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A b s t r a c t - - I n  many physical models ordinary differential equations (ODEs) arise with the general 
form, y '( t)  -- f(t, y) + g(t), in which abrupt but large changes of limited duration, known as pulses, 
occur in g(t). These pulses may begin at times which are not known beforehand and may have 
unknown durations. If the duration is sufficiently short, standard differential equation solvers may 
miss the pulse completely, stepping over it, especially if, prior to the pulse, the solution is well 
behaved. In this paper, we discuss software which employs standard initial value ODE software and 
a process of detect sampling to attempt to detect, and handle efficiently, any pulses which arise. A 
key advantage of this software and the algorithms for pulse detection and handling described in this 
paper is that they do not involve modification of the initial value ODE solver. The performance 
of the new software will be investigated by applying it to several test problems exhibiting pulses. 
The results show that pulses can be detected and efficiently handled by the new software and that 
significant computational savings are achieved. @ 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - P u l s e  detection, Initial value ordinary differential equations, Defect sampling, Effi- 
ciency, Performance. 

1. I N T R O D U C T I O N  

We consider systems of initial value ordinary differential equations (IVODEs) of the form 

y ' ( t )  = f(t,  y( t ) )  + g(t), y(t0) = Y0, (1) 

where y : R --~ ~n,  f : ~ x  R n --~ R n, g : JR-* ]R n, and y0 E ~n. It is assumed that  f is 

continuous and that  g is zero except during some relatively short time period, whose duration 
and position may be unknown, and where it acquires an instantaneous and relatively large value. 
Such a sudden change will be called a pulse. Depending on f, the underlying system of IVODEs 
may be stiff or nonstiff. 
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To see the difficulty presented by systems such as (1), it is necessary to consider how most 
s tandard IVODE solvers behave. Such a solver begins at to and computes solution approximations 

at a set of points ti, i = 1, 2, 3 , . . . ,  where, usually, ti < ti+l. These points are selected by the 
software on the basis of a step selection algorithm which at tempts to take steps that  are as large 

as possible while keeping some estimate of the local error in each step within some user provided 

tolerance. The solution approximations will of course involve calculations based on evaluations 

of the right-hand side of the ODE system. If, prior to a pulse being encountered, the solution 

of the IVODE is well behaved, showing no rapid changes, the soRware will increase the stepsize 
to improve efficiency while still satisfying the error requirements. The danger then, however, is 
tha t  after a successful step the code may step completely over the pulse, and continue on the 
assumption that  all is well, even though a major feature of the solution has been missed. An 
example of this kind of behavior, when the well-known IVODE code LSODE [1,2] is used to 
a t tempt  to solve a problem with a pulse, is given in Figure 6; LSODE computes a solution which 
shows no indication of a pulse, whereas the correct solution exhibits an obvious reaction to the 

pulse, as in Figure 5. 

Two of the most critical quantities associated with a pulse are where it begins and how long it 

lasts; we will refer to these as the start and duration of the pulse. When both of these are known, 
we shall see that  it is easy to force an IVODE solver to detect the pulse and integrate through 
it in an efficient fashion. We shall refer to this as Case (a). However, we are more interested in 

three other cases: 

(b) the start  of the pulse is known but its duration is unknown, 
(c) the duration of the pulse is known but its start  is unknown, and 

(d) neither the duration nor the start  is known. 

We wish to emphasize that  in this paper, we assume that  the duration of the pulse is very much 
smaller than the natural  stepsizes employed by the ODE solver and that ,  if there are multiple 

pulses, they are also relatively well separated, with respect to the usual stepsizes taken by the 

IVODE solver. This means we are assuming that the pulses are missed by the IVODE solver 

when it is allowed to employ its standard step selection algorithm. Thus, the pulse definition we 
are using is very much dependent on the assumption that  the IVODE solver is able to take large 
stepsizes; this assumption is most relevant for IVODE solvers tha t  employ high order or stiff 
methods where considerable effort has been invested to allow the solver to take large steps. 

When the start  of the pulse is unknown, simply detecting that  a pulse is present becomes the 
central issue. The general approach we will use to detect a pulse is based on sampling the defect. 
In this approach, one assumes that  in addition to providing a discrete numerical solution at 
the output  points, ti, the IVODE solver also provides a continuous solution approximation (i.e., 

interpolant) over each step. The defect is defined to be the amount  by which this continuous 

solution approximation fails to satisfy the IVODE. Tha t  is, if u(t)  is the continuous solution 

approximation at some point t, then the defect at t is given by 

r(t)  = u '( t)  - [f (t, u( t))  + g(t)] .  (2) 

