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ORDER BARRIERS AND CHARACTERIZATIONS FOR 
CONTINUOUS MONO-IMPLICIT RUNGE-KUTTA SCHEMES 

PAUL MUIR AND BRYNJULF OWREN 

ABSTRACT. The mono-implicit Runge-Kutta (MIRK) schemes, a subset of the 
family of implicit Runge-Kutta (IRK) schemes, were originally proposed for 
the numerical solution of initial value ODEs more than fifteen years ago. Dur- 
ing the last decade, a considerable amount of attention has been given to the 
use of these schemes in the numerical solution of boundary value ODE prob- 
lems, where their efficient implementation suggests that they may provide a 
worthwhile alternative to the widely used collocation schemes. Recent work 
in this area has seen the development of some software packages for bound- 
ary value ODEs based on these schemes. Unfortunately, these schemes lead 
to algorithms which provide only a discrete solution approximation at a set of 
mesh points over the problem interval, while the collocation schemes provide 
a natural continuous solution approximation. The availability of a continuous 
solution is important not only to the user of the software but also within the 
code itself, for example, in estimation of errors, defect control, mesh selection, 
and the provision of initial solution estimates for new meshes. An approach for 
the construction of a continuous solution approximation based on the MIRK 
schemes is suggested by recent work in the area of continuous extensions for 
explicit Runge-Kutta schemes for initial value ODEs. In this paper, we describe 
our work in the investigation of continuous versions of the MIRK schemes: (i) 
we give some lower bounds relating the stage order to the minimal number of 
stages for general continuous IRK schemes, (ii) we establish lower bounds on 
the number of stages needed to derive continuous MIRK schemes of orders 
1 through 6, and (iii) we provide characterizations of these schemes having a 
minimal number of stages for each of these orders. 

INTRODUCTION 

An implicit Runge-Kutta (IRK) scheme (see, for example, Butcher [9]) can be 
used to compute an approximation to the solution of the initial value problem 
(IVP) 

(1.1) y'(x) = f(x, y(X)), y(xo) = yo, 

where y(x) E Rm , f: RxRm -* Rm , and yO E Rm is a given initial vector. The 
IRK scheme is used in a stepwise fashion to proceed from the initial conditions 
through a sequence of points, xi, and solution approximations, ys, to the 
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desired termination point. During the ith step, we obtain an approximation, 
Yi+I, to the true solution, y(x), evaluated at the point xi+1 = xi + hi, of the 
form 

S 

(1.2) Yi+l = yi + hiEbrKr 
r=1 

where 

(1.3) Kr=f (xi+crhiYi +hiEarjKi)j r= ,.. ,s, 

and Cr = Es=1 arj . These schemes are sometimes given in the form of a tableau 
containing their coefficients, which, for the above scheme, would have the fol- 
lowing form: 

C1 I al1 . . als 

Cs asa1 ... ass 

bi ... bs 

The above tableau is sometimes written in the more compact form: 

c A 

bT 

where c = Ae, c = (cl, c2, ...,cs)T, b = (b, b2, ..., bs)T, A is the s by s 
matrix whose (i, j)th component is aij, and e is the vector of l's of length s . 
Note that in (1.3) above, each stage is defined implicitly in terms of itself and 
the other stages. Hence, in order to obtain approximate values for the stages, 
it is necessary to solve a system of, in general, nonlinear equations. This must 
usually be done using some form of modified Newton iteration, which makes 
the calculation of the stages a somewhat computationally expensive process. 

A number of interesting subclasses of the IRK schemes have been identified 
and investigated in the literature. These schemes attempt a trade-off between the 
higher accuracy of the IRK schemes and schemes which can be implemented 
more efficiently. Examples of such schemes are singly-implicit Runge-Kutta 
schemes (Burrage [5]), diagonally implicit Runge-Kutta schemes (N0rsett [24]), 
and the mono-implicit Runge-Kutta (MIRK) schemes of Cash and Singhal [13] 
(also known as implicit endpoint quadrature formulas (van Bokhoven [3])). 

In this paper, we will primarily focus on the class of MIRK schemes. These 
schemes are defined by means of a slightly alternative representation to that 
of the IRK schemes, which involves the introduction of s new parameters 
Vr, r = 1, ... , s, that allow for explicit dependence on Yi+l in the definition 
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of the stages of the scheme. The standard form of this class is 
S 

(1.4) Yi+I =yi+ hi E brKr, 
r=I 

where 

Kr = f (xi + Crhi, (1- Vr)Yi + VrYi+I + hi xrjKj 

(1.5) 

r=l1, ,s, 

and Cr = Vr + 
Eyr Xrj . They are usually represented by a modified tableau; 

the above method would have the tableau 

CI VI 0 0 ... 0 0 

C2 V2 X21 0 ... 0 0 

Cs-I VS-1 XS-I, I Xs-X 1,2 * 0 0 

Cs Vs Xs, IX Xs, 2 ... Xs, s- 

bi b2 . . . bs- 1 bs 

which is sometimes written in the more compact form 

C V X 

bT 

where v = (vI, v2, .. , T, c = v + Xe, and X is strictly lower triangular. 
The MIRK scheme (1.4), (1.5) is equivalent to the general IRK scheme (1.2), 
(1.3) with A = X + vbT (cf. [18]). These schemes are interesting because they 
are implicit only in yi+I; this leads to a more efficient implementation than is 
possible for the fully implicit IRK schemes (van Bokhoven [3]). 

The use of IRK schemes for the solution of boundary value ODE problems 
(BVP) has been well known for some time (Weiss [30]). In this paper, we 
assume that the boundary value ODEs are expressed in the general form 

(1.6) y'(x) = f(x, y(x)), x E [a, b], 
where y E Rm and f: R x Rm Rm, with boundary conditions 

(1.7) g(y(a), y(b)) = 0, 

where g: Rm x Rm -* Rm . The main step in a Runge-Kutta-based algorithm for 
the numerical solution of a boundary value ODE is the solution of a discrete 
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system, ?(DY) = 0, where Y is a vector whose ith component, yi, is an 
approximation to the exact solution evaluated at the ith point of an (N + 1)- 
point mesh which subdivides the problem interval. The function F(DY) can be 
expressed in a component-wise form with one component of size m for the 
boundary conditions g, and N components qij, i = 0, ... , N - 1, each of 
size m, where qi is defined by an IRK scheme. We have, 

(1.8) 0i = yi+l-yhi A brKr, 
r=1 

with the stages Kr defined as in (1.3). As in the IVP case, when all the arj co- 
efficients are nonzero, the stages are defined implicitly, and in order to compute 
them, we will, in general, have to solve a system of nonlinear equations. 

The implicit Runge-Kutta formulas include the collocation formulas which 
have been a popular approach for the numerical solution of boundary value 
ODEs. The collocation formulas based on Gauss-point rules have been imple- 
mented in the widely used code COLSYS (Ascher, Christiansen, and Russell 
[1]), and its successor COLNEW (Bader and Ascher [2]). However, compared 
to the situation for IVPs, there has been relatively little work done on efficient 
subclasses of the IRK schemes for boundary value ODEs. Most of the subclasses 
presented to date have been based on the class of MIRK schemes. A single for- 
mula from this subclass of schemes was first suggested for use in the numerical 
solution of boundary value ODEs by Cash and Moore [12]. This result was 
generalized by Cash and Singhal [ 14], where a symmetric subclass of the MIRK 
schemes was presented. The use of these schemes within an iterated deferred 
correction scheme for the numerical solution of boundary value problems has 
been described by Cash [10, 11], and Cash and Wright [1 5]. This work has led 
to the development of a code called HAGRON, which has been shown to com- 
pare favorably with COLSYS and DO2GAF, a code from the NAG library based 
on PASVA3 (Lentini and Pereyra [23]). The entire class of MIRK schemes has 
been considered for use in the numerical solution of boundary value ODEs by 
Gupta [21] and Enright and Muir [18]. 

