
ELSEVIER

Available online at www.sdencedirect.com MATHEMATICAL
AND

s c , t . ¢ , = @ a , n l c v . COMPUTER
MODELLING

Mathematical and Computer Modelling 40 (2004) 1335-1350
www.elsevier.com/locat e /mcm

P u l s e D e t e c t i o n So f tware
for Ini t ia l Va lue O D E s

A. M. HYNICK AND P . K E A S T
Depa r tmen t of Mathemat ics and Statist ics, Dalhousie Univers i ty

Halifax, Nova Scotia, B3H 3J5, Canada
keast©mathst at. dal. ca

P . H . M u I R
Depar tmen t of Mathemat ics and Comput ing Science, Saint Mary ' s Univers i ty

Halifax, Nova Scotia, B3H 3C3, Canada
muir©stmarys, ca

A b s t r a c t - - I n many physical models ordinary differential equations (ODEs) arise with the general
form, y '(t) -- f(t, y) + g(t), in which abrupt but large changes of limited duration, known as pulses,
occur in g(t). These pulses may begin at times which are not known beforehand and may have
unknown durations. If the duration is sufficiently short, standard differential equation solvers may
miss the pulse completely, stepping over it, especially if, prior to the pulse, the solution is well
behaved. In this paper, we discuss software which employs standard initial value ODE software and
a process of detect sampling to attempt to detect, and handle efficiently, any pulses which arise. A
key advantage of this software and the algorithms for pulse detection and handling described in this
paper is that they do not involve modification of the initial value ODE solver. The performance
of the new software will be investigated by applying it to several test problems exhibiting pulses.
The results show that pulses can be detected and efficiently handled by the new software and that
significant computational savings are achieved. @ 2005 Elsevier Ltd. All rights reserved.

K e y w o r d s - - P u l s e detection, Initial value ordinary differential equations, Defect sampling, Effi-
ciency, Performance.

1. I N T R O D U C T I O N

We consider systems of initial value ordinary differential equations (IVODEs) of the form

y ' (t) = f(t, y(t)) + g(t), y(t0) = Y0, (1)

where y : R --~ ~n, f : ~ x R n --~ R n, g : JR-*]R n, and y0 E ~n. It is assumed that f is

continuous and that g is zero except during some relatively short time period, whose duration
and position may be unknown, and where it acquires an instantaneous and relatively large value.
Such a sudden change will be called a pulse. Depending on f, the underlying system of IVODEs
may be stiff or nonstiff.

The work of these authors was partially supported by grants from the Natural Sciences and Engineering Research
Council of Canada.
The authors would like to acknowledge the many helpful suggestions provided by the referees.

0895-7177/05/$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. Typeset by .A.MN-TEX
doi: 10.1016/j.mcm.2005.01.023

1336 A.M. HYNICK et aI.

To see the difficulty presented by systems such as (1), it is necessary to consider how most
s tandard IVODE solvers behave. Such a solver begins at to and computes solution approximations

at a set of points ti, i = 1, 2, 3 , . . . , where, usually, ti < ti+l. These points are selected by the
software on the basis of a step selection algorithm which at tempts to take steps that are as large

as possible while keeping some estimate of the local error in each step within some user provided

tolerance. The solution approximations will of course involve calculations based on evaluations

of the right-hand side of the ODE system. If, prior to a pulse being encountered, the solution

of the IVODE is well behaved, showing no rapid changes, the soRware will increase the stepsize
to improve efficiency while still satisfying the error requirements. The danger then, however, is
tha t after a successful step the code may step completely over the pulse, and continue on the
assumption that all is well, even though a major feature of the solution has been missed. An
example of this kind of behavior, when the well-known IVODE code LSODE [1,2] is used to
a t tempt to solve a problem with a pulse, is given in Figure 6; LSODE computes a solution which
shows no indication of a pulse, whereas the correct solution exhibits an obvious reaction to the

pulse, as in Figure 5.

Two of the most critical quantities associated with a pulse are where it begins and how long it

lasts; we will refer to these as the start and duration of the pulse. When both of these are known,
we shall see that it is easy to force an IVODE solver to detect the pulse and integrate through
it in an efficient fashion. We shall refer to this as Case (a). However, we are more interested in

three other cases:

(b) the start of the pulse is known but its duration is unknown,
(c) the duration of the pulse is known but its start is unknown, and

(d) neither the duration nor the start is known.

We wish to emphasize that in this paper, we assume that the duration of the pulse is very much
smaller than the natural stepsizes employed by the ODE solver and that , if there are multiple

pulses, they are also relatively well separated, with respect to the usual stepsizes taken by the

IVODE solver. This means we are assuming that the pulses are missed by the IVODE solver

when it is allowed to employ its standard step selection algorithm. Thus, the pulse definition we
are using is very much dependent on the assumption that the IVODE solver is able to take large
stepsizes; this assumption is most relevant for IVODE solvers tha t employ high order or stiff
methods where considerable effort has been invested to allow the solver to take large steps.