Note that  this assumes that  the IVODE solver also provides the derivative of u(t) .  A measure 
of the quality of u(t)  is obtained by sampling the defect, i.e., computing r(t) ,  at a set of points 

within the current step. 
When the underlying method upon which the IVODE solver is based is a multistep method 

(see, e.g., [3]), the solution approximation at t~ is based on a computation in which the only 
evaluation of the right-hand side of (1) within the current step, (t~-l,t~], occurs at t~. Thus if 
the pulse begins and ends strictly within this interval the solver has no way of noticing it. In the 
software described in this paper, we will augment the calculation done by the IVODE solver with 
a defect sampling process, which involves evaluating the defect and thus the right-hand side of (1) 
at several points within ( t i - l , t i ] .  When, the duration of the pulse is known, we can guarantee 
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that  the pulse will be detected. Even when the duration is unknown, we can substantially improve 
the likelihood that  the pulse will be detected. Once a pulse has been detected, it is important to 

the effÉciency of the IVODE solver that  the pulse be handled in an appropriate way; i.e., since 
the beginning and end of the pulse look like discontinuities to the IVODE solver, see, e.g., [4], it 
is important that  our algorithms control the integration step sequence so that  the IVODE code 
steps into and out of the pulse efficiently. 

In this paper, we have assumed that  the pulse term is not state-dependent, i.e., g(t) does not 
depend on y(t).  The state-dependent case is significantly more complicated since one may need 
to have a reasonably accurate approximation to the solution at the potentially unknown time at 
which the pulse is triggered. The approach to be described in this paper allows the pulse to be 
efficiently detected even when the IVODE solver gives a poor approximation to the solution in 
the region of the pulse, provided the pulse depends only on time. Further investigation of the 
state-dependent pulse case will be the subject of future work. 

We note that  in some applications it will be possible for the user to determine the circumstances 
which will trigger a pulse. If this is possible, most IVODE solvers will allow the user to handle 
the pulse using an event location option. Such an option allows the user to instruct the code 
to return whenever a prespecified condition arises. Upon return in such a case, the user can 
then sharply reduce the stepsize and force the solver to correctly detect the pulse. We wish to 
emphasize that  in this paper, we are assuming the more general case in which the user does not 
have sufficient a priori knowledge to predict the conditions which will cause a pulse to occur. 

An important goal of our work is to develop software which can detect and efficiently treat 
pulses while employing an unmodified IVODE solver. The key idea is that  the algorithms and 
software presented in this paper are to be essentially independent of the IVODE solver used to 
integrate the ODE system, provided the solver has several commonly available facilities (to be 
identified later in this paper). This goal addresses a significant software issue: while it might be 
possible to obtain a more sophisticated algorithm by focusing on a modification of LSODE, this 
would significantly limit the applicability of our work to other IVODE solvers. In this paper, we 
consider coupling our software with an IVODE solver based on a family of multistep methods, 
but with only minor modifications, our software could be employed, for example, with a one-step 
Runge-Kutta solver, provided that  the solver can provide continuous solution and first derivative 
approximations over each step, based on, for example, a continuous extension of the Runge-Kutta 
formula; see, e.g., [5]. 

This paper is organized as follows. In Section 2, we briefly review some related work. Section 3 
considers the four different pulse cases mentioned above and describes a detailed algorithm for 
the efficient treatment of pulses within the context of these four cases. Section 4 presents and 
discusses our numerical results and Section 5 provides our summary, conclusions, and suggestions 
for future work. 

2. R E L A T E D  W O R K  

The most closely related work is in the area of handling of discontinuities in IVODE software. 

However, a fundamental difference is that in our context the primary problem is the actual 

detection of the pulse whereas in the treatment of discontinuities, detecting the presence of a 

discontinuity is only a secondary issue; the primary issues involve being efficient in precisely 

locating and stepping across the discontinuity. A standard IVODE code will often locate and 

step across a discontinuity with a large number of failed steps in a very inefficient way; see, 

e.g., [4], Figure I. In that paper, Gear and Osterby discuss modifications to the stepsize and 

order selection algorithms of a variable order multistep code in order to allow it to efficiently 

locate and step over discontinuities in f(t, y(t)) or its derivatives. Based on an estimate of the 

order of the discontinuity (i.e., the lowest derivative of f(t, y(t)) that exhibits a discontinuity) and 
its magnitude, a sufficiently small step size in the region prior to the discontinuity is determined 