When a MIRK scheme is used within the algorithm outlined above for the 
solution of boundary value ODEs, it defines equations having the same form 
as in (1.8), but the corresponding stages are of the mono-implicit type as in 
(1.5). However, in the BVP context, since approximations to both yi and Yi+l 
are available from the current Newton iterate, the stages of the MIRK scheme 
can be computed explicitly, and thus very efficiently. These improvements in 
efficiency are not gained, however, by giving up good stability as in the case 
of explicit Runge-Kutta schemes. There are many instances of MIRK schemes 
which are symmetric and A-stable, two important properties for discretization 
schemes used in the numerical solution of boundary value ODEs. 

An important advantage of the collocation formulas is that a continuous 
approximation to the solution over the entire problem interval is naturally ob- 
tained. This can be very useful when the user requires solution information at 
off-mesh points, but the continuous solution approximation can also be useful 
to the code itself, for example, for error estimation, defect control, provision 
of initial estimates for Newton iterates, or mesh refinement and redistribution. 
Unlike the collocation formulas, many other schemes do not have an associated 
natural continuous approximation to the solution. Examples of codes based 
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on such schemes are D02GAF, mentioned earlier, some codes based on special 
one-sided Runge-Kutta schemes (Kreiss, Nichols, and Brown [22], Brown and 
Lorenz [4]), and the HAGRON code, mentioned above. 

In the area of initial value ODE problems, the idea of extending the discrete 
solution approximation to get a continuous solution has received considerable 
attention over the last few years. A number of authors have demonstrated the 
possibility of generating inexpensive interpolants for explicit Runge-Kutta for- 
mulas which are not of the collocation type, in the context of the numerical 
solution of initial value problems (see, for example, Enright et al. [17], Glad- 
well et al. [20], and references therein for some of the earlier work). These 
interpolants are obtained for Runge-Kutta formula pairs, by constructing extra 
stages within the current step, thus preserving the one-step nature of the for- 
mula. The most recent work on these continuous explicit Runge-Kutta schemes 
is by Owren and Zennaro [26, 27] and Verner [29]. 

N0rsett and Wanner [25] considered perturbed collocation schemes and 
proved that any nonconfluent Runge-Kutta scheme is equivalent to a gener- 
alized type of collocation with a polynomial of degree s. The usefulness of 
the perturbed collocation polynomial as a continuous extension of the Runge- 
Kutta scheme has been limited by some undesirable properties of these ap- 
proximations. For instance, as the authors point out, the higher derivatives of 
the approximation may become unbounded as the step size tends to zero. A 
slightly different approach is taken by Zennaro [31], where it is proved that any 
Runge-Kutta scheme of order p possesses natural continuous extensions (NCE) 
of some degree d < p. These continuous approximations have uniform order 
d and satisfy certain orthogonality conditions, which make them particularly 
useful for solving ODEs containing forcing terms. Collocation schemes and, 
in fact, also a subclass of the perturbed collocation schemes, are themselves 
NCEs. In [32] the related class of projection schemes is considered. Introduc- 
ing a linear projector Qd: CO[xi, xi + hi] --+ d-I, where fd-1 is the set of 
polynomials of degree < d - 1, he considers the polynomial u(x) defined by 
u'(x) = Qdf(x, u(x)). Again, it is interesting to observe that the collocation 
schemes turn out to be a subclass. 

The basic form of a continuous Runge-Kutta (CRK) scheme on the ith step 
is a polynomial in 0 of the form 

S 

(1.9) u(x, + Ohi) yi + hi br(6)Kr 
r=1 

where 

( 1.10) Kr=(xi+crhi yi+hi E ariK , r I . 
j=1 / 

Observe that the stage values Kr, r = 1, ..., s, are the same as for the 
discrete Runge-Kutta scheme, (1.3). We assume that br(O), r = 1, ..., s, 
are weight polynomials of some maximum degree d. It is easy to see that in 
order to obtain continuity of the global piecewise continuous approximation 
furnished by a CRK scheme, one must require that br(0) = 0 for all the weight 
polynomials (see, e.g., Verner [29]). We will tacitly assume this property for 
the schemes we consider. Notice also that any CRK scheme has an underlying 
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discrete scheme defined by the coefficient matrix A and with discrete weights 
br-br(l), r 1,... ,s. 

For boundary value ODEs, the extension of discrete solution approximations 
to continuous ones has received substantially less attention. There is only the 
work of Pruess [28], who is concerned with the development of interpolants 
for collocation schemes for boundary value problems, where the information 
required to construct a continuous approximation is not available and one has 
only solution approximations at the mesh points. 

In this paper, we investigate continuous versions of the MIRK schemes (which 
we will refer to as CMIRK schemes) with the idea of providing continuous solu- 
tions for boundary value ODEs. The CMIRK schemes have the form as above 
in (1.9) except that the corresponding stages will be of mono-implicit type, (1.5). 
The paper is organized as follows. In ?2, we present some theoretical results 
concerning continuous extensions for general IRK schemes. In ?3, these results 
are applied to derive order barriers for CMIRK schemes of orders 1 through 
6. Characterizations of families of CMIRK schemes of orders 1 through 6 are 
given in ?4. We conclude in ?5 with a summary of our results and a discussion 
of future work. 

2. SOME GENERAL THEORY FOR CONTINUOUS RUNGE-KUTTA SCHEMES 

In this section we will develop some general tools for the derivation and order 
barrier analysis of CRK schemes, (1.9), (1.10), following the ideas of Owren 
and Zennaro [26, 27]. Without loss of generality we shall henceforth consider 
continuous approximations to y(x) on the first step interval (from x0 to xl ), 
and we shall omit step indices where it does not cause ambiguity. We define 
the uniform order of a CRK scheme (1.9), (1.10) as the greatest integer p for 
which 

(2.1) max jy(xo + Oh) - u(xo + Oh)j = -(hP+'), 
0<0<1 

where u(xo) = y(xo) and I I is any norm on Rm. One of the goals of this 
paper is to establish, for the CMIRK schemes, the minimum number of stages 
s required for uniform order p . It is well known that the lower bound of s = p 
can be achieved for the class of fully implicit CRK schemes. 

In the following we will use the theory of trees and order conditions intro- 
duced by Butcher [7, 8] without further citations. We recommend the excellent 
text [9] for an account of this material. The adaptations of this theory to contin- 
uous schemes involve generalizations of the ideas of Owren and Zennaro [26]. 
In order to clarify our notation, we will briefly review some of the main results 
from that paper. It was remarked by Zennaro [31] that the maximum degree d 
of the weight polynomials must be at least p for (2.1) to be satisfied, and that 
d > p can lead to unbounded derivatives of u(x) as h tends to zero; hence, 
we will always assume that d = p. This requirement and (2.1) cause the CRK 
scheme (1.9), (1.10) to be a natural continuous extension of the underlying dis- 
crete scheme, as defined in [31]. Let Np be the total number of rooted trees of 
order at most p, and let tj, ... , tNP be any ordering of these trees such that 
p(ti) > p(tj) only if i > j, where p(tk) is the order of tk . Following Butcher 
[9, p.163], we introduce the elementary weight Oij := Oj(ti) for each tree t4 
and stage j, and we let y(t1) be the density of t1 . Then (2.1) is satisfied if and 
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only if 
S 6p(t1) 1== y(t ) i Np. 

