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ABSTRACT. BACOL and BACOLR are B-spline Gaus-
sian collocation method-of-lines packages for the numerical so-

lution of systems of one-dimensional parabolic partial differen-

tial equations (PDEs). In previous studies, they were shown to

be superior to other similar packages, especially for problems

exhibiting sharp spatial layer regions where a stringent toler-
ance is imposed. A significant feature of these solvers is that, in
addition to the temporal error control provided by the under-
lying time-integrator, they adapt the spatial mesh to control a
high order estimate of the spatial error. In addition to comput-
ing a primary collocation solution of a given spatial order, the
BACOL/BACOLR codes also compute, at a substantial cost,
a secondary collocation solution of one higher order, and then

the difference between the two collocation solutions is used to
give an estimate of the leading order term in the error for the
lower order solution. In this paper we consider an approach
in which the computation of lower order collocation solution
is replaced by an inexpensive interpolant (based on evalua-
tions of the higher order collocation solution) constructed so
that the leading order term in the interpolation error agrees
(asymptotically) with the leading order term in original BA-
COL/BACOLR error estimate. We provide numerical results
to show that this interpolation-based error estimate can pro-
vide spatial error estimates of comparable accuracy to those
currently computed by BACOL, but at a significantly lower
cost.
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1 Introduction Systems of one-dimensional (1D) parabolic partial
differential equations (PDEs) arise in a variety of applications - see,
e.g., the recent book [15] and references within. Large systems of 1D
parabolic PDEs also arise from the application of an approach we call
the method-of-surfaces in which a 2D parabolic PDE is discretized in
one of its two spatial dimensions [17].

In this paper, we will assume a system of PDEs with NPDE compo-
nents having the form

(1) ut(x, t) = f (t, x, u(x, t), ux(x, t), uxx(x, t)) , a ≤ x ≤ b, t ≥ t0,

with initial conditions

(2) u(x, t0) = u0(x), a ≤ x ≤ b,

and separated boundary conditions

(3) bL (t, u(a, t), ux(a, t)) = 0, bR (t, u(b, t), ux(b, t)) = 0, t ≥ t0.

The method-of-lines (MOL) is a popular framework upon which a
number of software packages for the numerical solution of 1D parabolic
PDEs have been developed. The approach typically involves partition-
ing the spatial domain with a set of mesh points and applying a stan-
dard spatial discretization scheme, e.g., finite differences, to discretize
the PDEs, leading to a system of time-dependent ODEs. In earlier
codes, the boundary conditions were differentiated and together with
the ODEs from the discretization of the PDEs, these were solved by
an ODE solver. In more recent codes, the boundary conditions are
treated directly; the combined system of differential-algebraic equations
(DAEs) is then solved using a high quality DAE solver such as DASSL
[6] or RADAU5 [13]. Over the last few decades, a number of high qual-
ity MOL solvers for this problem class have been developed, including
PDECOL [18]/EPDCOL [16], D03PPF [8], TOMS731 [5], MOVCOL
[14], HPNEW [19], BACOL [23, 25], and BACOLR [26]. In all of the
above codes control of an estimate of the temporal error is provided by
the underlying initial value ODE/DAE solver. The most recently de-
veloped MOL codes also provide control of a high order estimate of the
spatial error. That is, they compute a high order estimate of the spatial
error and then based on this estimate adapt the spatial discretization, by
changing the mesh and/or the order of accuracy of the spatial discretiza-
tion scheme, in an attempt to compute a solution whose spatial error
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estimate is less than the user provided tolerance. HPNEW, BACOL,
and BACOLR are examples of codes of this type.

In a recent study [24], BACOL was shown to be comparable to and
in some cases superior to other similar packages, especially for problems
exhibiting sharp spatial layer regions and for problems where a sharp
tolerance is imposed. Furthermore, the paper [26] shows that BACOLR
is generally comparable in performance to BACOL and that for cer-
tain problems, such as the cubic Schrödinger equation, BACOLR has
substantially superior performance to BACOL.