1338 A.M. HYNICK et al. 

in order to allow the code to step over the discontinuity with a local error that  will be within 
the user defined tolerance. The order of the discontinuity also dictates the order of the method 
used by the code at it steps over the discontinuity. Related work is discussed by Enright et al. [6] 
where the authors discuss modifications to an IVODE code based on Runge-Kutta  methods to 
allow it to efficiently locate and step over discontinuities in f(t, y(t))  or its derivatives. Within a 
step where a discontinuity is suspected, the main idea is to use several defect samplings, based 
on evaluations of the local high-order interpolant from the previous step, to accurately locate 
the discontinuity, and then to step over the discontinuity using an evaluation of the interpolant 
from the previous step. (The interpolant from the previous accepted step must be employed 
because no interpolant is available for the current step which has failed due to the presence of 

the discontinuity.) 
While the discontinuity handling problem is of course related to the pulse detection and han- 

dling problem (in fact, for pulses of long duration, the pulse problem is equivalent to a pair of 
discontinuities), for pulses of short duration (which is a fundamental assumption of this paper), 
the primary issue, as mentioned above, is the actual detection of the pulse. When the start of the 
pulse is unknown a great percentage of the computational effort is associated with determining 
if a pulse is present within the current step taken by the IVODE code. Once this is determined, 
only a relatively minor cost is associated with accurately determining the start  of the pulse (and 
the end of the pulse if the duration is also unknown). 

3. PULSE D E T E C T I O N  A N D  T R E A T M E N T  

Our pulse detection software employs a reliable IVODE solver which is used to solve the 
differential equations in a standard way except for interaction with the pulse detection algorithm 
at various times. Almost any IVODE program could be used, provided that  it has certain features 

which the detection program requires. These features are as follows. 

(i) The IVODE software should have the ability to restart at any time t with no information 
given about the solution or previous computation except the value of y at t. We call such 

a restart a cold start. 
(ii) It should be possible to request a return from the IVODE solver after every accepted step, 

with the possibility of continuing, using all the available information currently known 
about the solution. This will be called a continuation. 

Off) After an accepted step, an interpolant should be available to enable the user to efficiently 
compute approximations to the solution and its first derivative at arbitrary points within 

the current step. 
(iv) It should be possible to specify a value of t, say tcrit beyond which the solver will not 

integrate. Without this feature, the code might take a last step beyond the stopping 
value, and then interpolate to obtain the solution at this stopping value. 

As mentioned earlier, the interpolant will be used to compute a defect, as in (2). Our defect 
sampling approach is based on the following observation. Suppose that we have an interpolant 
that is based only on evaluations of the right-hand side of the ODE system which are outside the 
pulse. Then, a large defect will be obtained for any sampling that takes place within the pulse. 

We will call a defect large if, for some j ,  

(t)l 1 > 3 '  (3) 
max(l, Ifj(t, u(t)) + gj(t)l ) 

where rj, f j ,  and gj are the jth components of r(t), f(t, u(t)), and g(t), respectively, and t is 
the sample point. This is somewhat conservative but it is consistent with the fact that  we axe 
using LSODE, a code which does not use local extrapolation--see, e.g., [5]. If we were to use 
an IVODE solver that  did employ local extrapolation, since the relative/absolute local error is 
controlled by tol, we could expect the relative/absolute defect to be at most some reasonably 
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small multiple of tol--typical results, [7], in such a case put the defect within a factor of 2 of 

tol - -and we could therefore replace the right-hand side of (3) with, for example, 10 × tol, and 
have a tighter indicator of a large defect. 

The software we have developed can handle a sequence of nonoverlapping pulses occurring 
in different components of the right-hand side of (1); however, for the purposes of clarity the 
following discussion will assume the presence of a single pulse. 

There are three parameters defining a pulse. 

(i) to: the time at which the pulse begins. 
(ii) 5: the width or duration of the pulse interval, assumed to be small relative to the total 

time interval and the stepsizes employed by the IVODE solver. We require, however, 
(~ > t c • Cmach , where emach is machine epsilon, thus ensuring that  at least one machine 
number lies in the interval during which the pulse is active. For practical applications, we 
expect that  the pulse width will actually be somewhat larger than this. 

(iii) gj(t): for j E {1 , . . . , n} ,  the change in the jth component of the right-hand side value 
contributed by the pulse, assumed to become large at to. That  is, for some j, gj(t) is 
assumed to be 0 for t < tc and for t > t~ + 5, and is assumed to be large in magnitude for 
t~<_t<_t~+5. 

We identify in more detail the four different cases distinguished by how much is assumed to be 
known about the pulse. 

(a) The pulse begins at a known time and has a known duration, i.e., tc and 5 are both known. 
(b) The start time of the pulse is known, but the duration is unknown, i.e., tc is known but 5 

is not. 
(c) The duration of the pulse is known, but it is not known when the pulse begins, i.e., 5 is 

known but tc is not. 
(d) Neither the start  time nor the duration of the pulse is known, i.e., t~ and 5 are both 

unknown. 

We now provide an overview of our algorithm for handling these four cases. 