Since p(ti) > 1 for all ti, and since bi(O) = 0 for all the weight polynomials, 
we may write 

P o~~~~p(t1) P 

(2.2) bi(6)=ZbOJ and y(t )I 
j=I~~~~~~~~= 

Thus, by defining the Np x s matrix : ((D i )), the s xp matrix B ((bj)), 
and the Np x p matrix Q ((qil)), we arrive at the matrix equation 

(2.3) DB=Q. 

From classical order theory for Runge-Kutta schemes we know that cI only 
depends on the s x s matrix A, and from (2.2) we see that Q is a constant 
matrix, in fact it has the simple form qj, = y(ti)1v5(ti) ,. (Recall that ji, , = 1 
if i = j and Jij = 0 if i :$ j.) Clearly, the columns of Q must be linearly 
independent, so rank(Q) = p . It will be convenient to view the matrix D as the 
image of a nonlinear operator whose domain is the union over all positive s of 
the sets of all s x s matrices A, and we denote this operator by Fp (A) . We will 
also need another operator with the same domain, namely Gp (A) := (Fp (A) I Q), 
i.e., the matrix .D augmented by the columns of Q. We summarize some 
properties of these matrices. 

Lemma 2.1. For all s x s matrices A, 

(2.4) rank(Gp(A)) > P, 

(2.5) rank(Gp+i (A)) > rank(Gp (A)) + 1, 

(2.6) rank(Fp (A)) < s, 

(2.7) rank(Fp (A)) > p if at least p of the ci's are distinct. 
Proof. (2.6) is obvious. (2.4) and (2.5) follow easily by considering the last p 
columns of Gp(A). We see that (2.7) holds when at least p of the ci 's are 
distinct because the rows of Fp (A) corresponding to the trees z and [Tk], 1 < 
k < p - 1, define a Vandermonde system (see, e.g., Verner [29]). 5 

It is well known that the rows of Fp (A) can be generated recursively by form- 
ing componentwise products between previously generated rows, or by multi- 
plying a previously generated row by the matrix A. We will sometimes find 
it convenient to write zw = (zIWI, ..., zSWS)T, where z = (zI, ... ZS)T 
and w = (w1, ..., wy. Similarly, we write Zk - (Zk ..., Zs4". Finally, 
we define C to be the diagonal matrix with cl, ..., cs on the diagonal. The 
following result is an obvious generalization of a result by Owren and Zennaro 
[26]. 

Proposition 2.2. An s x s matrix A defines the coupling coefficients of an s-stage 
CRK scheme of order p if and only if rank(Fp (A)) = rank(Gp(A)). 

Another important result regarding explicit Runge-Kutta schemes is Theo- 
rem 2.4 of [26]. If A is a strictly lower triangular s x s matrix such that 
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rank(Fp(A)) = rank(Gp(A)) = p < s, then there exists a strictly lower triangular 
p x p matrix A* such that rank(Fp(A*)) = rank(Gp(A*)) = p. This means that 
when one is seeking continuous explicit Runge-Kutta schemes with the minimal 
number of stages, it is sufficient to consider s x s matrices A which satisfy 
(2.8) rank(Fp (A)) = rank(Gp (A)) = s. 

By carefully modifying the proof of this theorem, it can be verified that a similar 
result holds for many other classes of CRK schemes. Let M be such a class, 
and let M be the corresponding set of matrices A associated with schemes in 
M. Then, when seeking schemes in M with the minimal number of stages, 
it is sufficient to consider matrices A E M which satisfy (2.8). This holds 
when M is the class of general CRK schemes, as well as continuous (singly-) 
diagonally implicit Runge-Kutta schemes (C(S)DIRK schemes) and for the class 
of CMIRK schemes, to which we will pay particular attention in ??3 and 4. 

One may observe that the requirement rank(Fp(A)) = rank(Gp(A)) = s is 
equivalent to the associated set of weight polynomials bI (0), . . . , bs (6) being 
unique. A trivial case for which rank(Fp(A)) < s is when A has two identical 
rows. The associated scheme is then reducible. We state without proof the 
following proposition. 

Proposition 2.3. Assume that the s x s matrix A defines a CRK scheme with 
the minimal number of stages. Then it cannot have two identical rows. 

For our further discussion, we need a definition introduced by Butcher [8]. 
Definition 2.4. Consider the conditions 

(2.9) k Eajjcjkl ci, 1 < k < 4 
j=1 

If an s x s matrix A is such that (2.9) holds for 1 < i < s, we say that A 
satisfies C(4) . (If the matrix A is the matrix of coupling coefficients of an IRK 
scheme, it is common to also say that the IRK scheme itself satisfies C(4) .) If 
(2.9) holds for i = 1, we say that stage 1 of the corresponding scheme satisfies 
CQg) . 

It is well known from the classical theory for Runge-Kutta schemes that when 
C(4), 4 > 1, is imposed on A, the complexity of the system of order con- 
ditions is significantly reduced. This is indeed the case also for CRK schemes. 
To quantify this, we will first present an enumeration result for a subset of the 
rooted trees. We will say that a rooted tree contains a k-leaf if it has a nonter- 
minal node, different from the root, which has at most k - 1 children, all of 
which must be leaves. 

Theorem 2.5. Let a(x, j > 1, be the number of rooted trees of order j which do 
not contain any k-leaves. Then aI, a2, ... satisfy the relation 

00 

al+a2X+ a3X 2?+ =(1-x)Y1 I (7J Xn)-n 

n=k+1 

Proof. Similar to that of Butcher [9, Theorem 145A, p. 89]. 51 

Corollary 2.6. For 1 < j < 2k + 2, aj = 2q, where q = max{0, j - k - 1}. 

These enumeration results may be used to provide upper bounds for the 
number of stages needed to construct a CRK scheme of a given order. We have 
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Theorem 2.7. Assume that an s x s matrix A satisfies C(4) for some > ? 1. 
Let aj be the number of rooted trees of order j without 4-leaves, andfor each 
p define rp = EP aj . Then 

rank(Gp (A)) < rp. 
Proof. It is clear (see, e.g., [9, pp. 194, 214]), that when A satisfies C(4), 
any row of Gp(A) that originates from a tree t1 containing a 4-leaf will be 
proportional to another row of Gp(A) which originates from a tree tj that 
does not contain a 4-leaf, provided p(ti) = p(tj). El 

