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SUPERCONVERGENT INTERPOLANTS FOR

EFFICIENT SPATIAL ERROR ESTIMATION IN

1D PDE COLLOCATION SOLVERS
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ABSTRACT. This paper considers the use of a supercon-
vergent interpolant (SCI) for spatial error estimation when
Gaussian collocation is employed as the spatial discretization
scheme in a method-of-lines algorithm for the numerical solu-
tion of a system of one-dimensional parabolic partial differen-
tial equations (PDEs). Gaussian collocation is a popular ap-
proach for the spatial discretization of parabolic PDEs, and
at certain points within the problem domain, the collocation
solution is superconvergent. This paper describes how an in-
terpolant based on these superconvergent values can be used
to provide an efficient error estimate for the collocation solu-
tion. We implement this scheme within a modified version of
the collocation PDE solver, BACOL. The original BACOL code
obtains a spatial error estimate by computing a second global
collocation solution of one higher order of accuracy. We show
that the SCI based error estimation approach can provide spa-
tial error estimates of comparable accuracy to those currently
computed by BACOL, but at a much lower cost.

1 Introduction In this paper we focus on one of the most com-
monly arising subclasses of partial differential equations (PDEs) known
as time dependent, one-dimensional (1D) parabolic equations. We dis-
cuss the development of a superconvergent interpolation (SCI) approach
to spatial error estimation when Gaussian collocation is employed as the
spatial discretization scheme in a method-of-lines (MOL) algorithm for
this problem class.
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Over the last few decades a number of MOL software packages for
the numerical solution of this problem class have been developed. In a
recent study, [21], one such package, called BACOL [20], was shown to
be comparable to and in some cases superior to other available packages
for 1D parabolic PDEs, especially for problems exhibiting sharp spa-
tial layer regions and for problems where a sharp tolerance is imposed.
The BACOL package employs Gaussian collocation for the spatial dis-
cretization. This involves expressing the approximate solution at a given
time as a linear combination of known spatial basis functions—piecewise
polynomials of a given degree p—with unknown time dependent coeffi-
cients. These coefficients are determined by requiring the approximate
solution to satisfy the PDEs at the images of the Gauss points on each
subinterval of a mesh which partitions the problem domain. This yields
a system of time dependent ordinary differential equations (ODEs) that
together with the boundary conditions gives a system of differential-
algebraic equations (DAEs) which is then solved using a modified ver-
sion of DASSL [5] to obtain the time dependent coefficients. An estimate
of the spatial error of this primary collocation solution is obtained by
computing a secondary global collocation solution using piecewise poly-
nomials of degree p + 1. The difference between these two approximate
solutions gives an estimate of the spatial error in the primary collocation
solution.

In the BACOL algorithm, the computation of the secondary global
collocation solution represents a major computational cost. In this pa-
per, we describe an alternative interpolation-based approach for the de-
velopment of a more efficient spatial error estimation scheme. The key
observation is that because BACOL employs collocation at Gauss points
there are certain points within the problem domain where the colloca-
tion solution is superconvergent. We describe the development of a low
cost interpolant based on these superconvergent values—the SCI—that
can replace the secondary global collocation solution in the computation
of the spatial error estimate.

This paper is organized as follows. In Section 2, we identify the
problem class, give two examples, and provide a brief review of the rel-
evant literature. Section 3 gives a brief description of algorithms upon
which BACOL is based. In Section 4 we describe the alternative spatial
error estimation scheme based on an SCI. Numerical results are pro-
vided in Section 5 to demonstrate the effectiveness of the alternative
approach and in Section 6 we briefly compare the computational costs
of the SCI based error estimation scheme with the one currently imple-
mented within BACOL. We close, in Section 7, with our conclusions and
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an indication of directions for future work.

2 Background We will assume a system of PDEs with NPDE com-
ponents having the form

(1) ut(x, t) = f (t, x, u(x, t), ux(x, t), uxx(x, t)) , a ≤ x ≤ b, t ≥ t0,

with initial conditions

(2) u(x, t0) = u0(x), a ≤ x ≤ b,

and separated boundary conditions

(3) bL (t, u(a, t), ux(a, t)) = 0, bR (t, u(b, t), ux(b, t)) = 0, t ≥ t0.

This form includes the well known reaction-diffusion equations. Specific
examples are:

(i) The simple test problem, [15]:

(4) ut = uxx + π2 sin(πx), 0 < x < 1, t > 0,

with initial condition

u(x, 0) = 1, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 1, t > 0,

for which the exact solution is

u(x, t) = 1 + sin(πx)
(
1 − e−π2t

)
.