STEP 1. Cases (a) and (b). The IVODE solver is asked to integrate from to to the known t~ 
value where the pulse begins. 

STEP 1. Cases (c) and (d). As the integration proceeds, after every successful step control is 
returned from the IVODE software to the pulse detection program. Let the time at the end of 
the current accepted step be tour and let the current stepsize be hcur. Then, we wish to sample 
at a number of points in the interval between the previously accepted time, tprev -- t~ur - hour 
and tour. If 5 is known (Case (c)), the number of sample points clearly should depend on it; we 
choose 

hour 
ns = number of sample point = --~--s, 

where s is an integer whose value may be set by the user, with a default value of s = 2. This 
guarantees at least one sample point within the pulse. If 5 is unknown (Case (d)), the user can 
specify a number of sample points, ns (or the default of 20 points may be used). The sample 
points are chosen to be uniformly distributed across the current step. 

As the defect is evaluated at the sample points, the detection algorithm looks for any sample 
point for which a large defect is obtained. If all calculated defects are small, the integration 
proceeds with a continuation at t . . . .  If the defect is found to be large at one or more sample 
points, then we find the smallest value of t, say tmax, with a large defect and the largest t, say tmin, 
less than tmax, that  has a small defect--see Figure 1. We can then begin a bisection process to 
accurately locate t~ using [train, tmax] as our interval. 

The bisection algorithm we employ uses a relative tolerance of emach to obtain a very accurate 
estimate for the beginning and end of the pulse. From the work of [4] and [6], it is clear that  
it is possible to save a few function evaluations by truncating this search earlier. As long as 
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Figure 1. Plot of time vs. defect for a step containing a pulse, with defect sample 
points labelled by *. Smallest sample point inside the pulse is tmax. Largest sample 
point to the left of the pulse is tmi n. 
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the distance to the beginning of the pulse is less than h, where h times the absolute value of 
the height of the pulse is less than the local error tolerance (in the appropriate relative/absolute 
sense), the code can step into the pulse while incurring a local error that  is within the tolerance. 

A similar situation arises at the other end of the pulse. However, given the large number of 
function evaluations this algorithm already employs, we do not bother  to introduce this extra 

complexity in our algorithm since the savings would be quite negligible. We note that  by choosing 
the bisection tolerance in this way we avoid having to ask the user to provide such a tolerance; 
this is helpful since most users would not know how to choose it appropriately. 

We complete this part  of the algorithm for Cases (c) and (d) by evaluating the current inter- 

polant at tc to get a corresponding solution approximation. 

STEP 2. Cases (a) and (c). We determine the end of the pulse from the known 5 value. 

STEP 2. Cases (b) and (d). We again use defect sampling within a bisection algorithm to 
accurately locate the end of the pulse. For Case (b), we recall tha t  the IVODE solver has already 
integrated to to. We save the solution value at t~ and then ask the IVODE code to take one 
more step with the stepsize prescribed by its step selection algorithm for the next step; since we 
assume that  the pulse width is much smaller than a normal step, this step will carry it over the 

pulse. We can then employ defect sampling as described earlier. Assuming a sufficient number 
of sample points, this will allow us to determine some sample points with large defects, as in the 
previous section. Once this has been done, we can now treat  Cases (b) and (d) in the same way. 

In order to locate the end of the pulse, we look for the largest sample point with a large defect, 
let us call it tma×, and the smallest sample point, greater than tmax, tha t  has a small defect, 
say train--see Figure 2. Then, [tm~x, train] is the appropriate interval for a bisection process that  

uses further defect sampling to accurately locate the end of the pulse. 



Pulse Detection Software 1341 

100 

80 

60 

40 

20 

49.95 

T I -  

t t t .  t 
prev max mln cur 

L J 

50 50.05 

time 
Figure 2. Plot of time vs. defect for a step containing a pulse, with defect sample 
points labelled by *. Largest sample point inside the pulse is tmax. Smallest sample 
point to the right of the pulse is t m i n .  
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STEP 3. In all four cases, we now have complete information: both t¢ and 5 are known. Also, 

in all four cases, the IVODE solver is now at t~ with a corresponding solution approximation to 
provide initial conditions for the next step. Thus, the remainder of the algorithm is the same 

for all four cases. We restart  the IVODE solver at the beginning of the pulse with a cold start, 

asking the code to integrate to the end of the pulse and then return control to the pulse handling 
software. After control is returned, the pulse detection software restarts the IVODE solver with 
a cold start, just  beyond the end of the pulse. 