Theorem 2.8. The s x s matrix A defines the stages of an s-stage CRK scheme 
of order s if and only if it satisfies C(s - 1) and the numbers ci = Z51 aij are 
all distinct. 
Proof. Assume C(s - 1) holds for distinct ci 's. Then according to Corollary 
2.6, Theorem 2.7, and (2.4) we get rank(G,(A)) = s. Since the ci 's are distinct, 
we have rank(F,(A)) = s by (2.6) and (2.7); thus, by Proposition 2.2, A defines 
the desired scheme. Conversely, assume that A represents a scheme of order s. 
Then, we must similarly have rank(Gs(A)) = s . Thus, (2.4) and (2.5) imply that 
rows i and j must be proportional if p(ti) = p(tj). In particular, this means 
that the pairs of rows originating from [T1] and [[Tl-']] must be proportional 
for 2 < I < s- 1. But this means that cl = lAclI for 1 < l < s- 1, which is 
exactly the condition C(s - 1). Furthermore, it follows that the row space of 
Fs(A) is spanned by the vectors ck, 0 < k < s - 1 , and hence rank(Fs(A)) = s 
if and only if the ci 's are distinct. El 

The theorem above shows that the CRK schemes of order p that have the 
minimal number of stages are the ones which satisfy C(p - 1). In fact, these 
schemes can be recognized as perturbed collocation (PECO) schemes where 
the collocation polynomial is identical to the continuous approximation u(x). 
From N0rsett and Wanner [25] we have the perturbation operator P I- - s , 

defined by 
S 

Pu(x) := u(x) + EZNj()u(j)(xo)hj, 0 < 0 = x hX <1, 
1=1 

where the Nj(6) 's are polynomials of degree < s. Then the PECO scheme is 

u(xo) = Yo, 

u'(xo + crh) = f(xo + crh, Pu(xo + crh)), r =1,...,s, 

yi = u(xo + h), 
where the car's are distinct. We have the following relationship between the 
schemes of Theorem 2.8 and PECO schemes. 

Theorem 2.9. A CRK scheme of order p with p stages is equivalent to a PECO 
scheme with N1(0) = = Np1(0) -=0 and Np (0) E Hpl, a polynomial of 
degree p - 1, such that 

Np(Cr) i tcrP-mP e arjcPnsde r= the fP. 

Prior to proving this theorem, we consider the following lemma. 
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Lemma 2.10. Let A define a CRK scheme of order p with weight polyno- 
mials bj(O), j = 1, ... , s. Assume that exactly p of these polynomials, 
bl (0) *bip (0), irE{ 1, ... , s},r= 1, ... , p, are nonzero. Then 

Kir = u'(xo + cirh), r = 1, ... ,p, 

b'; (O) = Lir (0) r = I,"..., ~p, 

where Lir(6) is the irth elementary Lagrange interpolation polynomial with 
respect to the points {ci,, . . . , cip }. 

Proof. Such CRK schemes must in particular satisfy the quadrature conditions 

P ~~~Ok 
Ebir(O)Cik-= 

I k ~ l . p- 
r=1 

Differentiating, we get 

p 
bl (O)Cik-I = ok-l k P ,...p 

r=l 

Thus the polynomials b'(O), r = 1, ..., p, form a basis for FI-p_. In fact, 
for any p(O) E FIp-I we have 

p 

P(O) = Zp(cir)b'(O), 
r=1 

from which it follows that b' (0) = Ljr(O) r = 1, ..., p. Since u'(xo + Oh) 

zb ;(O)Kiwehave u'(xo+cirh)Kir, r=l,...,p. O 

We now employ this lemma in the proof of Theorem 2.9. 

Proof of Theorem 2.9. Let w := (Np(cl), ... , NpP(c))T, and let bp be the pth 
column of the weight matrix B. Let M be the p x p matrix whose (i, j)th 
element is bj (ci) . We argue that for the CRK schemes of Theorem 2.8 we have 
A = M + (p!)wbT. To show this, we multiply M + (p!)wbpT with the p x p 
matrix V whose columns are c, c', ... , cP- . The quadrature conditions 
imply Mckl - ck/k, k = 1,..., p. By (2.3) we get bTck1 = 3pk/k. 

Hence, for k < p - 1 we get (M + (p!)wbPT)cki - ck/k = Ack-l, since 
C(p - 1) holds for A and (M + (p!)wbpT)cP-I = cP/p + (p!)w/p = A-cP- . 
Thus, AV = (M + (p!)wbT) V, which implies A = M + (p!)wbT, since V is 
nonsingular (because the ci's are distinct). Now we apply Lemma 2.10 with 
s = p to obtain 

u'(xo + crh) = Kr = f + crh , yo + h arjKj/ 

= f (xo+Crh, yo +hE bj(cr)Kr + (p!)hENp(cr)bjpKi) 
< j=l j=1 

r=1,... ,p. 
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Since u(P)(xo)hP = (p!)h EZ 1 bp Kj, we get 

u'(xo + crh) = f(xo + crh, u(xo + crh) + Np(cr)hPu(P)(xo)), 

and we have proved that our CRK scheme is indeed the PECO scheme men- 
tioned above. L 

For an s x s matrix A we introduce the following equivalence relation on 
the set of indices {1, ... , s: 

i-j if and only if ci = cj. 

Thus, there will be exactly one equivalence class for each distinct abscissa value. 
Let s* be the number of equivalence classes, which we label SI, ..., Ss - 

In the following, we shall be concerned with schemes of order, say, q, which 
fail to satisfy C(q - 1). Under such circumstances the following theorem pro- 
vides a lower bound for the minimum number of stages needed to obtain a 
given order. 

Theorem 2.11. For an s x s matrix A, let k > 2 be the largest integer such that 
C(k - 1) holds for A, and let u = (uI, .. ., US) be the residual of the C(k) 
condition. That is, ui = ci - k EZ=l aijck-f for 1 < i < s, and ui gives the 
amount by which the ith stage of the methodfails to satisfy the C(k) condition. 

(a) Then for any q > k + 1, 

(2.10) rank(Gq(A)) > q + 1. 

(b) In particular, if q > k + 1 and rank(Gq(A)) = rank(Fq(A)) = q + 1, then 
there exists L E {1, ... , s*} such that 

(i) ISL| > 1; 
(ii) for all stages i f SL, C(q - 1) holds, and for all stages i E SL, there 

exist real numbers 8I such that 
S 

(2.11) cl - lIaijcl- =,flui, k?+1 <1< q -1; 
j=l 

(iii) there exists A E R such that 

(2.12) E ui(A - AI)ej = 0. 
iESL 

Remark 2.12. In part (b) of this theorem, we are considering the case where 
A defines a method of order q satisfying condition C(k - 1) for k < q - 1. 
The point of this part of the theorem is to indicate that if the lower bound, 
rank(Gq(A)) = q + 1, is to be achieved when the order q of the method is at 
least two orders higher than the stage order k - 1 , then several fairly restrictive 
conditions, (i), (ii), and (iii), must hold. 

Condition (i) simply says that at least two of the abscissa must be the same. 
If, in addition, we have s = q + 1, then a slightly stronger result is possible: 
since s* > q (see, e.g., Zennaro [31]), if at least two of the abscissa are in SL, 

then all the others must be distinct and thus define their own equivalence classes 
in order that s* = q. However, since there are exactly q + 1 abscissa, we must 
have ISLI=2 and jSij=1,i=1,... ,q+1, i$hL. 
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Condition (ii) says that all the stages corresponding to distinct abscissa must 
satisfy the C(q - 1) condition, while for the stages corresponding to the equal 
abscissa, the residuals of the C(l) conditions, cl - / aijZ1-_ , for = 
k + 1, .. ., q - 1, i E SL, must be proportional to the corresponding residuals 
from the C(k) condition, ui. The only components of u that can be nonzero 
are those corresponding to these equal abscissa. 