(ii) Burgers’ Equation, e.g., [21]:

(5) ut = εuxx − uux, 0 < x < 1, t > 0, ε > 0,

with the initial condition and boundary conditions chosen so that exact
solution is given by

u(x, t) =
1

2
− 1

2
tanh

(
1

4ε

(
x − t

2
− 1

4

))
,
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where ε is a problem dependent parameter.

As mentioned earlier, over the last few decades, a number of high
quality MOL software packages for the numerical solution of this prob-
lem class have been developed. Such packages include PDECOL [15]
/EPDCOL [14], D03PPF [7], TOMS731 [4], MOVCOL [13], HPNEW
[16], BACOL, and the related package, BACOLR [23]. In the MOL ap-
proach a spatial discretization, involving the use of a numerical scheme
such as a finite difference or finite element method, based on a mesh of
points which partition the spatial domain, is applied to the PDE, giving
an approximation of the PDE by a system of time dependent ODEs. In
the early MOL codes, the user was required to differentiate the bound-
ary conditions and these, together with the ODEs from the discretization
of the PDE, represented an initial value ODE problem whose solution,
computed using high quality ODE software, approximated the solution
of the PDE. More recently developed MOL codes treat the boundary
conditions directly. The resultant system of coupled ODEs and alge-
braic equations—a system of DAEs—is then treated using high quality
DAE software such as DASSL or RADAU5 [12].

Another important aspect of MOL software is the type of adaptivity
and error control provided. All MOL codes have temporal adaptiv-
ity and temporal error control provided by the underlying initial value
ODE/DAE solver. In the early MOL codes, no attempt was made to es-
timate and control the spatial error nor was any attempt made to adapt
the spatial computation. EPDCOL is an example of a code of this type.
The next development in MOL codes for PDEs involved the implementa-
tion of some form of spatial adaptivity, such as a moving mesh approach.
The mesh movement is often determined by solving moving mesh PDEs
which are based on some measure of solution behavior such as curvature.
There is no attempt to compute and control an estimate of the spatial
error. MOVCOL is an example of a code of this type. More recently
developed MOL codes employ spatial adaptivity and spatial error con-
trol. Codes from this class compute an estimate of the spatial error and
then adapt the spatial discretization, by changing the mesh and/or the
order of accuracy of the spatial discretization scheme, in an attempt to
compute a solution whose spatial error estimate is less than the user
provided tolerance. HPNEW, BACOL, and BACOLR are examples of
codes of this type.

There is a substantial body of literature on error estimation for the
numerical solution of PDEs (see, e.g., [1] and references within). How-
ever, the recent work most closely related to the current investigation
is by Moore [16, 17, 18, 19], in which interpolation error based error
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estimates for 1D parabolic PDEs are discussed. We will discuss Moore’s
work in more detail, later in this paper. Since the interpolants we con-
sider in this paper depend on the superconvergence properties of the
collocation solution, another relevant body of literature concerns the
study of superconvergence results for the problem class we consider in
this paper and for the related problem class of boundary value ODEs
(BVODEs). Results for 1D parabolic PDEs are discussed in [6] and [9].
Results for BVODEs are discussed in, e.g., [3].

3 Overview of BACOL Given a spatial mesh a = x0 < x1 <

· · · < xNINT = b, the approximate solution is represented in BACOL as
a linear combination of C1-continuous B-spline basis functions [8] (piece-
wise polynomials of degree p where 3 ≤ p ≤ 11) with time dependent
coefficients. Thus the dimension of this piecewise polynomial subspace
is NCp = NINT (p + 1) − 2(NINT − 1) = NINT (p − 1) + 2. Letting

{Bp,i(x)}NCp

i=1 be the B-spline basis functions that support this piecewise
polynomial space on the given mesh, the approximate solution, U(x, t),
then has the form

(6) U(x, t) =

NCp∑

i=1

y
p,i

(t)Bp,i(x),

where y
p,i

(t) represents the (unknown) time dependent coefficient of the

i-th B-spline basis function, Bp,i(x).
The PDE is discretized in space by imposing collocation conditions

on the approximate solution at images of the p − 1 Gauss points (see,
e.g., [3]) on each subinterval and by requiring the approximate solution
to satisfy the boundary conditions. The collocation conditions have the
form

(7)
d

dt
U(ξl, t) = f (t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)) ,

where l = 2, . . . , NCp − 1, and where the collocation points are defined
by

(8)
ξl = xi−1 + hiρj , where l = 1 + (i − 1)(p − 1) + j,

for i = 1, . . . , NINT, j = 1, . . . , p − 1,

where hi = xi − xi−1 and {ρi}p−1
i=1 are the images of the p − 1 Gauss

points on [0, 1]. The points, ξ1 = a and ξNCp
= b are associated with
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requiring the approximate solution to satisfy the boundary conditions,
and this gives the remaining two equations

bL (t, U(a, t), Ux(a, t)) = 0, bR (t, U(b, t), Ux(b, t)) = 0.