When the start of the pulse is unknown, simply detecting that a pulse is present becomes the
central issue. The general approach we will use to detect a pulse is based on sampling the defect.
In this approach, one assumes that in addition to providing a discrete numerical solution at
the output points, ti, the IVODE solver also provides a continuous solution approximation (i.e.,

interpolant) over each step. The defect is defined to be the amount by which this continuous

solution approximation fails to satisfy the IVODE. Tha t is, if u(t) is the continuous solution

approximation at some point t, then the defect at t is given by

r(t) = u '(t) - [f (t, u(t)) + g(t)] . (2)

Note that this assumes that the IVODE solver also provides the derivative of u(t) . A measure
of the quality of u(t) is obtained by sampling the defect, i.e., computing r(t) , at a set of points

within the current step.
When the underlying method upon which the IVODE solver is based is a multistep method

(see, e.g., [3]), the solution approximation at t~ is based on a computation in which the only
evaluation of the right-hand side of (1) within the current step, (t~-l,t~], occurs at t~. Thus if
the pulse begins and ends strictly within this interval the solver has no way of noticing it. In the
software described in this paper, we will augment the calculation done by the IVODE solver with
a defect sampling process, which involves evaluating the defect and thus the right-hand side of (1)
at several points within (t i - l , t i] . When, the duration of the pulse is known, we can guarantee

Pulse Detection Software 1337

that the pulse will be detected. Even when the duration is unknown, we can substantially improve
the likelihood that the pulse will be detected. Once a pulse has been detected, it is important to

the effÉciency of the IVODE solver that the pulse be handled in an appropriate way; i.e., since
the beginning and end of the pulse look like discontinuities to the IVODE solver, see, e.g., [4], it
is important that our algorithms control the integration step sequence so that the IVODE code
steps into and out of the pulse efficiently.

In this paper, we have assumed that the pulse term is not state-dependent, i.e., g(t) does not
depend on y(t). The state-dependent case is significantly more complicated since one may need
to have a reasonably accurate approximation to the solution at the potentially unknown time at
which the pulse is triggered. The approach to be described in this paper allows the pulse to be
efficiently detected even when the IVODE solver gives a poor approximation to the solution in
the region of the pulse, provided the pulse depends only on time. Further investigation of the
state-dependent pulse case will be the subject of future work.

We note that in some applications it will be possible for the user to determine the circumstances
which will trigger a pulse. If this is possible, most IVODE solvers will allow the user to handle
the pulse using an event location option. Such an option allows the user to instruct the code
to return whenever a prespecified condition arises. Upon return in such a case, the user can
then sharply reduce the stepsize and force the solver to correctly detect the pulse. We wish to
emphasize that in this paper, we are assuming the more general case in which the user does not
have sufficient a priori knowledge to predict the conditions which will cause a pulse to occur.

An important goal of our work is to develop software which can detect and efficiently treat
pulses while employing an unmodified IVODE solver. The key idea is that the algorithms and
software presented in this paper are to be essentially independent of the IVODE solver used to
integrate the ODE system, provided the solver has several commonly available facilities (to be
identified later in this paper). This goal addresses a significant software issue: while it might be
possible to obtain a more sophisticated algorithm by focusing on a modification of LSODE, this
would significantly limit the applicability of our work to other IVODE solvers. In this paper, we
consider coupling our software with an IVODE solver based on a family of multistep methods,
but with only minor modifications, our software could be employed, for example, with a one-step
Runge-Kutta solver, provided that the solver can provide continuous solution and first derivative
approximations over each step, based on, for example, a continuous extension of the Runge-Kutta
formula; see, e.g., [5].

This paper is organized as follows. In Section 2, we briefly review some related work. Section 3
considers the four different pulse cases mentioned above and describes a detailed algorithm for
the efficient treatment of pulses within the context of these four cases. Section 4 presents and
discusses our numerical results and Section 5 provides our summary, conclusions, and suggestions
for future work.

2. R E L A T E D W O R K

The most closely related work is in the area of handling of discontinuities in IVODE software.

However, a fundamental difference is that in our context the primary problem is the actual

detection of the pulse whereas in the treatment of discontinuities, detecting the presence of a

discontinuity is only a secondary issue; the primary issues involve being efficient in precisely

locating and stepping across the discontinuity. A standard IVODE code will often locate and

step across a discontinuity with a large number of failed steps in a very inefficient way; see,

e.g., [4], Figure I. In that paper, Gear and Osterby discuss modifications to the stepsize and

order selection algorithms of a variable order multistep code in order to allow it to efficiently

locate and step over discontinuities in f(t, y(t)) or its derivatives. Based on an estimate of the

order of the discontinuity (i.e., the lowest derivative of f(t, y(t)) that exhibits a discontinuity) and
its magnitude, a sufficiently small step size in the region prior to the discontinuity is determined