In the implementation of this algorithm, when integrating to the beginning of the pulse, rather 

than taking tcrit : tc, we actually take tcrit to be the largest machine number less than t¢. This 
prevents the IVODE solver from sensing a discontinuity at t~ and repeatedly incurring failed 
steps and halving the step size unnecessarily. Once inside the pulse, we integrate to tcrit = tc + 5. 
After exiting from the pulse, we restart at the machine number immediately after tc + 5. 

4 .  N U M E R I C A L  E X P E R I M E N T S  

The above algorithms have been implemented in the code PDODE (pulse detection in ordinary 
differential equations). The code, together with sample driving programs, may be obtained 

at h Z t p : / / w w w . m s c s . d a l . c a / ~ k e a s t / r e s e a r c h / p u l s e .  The IVODE solver employed within 
PDODE is LSODE [1,2]. This solver satisfies all the requirements of an IVODE solver necessary 
for our pulse detection code. 

To demonstrate the efficacy of PDODE, we look at several test problems in which pulses occur. 
Although we do include this case in PDODE for convenience, we do not consider Case (a) in this 
section; it is straightforward to get any standard IVODE solver to handle this case efficiently: 
integrate to t c r i t  ~ -  tc;  perform a cold start  at tc with a return at t c r i t  = t c -~- (~; perform a cold 
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Figure 3. Correct y4(t) for Problem 1. 

start  at tc + 5, integrating to tfinal. We therefore use the test problems to allow us to compare the 
performance of a standard IVODE solver (LSODE) with our pulse detection software, PDODE, 

for Cases (b), (c), and (d). Recall that  in Case (b) we know tc but  not 5, in Case (c) we know 5 
but  not to, and in Case (d) we know neither tc nor 5. 

We will see that  for each problem both codes can obtain the correct solution. PDODE does this 
automatically but  some intervention is required with LSODE so that  it will not miss the pulse: 

in Case (b), we run LSODE in its usual stepsize mode with t~rit -- tc and then perform a cold 
start  at to; in Case (c), we run LSODE with the maximum stepsize parameter  set slightly tess 
than the known pulse width; in Case (d) LSODE must be run with a small maximum stepsize. 

Two machine independent measures of the execution costs of ODE solvers are the required 
number of evaluations of the derivative, i.e., the right-hand side function, F( t ,  y( t ) )  -- f(t ,  y ( t ) ) +  
g(t),  which we will refer to as the number of function calls, and the required number of Jacobian 

evaluations, i.e., OF(t,y(t)) which we will refer to as the number of Jacobian calls. The Jacobian Üy(t) ' 
evaluations involve O(n 2) elements and more significantly lead to matr ix computation costs that  
are O(n3). In the following experiments, we compare LSODE and P D O D E with respect to these 
m e a s u r e s .  

Several other test problems were also investigated; results similar to those reported here were 
obtained. 

4.1. P r o b l e m  1 

The first problem is SB2 from [8], to which we have added a pulse term in the fourth ODE. 
The equations are 

y~ = - 1 0 y l  ÷ 3y2, y~ = - 3 y l  - 10y2, y~ = -4y3,  
(4) 

! f l 
Y4 ---- -Y4 ÷ P, Ys -- -0.5y5, Y6 -- -0.1y6,  
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Figure 4. y4(t) from LSODE, with default hmax, for Problem 1; pulse missed. 

where P is zero except in the range 50 < t < 50.005 where P = 100. Thus, tc = 50 and 5 = 0.005. 

The initial conditions are yi(0) = 1, i = 1 , . . . ,  6. This set of equations is stiff, which implies that  

LSODE must  run in stiff mode [2]. We have trine] = 100 and relative and absolute tolerances 
of 10-1% The correct y4(t) is shown in Figure 3. We begin our comparison by considering what 

happens when the above problem is given to LSODE, with no restriction placed on the stepsize. 

Since the solution components decay rapidly to zero and LSODE employs a method suitable for 
stiff systems, the stepsize very quickly increases from about  10 -11 at t -- 0 to about  1 at t -- 50, 

and consequently, LSODE misses the pulse completely. In Figure 4 the graph of the solution 
given by LSODE in this case is shown. 

The  results for LSODE and P D O D E  under Cases (b), (c), and (d) are given in Table 1. 

P D O D E  finds the correct solution shown in Figure 3 and, with some intervention (as specified 

earlier), LSODE can also find it. From Table 1, we see tha t  in Case (b) the codes use about  

the same number of function evaluations but  PDODE uses about  two-thirds as many  Jacobian 

evaluations as LSODE. For Case (c) PDODE shows some improvement  over LSODE in terms of 

evaluations of the right-hand sides, with about  20% fewer function evaluations. More significantly 

P D O D E  uses only about  5% of the number of Jacobian evaluations as LSODE does. For Case (d) 

LSODE takes almost ten times as many  function evaluations and more than  a hundred times the 
number  of Jacobian evaluations as PDODE.  (Since the pulse width is not known it is difficult to 
decide on an appropriate  value of hm~× for LSODE. If we were to experiment with hmax -- 10 - r ,  
r --- 1, 2, 3, LSODE would not discover the pulse until r = 3. Then, LSODE would use about  
100,000 function evaluations and about  5000 Jacobian evaluations.) 