Both BACOL and BACOLR use B-spline Gaussian collocation for
the spatial discretization. The approximate solution is represented as a
linear combination of known spatial basis functions - piecewise polyno-
mials of a given degree p implemented using the B-spline package [9] -
with unknown, time-dependent coefficients. Conditions on these coeffi-
cients are obtained by applying collocation conditions, i.e., by requiring
the approximate solution to satisfy the PDEs at the images of the Gauss
points on each subinterval of a mesh which partitions the problem do-
main. The resultant system of time dependent ODEs together with the
boundary conditions gives a system of DAEs which is then solved, in
BACOL, using a modified version of DASSL, or, in BACOLR, using a
modified version of RADAU5, to obtain the time dependent coefficients.

In both BACOL and BACOLR, an estimate of the spatial error of the
collocation solution is obtained by computing a second global colloca-
tion solution using B-splines of degree p+ 1 and the difference between
the two collocation solutions gives an estimate of the leading order term
in the spatial error for the lower order collocation solution. The spa-
tial error estimate is used to determine the acceptability of the solution;
that is, the estimate must be less than the user provided tolerance in
an appropriately scaled norm. If the tolerance is not satisfied, the spa-
tial error estimates on each mesh subinterval are used to guide a mesh
refinement process based on the principle of equidistribution—the mesh
points are redistributed (and possibly new mesh points are added to
the mesh) in an attempt to (a) equidistribute the spatial error estimate
over the subintervals of the new mesh, and to (b) obtain a spatial error
estimate that satisfies the user tolerance.

While the spatial error estimate is central to the effective perfor-
mance of BACOL and BACOLR, it is clear that the computation of
two global collocation solutions represents a major computational cost
in each of these codes, and thus it would appear to be worthwhile to at-
tempt to replace the error estimation scheme currently employed within
BACOL/BACOLR with a lower cost scheme of comparable quality, if
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possible. There is a substantial body of literature on error estimation
for the numerical solution of PDEs, see, e.g., [1] and references within.
However, the recent work most closely related to the current investi-
gation is by Moore [19-22], in which interpolation error based error
estimates for 1D parabolic PDEs are discussed.

The basic question we investigate in this paper is how to obtain a high
order estimate of the spatial error while computing only one of the two
collocation solutions currently computed by BACOL/BACOLR. In this
paper, we will focus on BACOL; however, since BACOL and BACOLR
use the same spatial discretization and spatial error estimation scheme,
the results will also apply to BACOLR, and with appropriate adaptation,
may be relevant to other solvers. The general approach is to replace
one of the collocation solutions with a low cost interpolant that can
then be used in place of that collocation solution in the estimate of
the spatial error. Since BACOL computes a higher order and a lower
order collocation solution, there are two obvious strategies: (i) compute
only the lower order collocation solution and construct an interpolant to
replace the higher order collocation solution, and (ii) compute only the
higher order collocation solution and construct an interpolant to replace
the lower order collocation solution.

In [2], the authors explore approach (i); the key observation is that
because BACOL employs collocation at Gauss points there are certain
points within each subinterval of the spatial mesh where the collocation
solution is superconvergent, i.e., the order of accuracy is at least one
order higher than at an arbitrary point in the spatial domain. The
authors describe the development of a superconvergent interpolant (SCI)
based on these superconvergent values and show that the approach can
yield spatial error estimates of comparable quality to those currently
obtained by BACOL but at a lower cost. The authors also observe,
however, that this approach can significantly overestimate the spatial
error on subintervals for which the ratio of adjacent subinterval sizes is
large.

In the current paper, we consider approach (ii). This will involve
computing a lower order interpolant (LOI) that can replace the lower
order solution in the computation of spatial error. The LOI is based
on evaluations of the higher order collocation at certain points within
each subinterval such that the resultant interpolant has an interpolation
error whose leading order term agrees (asymptotically) with the leading
order term in the collocation error of the lower order collocation solution.
The latter is the quantity that is currently employed as the spatial error
estimate in BACOL. We provide numerical results to compare the LOI
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error estimates with the original BACOL error estimates and with the
error estimates obtained from the SCI approach. We show that the LOI
approach leads to error estimates that are of comparable quality to those
computed by the original BACOL code but at a significantly lower cost.
We also show that the LOI approach is superior to the SCI approach in
certain respects.