1338 A.M. HYNICK et al.

in order to allow the code to step over the discontinuity with a local error that will be within
the user defined tolerance. The order of the discontinuity also dictates the order of the method
used by the code at it steps over the discontinuity. Related work is discussed by Enright et al. [6]
where the authors discuss modifications to an IVODE code based on Runge-Kutta methods to
allow it to efficiently locate and step over discontinuities in f(t, y(t)) or its derivatives. Within a
step where a discontinuity is suspected, the main idea is to use several defect samplings, based
on evaluations of the local high-order interpolant from the previous step, to accurately locate
the discontinuity, and then to step over the discontinuity using an evaluation of the interpolant
from the previous step. (The interpolant from the previous accepted step must be employed
because no interpolant is available for the current step which has failed due to the presence of

the discontinuity.)
While the discontinuity handling problem is of course related to the pulse detection and han-

dling problem (in fact, for pulses of long duration, the pulse problem is equivalent to a pair of
discontinuities), for pulses of short duration (which is a fundamental assumption of this paper),
the primary issue, as mentioned above, is the actual detection of the pulse. When the start of the
pulse is unknown a great percentage of the computational effort is associated with determining
if a pulse is present within the current step taken by the IVODE code. Once this is determined,
only a relatively minor cost is associated with accurately determining the start of the pulse (and
the end of the pulse if the duration is also unknown).

3. PULSE D E T E C T I O N A N D T R E A T M E N T

Our pulse detection software employs a reliable IVODE solver which is used to solve the
differential equations in a standard way except for interaction with the pulse detection algorithm
at various times. Almost any IVODE program could be used, provided that it has certain features

which the detection program requires. These features are as follows.

(i) The IVODE software should have the ability to restart at any time t with no information
given about the solution or previous computation except the value of y at t. We call such

a restart a cold start.
(ii) It should be possible to request a return from the IVODE solver after every accepted step,

with the possibility of continuing, using all the available information currently known
about the solution. This will be called a continuation.

Off) After an accepted step, an interpolant should be available to enable the user to efficiently
compute approximations to the solution and its first derivative at arbitrary points within

the current step.
(iv) It should be possible to specify a value of t, say tcrit beyond which the solver will not

integrate. Without this feature, the code might take a last step beyond the stopping
value, and then interpolate to obtain the solution at this stopping value.

As mentioned earlier, the interpolant will be used to compute a defect, as in (2). Our defect
sampling approach is based on the following observation. Suppose that we have an interpolant
that is based only on evaluations of the right-hand side of the ODE system which are outside the
pulse. Then, a large defect will be obtained for any sampling that takes place within the pulse.

We will call a defect large if, for some j ,

(t)l 1 > 3 ' (3)
max(l, Ifj(t, u(t)) + gj(t)l)

where rj, f j , and gj are the jth components of r(t), f(t, u(t)), and g(t), respectively, and t is
the sample point. This is somewhat conservative but it is consistent with the fact that we axe
using LSODE, a code which does not use local extrapolation--see, e.g., [5]. If we were to use
an IVODE solver that did employ local extrapolation, since the relative/absolute local error is
controlled by tol, we could expect the relative/absolute defect to be at most some reasonably

Pulse Detection Software 1339

small multiple of tol--typical results, [7], in such a case put the defect within a factor of 2 of

tol - -and we could therefore replace the right-hand side of (3) with, for example, 10 × tol, and
have a tighter indicator of a large defect.

The software we have developed can handle a sequence of nonoverlapping pulses occurring
in different components of the right-hand side of (1); however, for the purposes of clarity the
following discussion will assume the presence of a single pulse.

There are three parameters defining a pulse.

(i) to: the time at which the pulse begins.
(ii) 5: the width or duration of the pulse interval, assumed to be small relative to the total

time interval and the stepsizes employed by the IVODE solver. We require, however,
(~ > t c • Cmach , where emach is machine epsilon, thus ensuring that at least one machine
number lies in the interval during which the pulse is active. For practical applications, we
expect that the pulse width will actually be somewhat larger than this.

(iii) gj(t): for j E {1 , . . . , n} , the change in the jth component of the right-hand side value
contributed by the pulse, assumed to become large at to. That is, for some j, gj(t) is
assumed to be 0 for t < tc and for t > t~ + 5, and is assumed to be large in magnitude for
t~<_t<_t~+5.

We identify in more detail the four different cases distinguished by how much is assumed to be
known about the pulse.

(a) The pulse begins at a known time and has a known duration, i.e., tc and 5 are both known.
(b) The start time of the pulse is known, but the duration is unknown, i.e., tc is known but 5

is not.
(c) The duration of the pulse is known, but it is not known when the pulse begins, i.e., 5 is

known but tc is not.
(d) Neither the start time nor the duration of the pulse is known, i.e., t~ and 5 are both

unknown.

We now provide an overview of our algorithm for handling these four cases.

STEP 1. Cases (a) and (b). The IVODE solver is asked to integrate from to to the known t~
value where the pulse begins.