The collocation conditions (7) represent a system of ODEs (in time)
for which the unknown solution components are the time dependent
coefficients, y

p,i
(t). These ODEs coupled with the boundary conditions

give an index-1 system of DAEs, which, as mentioned earlier, is treated
using DASSL. After DASSL has computed approximations for the y

p,i
(t)

values at time t, these can be employed together with the known B-spline
basis functions Bp,i(x) within (6), to obtain values of the approximate
solution at desired x values, for the current time t.

The collocation solution U(x, t) for the current time is accepted by
BACOL only if its spatial error estimate satisfies the user tolerance.
This spatial error estimate is obtained by computing a second global
collocation solution on the same spatial mesh at the same time t. This
approximate solution, which we call Ū(x, t), has the form

(9) Ū(x, t) =

NCp+1∑

i=1

y
p+1,i

(t)Bp+1,i(x).

This approximate solution is based on a set of C1-continuous B-spline
basis functions Bp+1,i(x), polynomials of degree p+1 on each subinterval,
with corresponding unknown time dependent coefficients y

p+1,i
(t). Here

NCp+1 = NINT ·p+2. These unknowns are determined by imposing p

collocation conditions per subinterval as well as the boundary conditions
on Ū(x, t). The collocation points in this case are the images of p Gauss
points on [0, 1] mapped onto each subinterval. As before, this leads
to a system of DAEs whose solution gives the functions y

p+1,i
(t). In

order to insure that the two approximate solutions U(x, t) and Ū(x, t)
are available at the same time t, the two DAE systems are provided to
DASSL as one larger DAE system so that DASSL treats both systems of
DAEs with the same time-stepping strategy. See [20] for further details.

It is shown in [6] and [9] that a collocation solution of degree p has
an error that is O(hp+1), where h is the maximum mesh spacing. (We
will say that the collocation solution is of order p + 1.) We then have

‖U(x, t) − Ū(x, t)‖∞ = ‖(U(x, t) − u(x, t)) − (Ū(x, t) − u(x, t))‖∞
= ‖(U(x, t) − u(x, t))‖∞ + O(hp+2),
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and thus, for sufficiently small h, the difference between the two colloca-
tion solutions gives, asymptotically, an estimate of the error in the lower
order collocation solution, U(x, t).

In BACOL, the following a posteriori spatial error estimates are com-
puted. Denote the sth component of U(x, t) by Us(x, t) and the sth
component of Ū(x, t) by Ūs(x, t). Let ATOLs and RTOLs be the abso-
lute and relative tolerances for the s-th component of the approximate
solution. Then BACOL computes a set of NPDE normalized error
estimates over the whole spatial domain of the form

(10) Es(t) =

√∫ b

a

(
Us(x, t) − Ūs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx,

s = 1, . . . , NPDE.

BACOL also computes a second set of NINT normalized error estimates
of the form,

(11) Êi(t) =

√√√√
NPDE∑

s=1

∫ xi

xi−1

(
Us(x, t) − Ūs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx,

i = 1, . . . , NINT.

Note that Es(t), s = 1, . . . , NPDE, and Êi(t), i = 1, . . . , NINT , are
estimates of the error associated with the lower order solution, U(x, t).

The approximate solution, U(x, t), is accepted at the current time, t,
if

(12) max
1≤s≤NPDE

Es(t) ≤ 1.

Otherwise, based on the error estimates, Êi(t), i = 1, . . . , NINT , BA-
COL attempts to construct a new mesh that (i) has as many mesh points
as necessary to yield an approximate solution whose estimated error will
satisfy the user tolerances, and (ii) approximately equidistributes the es-
timated error over the subintervals of the new mesh. See [20, 22] for
further details.
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4 SCI based spatial error estimation

4.1 Overview Rather than compute a second more accurate and in-
dependent numerical solution to serve as the basis for an error estimate,
a popular strategy for error estimation, examples of which are Gauss-
Kronrod formulas in numerical quadrature and Runge-Kutta formula
pairs in the numerical solution of initial value ODEs, involves an aux-
iliary computation that makes use of some of the information from the
computation of the primary numerical solution. This auxiliary compu-
tation provides enough additional information to allow one to construct
a higher order approximate solution for use in the error estimate. A
similar strategy might be investigated here but it turns out that there
is already higher order solution information available after the compu-
tation of U(x, t).