Proof of Theorem 2.1 1. For the proof of part (a), suppose that rank(Gq (A)) < q . 
Since, by Lemma 2.1, rank(Gq (A)) > q, we need only consider the case where 
rank(Gq(A)) = q. Using a proof similar to that of Theorem 2.8, it is easily 
shown that rank(Gq(A)) = q implies that C(q - 1) must hold. This gives a 
contradiction since we have only C(k - 1), where k < q - 1, and part (a) is 
proved. 

For the proof of part (b)(ii), we begin by noting that we have assumed that 
rank(Fq(A)) = rank(Gq(A)) = q + 1 for q > k + 1, and then observe, in view 
of (2.5), that rank(Gk+2(A)) = k + 3. Then, in view of Theorem 2.7, we 
construct the matrix Gk+2(A) by deleting all rows of Gk+2(A) that correspond 
to trees containing (k - l)-leaves. Clearly, rank(G' 2(A)) = rank(Gk+2(A)). 
The matrix Gk+2(A) has the form: 

(Co)T 1 0 0 ... 0 0 0 

(C1)T 0 2I ... ? 0 0 

(c2)T O 0 . 0 0 0 

(C k-1)T 6 . 0 0k 
(ck)T 0 0 0 ... 0 ? ? 

(ACk-1)T 0 0 0 ... 0 1 0 
k(k+1) 

(ck+ 1)T 0 0 0 ... 0 0 1 

(Ack) T 0 0 0 ... 0 0 1 (k+1I) (k+-2) 
(cAckl ) T 0 0 0 ... 0 0 1 

k(k+2) 

(A2Ck-1)T 0 0 0 ... 0 0 1 
k(k+1)(k+2) 

s k 

Simply by examining the last k + 2 columns of Gk+2(A) we observe that the 
first k rows are linearly independent of the last six rows. Furthermore, since 
rank(Gk+2(A)) = rank(Gk+2(A)) = k + 3, at most three of the last six rows 
can be linearly independent. Let us next use the independent rows whose first 
s components are ck and ck+l to eliminate the nonzero entries in the last 
two columns of the other four rows (whose first s components are Ack-l, 

Ack, cAck-l, and A2ck-l ). The resulting four reduced rows, whose first s 
components are now ck - kAckl, Ck+l - (k + 1)Ack Ck+l - kCAckl, and 
ck+l - k(k + 1)A2ck-I, are clearly linearly independent of the two we used to 
perform the elimination. Therefore, if we are to have rank(Gk+2(A)) = k + 3, 
these four reduced rows must all be proportional. Hence, considering the 1st, 
3rd, and 4th of these rows, there must exist constants ,u1, ,U2 E R such that 

(2.13) /l(Ck - kAck1) = ck+l - kcAck-1 
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(2.14) -2(Ck_ kAck-l) = ck+l - k(k + 1)A2Ck-l, 

and, considering the 1St and 2nd of these reduced rows, there must exist /3k+1 E 

R such that 

(2.15) 3k+l (c - kAckl1) = ck+l - (k + 1)Ack. 

When q > k + 2, we must consider Gq(A), which is obtained by extend- 
ing Gk+2(A) by adding on appropriate rows and columns. For each / = 

k + 3, ... , q, we now consider the pairs of rows of Gq(A) which have c1l1 
and Acl-2 as their first s components. As before, we use the first row of each 
pair to eliminate the only nonzero element among the last q components of 
the second member of the pair. In each case the second row is reduced to the 
form cl-l - lAcl-2 , 1 = k + 3, ... , q. Using the same reasoning as above, 
we then observe that each row whose first s components have the form cl-l, 
/ = k + 3, ... , q, will contribute 1 to the rank, and thus, if rank(Gq(A)) is to 
be q + 1 , all the reduced rows must be proportional to each other. With (2.15) 
included, this means that there must exist constants flk+1, ...I , q1 E R such 
that 

(2.16) 81(ck -kACk-l) = cl-lAcll, k + 1 < < q- 1. 

It then follows from (2.13) that ciui = ,i ui, or (ci - ,ui)uj = 0, i = 1, ... , s. 
Thus, for all stages i with ci $ ,uI, we must have ui = 0, and then from 
(2.16) it follows that these stages must satisfy the C(q - 1) condition. The 
remaining stages i must all have ci = ,uI, and these are all members of SL. 
Thus, ck - kACk l can be expressed solely in terms of its nonzero components, 
i.e., ck - kACk-l = KESL ujej. From (2.16) we get 

A1 ( uiei) cl - lAcl-1, k + 1 < I< q - 1 
iESL 

and for the ith component 
S 

fl1ui = ci - l j 1,j k + 1 < I <q- 1, i E SL, 
j=1 

which proves part (b)(ii). 
To prove part (b)(iii), we use ck - kACk- - =iKSL ujej in (2.14); we get 

L2 E ujeL = ck+1 - (k + 1)A (Ck - Z ujej) 
iESL iESL 

= Ck+l - (k + 1)ACk + (k + 1)A E ujej. 
iESL 

Then using (2.15), we get 

92 E uie1 = 8 flk+luiei + (k + 1) E ujAej, 
iESL iESL iESL 

and hence, 

(2.17) E ui((k + 1)A - (,U2 - fk+1)I)ei = 0 = E ui(A - iJ)ej, 
iESL iESL 
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where A = (,U2 - flk+1)/(k + 1), which proves part (b)(iii). 
To prove part (b) (i), we argue that SL must contain more than one element, 

since otherwise, for the single stage i E SL, an examination of the order con- 
dition Z5-1 bj(6)uj = 0 would give bi(6)ui = 0, since we have uj = 0, j $ i, 
and thus bi(6) - 0. Furthermore, (2.17) and uj = 0, j 1 i, imply that 
aij = 0, i j . These two observations imply that the scheme would be re- 
ducible in the sense of Dahlquist and Jeltsch [16]. Hence, SL must have more 
than one element, and (b)(i) is proved. E 

An interesting question is whether there exist CRK schemes with coefficient 
matrix A satisfying conditions (i)-(iii) in Theorem 2.11. Indeed, it can be 
shown that, for instance, with k = 2 (only C(1) satisfied) one can construct 
CRK schemes of order 4 having five stages. This can be done even with the 
CMIRK schemes, where the form of the A-matrix is somewhat restricted. The 
above theorem will be used in the next section to show that certain meth- 
ods cannot satisfy C(k - 1), k < q - 1, and also achieve the lower bound, 
rank(Gq(A)) = q + 1, with s = q + 1, because they violate one or more of the 
conditions (i), (ii), or (iii). 

3. ORDER BARRIERS FOR CMIRK SCHEMES 

In this section we will derive the minimum number of stages CMN( p ) needed 
to construct CMIRK schemes of orders p = 1, ... ,6. It is known from Burrage, 
Chipman, and Muir [6] that the largest integer k for which C(k) can be satis- 
fied for a CMIRK scheme is 3. We may therefore immediately conclude from 
Theorem 2.8 and (2.4) that CMN(p) = p for 1 < p < 4. The same theorem in 
conjunction with Theorem 2.7 proves that CMN(5) = 6. From these theorems 
we see that a 5th-order CMIRK scheme with six stages can be constructed by 
imposing C(3) on A. We shall see that this condition is also necessary. We 
have 

Theorem 3.1. Let the s x s-matrix A define a CMIRK scheme which does not 
satisfy C(3). If s = rank(Gq(A)) = rank(Fq(A)) with q > 5, then s > q + 2. 
Proof. We prove that if C(3) does not hold then the requirement rank(Gq(A)) 
= q + 1 implies that either two rows of A are identical, which is impossible in 
view of Proposition 2.3 and (2.10), or that s* < q, which is impossible (see, 
e.g., Zennaro [31]). 