This paper is organized as follows. In Section 2, we provide a brief
review of the algorithms employed by BACOL. In Section 3 we briefly
review the SCI-based spatial error estimation scheme since it is related
to the LOI scheme. Section 4 introduces the LOI approach. Numerical
results are provided in Section 5 to compare the three error estimation
schemes. In Section 6 we briefly discuss the computational costs of the
LOI approach and compare these costs with those for the error estima-
tion scheme currently employed in BACOL and with the SCI scheme.
We close, in Section 7, with our conclusions and a discussion of future
work.

2 BACOL Given a spatial mesh a = x0 < x1 < · · · < xNINT = b,
the approximate solution is represented in BACOL as a linear combi-
nation of known B-spline basis functions [9] (piecewise polynomials of
degree p where 3 ≤ p ≤ 11) with unknown time dependent coefficients.

Letting {Bp,i(x)}NCp

i=1 be the B-spline basis functions, the approximate
solution, U(x, t), then has the form

(4) U(x, t) =

NCp∑

i=1

y
p,i
(t)Bp,i(x),

where y
p,i
(t) represents the time dependent coefficient of the i-th B-

spline basis function, Bp,i(x), and where NCp = NINT (p − 1) + 2 is
the dimension of the piecewise polynomial subspace.

The PDE is discretized in space by imposing collocation conditions
on the approximate solution at images of the p − 1 Gauss points (see,
e.g., [4]) on each subinterval and by requiring the approximate solution
to satisfy the boundary conditions. The collocation conditions have the
form

(5)
d

dt
U(ξl, t) = f (t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)) ,

where l = 2, . . . , NCp − 1, and where the collocation points are defined
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by

(6) ξl = xi−1 + hiρj , where l = 1 + (i− 1)(p− 1) + j,

for i = 1, . . . , NINT, j = 1, . . . , p− 1,

where hi = xi − xi−1 and {ρi}p−1
i=1 are the images of the p − 1 Gauss

points on [0, 1]. The points, ξ1 = a and ξNCp
= b, are associated with

requiring the approximate solution to satisfy the boundary conditions,
and this gives the remaining two equations,

bL (t, U(a, t), Ux(a, t)) = 0, bR (t, U(b, t), Ux(b, t)) = 0.

The collocation conditions, (5), represent a system of ODEs (in time)
for which the unknown solution components are the time dependent
coefficients, y

p,i
(t). These ODEs coupled with the boundary conditions

give an index-1 system of DAEs, which, as mentioned earlier, is treated
using DASSL. After DASSL has computed approximations for the y

p,i
(t)

values at a given time t, these can be employed together with the known
B-spline basis functions, Bp,i(x), within (4), to obtain values of the
approximate solution at desired x values.

The collocation solution, U(x, t), for the current time is accepted by
BACOL only if its spatial error estimate satisfies the user tolerance.
This spatial error estimate is obtained by computing a second global
collocation solution on the same spatial mesh at the same time t. This
approximate solution, U(x, t), has the form

(7) U(x, t) =

NCp+1∑

i=1

y
p+1,i

(t)Bp+1,i(x),

and is based on a set of B-spline basis functions, Bp+1,i(x), polynomials
of degree p + 1 on each subinterval, with corresponding unknown time
dependent coefficients, y

p+1,i
(t). Here, NCp+1 = NINT · p + 2. As

above, these unknowns are determined by imposing p collocation con-
ditions per subinterval as well as the boundary conditions on U(x, t).
The collocation points in this case are the images of p Gauss points on
[0, 1] mapped onto each subinterval. This leads to a system of DAEs
whose solution gives the functions, y

p+1,i
(t). In order to ensure that

the two approximate solutions, U(x, t) and U(x, t), are available at the
same time t, the two DAE systems are provided to DASSL as one larger
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DAE system so that DASSL treats both systems of DAEs with the same
time-stepping strategy. See [25] for further details.

It is shown in [7] and [10] that a collocation solution of degree p has
an error that is O(hp+1), where h is the maximum mesh spacing. The
difference between the two collocation solutions gives, asymptotically,
an estimate of the error in the lower order collocation solution, U(x, t).

In BACOL, the following a posteriori spatial error estimates are com-
puted. Denote the sth component of U(x, t) by Us(x, t) and the sth
component of U(x, t) by Us(x, t). Let ATOLs and RTOLs be the abso-
lute and relative tolerances for the s-th component of the approximate
solution. BACOL computes a set of NPDE normalized error estimates
over the whole spatial domain of the form

(8) Es(t) =

√∫ b

a

(
Us(x, t)− Us(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx,

s = 1, . . . , NPDE.