The key idea is as follows. In BACOL, the collocation points are cho-
sen to be the images of the Gauss points on each subinterval and because
of this it turns out that there are a number of special points on each
subinterval of the spatial mesh where the collocation solution, U(x, t),
generally of order p + 1, is superconvergent, i.e., of order p + 2. Thus
simply evaluating U(x, t) at these known special points provides super-
convergent solution information. Then a superconvergent interpolant
(SCI) based on a sufficient number of these superconvergent values can
be constructed and can replace Ū(x, t) in the computation of the spatial
error estimates (11) and (12).

4.2 Superconvergence results As mentioned previously, the papers
[6] and [9] provide the standard convergence results for Gaussian col-
location applied to a 1D parabolic PDE. We briefly review the rele-
vant results here. Let hi = xi+1 − xi and h = maxi hi. Collocating
at k points per subinterval requires that we use piecewise polynomials
of degree p = k + 1. The collocation solution then has an error that
is O(hp+1) ≡ O(hk+2) over the spatial domain, and, furthermore, at
mesh points, both the solution and its derivative have errors that are
O(h2(p−1)) ≡ O(h2k). Thus, the solution approximations at the mesh
points are superconvergent provided 2(p − 1) > p + 1 ⇒ p > 3 ≡ k > 2.

The above theory is consistent with that from the BVODE context.
Consider the second order nonlinear BVODE (let u(j)(x)) be the jth
derivative of u(x))),

u(2)(x) − f(x, u(x), u(1)(x)) = 0, a < x < b, g(u(a), u(b)) = 0.

With appropriate assumptions, Theorem 5.140/Corollary 5.142 of [3]
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provide several results associated with applying a k-point Gaussian col-
location method to this ODE. The results that are most relevant to the
current study are the following. Let U(x) be the collocation solution.

(i) At the mesh points, the collocation error satisfies

|u(j)(xi) − U (j)(xi)| = O(h2k), j = 0, 1, i = 0, . . . , NINT.

(ii) At nonmesh points, the collocation error satisfies

u(j)(x) − U (j)(x) = u(k+2)(xi)P
(j)

(
x − xi

hi

)
h

k+2−j
i

+ O(hk+3−j
i ) + O(h2k),

where xi < x < xi+1, i = 0, . . . , NINT − 1, j = 0, . . . , k + 1, and where

P (ξ) =
1

k!

∫ ξ

0

(t − ξ)

k∏

r=1

(t − ρr)dt.

The BVODE results given in (ii) provide details of the coefficient of
the leading term in the error: one can expect to see higher accuracy
in the collocation solution at points within each subinterval that cor-
respond to roots of the polynomial P (ξ) (as long as k ≥ 3); similarly,
one can also expect to see higher accuracy in the first derivative of the
collocation solution at the roots of the first derivative of P (ξ) (as long
as k ≥ 2.) To our knowledge, the result corresponding to (ii) for the
PDE case has not been proved. However it appears that these results do
hold for the 1D parabolic PDE case: in [2] we provide experimental evi-
dence demonstrating that, for the spatial discretization of a 1D parabolic
PDE by Gaussian collocation, the orders of convergence described by the
above BVODE theory—point (ii) above in particular—also hold for the
PDE case. Figure 1 shows the order of convergence for the collocation
solution and its derivative as well as the locations of the superconvergent
solution and derivative values on a single subinterval, for the case k = 5.

4.3 Selection of the superconvergent points We will construct
C1-continuous, piecewise polynomial interpolants that use a sufficient
number of superconvergent solution and derivative values so that the
interpolation error is dominated by the data error. (Here, the data error
refers to the order of accuracy of the solution and derivative values to be
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Non−S.C. Derivative
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S.C. Derivative
Mesh Solution and Derivative

FIGURE 1: Order of convergence of the collocation solution for k = 5 on
one subinterval. The collocation solution over the subinterval is not su-
perconvergent (Non-S.C. Solution) and has order 7, while its derivative,
also not superconvergent (Non-S.C. Derivative) has order 6. The points
labeled ‘f’ correspond to the roots of the polynomial P (ξ) at which the
collocation solution is superconvergent (S.C. Solution) and has order 8.
The points labeled ‘d’ correspond to the roots of the derivative of P (ξ)
where the derivative of the collocation solution is superconvergent (S.C.
Derivative) and has order 7. The order of convergence for the mesh
point solution and derivative values is 10.

interpolated. For example, suppose that the values to be interpolated
have errors that are O(hp). Then we will use a sufficient number of
interpolation points so that the interpolation error is O(hq), where q > p.
See, e.g., [11] for further discussion of this point.)