With C(1) or C(2) we can use the second part of Theorem 2.1 1, with k = 2 
or k = 3, and Remark 2.12. Thus, there is a set SL which contains exactly 
two indices. Furthermore, stages i 0 SL satisfy C(q - 1) . We assume without 
loss of generality that ui $ 0 for i E SL. Notice that by combining the two 
order conditions of order k + 1 in Theorem 2.11 one gets EiESL bi(6)ui--? - 
Using this for CMIRK schemes at 0 = 1, and recalling that A = X + vbT, we 
can write (2.12) as 

E ui(A - AI)ei = E ui(X - )I)ei = 0. 
iESL iESL 

Let j = min{i: i E SL} . Since X is strictly lower triangular, and since uj $ 0, 
it follows that A = 0 and xj+1,, = 0. Moreover, for CMIRK schemes, the first 
stage satisfies C(k) for arbitrary k, so 1 ? SL. Also, since the first three 
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stages of a CMIRK scheme cannot all satisfy C(4) (see Burrage, Chipman, 
and Muir [6]), we only have to investigate the cases where stage 2, stage 3, or 
both are contained in SL. Before we proceed with this, consider the C(1) 
case. Since it is necessary that rank(G5(A)) = 6, we get, by using the condition 
corresponding to the tree [[z], [j]], that 

c4- 4(AC)2 =(C2 - 2Ac) = uEiei 
iESL 

for some E E R. Hence, 

4 Z uiei = 2C2(C2 - 2Ac) - (C2 - 2AC)2 = 2cL E uiei - E UOei. 
iESL iESL iESL 

Since ui 7 0 for i E SL, we get ui = uj for i, j E SL when only C(1) is 
satisfied. 

(i) {2, 3} c SL. Here x32 = 0 with C2 = C3, and either of the conditions 
C(2) or U2 = U3 implies that rows 2 and 3 in the matrix A are identical. 

(ii) 2 E SL, 3 O SL. Since x32 = 0, we can permute the second and third 
stages to obtain one of the cases below. 

(iii) {3, 4} C SL. Here X43 = 0. In the C(1) case the conditions C3 = C4 
U3 = U4 immediately imply that stages 3 and 4 are identical. In the C(2) case 
we compute uj and w1 = c! - E' ajlc to obtain 

U1=C3(C3- 1)-Xj2, w 3=C3(C -1)-2x 2, j=3,4. 

By Theorem 2.11, (2.11), it is necessary that wj = 84uj for some 84 E R. 
Imposing this with the above formulas, we get 

3(C3 -1)2(x42 - X32) = 0. 

If x42 = x32 then it is easy to see that stages 3 and 4 are identical. Since C(4) 
holds for stages 1 and 2, we have cl = 0 and c2 = 1 (or vice versa) so that 
C3 E {O, 1 } would imply s* < 5, which is impossible. 

(iv) {3, j} c SL, j > 4. Here X43 = 0, so we may permute stage 3 and 
stage 4. The first three stages of an irreducible CMIRK scheme cannot satisfy 
C(4) (Burrage, Chipman, and Muir [6]). El 

In particular, this theorem shows that all 5th-order CMIRK schemes with six 
stages satisfy C(3). Turning to the order 6 case, we have 

Theorem 3.2. There are no 6th-order CMIRK schemes with seven stages or less. 
Proof. By (2.10), a 6th-order scheme must have at least seven stages. Assume 
that such a scheme exists with seven stages. Then, according to Theorem 3.1 
it must satisfy C(3) and we may apply the second part of Theorem 2.11 with 
k = 4, and Remark 2.12. Thus, there is a set SL that consists of exactly two 
indices. At least one of these must be in { 1, 2, 3}, since stage i satisfies C(5) 
for i 0 SL. But neither stage 1 nor stage 2 is of interest, since both these 
stages satisfy C(k) for arbitrary k when C(3) is imposed. Thus, we must 
have SL = {3, j}, where j > 3. Hence, X43 = 0. If j = 4, then C3 = C4, and 
stages 3 and 4 are identical. If j > 4, we permute the 3rd and 4th stages, and 
hence, the first three stages must satisfy C(5), which is impossible. 0 

Hence, CMN(6) > 8, and in ?4 we shall see that CMIRK schemes of order 
6 with eight stages exist, thus CMN(6) = 8. 
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Summarizing, we have the following table, where p is the order, CMN( p) 
is the minimal number of stages a CMIRK scheme of order p can have, and 
MN( p ) is the minimal number of stages a (discrete) MIRK scheme of order p 
can have (Burrage, Chipman, and Muir [6]): 

P CMN(p) MN(p) 
1 1 1 
2 2 1 
3 3 2 
4 4 3 
5 6 4 
6 8 5 

4. CHARACTERIZATIONS OF CONTINUOUS MONO-IMPLICIT 

RUNGE-KUTTA SCHEMES 

In this section we present characterizations for a number of families of low- 
order CMIRK schemes having uniform orders p = 1, 2, 3, 4, 5, and 6, re- 
spectively. We consider only schemes having a minimal number of stages, and 
within each such class we will consider all possible C(4) restrictions which pre- 
serve the minimal stage requirement. All the CMIRK schemes presented here 
having order 4, 5, or 6, and all schemes of order 3 satisfying C(3), are C1 con- 
tinuous. In fact, when the order is 3 or greater, it can be easily shown that for 
all CMIRK schemes which use only the minimal number of stages and satisfy 
C(3), we must have C1 continuity. 

4.1. CMIRK schemes of order 1. A CMIRK scheme of uniform order 1 can 
be obtained using one stage. For the family of 1-stage CMIRK schemes we have 
the tableau: 

C C 0 

b(6) 

where b(6) = 0 and c is a free parameter. These schemes satisfy C(1) and 
include the continuous versions of the explicit and implicit Euler schemes. 

4.2. CMIRK schemes of order 2. A CMIRK of order 2 can be obtained us- 
ing two stages. If we assume that only the C(1) condition holds, we get the 
following 3-parameter family of 2-stage CMIRK schemes, of uniform order 2: 

Ci Cl 0 0 

C2 V2 C2 - V2 0 

bi (0) b2(0) 

where 

c1 c2, bi(6)= (2 C2-) , and b2(0) cl 
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If we further require the schemes to satisfy C(2), we get the following 1- 
parameter family of CMIRK schemes having uniform order 2: 

0 0 0 0 

C2 C2 2 c2(1 - C2) 0 

bi (0) b2(0) 

where 

C2 :0 , bi(0) =-(c2 ), - 0 and b2(0) = 02 

This family includes the continuous version of the trapezoidal rule. 