STEP 1. Cases (c) and (d). As the integration proceeds, after every successful step control is
returned from the IVODE software to the pulse detection program. Let the time at the end of
the current accepted step be tour and let the current stepsize be hcur. Then, we wish to sample
at a number of points in the interval between the previously accepted time, tprev -- t~ur - hour
and tour. If 5 is known (Case (c)), the number of sample points clearly should depend on it; we
choose

hour
ns = number of sample point = --~--s,

where s is an integer whose value may be set by the user, with a default value of s = 2. This
guarantees at least one sample point within the pulse. If 5 is unknown (Case (d)), the user can
specify a number of sample points, ns (or the default of 20 points may be used). The sample
points are chosen to be uniformly distributed across the current step.

As the defect is evaluated at the sample points, the detection algorithm looks for any sample
point for which a large defect is obtained. If all calculated defects are small, the integration
proceeds with a continuation at t If the defect is found to be large at one or more sample
points, then we find the smallest value of t, say tmax, with a large defect and the largest t, say tmin,
less than tmax, that has a small defect--see Figure 1. We can then begin a bisection process to
accurately locate t~ using [train, tmax] as our interval.

The bisection algorithm we employ uses a relative tolerance of emach to obtain a very accurate
estimate for the beginning and end of the pulse. From the work of [4] and [6], it is clear that
it is possible to save a few function evaluations by truncating this search earlier. As long as

1340 A.M. HYNICK et al.

100

80

60

40

20

49.95

r r

t t . t t prey mlrl max cur
L L

50 50.05

time
Figure 1. Plot of time vs. defect for a step containing a pulse, with defect sample
points labelled by *. Smallest sample point inside the pulse is tmax. Largest sample
point to the left of the pulse is tmi n.

i0.1

the distance to the beginning of the pulse is less than h, where h times the absolute value of
the height of the pulse is less than the local error tolerance (in the appropriate relative/absolute
sense), the code can step into the pulse while incurring a local error that is within the tolerance.

A similar situation arises at the other end of the pulse. However, given the large number of
function evaluations this algorithm already employs, we do not bother to introduce this extra

complexity in our algorithm since the savings would be quite negligible. We note that by choosing
the bisection tolerance in this way we avoid having to ask the user to provide such a tolerance;
this is helpful since most users would not know how to choose it appropriately.

We complete this part of the algorithm for Cases (c) and (d) by evaluating the current inter-

polant at tc to get a corresponding solution approximation.

STEP 2. Cases (a) and (c). We determine the end of the pulse from the known 5 value.

STEP 2. Cases (b) and (d). We again use defect sampling within a bisection algorithm to
accurately locate the end of the pulse. For Case (b), we recall tha t the IVODE solver has already
integrated to to. We save the solution value at t~ and then ask the IVODE code to take one
more step with the stepsize prescribed by its step selection algorithm for the next step; since we
assume that the pulse width is much smaller than a normal step, this step will carry it over the

pulse. We can then employ defect sampling as described earlier. Assuming a sufficient number
of sample points, this will allow us to determine some sample points with large defects, as in the
previous section. Once this has been done, we can now treat Cases (b) and (d) in the same way.

In order to locate the end of the pulse, we look for the largest sample point with a large defect,
let us call it tma×, and the smallest sample point, greater than tmax, tha t has a small defect,
say train--see Figure 2. Then, [tm~x, train] is the appropriate interval for a bisection process that

uses further defect sampling to accurately locate the end of the pulse.

Pulse Detection Software 1341

100

80

60

40

20

49.95

T I -

t t t . t
prev max mln cur

L J

50 50.05

time
Figure 2. Plot of time vs. defect for a step containing a pulse, with defect sample
points labelled by *. Largest sample point inside the pulse is tmax. Smallest sample
point to the right of the pulse is t m i n .

;0.1

STEP 3. In all four cases, we now have complete information: both t¢ and 5 are known. Also,

in all four cases, the IVODE solver is now at t~ with a corresponding solution approximation to
provide initial conditions for the next step. Thus, the remainder of the algorithm is the same

for all four cases. We restart the IVODE solver at the beginning of the pulse with a cold start,

asking the code to integrate to the end of the pulse and then return control to the pulse handling
software. After control is returned, the pulse detection software restarts the IVODE solver with
a cold start, just beyond the end of the pulse.

In the implementation of this algorithm, when integrating to the beginning of the pulse, rather

than taking tcrit : tc, we actually take tcrit to be the largest machine number less than t¢. This
prevents the IVODE solver from sensing a discontinuity at t~ and repeatedly incurring failed
steps and halving the step size unnecessarily. Once inside the pulse, we integrate to tcrit = tc + 5.
After exiting from the pulse, we restart at the machine number immediately after tc + 5.

4 . N U M E R I C A L E X P E R I M E N T S

The above algorithms have been implemented in the code PDODE (pulse detection in ordinary
differential equations). The code, together with sample driving programs, may be obtained

at h Z t p : / / w w w . m s c s . d a l . c a / ~ k e a s t / r e s e a r c h / p u l s e . The IVODE solver employed within
PDODE is LSODE [1,2]. This solver satisfies all the requirements of an IVODE solver necessary
for our pulse detection code.