BACOL also computes a second set ofNINT normalized error estimates
of the form

(9) Êi(t) =

√√√√
NPDE∑

s=1

∫ xi

xi−1

(
Us(x, t)− Us(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx,

i = 1, . . . , NINT.

Note that Es(t), s = 1, . . . , NPDE, and Êi(t), i = 1, . . . , NINT , are
estimates of the error associated with the lower order solution, U(x, t).

The approximate solution, U(x, t), is accepted at the current time, t,
if

(10) max
1≤s≤NPDE

Es(t) ≤ 1.

Otherwise, based on the error estimates, Êi(t), i = 1, . . . , NINT , BA-
COL attempts to construct a new mesh, i.e., perform a remeshing, that
(i) has as many mesh points as necessary to yield an approximate so-
lution whose estimated error will satisfy the user tolerances, and (ii)
approximately equidistributes the estimated error over the subintervals
of the new mesh. See [25] for further details.
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3 Spatial error estimation based on superconvergent inter-

polants As mentioned above, [7] and [10] provide the standard con-
vergence results for Gaussian collocation applied to a 1D parabolic PDE.
In summary, these results say that, (i) over the entire spatial domain, the
collocation solution has a spatial error that is O(hp+1) ≡ O(hk+2), where
k is the number of collocation points per subinterval and p = k+1 is the
degree of the piecewise polynomials representing the collocation solution
on each subinterval, and that, (ii) at mesh points, both the collocation
solution and its derivative have errors that are O(h2(p−1)) ≡ O(h2k)
(and are thus superconvergent when 2k > k + 2 ⇒ k > 2).

An additional related result comes from collocation theory for bound-
ary value ODEs. With appropriate assumptions, Theorem 5.140/Corol-
lary 5.142 of [4] states that (letting u(x) be the exact solution and U(x)
be the collocation solution)

(11) u(x)− U(x) = u(k+2)(xi)Pk

(
x− xi

hi

)
hk+2
i +O(hk+3

i ) +O(h2k),

where xi < x < xi+1, i = 0, . . . , NINT − 1, and where

(12) Pk(ξ) =
1

k!

∫ ξ

0

(t− ξ)
k∏

r=1

(t− ρr) dt.

Thus, for boundary value ODEs, one can expect to see higher accuracy in
the collocation solution at points within each subinterval that correspond
to roots of Pk(ξ). To our knowledge, the corresponding result for the
PDE case has not been proved. However, it appears that this result does
hold for the 1D parabolic PDE case: [3] provides experimental evidence
demonstrating that, for the spatial discretization of a 1D parabolic PDE
by Gaussian collocation, the order of convergence described by the above
BVODE result (11) also holds for the PDE case. To be specific, in
BACOL, since the collocation points are chosen to be the images of the
Gauss points on each subinterval, there are p− 3 points internal to each
subinterval where the lower order collocation solution, U(x, t), generally
of order p+ 1, is superconvergent, i.e., of order p+ 2.

In [2], the authors construct a superconvergent interpolant (SCI) that
interpolates, on a given subinterval, the superconvergent endpoint solu-
tion and derivative values, all p− 3 of the superconvergent solution val-
ues internal to the subinterval, and the closest available superconvergent

solution values from each adjacent subinterval. (For the leftmost and
rightmost subintervals, the scheme interpolates the two closest super-
convergent solution values available in the lone adjacent subinterval.)
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The SCI interpolates a sufficient number of superconvergent solution
and derivative values so that the interpolation error is dominated by the

data error. The SCI is of order p+2; this is the same as the order of the
higher order collocation solution. However, the authors also present an
expression for the interpolation error that shows its dependence on the
ratios of the size of the current subinterval to the sizes of the immedi-
ately adjacent subintervals. When one of these ratios is large, this can
lead to a large interpolation error which can impact negatively on the
accuracy of the error estimate produced by the SCI-based scheme. See
[2] for further details.

