Problem

Let a be the positive 2020-th root of 0.99 and let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional equation

$$
f(f(x))=2 a f(x)-a^{2} x
$$

Prove that $f(0)=0$ and find a non-zero solution for f.

Solution

First we show by strong induction that

$$
f^{n}(x)=n a^{n-1} f(x)-(n-1) a^{n} x
$$

This holds for $n=1$ and $n=2$. Suppose it holds for all $k \leq n$ for some $n \geq 2$. Then

$$
\begin{aligned}
f^{n+1}(x) & =f^{2}\left(f^{n-1}(x)\right) \\
& =2 a f\left(f^{n-1}(x)\right)-a^{2} f^{n-1}(x) \\
& =2 a f^{n}(x)-a^{2} f^{n-1}(x) \\
& =2 a\left(n a^{n-1} f(x)-(n-1) a^{n} x\right)-a^{2}\left((n-1) a^{n-2} f(x)-(n-2) a^{n-1} x\right) \\
& =2 n a^{n} f(x)-2(n-1) a^{n+1} x-(n-1) a^{n} f(x)+(n-2) a^{n+1} x \\
& =(n+1) a^{n} f(x)-n a^{n+1} x
\end{aligned}
$$

as desired. In particular, $f^{n}(0)=(n+1) f(0)$.
Now, $\lim _{n \rightarrow \infty}(n+1) a^{n}=0$ and $\lim _{n \rightarrow \infty} n a^{n+1}=0$ because $a<1$. So for all x, $\lim _{n \rightarrow \infty} f^{n}(x)=0$.

Let $c=99 * 2020-1$ and calculate that

$$
\begin{aligned}
f^{c}(0) & =(c+1) * a^{c} f(0) \\
& =0.99 *(c+2021) * a^{c} f(0) \\
& =(c+2021) a^{c+2021} f(0)=f^{c+2020}(0)
\end{aligned}
$$

Indeed, it is easy to prove by induction that

$$
f^{c+2020 k}(0)=f^{2020 k}\left(f^{c}(0)\right)=f^{c}(0)=(c+1) * a^{c} f(0)
$$

for all $k \in \mathbb{N}$. Therefore $f^{c}(0)$ is a cluster point of the sequence $\left\{f^{n}(0)\right\}$. But since
$\lim _{n \rightarrow \infty} f^{n}(0)=0,(c+1) a^{c} f(0)=f^{c}(0)=0$. Finally, since $(c+1) a^{c} \neq 0, f(0)=0$.