4.3. CMIRK schemes of order 3. A third-order CMIRK scheme requires at 
least three stages. Furthermore, in order to have no more than three stages, 
it must satisfy C(2). Therefore, we will consider CMIRK schemes satisfying 
C(2) and C(3). For the C(2) case we get the following 3-parameter family of 
schemes: 

0 0 0 0 0 

C2 C22 c2(1 - c2) 0 0 

32 _ 3 C32 _-V3 C32 -V3 _ _ _ _ 

C3 V3 C3 - V3 2c2 2c2 0 

bi (0) b2(0) b3(0) 

where 

bj (0) = (6c2c3 - 30(C2 + c3) + 202) 

b2(3)3- 20 602(3c320 

b2(0)- 62(3c ) and b3(0) - 6C(3c2 - C2) 6C2(C3 - C2) ' 63c 3 

and C2, c3, and v3 are the parameters, with the restrictions that C2 $ , 
c2$0, and c3$ 0. 

Let us now consider the case were we impose the maximum C(3) condition. 
The CMIRK scheme tableau is further restricted, and we get the following 1- 
parameter family: 

0 0 0 0 0 

1 1 0 0 0 

C32(3 - 2c3) C3(C3 - 1)2 C32(C3 
- 1) 0 

b1 (0) b2(0) b3(0) 
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where C3 $A 0, 1 and 

bl(6) 0(6C3 - 30(1 + C3) + 202) 
6C3 

b2(0) - 6((33 - 12) and b3(0) = 62(26 - 3) 

This family includes the continuous version of the 3-point Lobatto rule. 

4.4. CMIRK schemes of order 4. A CMIRK scheme of uniform order 4 can 
have the minimum number of stages, 4, if and only if it satisfies C(3). Below 
we give a 3-parameter family of 4-stage, continuous 4th-order CMIRK schemes 
satisfying C(3): 

0 0 0 0 0 0 

1 1 0 0 0 0 

C3 C2(3 - 2C3) C3(C3 - 1)2 C2(C3- 1) 0 0 

a Y -3(c42 - V4)+ 2(c43 - V4) 0 
_4 _ _ 6c3 6(C3 - 1) 6c3(c3 - 1) 

bl(6) b2(0) b3(0) b4(0) 