To demonstrate the efficacy of PDODE, we look at several test problems in which pulses occur.
Although we do include this case in PDODE for convenience, we do not consider Case (a) in this
section; it is straightforward to get any standard IVODE solver to handle this case efficiently:
integrate to t c r i t ~ - tc; perform a cold start at tc with a return at t c r i t = t c -~- (~; perform a cold

1342 A . M . HYNICK e$ al.

I I I t I I

0.8

0.6

Y4

0.4

0.2

-0.2 t
o

I I I

10 20 30
I I I I I I

40 50 60 70 80 90 1 O0
time

Figure 3. Correct y4(t) for Problem 1.

start at tc + 5, integrating to tfinal. We therefore use the test problems to allow us to compare the
performance of a standard IVODE solver (LSODE) with our pulse detection software, PDODE,

for Cases (b), (c), and (d). Recall that in Case (b) we know tc but not 5, in Case (c) we know 5
but not to, and in Case (d) we know neither tc nor 5.

We will see that for each problem both codes can obtain the correct solution. PDODE does this
automatically but some intervention is required with LSODE so that it will not miss the pulse:

in Case (b), we run LSODE in its usual stepsize mode with t~rit -- tc and then perform a cold
start at to; in Case (c), we run LSODE with the maximum stepsize parameter set slightly tess
than the known pulse width; in Case (d) LSODE must be run with a small maximum stepsize.

Two machine independent measures of the execution costs of ODE solvers are the required
number of evaluations of the derivative, i.e., the right-hand side function, F(t , y(t)) -- f(t , y (t)) +
g(t), which we will refer to as the number of function calls, and the required number of Jacobian

evaluations, i.e., OF(t,y(t)) which we will refer to as the number of Jacobian calls. The Jacobian Üy(t) '
evaluations involve O(n 2) elements and more significantly lead to matr ix computation costs that
are O(n3). In the following experiments, we compare LSODE and P D O D E with respect to these
m e a s u r e s .

Several other test problems were also investigated; results similar to those reported here were
obtained.

4.1. P r o b l e m 1

The first problem is SB2 from [8], to which we have added a pulse term in the fourth ODE.
The equations are

y~ = - 1 0 y l ÷ 3y2, y~ = - 3 y l - 10y2, y~ = -4y3,
(4)

! f l
Y4 ---- -Y4 ÷ P, Ys -- -0.5y5, Y6 -- -0.1y6,

Pulse Detection Software 1343

1.2 I I I I I I I I

0.8

0.6

Y4

0.4

0.2

-0.2
0 10 20 30 40 50 60 70 80 90 1 O0

time

Figure 4. y4(t) from LSODE, with default hmax, for Problem 1; pulse missed.

where P is zero except in the range 50 < t < 50.005 where P = 100. Thus, tc = 50 and 5 = 0.005.

The initial conditions are yi(0) = 1, i = 1 , . . . , 6. This set of equations is stiff, which implies that

LSODE must run in stiff mode [2]. We have trine] = 100 and relative and absolute tolerances
of 10-1% The correct y4(t) is shown in Figure 3. We begin our comparison by considering what

happens when the above problem is given to LSODE, with no restriction placed on the stepsize.

Since the solution components decay rapidly to zero and LSODE employs a method suitable for
stiff systems, the stepsize very quickly increases from about 10 -11 at t -- 0 to about 1 at t -- 50,

and consequently, LSODE misses the pulse completely. In Figure 4 the graph of the solution
given by LSODE in this case is shown.

The results for LSODE and P D O D E under Cases (b), (c), and (d) are given in Table 1.

P D O D E finds the correct solution shown in Figure 3 and, with some intervention (as specified

earlier), LSODE can also find it. From Table 1, we see tha t in Case (b) the codes use about

the same number of function evaluations but PDODE uses about two-thirds as many Jacobian

evaluations as LSODE. For Case (c) PDODE shows some improvement over LSODE in terms of

evaluations of the right-hand sides, with about 20% fewer function evaluations. More significantly

P D O D E uses only about 5% of the number of Jacobian evaluations as LSODE does. For Case (d)

LSODE takes almost ten times as many function evaluations and more than a hundred times the
number of Jacobian evaluations as PDODE. (Since the pulse width is not known it is difficult to
decide on an appropriate value of hm~× for LSODE. If we were to experiment with hmax -- 10 - r ,
r --- 1, 2, 3, LSODE would not discover the pulse until r = 3. Then, LSODE would use about
100,000 function evaluations and about 5000 Jacobian evaluations.)

4.2. P r o b l e m 2

One of many possible irregularities in the heart is a phenomenon tha t involves a wave of
electrical activity reentering previously excited tissue, exciting it again. I f this occurs repeatedly,

1344 A . M . HYNICK et al.

Table 1. Funct ion calls and Jacobian calls for P rob lem 1.