4.2.  P r o b l e m  2 

One of many  possible irregularities in the heart  is a phenomenon tha t  involves a wave of 
electrical activity reentering previously excited tissue, exciting it again. I f  this occurs repeatedly, 
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Table 1. Funct ion calls and Jacobian  calls for P rob lem 1. 

Me thod  Funct ions Calls Jacobian  Calls 

Pulse  missed 

LSODE,  default  hmax 638 39 

Case (b). Pulse  de tec ted  

LSODE,  default  hmax 983 99 

P D O D E ,  s = 2 921 68 

Case  (c). Pulse  de tec ted  

LSODE,  hmax = 0.004 <~ (~ 25369 1370 

P D O D E ,  s = 2 20887 67 

Case (d). Pulse de tec ted  

LSODE,  hm~x = 0.0005 200296 10109 

P D O D E ,  n~ = 40 22597 67 

it can lead to conditions in the heart conducive to cardiac arrhythmias. The work of Clements, 

Clements and Hor£Sek [9] employs the Luo-Rudy model [I0] to investigate the phenomenon of 

re-excitation of the heart. The Luo-Rudy model, for the action potential of a single cardiac cell, 

gives rise to a system of eight coupled nonlinear ODEs, one of which includes a pulse term. This 

system contains a number of constants and auxiliary functions which are defined in [9]; the ODE 

system, with initial conditions, has the form, 

( ° )) I a p p ( t )  --  E I i o , , k ( Y  
I k = l  

Y l  = C m  ' 

I (?7tinf(Yl) - -  Y2) 

Y~ = T~(y l )  ' 

(hinf(Yl) - Y3) 

Y~ = Th(Yl) ' 

, ( j i n f ( Y l )  - -  Y4) 
Y4 = ~-j (Yl) ' 

f ( d in f (Yl )  - Ys) 

Y5 : Td(Yl) ' 

, (f~°f(yl) - y~) 
y6 = CS(yl) ' 

, (Xinf(Yl) - YT) 

y v  = T x ( y ~ )  ' 

y~ = -O.O001Iio,,2(y) + 0.07(0.0001 - Y8), 

y l ( t 0 )  ---- - - 8 4 . 0  ---- y0 ,  

y~(to) = miof ( y 0 ) ,  

y3(to) = h,nf ( y 0 ) ,  

y4(to) = Yi.f ( y0 ) ,  

ys(to)  = dlnf ( y o ) ,  

Y6(t0) ---- f i n f  ( Y ~ ) ,  

yT(t0 ) ---- Z i n f  ( y O ) ,  

ys(to) = 0.0002, 

(5) 

where y = [Yl, Y 2 , . . .  ~ Y8] 1-, Cm,  the membrane capacitance per unit area, is a constant, and the 
t ime-dependent pulse function, the applied current I~pp(t), given by ([9] considers several pulse 

cases; we provide an example here) 

-~app ~ "  0 . 0  - -  0.0 ms < t < 100 ms, 
c m  2 , 
# k  

-/app ~ -  5 5  - -  100 ms < t < 100.05 ms, 
c m  2 , 

#A 
l a p  p = 0 .0  - -  100 .05  m s  < t, 

c m  2 , 

(6) 

contributes a pulse to the first ODE. We therefore have tc = 100 and 5 -- 0.05. The ionic current 
components, I ion ,k (Y) ,  and the remaining functions in (5) are given in [9]. Since this system 
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Figure 5. Correct yl(t) for Problem 3. 

is stiff, L S O D E  mus t  be run  in stiff mode.  The  re la t ive  and  abso lu te  to le rances  are 10 - s  and  

tfi,~l = 150. The  correct  y l  is given in F igure  5. 