Recall that when the collocation solution is a polynomial of degree
p on each subinterval the number of collocation points per subinterval,
k = p−1, and the superconvergent solution and derivatives values will be
order p+2 and p+1, respectively. Thus, in order to have the interpolation
error of the SCI dominated by the data error of the collocation solution
values, we will need to choose the SCI to be a polynomial of degree p+2



SUPERCONVERGENT INTERPOLANTS 419

on each subinterval. That polynomial will be specified by requiring it to
interpolate p + 3 superconvergent collocation solution values. Then the
interpolation error will be order p + 3, one order higher than the data
error associated with the superconvergent collocation solution values.
Since we will employ a combination of solution and derivative values,
a Hermite-Birkhoff form for the interpolant is appropriate and we will
consider results from [10] for the form of the interpolant and its error
term.

In order to obtain C1-continuity over the spatial domain, the polyno-
mial that represents the SCI on a given subinterval must interpolate the
superconvergent solution and derivative values at the endpoints of the
subinterval. These values represent 4 of the p + 3 required interpolation
values and we must select (p+3)−4 = p−1 additional superconvergent
values. There would appear to be more than enough additional supercon-

vergent values available on each subinterval. For example, for the case
k = 5 (p = 6), we will need p + 3 = 9 superconvergent values, and,
as shown in Figure 1, there are 11 superconvergent values available (3
solution values internal to the subinterval, 4 derivative values internal to
the subinterval, and mesh point solution and derivative values at each
end of the subinterval.)

However, for all values of k, all of our attempts to construct an in-

terpolant that uses only solution and derivative values contained within

a single subinterval led to existence issues. The paper [10] identifies
a matrix that must be non-singular in order for the Hermite-Birkhoff
interpolant to exist. For several k values, we have checked a number
of possible combinations of superconvergent interpolation values from
those available on a given subinterval and have found that in each case
this matrix is singular. We have not been able to construct an inter-

polant that uses the 4 endpoint solution and derivative values together

with any combination of p − 1 internal solution and derivative values,

for any value of k.

In order to avoid this issue, the approach we have used employs, for a
given subinterval, the superconvergent endpoint solution and derivative
values, all of the superconvergent solution values that are internal to
the subinterval, and the closest available superconvergent solution val-

ues from each adjacent subinterval. (We do not choose superconvergent
derivative values from outside the current subinterval because this leads
to conditional non-singularity of the matrix that defines the interpolant,
depending on the ratio of the size of the current subinterval to that of
the adjacent subintervals.) With this choice of interpolation values, we
find that there is no issue with the existence of the interpolant. For the
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leftmost and rightmost subintervals, we employ the two closest supercon-
vergent solution values available in the lone adjacent subinterval. The
choice of superconvergent values is shown for the case k = 5 in Figure 2.
The circled values are the ones we select to define the SCI interpolating
polynomial on each subinterval. Note that we always choose two of the

solution values from outside the subinterval.
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Non−S.C. Solution
Non−S.C. Derivative
S.C. Solution
S.C. Derivative
Mesh Solution and Derivative
Information Used

FIGURE 2: Choice of superconvergent values for k = 5 case. The
interpolants considered in this paper use the superconvergent solution
and derivative values at the endpoints of the subinterval, the supercon-
vergent solution values within the current subinterval, and the clos-

est superconvergent solution value from each of the adjacent

subintervals. These values are circled (Information Used). Compare
with Figure 1.