Me thod Funct ions Calls Jacobian Calls

Pulse missed

LSODE, default hmax 638 39

Case (b). Pulse de tec ted

LSODE, default hmax 983 99

P D O D E , s = 2 921 68

Case (c). Pulse de tec ted

LSODE, hmax = 0.004 <~ (~ 25369 1370

P D O D E , s = 2 20887 67

Case (d). Pulse de tec ted

LSODE, hm~x = 0.0005 200296 10109

P D O D E , n~ = 40 22597 67

it can lead to conditions in the heart conducive to cardiac arrhythmias. The work of Clements,

Clements and Hor£Sek [9] employs the Luo-Rudy model [I0] to investigate the phenomenon of

re-excitation of the heart. The Luo-Rudy model, for the action potential of a single cardiac cell,

gives rise to a system of eight coupled nonlinear ODEs, one of which includes a pulse term. This

system contains a number of constants and auxiliary functions which are defined in [9]; the ODE

system, with initial conditions, has the form,

(°)) I a p p (t) -- E I i o , , k (Y
I k = l

Y l = C m '

I (?7tinf(Yl) - - Y2)

Y~ = T~(y l) '

(hinf(Yl) - Y3)

Y~ = Th(Yl) '

, (j i n f (Y l) - - Y4)
Y4 = ~-j (Yl) '

f (d in f (Yl) - Ys)

Y5 : Td(Yl) '

, (f~°f(yl) - y~)
y6 = CS(yl) '

, (Xinf(Yl) - YT)

y v = T x (y ~) '

y~ = -O.O001Iio,,2(y) + 0.07(0.0001 - Y8),

y l (t 0) ---- - - 8 4 . 0 ---- y0 ,

y~(to) = miof (y 0) ,

y3(to) = h,nf (y 0) ,

y4(to) = Yi.f (y0) ,

ys(to) = dlnf (y o) ,

Y6(t0) ---- f i n f (Y ~) ,

yT(t0) ---- Z i n f (y O) ,

ys(to) = 0.0002,

(5)

where y = [Yl, Y 2 , . . . ~ Y8] 1-, Cm, the membrane capacitance per unit area, is a constant, and the
t ime-dependent pulse function, the applied current I~pp(t), given by ([9] considers several pulse

cases; we provide an example here)

-~app ~ " 0 . 0 - - 0.0 ms < t < 100 ms,
c m 2 ,
k

-/app ~ - 5 5 - - 100 ms < t < 100.05 ms,
c m 2 ,

#A
l a p p = 0 .0 - - 100 .05 m s < t,

c m 2 ,

(6)

contributes a pulse to the first ODE. We therefore have tc = 100 and 5 -- 0.05. The ionic current
components, I ion ,k (Y) , and the remaining functions in (5) are given in [9]. Since this system

Pulse Detection Software 1345

-81

-81.5

-82

-82.5

Yl -83

-83.5

-84

-84.5

-85 I I

o 50 1 O0 150
time

Figure 5. Correct yl(t) for Problem 3.

is stiff, L S O D E mus t be run in stiff mode. The re la t ive and abso lu te to le rances are 10 - s and

tfi,~l = 150. The correct y l is given in F igure 5.

W h e n th is p rob lem is p resen ted to L S O D E wi th no r e s t r i c t ion on the s tepsize, i t misses the

pulse and ob t a in s the a p p r o x i m a t i o n for y l (t) shown in F igure 6. W h e n P D O D E and L S O D E

are app l i ed to th is p rob lem, P D O D E is able to de tec t the pulse a u t o m a t i c a l l y while L S O D E can

be m a d e to de tec t t he pulse wi th some in tervent ion. Bo th codes r e t u r n a so lu t ion as in F igure 5

wi th pe r fo rmance resul ts as given in Table 2. These resul ts show t h a t for Case (b) P D O D E uses

s l ight ly fewer funct ion eva lua t ions and Jacob ian eva lua t ions t h a n L S O D E , for Case (c) L S O D E

uses s o m e w h a t more funct ion eva lua t ions t h a n P D O D E bu t above five t imes as m a n y Jacob ian

eva lua t ions , and for Case (d) L S O D E uses a b o u t 25 t imes as m a n y func t ion eva lua t ions and

a b o u t 100 t imes as m a n y J a c o b i a n eva lua t ions as P D O D E .

Table 2. Function calls and Jacobian calls for Problem 3.

Method Function Calls Jacobian Calls

Pulse missed

LSODE, default hmax 201 14

Case (b). Pulse detected

LSODE, default hmax 837 59

PDODE, s = 2 752 49

Case (c). Pulse detected

LSODE, hmax = 0,04 < ~ 5991 253

PDODE, s = 2 4733 48

Case (d). Pulse detected

LSODE, hm~x = 0.005 42431 1537

PDODE, ns = 20 1628 15

1346 A. ~M. HYNICK et al.

-81

-81.5

-82

-82.5

Yl -83

-83.5

-84

-84.5

-85 i =
0 50 100 150

time

Figure 6. y l (t) from LSODE, with default hmax, for Problem 3; pulse missed.