W h e n  th is  p rob lem is p resen ted  to  L S O D E  wi th  no r e s t r i c t ion  on the  s tepsize,  i t  misses the  

pulse  and  ob t a in s  the  a p p r o x i m a t i o n  for y l ( t )  shown in F igure  6. W h e n  P D O D E  and  L S O D E  

are app l i ed  to th is  p rob lem,  P D O D E  is able  to  de tec t  the  pulse  a u t o m a t i c a l l y  while  L S O D E  can 

be m a d e  to  de tec t  t he  pulse wi th  some in tervent ion.  Bo th  codes r e t u r n  a so lu t ion  as in F igure  5 

wi th  pe r fo rmance  resul ts  as given in Table  2. These  resul ts  show t h a t  for Case (b) P D O D E  uses 

s l ight ly  fewer funct ion eva lua t ions  and Jacob ian  eva lua t ions  t h a n  L S O D E ,  for Case (c) L S O D E  

uses s o m e w h a t  more  funct ion  eva lua t ions  t h a n  P D O D E  bu t  above  five t imes  as m a n y  Jacob ian  

eva lua t ions ,  and  for Case (d) L S O D E  uses a b o u t  25 t imes  as m a n y  func t ion  eva lua t ions  and 

a b o u t  100 t imes  as m a n y  J a c o b i a n  eva lua t ions  as P D O D E .  

Table 2. Function calls and Jacobian calls for Problem 3. 

Method Function Calls Jacobian Calls 

Pulse missed 

LSODE, default hmax 201 14 

Case (b). Pulse detected 

LSODE, default hmax 837 59 

PDODE, s = 2 752 49 

Case (c). Pulse detected 

LSODE, hmax = 0,04 < ~ 5991 253 

PDODE, s = 2 4733 48 

Case (d). Pulse detected 

LSODE, hm~x = 0.005 42431 1537 

PDODE, ns = 20 1628 15 
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Figure 6. y l ( t )  from LSODE, with default hmax, for Problem 3; pulse missed. 

4.3. P r o b l e m  3 

The text  [5] describes a model from pharmacokinetics in which the blood level of lithium 

carbonate, a drug used to t reat  manic-depressive disorder, is studied. The model considers a 
dosage of one tablet  every 12 hours, beginning at t = 0, with the assumption that  the lithium 

carbonate is uniformly released over half an hour. This leads to equations in which pulses arise 

periodically. 

The equations are 
Yl -5 .6y l  + P, yl(0.0) = 0.0, 

= 5 .6y l  - 0 .7y2,  y2(0,  0) = 0.0,  (7) 

where the pulse term, P,  is zero except when m / 2  < t < m / 2  + 5, for m = 0, 1, 2, 3 , . . . ,  in which 
case P = 48; the pulse width, 5, is 1/48 = 0.0208333 . . . .  We therefore have a sequence of tc 
values, tc = rn/2, m = 0, !,  2, 3 , . . . .  There is a pulse at the beginning of each day and halfway 
through each day, with a duration of 1/48 of a day, i.e., half an hour. The requested relative and 
absolute tolerances are 10 -6 and t~nal = 6.0. The blood level of lithium carbonate is modelled 
by y:(t).  The correct y2(t) is shown in Figure 7. 

Essentially any IVODE solver will detect the initial pulse since the integration begins exactly 
at the start  of the first pulse and in fact due to the relatively long duration of these pulses the 
solver will likely even detect some of the subsequent pulses. However, as the integration proceeds 

and the natural  stepsize of the IVODE solver increases, many of the pulses are missed. When we 
apply LSODE to the above problem with no restriction on the stepsize we obtain the y2(t) given 
in Figure 8. Comparing Figure 7 with Figure 8, we see that  LSODE misses many of the pulses, 
obtaining a significantly different approximate solution. 

In this paper, we assume that  the pulses which arise are sufficiently narrow and far apart  that  
the IVODE solver will miss them. However, in this pharmacokinetics problem, the pulses are 
of somewhat long duration, relative to the distance between them, and arise fairly frequently, 
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Figure 7. Correct y2(t) for Problem 2---original form. 

I I I I I 

Y2 

2.5 

1.5 

0.5 

0 
0 

J 
I I I f I 

1 2 3 4 5 
time 

Figure 8. y2(t) from LSODE, with default hmax, for Problem 2. Original form; many 
pulses missed. 
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Figure 9. Correct y2(t) for Problem 2. Modified form. 

relative to the length of the region of integration and the stepsizes selected by LSODE. We see 

that  LSODE is able to find several of the pulses, without intervention, using its natural step 
selection sequence. Furthermore,  when LSODE is employed within the PDODE software, where 
there is of course substantial intervention with its step selection process, even more of the pulses 

are "accidently" detected by LSODE. We note tha t  whenever LSODE does detect a pulse and 
then readjusts its stepsize to successfully step through the pulse, the approximate solution it 

obtains will of course accurately reflect the presence of the pulse and the corresponding defect 
samples will not be large. In such cases PDODE will therefore not detect the pulse and will be 

unable to intervene to improve the efficiency of the computation. 
We are therefore motivated to consider a modified version of this problem which is more 

consistent with the problem class we are studying in this paper, i.e., a problem for which LSODE, 
even with the stepsize intervention performed introduced by PDODE,  does not accidentally hit 
any of the pulses. This version of the problem has the same ODE system, (7), but  has a longer 
time interval, tfi,~l = 130.0, and less frequent pulses. There are eleven pulses which start  at 
times, 50.0, 52.5, 55.0, 57 .5 , . . . ,  75.0. We use the same pulse duration, 5 = 1/48, and the same 
pulse height, P = 48.0. The initial conditions are yl(0) = 1.0, y2(0) = 1.0. In this case the 
correct y2( t )  is as shown in Figure 9. When we apply LSODE to the modified problem, with no 
intervention, all the pulses are missed and LSODE gives the result shown in Figure 10. 