4 Spatial error estimation based on a lower order interpolant

having an asymptotically correct interpolation error While the
cost of computing the higher order collocation solution is slightly more
expensive than that of the lower order collocation solution, the costs are
in fact comparable. It follows that the overall costs for BACOL will be
approximately halved if we compute only one of the two global colloca-
tion solutions. In the LOI approach, we will compute only the higher

order global collocation solution, U(x, t), and, instead of computing the
lower order global collocation solution, U(x, t), we will construct an in-
terpolant to replace it. The interpolant will be based on evaluations of
the higher order collocation solution and will be constructed so that the
leading order term in the interpolation error expansion for this inter-
polant agrees (asymptotically) with the leading order term in the error
expansion for the lower order collocation solution. Thus the spatial error
estimate we obtain from this approach will be asymptotically equivalent
to the spatial error estimate computed by BACOL. In this case, the in-

terpolant will be designed so that the interpolation error dominates the

data error; this will imply that we will interpolate fewer points than in
the SCI case.)

This idea is similar to the well known “local extrapolation” approach
sometimes employed in software for the numerical solution of initial value
ODEs; see, e.g, [12]. In that approach, a Runge-Kutta formula pair is
used to compute two solutions of orders q and q+1. In standard mode,
the lower order solution is propagated forward in time and the higher
order solution is used only to obtain an estimate of the error in the
lower order solution; error control is based on this estimate. In local
extrapolation mode, only the higher order solution is propagated but
error control is again based on the error estimate for the lower order
solution.
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While the details are different here, the general approach has been
considered by Moore in his work on interpolation based error estimation
[19, 20, 21, 22]. In Moore’s work, the computation of the primary
finite element solution is based on a spatial discretization that uses a
finite element Galerkin technique with a piecewise polynomial hierarchi-
cal spatial basis. The error estimate is based on a Lobatto interpolant
for which the leading term in the interpolation error agrees asymptoti-
cally with the leading term in the error for the finite element solution.
Moore refers to this as the asymptotic equivalence property. One can
then obtain an approximation for the error in the numerical solution of
the PDE by estimating the error in the interpolant. The explicit form
for the interpolation error estimate comes from an extension of the error
formula for standard Lagrange interpolation.

As mentioned in the previous section, it appears that the error expan-
sion associated with the lower order collocation solution, U(x, t), has the

form given in (12). Our goal is then to construct an interpolant, Ũ(x, t),
the LOI, such that, asymptotically, the leading order term of the interpo-

lation error equals the leading order term of the collocation error, given
in (11).

The LOI is a piecewise polynomial; we focus on how the polynomial
interpolant for a given subinterval is constructed. From standard inter-
polation theory, it is clear that the leading term in the error expansion
for the interpolant will include the factors hk+2

i u(k+2)(xi, t) as long as
we construct the interpolant so that it is based on k + 2 data values
and as long as the error in each of the data values is at least one order
higher, i.e., at least O(hk+3

i ), so that the interpolation error dominates
the data error. Since the data values we will employ for the interpolant
are obtained from the higher order collocation solution, those values will
have an error that is O(hk+3

i ) for any choice of interpolation points. The
remaining factor in the leading term of the error expansion for the in-
terpolant will depend on the location of the interpolation points within
the interval and these points must be chosen so that this factor equals
Pk

(
x−xi

hi

)
, so that the leading term in the interpolation error with agree

with the leading term in the collocation error.
We consider a Hermite-Birkhoff interpolant framework for the LOI

on each subinterval. The paper [11] provides explicit expressions for the
basis functions that implement Hermite-Birkhoff interpolant in our case.
Let s1 = xi, s2 = xi+1, and let wj , j = 1, . . . , k−2, be the points internal
to the ith interval. (This gives a total of 4+(k−2) = k+2 interpolation
points.) The LOI is based on evaluations of (i) the collocation solution,
U(x, t), at the end points of the subinterval and at k − 2 appropriately
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chosen points internal to the subinterval, and (ii) evaluations of the first
derivative of the collocation solution at the endpoints of the subinterval.
The LOI has the form

Ũ(x, t) =

2∑

j=1

Hj(x)U(sj , t) + h

2∑

j=1

Hj(x)U
′
(sj , t) +

k−2∑

j=1

Gj(x)U(wj , t),

where x ∈ [xi, xi+1], h = xi+1 − xi,

Hj(x) = (1− (x− sj)γj)
η2j (x)φ(x)

