+7)-(6 t+2)=30 t+19$. Also, $6 t+2=\sqrt{d-a-b-c}=\sqrt{12 t+4}$, so $2(3 t+1)=2 \sqrt{3 t+1}$. Then $9 t^{2}+6 t+1=3 t+1 \Longrightarrow 3 t(3 t+1)=0$, and the only integer solution for t is 0 . This yields the single solution $(3,5,7,19)$.