4.4 The SCI Consider the subinterval [xi, xi+1]. Let s1 = xi and
s2 = xi+1 and let wj , j = 1, . . . , k, be the nonmesh points at which
we will interpolate superconvergent values. Then, associated with the
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collocation solution U(x, t) on the given subinterval at time t, we have,
from [10], the Hermite-Birkhoff SCI

Ũ(x, t) =

2∑

j=1

Hj(x)U (sj , t) + h

2∑

j=1

Hj(x)Ux(sj , t) +

k∑

j=1

Gj(x)U(wj , t),

where x ∈ [xi, xi+1], h = xi+1 − xi, and

Hj(x) = (1 − (x − sj)γj)
η2

j (x)φ(x)

η2
j (sj)φ(sj)

,

Hj(x) = (x − sj)
η2

j (x)φ(x)

η2
j (sj)φ(sj)

,

Gj(x) =
φj(x)η2(x)

φj(wj)η2(wj)
,

where

φ(x) =

k∏

r=1

(x − wr), φj(x) =

k∏

r=1
r 6=j

(x − wr),

η(x) =

2∏

r=1

(x − sr), ηj(x) =

2∏

r=1
r 6=j

(x − sr),

and

γj =
k∑

i=1

1

sj − wi

+ 2
2∑

i=1
i6=j

1

sj − si

.

The paper [10] also provides an explicit expression for the interpola-
tion error. For the general case, the expression is quite complicated and
we therefore do not repeat it here. Because two of the superconvergent
values are taken from outside the current subinterval, the locations of
the corresponding interpolation points are expressed relative to the cur-
rent subinterval size, and it is thus not surprising that the corresponding
error term for the interpolant depends on the ratios of the size of the
current subinterval to the sizes of the adjacent subintervals. The error
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expression for the interpolant includes a factor that captures the depen-
dence of the error on these ratios. For example, for k = 5, and for the
subinterval [xi, xi+1], this factor is

(x − xi)
2 − (Rα + Lβ)(x − xi) − Rα + Lβ +

LR

3
− 1,

where α = 1
2 − 1

6

√
3, β = 1

2 + 1
6

√
3, and the adjacent subinterval ratios

are

R =
xi+2 − xi+1

xi+1 − xi

and L =
xi − xi−1

xi+1 − xi

.

For the leftmost and rightmost subintervals, the structure of the in-
terpolant is slightly different and thus the error term is also slightly
different. For the leftmost subinterval, when k = 5, the factor in the
error term that captures the dependence on R is

(x − x0)
2 −

(
R

(
1

2
+ α

)
+ 2

)
(x − x0) + 1 + R

(
1

2
+ α

)
− R2

√
3

12
.

In this case, we see that the error depends on the square of R. A similar
expression holds for the rightmost subinterval, where the error depends
on the square of L.

As mentioned earlier, the mesh refinement algorithm employed by
BACOL is based on equidistribution and thus the size of a given subin-
terval is based entirely on this principle. There is no mesh smoothing,
i.e., there is no imposed upper or lower bound on the subinterval ratios
of the meshes determined by the BACOL mesh refinement algorithm.
This allows for the mesh to adapt to the error estimate profile purely
according to the equidistribution principle but obviously the absence of
a bound on the adjacent subinterval ratios could impact negatively on
the accuracy of the interpolants. We will explore this issue in the next
section.

We can now briefly contrast the approach we describe in this paper
with the related approach considered by Moore.

• In Moore’s work, the computation of the primary finite element so-
lution is based on a spatial discretization that uses a finite element
Galerkin technique with a piecewise polynomial hierarchical spatial
basis. A key idea is that the error estimate is based on a Lobatto in-
terpolant to the finite element solution, for which the leading term in
the interpolation error agrees asymptotically with the leading term
in the error for the finite element solution. This is referred to as
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the asymptotic equivalence property. One can then obtain an ap-
proximation for the error in the numerical solution of the PDE by
estimating the error in the interpolant. The interpolant is based on
evaluations of the finite element solution at the Lobatto points on
each mesh subinterval and the explicit form of the interpolation error
estimate comes from an extension of the error formula for the stan-
dard Lagrange interpolating polynomial. Another important aspect
of Moore’s work is that it involves the estimation of errors of order
p and p + 1 (assuming a primary computation of order p.) This is
necessary because the computational algorithm he considers employs
both h (mesh) and p (order) adaptivity.

• Our approach for the primary computation is based on collocation
at Gauss points within each subinterval and the adaptivity is based
solely on h-refinement. The interpolant we construct, the SCI, is one
order higher than the collocation solution and is based on evaluation
of that solution and its derivative at the mesh points and the evalu-
ation of the solution at selected points both internal and external to
the subinterval. Thus this interpolant is not a Lobatto interpolant.
More fundamental is the observation that we do not expect the SCI
to satisfy the asymptotic equivalence property and thus the idea of
constructing an interpolant that satisfies the asymptotic equivalence
property is not relevant in our approach.