η2j (sj)φ(sj)
,

Hj(x) = (x− sj)
η2j (x)φ(x)

η2j (sj)φ(sj)
,

Gj(x) =
φj(x)η

2(x)

φj(wj)η2(wj)
,

φ(x) =

k∏

r=1

(x− wr), φj(x) =

k∏

r=1
r 6=j

(x− wr),

η(x) =

2∏

r=1

(x− sr), ηj(x) =

2∏

r=1
r 6=j

(x− sr),

and

γj =

k∑

i=1

1

sj − wi

+ 2

2∑

i=1
i6=j

1

sj − si
.

The basic form for the leading term in the interpolation error expres-
sion for a given k (and a given t) has the general form

(13)
1

(k + 2)!
hk+2
i u(k+2)(xi, t)P̃k(ξ),

where P̃k(ξ) is a polynomial that depends on the points where interpo-
lation of solution and derivative data is performed. (The detailed error



318 T. ARSENAULT ET AL.

expansion for general k, is given in [11] but since the expression is some-
what complicated, we do not reproduce it here.) Rather, we consider
the details of the development of the LOI for the case when k = 5; the
general approach will be clear from this discussion.

For k = 5, the leading term in the collocation error expansion is

1

5!
h7
iu

(7)(xi, t)P5

(
x− xi

hi

)

where

P5(ξ) =
1

540
ξ2 (1− 2 ξ)

(
6ξ2 − 6ξ + 1

)
(ξ − 1)

2

=
1

42
ξ2

(
1

2
− ξ

)(
ξ − 1

2
+

1

6

√
3

)(
ξ − 1

2
− 1

6

√
3

)
(ξ − 1)

2
.

The roots of this polynomial are 0, 0, 1
2 ,

1
2± 1

6

√
3, 1 and 1. Substituting

this expression for P5(ξ) into the general form for the leading term in
the collocation error above gives

(
1

5!

)
h7
iu

(7)(xi, t)

[(
1

42

)
ξ2

(
1

2
− ξ

)

×
(
ξ − 1

2
+

1

6

√
3

)(
ξ − 1

2
− 1

6

√
3

)
(ξ − 1)

2
,

or

(14)

(
1

7!

)
h7
iu

(7)(xi, t) ξ
2

(
1

2
− ξ

)

×
(
ξ − 1

2
+

1

6

√
3

)(
ξ − 1

2
− 1

6

√
3

)
(ξ − 1)

2
.

In order to construct the LOI such that the leading order term in
its error expansion matches the above collocation error term (14), we
need to choose the interpolation points to be the roots of P5(ξ), with
the understanding that the repeated roots (at 0 and 1) mean that the
interpolant must interpolate the higher order collocation solution at 0
and 1 and the derivative of the interpolant must interpolate the deriva-
tive of the higher order collocation solution at 0 and 1. Furthermore,
the interpolant must interpolate the higher order collocation solution
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at 1
2 and 1

2 ± 1
6

√
3. Thus, the total number of interpolation points is

7: interpolation of solution and derivative values at the endpoints and
interpolation of solution values at the three interior points. (For general
k, this is 4 endpoint solution and derivative values and k − 2 internal
solution values for a total of k + 2 data values to be interpolated.)

The general form for the leading term in the interpolation error is
given in (13). For the specific case of k = 5, based on the interpolation
points specified above, the leading term in the interpolation error of the
LOI is

1

7!
hk+2
i u(k+2)(xi, t)ξ

2

(
1

2
− ξ

)

×
(
ξ − 1

2
− 1

6

√
3

)(
ξ − 1

2
+

1

6

√
3

)
(ξ − 1)

2
,

and we see that this matches the leading order term, (14), in the error
expression for the collocation solution, (11).

5 A numerical comparison of the spatial error estimation

schemes In this section, we will present numerical results in which
the LOI error estimation scheme is compared with the original BACOL
error estimation scheme as well as the SCI error estimation scheme. (A
much larger set of test results is available in [3]).

The first test problem, taken from [18], is

(15) ut = uxx + π2 sin(πx), 0 < x < 1, t > 0,

with initial condition

u(x, 0) = 1, 0 ≤ x ≤ 1,

and boundary conditions

u(0, t) = u(1, t) = 1, t > 0,

for which the exact solution is

u(x, t) = 1 + sin(πx)
(
1− e−π2t

)
.

