Problem

Let a be the positive 2020-th root of 0.99 and let $f:\mathbb{R}\to\mathbb{R}$ satisfy the functional equation

$$f(f(x)) = 2af(x) - a^2x$$

Prove that f(0) = 0 and find a non-zero solution for f.

Solution

First we show by strong induction that

$$f^{n}(x) = na^{n-1}f(x) - (n-1)a^{n}x$$

This holds for n = 1 and n = 2. Suppose it holds for all $k \le n$ for some $n \ge 2$. Then

$$\begin{split} f^{n+1}(x) &= f^2(f^{n-1}(x)) \\ &= 2af(f^{n-1}(x)) - a^2 f^{n-1}(x) \\ &= 2af^n(x) - a^2 f^{n-1}(x) \\ &= 2a(na^{n-1}f(x) - (n-1)a^n x) - a^2((n-1)a^{n-2}f(x) - (n-2)a^{n-1}x) \\ &= 2na^n f(x) - 2(n-1)a^{n+1}x - (n-1)a^n f(x) + (n-2)a^{n+1}x \\ &= (n+1)a^n f(x) - na^{n+1}x \end{split}$$

as desired. In particular, $f^n(0) = (n+1)f(0)$.

Now, $\lim_{n\to\infty} (n+1)a^n = 0$ and $\lim_{n\to\infty} na^{n+1} = 0$ because a < 1. So for all x, $\lim_{n\to\infty} f^n(x) = 0$.

Let c = 99 * 2020 - 1 and calculate that

$$f^{c}(0) = (c+1) * a^{c} f(0)$$

= 0.99 * (c + 2021) * a^{c} f(0)
= (c + 2021)a^{c+2021} f(0) = f^{c+2020}(0)

Indeed, it is easy to prove by induction that

$$f^{c+2020k}(0) = f^{2020k}(f^c(0)) = f^c(0) = (c+1) * a^c f(0)$$

for all $k \in \mathbb{N}$. Therefore $f^c(0)$ is a cluster point of the sequence $\{f^n(0)\}$. But since $\lim_{n \to \infty} f^n(0) = 0, (c+1)a^c f(0) = f^c(0) = 0$. Finally, since $(c+1)a^c \neq 0, f(0) = 0$.