4.3. P r o b l e m 3

The text [5] describes a model from pharmacokinetics in which the blood level of lithium

carbonate, a drug used to t reat manic-depressive disorder, is studied. The model considers a
dosage of one tablet every 12 hours, beginning at t = 0, with the assumption that the lithium

carbonate is uniformly released over half an hour. This leads to equations in which pulses arise

periodically.

The equations are
Yl -5 .6y l + P, yl(0.0) = 0.0,

= 5 .6y l - 0 .7y2, y2(0, 0) = 0.0, (7)

where the pulse term, P, is zero except when m / 2 < t < m / 2 + 5, for m = 0, 1, 2, 3 , . . . , in which
case P = 48; the pulse width, 5, is 1/48 = 0.0208333 We therefore have a sequence of tc
values, tc = rn/2, m = 0, !, 2, 3 , There is a pulse at the beginning of each day and halfway
through each day, with a duration of 1/48 of a day, i.e., half an hour. The requested relative and
absolute tolerances are 10 -6 and t~nal = 6.0. The blood level of lithium carbonate is modelled
by y:(t). The correct y2(t) is shown in Figure 7.

Essentially any IVODE solver will detect the initial pulse since the integration begins exactly
at the start of the first pulse and in fact due to the relatively long duration of these pulses the
solver will likely even detect some of the subsequent pulses. However, as the integration proceeds

and the natural stepsize of the IVODE solver increases, many of the pulses are missed. When we
apply LSODE to the above problem with no restriction on the stepsize we obtain the y2(t) given
in Figure 8. Comparing Figure 7 with Figure 8, we see that LSODE misses many of the pulses,
obtaining a significantly different approximate solution.

In this paper, we assume that the pulses which arise are sufficiently narrow and far apart that
the IVODE solver will miss them. However, in this pharmacokinetics problem, the pulses are
of somewhat long duration, relative to the distance between them, and arise fairly frequently,

Pulse Detection Software 1347

I I I]

Y2

2.5

1.5

0.5

0 w

0
I I I

1 2 3
time

4

Figure 7. Correct y2(t) for Problem 2---original form.

I I I I I

Y2

2.5

1.5

0.5

0
0

J
I I I f I

1 2 3 4 5
time

Figure 8. y2(t) from LSODE, with default hmax, for Problem 2. Original form; many
pulses missed.

1348 A. 1V[, HYNICK et al.

Y2

1.6

1.4

1.2

'I
0.8

0.6

0.4

0.2

I l I I I I

\
0 I I I I

0 20 40 60 80 1 O0 120
time

Figure 9. Correct y2(t) for Problem 2. Modified form.

relative to the length of the region of integration and the stepsizes selected by LSODE. We see

that LSODE is able to find several of the pulses, without intervention, using its natural step
selection sequence. Furthermore, when LSODE is employed within the PDODE software, where
there is of course substantial intervention with its step selection process, even more of the pulses

are "accidently" detected by LSODE. We note tha t whenever LSODE does detect a pulse and
then readjusts its stepsize to successfully step through the pulse, the approximate solution it

obtains will of course accurately reflect the presence of the pulse and the corresponding defect
samples will not be large. In such cases PDODE will therefore not detect the pulse and will be

unable to intervene to improve the efficiency of the computation.
We are therefore motivated to consider a modified version of this problem which is more

consistent with the problem class we are studying in this paper, i.e., a problem for which LSODE,
even with the stepsize intervention performed introduced by PDODE, does not accidentally hit
any of the pulses. This version of the problem has the same ODE system, (7), but has a longer
time interval, tfi,~l = 130.0, and less frequent pulses. There are eleven pulses which start at
times, 50.0, 52.5, 55.0, 57 .5 , . . . , 75.0. We use the same pulse duration, 5 = 1/48, and the same
pulse height, P = 48.0. The initial conditions are yl(0) = 1.0, y2(0) = 1.0. In this case the
correct y2(t) is as shown in Figure 9. When we apply LSODE to the modified problem, with no
intervention, all the pulses are missed and LSODE gives the result shown in Figure 10.

When PDODE is applied to solve the modified problem it is able to detect all the pulses. With

some intervention, LSODE can be forced t o detect all the pulses. Both codes return a solution
as in Figure 9; the corresponding performance results are given in Table 3. These results show
that for Case (b) LSODE uses more than 10 times the number of function evaluations and 20
times the number of Jacobian evaluations as PDODE, for Case (c) LSODE uses only about 60%
of the number of function evaluations used by PDODE but about four times as many Jacobian
evaluations as PDODE, and for Case (d) PDODE uses slightly fewer function evaluations and
about 15% of the number of Jacobian evaluations as LSODE.

Pulse Detection Software 1349

1.6

Y2

1.4

1.2

0.8

0.6

0.4

0.2

-0.2
0 20 40 60 80 100

time

Figure 10. y2(t) from LSODE, with default h for Problem 2. Modified form; all
pulses missed.