5 A numerical investigation of the spatial error estimation

schemes In this section we will present representative results from
the testing we have performed (see [2]) in which the SCI error esti-
mation scheme is compared with the original BACOL error estimation
scheme. The first test problem is the simple problem (4). The sec-
ond test problem is (5) where we choose ε = 10−3. For each problem,
we integrate from t = 0 to t = 1. In the full set of numerical exper-
iments [2], we have considered a range of tol values (10−4, 10−6, 10−8)
(ATOLs = RTOLs = tol) and k values (3, 6, and 9.) With two error
estimates available, there is also the question of which one to use in the
spatial mesh refinement algorithm. We have thus considered two sets of
tests, one set for which the BACOL error estimate is used to control the
spatial mesh, and another set for which the SCI error estimate is used to
control the spatial mesh. We provide plots to show the accuracy of the
error estimation schemes. In each plot, the tick marks on the horizontal
axis show the locations of the mesh points of the final mesh, when t = 1.

When BACOL is applied to the first test problem, with k = 3, tol =
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10−8, the error estimates obtained on each subinterval by each of the
error estimation schemes compare well with each other and with the true
error (see Figure 3). The solution to the problem is smooth, the mesh is
relatively uniform, and there are no issues associated with large adjacent
subinterval ratios. Figure 3 is for the case where BACOL controls the
mesh refinement but since the SCI error estimates are essentially the
same, SCI control of the mesh gives similar results and we do not show
them here.
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FIGURE 3: Plot of the SCI error estimate, the BACOL error estimate,
and the true error associated with the collocation solution of (4) with
k = 3, tol = 10−8. The final mesh has NINT = 14. BACOL controls

the mesh refinement.

For the next set of results, we choose k = 6 and tol = 10−6. The
solution to the second test problem has a sharp layer that moves from
the region (0.2, 0.3) to the region (0.7, 0.8) as t goes from 0 to 1. BACOL
employs a highly non-uniform mesh to efficiently solve this problem. A
plot of the error estimates for each subinterval, as computed by the SCI
and BACOL error estimation schemes, as well as the true error for each
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subinterval, is given in Figure 4. The BACOL error estimate controls the

mesh adaptivity. Most of the points of the mesh are located within the
region of the spatial domain where the solution has a sharp layer. From
Figure 4, we see that the SCI estimate substantially overestimates the
true error on the leftmost and rightmost subintervals. (From Figure 4
it is clear that the leftmost and rightmost subintervals are substantially
larger than the adjacent subintervals.) Figure 5 focuses on the part of
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FIGURE 4: Plot of the SCI error estimate, the BACOL error estimate,
and the true error associated with the collocation solution for (5) with
ε = 10−3. The final mesh has NINT = 13. BACOL controls the

mesh refinement.

Figure 4 corresponding to the layer region. From this plot we can see
that both the BACOL error estimate and the SCI error estimate are in
good agreement with each other but somewhat underestimate the true
error in the layer region.

The next set of results are obtained by again considering the second
test problem (and again choosing k = 6 and tol = 10−6) but this time we

allow the SCI error estimate to control mesh refinement. A plot of the
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FIGURE 5: Plot of the SCI error estimate, the BACOL error estimate,
and the true error associated with the collocation solution of (5) with
ε = 10−3, within the layer region. BACOL controls the mesh re-

finement.

error estimates and the true error is given in Figure 6. Comparing this
plot with Figure 4, we note that both estimates show better agreement
with the true error on all subintervals. Comparing the meshes in Fig-
ure 4 and Figure 6 we see that when the BACOL error estimate controls
mesh refinement, the first subinterval of the BACOL controlled mesh
represents about 60% of the entire spatial domain, while the SCI error
estimate controlled mesh has the first two subintervals covering approx-
imately that same region of the spatial domain. The overestimates of
the error on the subintervals where the adjacent subinterval ratios are
large trigger further refinement of the mesh in these regions, and that
has the effect of reducing the disparity between the sizes of adjacent
subintervals. The use of the SCI error estimate to control the mesh thus
“self-corrects” the issue of SCI over estimates of the error due to large
subinterval ratios. Figure 7 focuses on the part of Figure 6 corresponding
to the layer region. Even within the layer region we see reasonably good
agreement between the error estimators and the true solution, when the
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FIGURE 6: Plot of the SCI error estimate, the BACOL error estimate,
and the true error associated with the collocation solution of (5) with
ε = 10−3. The final mesh has NINT = 13. SCI controls the mesh

refinement.