When PDODE is applied to solve the modified problem it is able to detect all the pulses. With 

some intervention, LSODE can be forced t o  detect all the pulses. Both codes return a solution 
as in Figure 9; the corresponding performance results are given in Table 3. These results show 
that  for Case (b) LSODE uses more than 10 times the number of function evaluations and 20 
times the number of Jacobian evaluations as PDODE, for Case (c) LSODE uses only about 60% 
of the number of function evaluations used by PDODE but about  four times as many Jacobian 
evaluations as PDODE, and for Case (d) PDODE uses slightly fewer function evaluations and 
about  15% of the number of Jacobian evaluations as LSODE. 
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Figure 10. y2(t) from LSODE, with default h . . . .  for Problem 2. Modified form; all 
pulses missed. 

Table 3. Function calls and Jacobian calls for Problem 2. Modified form. 

Method Functions Cal ls  Jacobian Calls 

Pulse missed 

LSODE, default hmax 182 26 

Case (b). Pulse detected 

LSODE, default hmax 1927 380 

PDODE, s -- 2 156 19 

Case (c). Pulse detected 

LSODE, hm~x -- 0.02 < 5 8361 935 

PDODE, s -- 2 14641 245 

Case (d). Pulse detected 

LSODE, hmax = 0.005 27669 1886 

PDODE, ns : 20 24427 246 

120 

5. SUMMARY,  CONCLUSIONS,  A N D  F U T U R E  W O R K  

In  th is  paper ,  i t  has  been  shown t h r o u g h  numer ica l  expe r imen t s  t h a t  s t a n d a r d  I V O D E  software 

will n o r m a l l y  miss a pulse ar is ing in the  r i gh t -hand  side funct ion  of an O D E  sys tem.  To address  

th is  difficulty, th is  p a p e r  descr ibes  the  design and i m p l e m e n t a t i o n  of  a high-level  a lgo r i thm cal led 

P D O D E  t h a t  employs  s t a n d a r d  I V O D E  software ( L S O D E  in th is  pape r )  to  efficiently de tec t  and  

t r e a t  such pulses.  A key advantage of the algorithm is that it is essentially independent of the 
underlying IVODE code; thus,  for example ,  L S O D E  could be  rep laced  by  a R u n g e - K u t t a  solver or 

by  ano the r  mu l t i s t ep  solver  in a re la t ive ly  s t r a igh t fo rward  fashion.  Furthermore, the algorithms 
described in this paper require no modifications to the LSODE package. 

P D O D E  has  been  shown to be re l iable  in f inding and  hand l ing  eff iciently pulses  for which e i ther  

the  s t a r t  or t he  d u r a t i o n  is no t  known,  or when b o t h  are  unknown.  T h e  mos t  difficult  case is 
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when neither is known. In this case, LSODE has to have a severely restricted stepsize to ensure 

that  it does not step over the pulse. PDODE typically uses fewer function evaluations than 

LSODE; more significantly, PDODE provides quite substantial savings in Jacobian evaluations, 

compared to LSODE. Since Jacobian evaluations are generally substantially more expensive than 

function evaluations (as discussed in the previous section) this advantage for PDODE translates 

into large savings in overall execution time. (It should be noted that  LSODE makes no effort 

to save Jacobian evaluations for future use; an IVODE solver which was more conservative in 

its use of Jacobian evaluations would of course fare better than LSODE in a comparison with 

PDODE.  However, it is clear that  the severe stepsize restriction that  must be placed upon any 

IVODE solver in order for it to detect a pulse will imply that  the solver will be more expensive 

than PDODE.)  

The experiments presented in this paper have been run at fairly sharp relative/absolute toler- 

ances with the hope that  this would improve the ability of LSODE to detect the pulse without 

any interference in its step selection. As we have seen, even the use of sharp tolerances does not 

help; experiments with coarse tolerances will of course reduce further the likelihood of LSODE 

finding a pulse. 

Possible topics for future work include generalizing the algorithms to handle state-dependent 

pulses and to handle overlapping pulses in different ODE components, as well as investigating 

the performance of P D O D E  with IVODE solvers other than LSODE. 
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