We integrate from t = 0 to t = 1 with ATOL = RTOL = 10−8.
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The second test problem (see, e.g., [24]) is

(16) ut = ǫuxx − uux, 0 < x < 1, t > 0, ǫ > 0,

with the initial condition and boundary conditions chosen so that exact
solution is given by

u(x, t) =
1

2
− 1

2
tanh

(
1

4ε

(
x− t

2
− 1

4

))
,

where ε is a problem dependent parameter. We choose ǫ = 10−3 and
integrate from t = 0 to t = 1, with ATOL = RTOL = 10−8. For
ε = 10−3, the solution is plotted in Figure 1.
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FIGURE 1: Solution of Burgers’ equation with ε = 10−3. Initially
(t = 0), there is a sharp layer region near 0.25. As t goes from 0 to 1,
the layer moves to the right and is near 0.75 when t = 1.

When BACOL is applied to the first test problem, (15), with k = 3,
the error estimates obtained by each of the schemes at the final time
compare well with each other and with the true error; see Figure 2. These
results were obtained by letting the original error estimation scheme of
BACOL provide the error estimates for mesh adaptation and for the
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spatial error acceptance tests. However, as is evident from the figure,
the SCI and LOI error estimates are quite similar to those of the original
BACOL error estimation scheme and thus using the SCI or LOI error
estimates to control the mesh would give similar results. The locations
of the mesh points are indicated by tick marks along the horizontal axis.
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FIGURE 2: Plot of the BACOL, SCI, and LOI scaled error estimates
and the scaled exact error (as in (8)) for the collocation solution of (15),
with tol = 10−8. The problem is solved using k = 3. The spatial mesh
at the final time has NINT = 13.

For the second test problem, (16), we consider the case where k = 6.
We again plot the error estimates computed by each of the schemes at
the final time. Since this problem is much more difficult very nonuni-
form spatial meshes are required. The locations of the mesh points are
indicated by tick marks along the horizontal axis. It is appropriate to
consider a set of results in which we allow each of the three error esti-
mation schemes the opportunity to control the mesh.
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In Figure 3, the BACOL error estimate controls the mesh adaptivity.
We see that there is generally good agreement among the schemes except
that the SCI estimates substantially overestimate the true error on the
leftmost and rightmost subintervals. (From Figure 3, it is clear that
the leftmost and rightmost subintervals are substantially larger than
the adjacent subintervals and we recall that the SCI scheme can yield
overestimates of the error is such cases.)
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FIGURE 3: Plot of the BACOL, SCI, and LOI scaled error estimates
and the scaled exact error (as in (8)) for the collocation solution of
(16) with ǫ = 10−3, tol = 10−8. The problem is solved with k = 6
and the BACOL error estimates are used to control the mesh.

The spatial mesh at the final time has NINT = 16 and a total of 159
remeshings were performed.

In Figure 4, we show the results of again solving the second test
problem (16) but this time we allow the SCI error estimates to control
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mesh refinement. Comparing the results in Figures 3 and 4, we see that
when the SCI estimates are used to control the mesh, the mesh ratios
are not as extreme as in the previous case since the large overestimates
of the errors lead to a reduction in the sizes of the subintervals in those
parts of the spatial domain where the error estimates are large. Thus,
to some extent, the use of the SCI error estimates to control the mesh
“self-corrects” the overestimates of the error that are characteristic of
this approach, at the cost of adding extra points to the mesh.
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FIGURE 4: Plot of the BACOL, SCI, and LOI scaled error estimates
and the scaled exact error (as in (8)) for the collocation solution of (16)
with ǫ = 10−3, tol = 10−8. The problem is solved with k = 6 and the

SCI error estimates are used to control the mesh. The spatial
mesh at the final time has NINT = 19 and a total of 148 remeshings
were performed.
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Figure 5 compares the error estimation schemes when the LOI error

estimates are used to control the mesh. We see generally good agreement
among the schemes except that the SCI scheme gives overestimates of
the error when the adjacent subinterval ratios are large. In particular,

there is good agreement between the LOI error estimates and those from

the original BACOL error estimation scheme.
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FIGURE 5: Plot of the BACOL, SCI, and LOI scaled error estimates
and the scaled exact error (as in (8)) for the collocation solution of (16)
with ǫ = 10−3, tol = 10−8. The problem is solved with k = 6 and the

LOI error estimates are used to control the mesh. The spatial
mesh at the final time has NINT = 17 and a total of 170 remeshings
were performed.