SCI estimate controls the mesh refinement. We see from Figure 6 that
the error in the layer region is the largest error over the spatial domain
and we see from Figure 7 that the error is well approximated by both
error estimations schemes.

The above results are representative of the larger set of results re-
ported in [2]. Based on the overall results we can make a few additional
points regarding the limitations of the SCI approach:

(i) For the smaller k values, the SCI error estimates are sometimes
not of sufficiently good quality to guide the mesh process. In such
cases, we have seen BACOL fail when we let the SCI estimate
control the mesh refinement. The failure happens at the beginning
of the computation when t = 0.

(ii) Both error estimators generally lead to meshes that have the same
number of subintervals, but occasionally, the meshes associated
with the SCI error estimator have a few extra subintervals.

(iii) Recall from Section 4.2 that the SCI approach requires p > 3
whereas BACOL requires only p ≥ 3.
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FIGURE 7: Plot of the SCI error estimate, the BACOL error estimate,
and the true error associated with the collocation solution of (5) with ε =
10−3, within the layer region. SCI controls the mesh refinement.

6 Computational costs for the BACOL and SCI error esti-

mates Recall that the BACOL error estimate is based on the compu-
tation of a second global collocation solution. Since this second solution
involves the use of polynomials of one degree higher than the primary
solution and thus one extra collocation point per subinterval is required,
the cost of computing this second solution is slightly larger than the cost
of computing the primary solution. For each of these solutions the most
significant cost is the setup and factorization of the Newton matrices that
arise and, assuming a mesh of NINT subintervals, k collocation points
per subinterval, and NPDE equations, and the use of a linear system
solver specifically designed to handle the almost block diagonal structure
of the Newton matrices, these costs are O(NINT (NPDE × k)3). Once
the primary and secondary solutions are computed, the error estimate
requires the evaluation of these global solutions and that involves eval-
uation of the corresponding B-spline basis polynomials. These costs are
linear in NINT, NPDE, and k.

The costs for the construction of the SCI on the other hand are rel-
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atively small. One must evaluate the primary solution several times
on each subinterval to obtain the superconvergent solution values and
then the evaluation of the SCI involves only the evaluation of the basis
polynomials associated with the Hermite-Birkhoff interpolant discussed
earlier. These costs are linear in NINT, NPDE, and k.

While the self-correction of the SCI error estimate occasionally leads
to a few extra subintervals being added to the mesh, the costs per subin-
terval for the SCI approach are low and this does not add significantly
to the overall costs. It is thus clear that the cost of the SCI error esti-
mate is a small fraction of the cost of error estimate currently employed
within BACOL.

7 Conclusions and future work We have seen from the numer-
ical results that the SCI error estimation scheme generally yields error
estimates of quality comparable to those given by the error estimation
scheme currently employed by BACOL, when the SCI error estimates

are used to control mesh refinement. Furthermore, because it employs
readily available superconvergent solution information the SCI can be
obtained at a relatively minor computational cost. The SCI approach
therefore appears to be an interesting alternative to the error estima-
tion scheme currently employed by BACOL and further investigation is
warranted.

The numerical results reported here were obtained by using a mod-
ified form of BACOL that computes both the BACOL and SCI error
estimates, and thus the primary and secondary collocation solutions are
currently both computed by this modified form of BACOL. Ongoing
work involves further modification of BACOL so that only the primary
collocation solution and the SCI error estimate are computed. This will
lead to a new version of BACOL that should have comparable perfor-
mance to that of the current version but with about twice the speed.

We are also further exploring the theoretical results on collocation
for one-dimensional PDEs in order to obtain supporting theory for our
observed numerical results on the superconvergent solution and deriva-
tive values available within the interior of each subinterval of the spatial
mesh. Another area of ongoing work is an examination of the interpo-
lation conditions that appear to make it impossible to choose all the
interpolation points from within a given subinterval. We have shown
this to be true by considering specific values of k but a more general
analysis may be possible, based on [10]. Ongoing work also includes
an analysis of possibilities for the representation of the SCI. This will
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include an exploration of which superconvergent values upon which to
base the interpolant as well as the basis function representation for the
interpolant.

It may be possible to generalize the approach discussed here to higher
dimensions. The application of collocation for the numerical solution of
parabolic PDEs in two or three dimensions has been studied for some
time. If these collocation solutions possess appropriate superconvergence
properties then it may be possible to construct superconvergent inter-
polants (in two or three dimensions respectively) based on a sufficient
number of superconvergent solution and derivative values obtained from
the collocation solution. This would then provide the basis for an error
estimate similar to the approach discussed here.
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