Table 3. Function calls and Jacobian calls for Problem 2. Modified form.

Method Functions Cal ls Jacobian Calls

Pulse missed

LSODE, default hmax 182 26

Case (b). Pulse detected

LSODE, default hmax 1927 380

PDODE, s -- 2 156 19

Case (c). Pulse detected

LSODE, hm~x -- 0.02 < 5 8361 935

PDODE, s -- 2 14641 245

Case (d). Pulse detected

LSODE, hmax = 0.005 27669 1886

PDODE, ns : 20 24427 246

120

5. SUMMARY, CONCLUSIONS, A N D F U T U R E W O R K

In th is paper , i t has been shown t h r o u g h numer ica l expe r imen t s t h a t s t a n d a r d I V O D E software

will n o r m a l l y miss a pulse ar is ing in the r i gh t -hand side funct ion of an O D E sys tem. To address

th is difficulty, th is p a p e r descr ibes the design and i m p l e m e n t a t i o n of a high-level a lgo r i thm cal led

P D O D E t h a t employs s t a n d a r d I V O D E software (L S O D E in th is pape r) to efficiently de tec t and

t r e a t such pulses. A key advantage of the algorithm is that it is essentially independent of the
underlying IVODE code; thus, for example , L S O D E could be rep laced by a R u n g e - K u t t a solver or

by ano the r mu l t i s t ep solver in a re la t ive ly s t r a igh t fo rward fashion. Furthermore, the algorithms
described in this paper require no modifications to the LSODE package.

P D O D E has been shown to be re l iable in f inding and hand l ing eff iciently pulses for which e i ther

the s t a r t or t he d u r a t i o n is no t known, or when b o t h are unknown. T h e mos t difficult case is

1350 A.M. HYNICK et al.

when neither is known. In this case, LSODE has to have a severely restricted stepsize to ensure

that it does not step over the pulse. PDODE typically uses fewer function evaluations than

LSODE; more significantly, PDODE provides quite substantial savings in Jacobian evaluations,

compared to LSODE. Since Jacobian evaluations are generally substantially more expensive than

function evaluations (as discussed in the previous section) this advantage for PDODE translates

into large savings in overall execution time. (It should be noted that LSODE makes no effort

to save Jacobian evaluations for future use; an IVODE solver which was more conservative in

its use of Jacobian evaluations would of course fare better than LSODE in a comparison with

PDODE. However, it is clear that the severe stepsize restriction that must be placed upon any

IVODE solver in order for it to detect a pulse will imply that the solver will be more expensive

than PDODE.)

The experiments presented in this paper have been run at fairly sharp relative/absolute toler-

ances with the hope that this would improve the ability of LSODE to detect the pulse without

any interference in its step selection. As we have seen, even the use of sharp tolerances does not

help; experiments with coarse tolerances will of course reduce further the likelihood of LSODE

finding a pulse.

Possible topics for future work include generalizing the algorithms to handle state-dependent

pulses and to handle overlapping pulses in different ODE components, as well as investigating

the performance of P D O D E with IVODE solvers other than LSODE.

R E F E R E N C E S
1. A.C. Hindmarsh, ODEPACK, a systematized collection of ODE solvers, In Scientific Computing, (Edited by

R.S. Steplman et al.), pp. 55-64, North-Holland, Amsterdam, (1983); available at http:/ /~v~.netlJ.bo org.
2. A.C. Hindmarsh, Source for module LSODE from package ODEPACK, In NIST Guide to Available Math

Software, (1987).
3. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood

Cliffs, N J, (1971).
4. C.W. Gear and O. Osterby, Solving ordinary differential equations with discontinuities, ACM Trans. Math.

Softw. 10, 23-44, (1984).
5. L.F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman &: Hall, New York, (1994).
6. W.H. Enright, K.R. Jackson, S.P. Ncrsett and P.O. Thomsen, Effective solution of discontinuous IVPs using

a Runge-Kutta formula pair with interpolants, Appl. Math. Comp. 27, 313-355, (1988).
7. W.H. Enright, Continuous numerical methods for ODEs with defect control, J. Comp. Appl. Math. 125,

159-170, (2000).
8. W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of ordinary differ-

ential equations, BIT 15, 10-48, (1975).
9. C.J. Clements, J.C. Clements and B.M. Hor£~ek, On the formation of scroll waves in an anisotropic ventricular

myocardium, In Differential Equations with Applications to Biology, (Edited by S. Ruan et al.), pp. 97-107,
Amer. Math. Soc., Providence, RI, (1999).

10. C.-H. Luo and Y. Rudy, A model of the ventricular cardiac action potential: Depolarization, repolarization,
and their interaction, Circ. Res. 68, 1501-1526, (1991).

11. American Heart Association, httla ://~-ww. americanheart, org.
12. J.S. Levine and K.R. Miller, Biology: Discovering Life, D.C. Heath and Company, Lexington, MA, (1991).
13. R.D. Skeel, Equivalent forms of multistep formulas, Math. Comp. 33, 1229-1250, (1979).