The above results are generally representative of the larger set of re-
sults reported in [3]. The three schemes generally use about the same
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number of subintervals and perform about the same number of remesh-
ings. There is generally good agreement between the BACOL and LOI
error estimates. However, SCI estimates overestimate the error when
adjacent subinterval ratios are large; this can be corrected to some ex-
tent when the SCI error estimates are used to control the mesh but this
sometimes leads to the spatial mesh having extra points, thus increasing
the cost. As well, for smaller k values, we have observed that com-
putations in which the SCI estimate controls the mesh sometimes fail
[3].

6 Computational costs for the BACOL, SCI, and LOI error

estimation schemes As mentioned earlier, the BACOL error esti-
mate requires the computation of two global collocation solutions, one
using piecewise polynomials of degree p and the other using piecewise
polynomials of degree p+1. For each of these solutions the most signifi-
cant cost is the setup and solution of the Newton matrices that arise and,
assuming a mesh of NINT subintervals, k collocation points per subin-
terval (k = p−1), and NPDE equations, and the use of a linear system
solver specifically designed to handle the almost block diagonal struc-
ture of the Newton matrices, these costs are O(NINT (NPDE × k)3).
These are obviously more significant for large NPDE and k values.
The computation associated with the BACOL error estimates requires
the evaluation of the two global collocation solutions at many points
within the problem domain; these costs are O(NINT ×NPDE × k).

When the SCI or LOI approaches are used for error estimation, one of
the two global collocation solutions need not be computed and this rep-
resents a significant saving in the overall cost. The corresponding error
estimates are obtained through evaluations of the remaining collocation
solution and the SCI or LOI. These costs are O(NINT ×NPDE × k).

It is clear then that for NPDE > 1 and larger k values, the cost of
the error estimation scheme employed by BACOL will be significantly
greater than the corresponding cost for either of the interpolation based
error estimation schemes. For a sufficiently large combination of NPDE

and k values, we expect that the new version of BACOL based on the
LOI scheme will be about twice as fast as the current version.

7 Conclusions and future work The SCI and LOI schemes ap-
pear to provide reasonable, low cost spatial error estimates of compa-
rable quality to those currently computed by BACOL. The SCI scheme
can overestimate the error when the adjacent subinterval ratios are large
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but it can compensate for this to some extent by adding extra points
to the mesh. Also, for low k values, the SCI approach can experience
difficulties (the computation can fail to start successfully). The LOI
approach appears to have the advantages with respect to efficiency of
the SCI approach but also appears to generally show better agreement
with the original BACOL error estimates. It is not sensitive to adjacent
subinterval ratios and does not exhibit difficulties at the beginning of
any of the computations [3].

The modified form of BACOL that was used to obtain the numer-
ical results reported here computes the BACOL, SCI, and LOI error
estimates. This requires that the primary and secondary collocation so-
lutions both be computed. Ongoing work involves further modification
of BACOL so that only one collocation solution and either the SCI er-
ror estimate or the LOI error estimate are computed. This new version
of BACOL should have comparable performance to that of the current
version but with about twice the efficiency.

While the approach discussed in this paper is employed together with
a collocation solution to yield an error estimate, it could be applied to
any continuous numerical solution of a PDE to yield an error estimate.
We chose the interpolation points to force the interpolation error to
asymptotically agree with the collocation error but a different choice of
interpolation points would allow the interpolation error to model a dif-
ferent type of error term consistent with the type of continuous solution
approximation computed.

Since both the interpolation-based error estimates considered here
are low cost, it is also possible that both could be computed for a given
collocation solution and then together these error estimates could be
used to improve the reliability of the overall error estimation algorithm.

It may be possible to generalize the interpolation-based error esti-
mates discussed in this paper to provide error estimates for two dimen-
sional PDEs, provided that a tensor product collocation framework on
a rectangular mesh is employed.
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