where 

b (0)- -0(303 - 4602(1 + c3 + c4) + 60(c3 + c4 + c3C4) - 12c3C4) lkJ - 

~~~~~12C3C4 

b2(0) = 02(302 - 40(C3 + C4) + 6C3C4) b2(6) - 12(C3 - 1)C4 - 1) 

02(302 - 40(c4 + 1) + 6c4) 
b3 (6) - 12c3 (c3 - 1 )(c3 - C4) 

602(302 - 40(c3 + 1) + 6c3) 
b4(6) - 

12c4(C4 - 1)(C4 - c3) 

with a= 6C3(C4 -v4) - 3C3(C -v4) - 3(c4 - v4) + 2(c3-v4), = 

2(C43 - V4), and the restrictions that C3 $ C4, C3 $ 0, 1, and c4 0, 1 . In this 
case, F4(A) is a Vandermonde system over the abscissae {0, 1, C3, c4} and 
the resulting weights, as indicated in Lemma 2.10, satisfy 

br(0) =jLr(t)dt, r= 1, 2, 3, 4, 

where Lr(t) is the rth elementary Lagrange interpolating polynomial for the 
abscissa set {0, 1, c3, C4}. 

4.5. CMIRK schemes of order 5. As we saw in ?3, it is when we consider 5th- 
order schemes that we first encounter the situation where it is no longer possible 
to find CMIRK schemes having the same number of stages as the uniform order. 
In fact, a CMIRK scheme of uniform order 5 must have at least six stages, 
and, by Theorem 3.1, must satisfy C(3) in order to attain this minimum. 
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If we simply apply the C(3) condition plus the order conditions up to and 
including order 5, we will get a 10-parameter family of CMIRK schemes, but the 
expressions for the coefficients and weights of the family are long, complicated 
expressions. However, for a given choice of the ten free parameters it is trivial 
to obtain the corresponding CMIRK scheme. 

We can simplify things slightly by imposing a restriction on this family of 
CMIRK schemes. We require all stages, except the third, to satisfy C(4). This 
reduces the number of degrees of freedom in the family and leaves us with a 
7-parameter family of 6-stage, 5th-order CMIRK schemes, which we present 
below: 

0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

c3 C32(3 -2c3) c3(c3 - 1)2 C32(C3 - 1) 0 0 0 0 

c4(3c42 - 4c3c4 + 6c3 - c4) 
C4 2c3-1 X41 X42 X43 0 0 0 

C5 V5 X51 X52 X53 X54 0 0 

C6 V6 X61 X62 X63 X64 X65 0 

b,(o) b2(0) b3(O) b4(O) b5(0) b6(O) 

Here, 
C4(C4-1)2(4C2 - 3C3C4 - 2c3 + c4) 

X4= - 2C3(2C3 - 1) 

X42 (C4 - 1)(4c3 - 3C3C4 + 2C4 - 3C3) 
2(C3 - 1)(2C3 - 1) 

C42(C4- 1)2 

2C3(c3 - 1)(2C3 - 1) 

_ 12c3c4(c5 - v5) - 6(C3 + C4 + C3C4(C2 - v5) + 4(C3 + C4 + l)(c3 - v5) - 3(c4 - V5) 
X51 =234C 

- 

-5 
(3+C +CC)C 

12C3c4 

6C3C4(4-v5) -24(C3 + C4)(C3- V5) + 3(c - V5) 
12(C3 - 1)(C4 - 1) 

6c4(C2 - V5) - 4(c4 + l)(c3 -V5) + 3(C4-V5) 
X__ = 12C3(C3 - 1)(C3 -C4) 

2- v5) - 4(C3 + l)(c - V5) + 3(C5 -V5) 

X54 = 12c4(c4 - 1)(C4 -C3) 

12c3c4c5(c6 - 6- x61 )- 6(c3c4 + c3c5 + C4C5)(C62- V6) + 4(C3 + C4 + C5 -63 V6)- 3(C4 -V6) 
XV - - - - 12(c3- 1)(c4 - )(C5 - 1) 

X63 12c4c5(c6 -V6 -x61) - 6(c4 + c5 + C4C5)(C62 -V6) + 4(1 + C4 + C5)(C63-V6)-3(c64 -V6) 

12(1 - c3)(C4 - C3)(C5 - C3) 

12C3C5(C6 - V6- x61) - 6(c3 + C5 + C3C5)(C62 - V6) + 4(1 + C3 + C5)(C63-V6) - 3(c64-V6) 
X64 = - x 12(1 - C4 3- C4)(C5 - C4) 

and 
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12C3C4(C6 - V6- x61) - 6(C3 + C4 + C3C4)(C6- V6) + 4(1 + c3 + c4)(C3-V6)-3(c6-V6) 
- 

12(1 - C5)(C3- C54- C5) 

The free parameters are c3, C4, C5, C6, V5, V6, and x61 . The restrictions on 
the parameters c3 c C4, C5, and c6 are that they must be distinct and not equal 
to 0 or 1. 

The weights are determined by the rows of F5(A). We perform an elim- 
ination step on the row of F5(A) corresponding to the single nonquadrature 
condition, as follows. Replace 

(Xc3 + v/4) with C4 - 4(Xc3 + v/4). 

This makes the right-hand sides corresponding to this row equal to 0 and allows 
us to observe that the C(4) condition applied to all but the 3rd stage implies 
that the new row reduces to the form 

0 C4 - 4([Xc3b3 + v3/4) 0 0 0 ], 

where [XcP]j is the jth component of the vector XcP. Since the right-hand 
sides for this row are all 0, this implies that all the coefficients for the third 
weight are zero, i.e., b3(0) = 0. Furthermore, if we then remove the third 
column and third row from F5(A), the result is a Vandermonde system over 
the abscissae {0, 1, C4, C5, C6}. The resulting weight expressions are given, as 
indicated in Lemma 2.10, by 

br(0) = JLr(t)dt, r= 1, 2, b3(0) = 0, 

br(0)= JLr-I(t)dt r= 4 5, 6, 

where Lr(t) is the rth elementary Lagrange interpolating polynomial for the 
abscissa set {0, 1, C4, C5, C6}. 

4.6. CMIRK schemes of order 6. From Theorem 3.2 of the previous section, 
we saw that a CMIRK scheme of order 6 must have at least eight stages. In 
this subsection we will construct a family of 8-stage CMIRK schemes of order 
6, satisfying C(3). The situation here is somewhat different than in the previ- 
ous cases, because when we apply the C(3) condition to the continuous order 
conditions up to and including order 6, we are left with ten rather than eight 
conditions. If we are to obtain a family of CMIRK schemes of order 6 with 
only eight stages, we must choose some of our free parameters to ensure that the 
ten order conditions lead to only eight independent rows in G6(A) and not less 
than eight independent rows in F6(A). In the following discussion we outline 
one strategy for the determination of the coefficients of the CMIRK schemes 
which allows us to achieve this goal. Of the ten order conditions present, six 
are quadrature conditions, and there are four nonquadrature conditions, 

b(6)T(XC3 + v/4) = 05/20 b(0) TC(XC3 + v /4) = 06 /24, 

b(6)T(XC4 + v/5) = 06/30, b(6)T(X(XC3 + v/4) + v/20) = 06/120. 
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Our strategy involves forcing the four nonquadrature conditions to reduce to 
only two independent rows. In order to simplify the discussion, we first perform 
an elimination step on the four rows of G6(A) corresponding to the nonquadra- 
ture conditions. From each nonquadrature row we subtract a multiple of the 
corresponding quadrature row, and then scale the resulting row. The resulting 
rows in F6(A) are 

(i) c5 - 4(Xc3 + v/4), (ii) C6 - 4c(Xc3 + v/4), 
(iii) c6 - 5(Xc4 + v/5), (iv) c6 - 20(X(Xc3 + v/4) + v/20), 

and the corresponding right-hand sides are 0. This simplification has also been 
used by Verner [29]. We now give a description of the strategy for the determi- 
nation of the 8-stage, 6th-order CMIRK family. 

The first step follows from an idea of the previous subsection. Here we begin 
by imposing the restriction that all stages, except the third and fourth, satisfy 
the C(4) condition. It can then be shown, from an inspection of the resulting 
forms of the order conditions, that it follows that the C(5) condition must also 
be imposed for all but the third and fourth stages. The rows of F6(A) derived 
from the above nonquadrature conditions become 

(i) [ 0 0 U3 U4 0 0 0 0 1, 
(ii) [ 0 0 C3U3 C4U4 0 0 0 0 ], 

(iii) [ 0 0 W3 W4 0 0 0 0 ], 
(iv) [ ri r2 r3 r4 r5 r6 r7 r8 ], 

where u; = cl-4([XC3]j+vj/4), j = 3, 4, wj = c-5([XC4]j+vj/5), j = 3, 4, 

rj = 5(U3Xj3 + U4Xj4), j = 1, 2, 5, 6, 7, 8, and rj = wj + 5(U3Xj3+U4Xj4), j = 

3, 4. If we can force the last of the above rows to also have nonzeros in only 
positions 3 and 4, then we will have four rows with that same structure, of 
which exactly two must be independent. These two rows together with the six 
rows corresponding to the quadrature conditions will allow us to determine a 
family of 8-stage, 6th-order schemes. Thus, our strategy reduces to determining 
coefficients of the family so that 

r = r2= r5= r6= r7= r8 = 0. 

It follows immediately from the strictly lower triangular structure of X that 
r, = r2= 0. It turns out that it is also possible to satisfy the remaining condi- 
tions and we get some restrictions on some of the coefficients of the family. We 
are left with a 9-parameter family of 8-stage, 6th-order CMIRK schemes. This 
defines the c, v, and X coefficients in terms of C3, C4, C5, C6, C7, V7, C8, V8, 
and x81. Before presenting these coefficients, we consider the determination of 
the weights bj(0), j = 1, ..., 8. These depend on the rows of F6(A). 

Within F6 (A), there are six rows corresponding to the quadrature conditions, 
plus the two independent rows, with nonzeros only in positions 3 and 4, corre- 
sponding to the reduced nonquadrature conditions. There is no need to work 
out the actual values for W3, W4 or r3, r4, since the values of the nonzeros in 
the two independent rows are not relevant. Since the right-hand sides of these 
rows are zero for all orders, it can be observed that the two independent rows 
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having nonzeros in only the third and fourth positions imply that all the coeffi- 
cients corresponding to b3(0) and b4(0) must be zero, i.e., b3(0) = b4(0) = 0 . 
With the 3rd and 4th columns and rows of F6(A) removed, the resulting system 
is Vandermonde, and it then follows from Lemma 2.10 that 

br(6) = jLr(t) dt, r = 1, 2, b3(0) = b4(0) = 0, 

br(6) = jLr2(t)dt, r= 5, 6, 7, 8, 

where Lr(O) is the rth elementary Lagrange interpolating polynomial for the 
abscissa set {0, 1, C5, C6, C7, C8}. 

In summary, a family of 6th-order, 8-stage CMIRK schemes can be obtained 
by expressing some of the coefficients for each stage in terms of others of that 
stage, using the C(3) condition for stages 3 and 4, and the C(5) condition 
for the remaining stages. Further relationships among the coefficients of the 
stages are obtained by requiring r5 = r6= r7= r8= 0, as given earlier in this 
subsection. The completion of this process allows us to write all the c, v , and x 
coefficients in terms of the nine free parameters, C3, C4, C5, C6, C7, V7, C8, V8, 

and x81 . The definition of the CMIRK family is completed by determining 
the weight polynomials in terms of the integrals of the elementary Lagrange 
interpolating polynomials, as indicated above. 

We have used this approach, and have set up and solved the above conditions, 
to explicitly obtain expressions for all the coefficients and weight polynomials 
of this family. As might be expected, the coefficients of this CMIRK family 
are very long and complicated expressions, so we do not present them here. 
Rather, we have arbitrarily selected values for the free parameters, inserted 
these values into the expressions for the coefficients and weight polynomials, and 
below display the resulting 8-stage, 6th-order CMIRK scheme. The existence of 
this scheme establishes the order barrier for 6th-order CMIRK schemes at 8. 

0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 

1 11 49 -7 
0 0 0 0 0 0 

8 256 512 512 
7 1813 203 -609 -7 0 0 0 0 
8 1280 512 2560 10 
1 37 387 39 159 -15 0 0 0 0 
4 928 12992 12992 182 812 
3 441 1791 -877 -265 25 1 
4 928 12992 12992 812 812 2 
2 2 694 -8114 265424 -5008 566 -10954 0 0 
5 5 109375 328125 1640625 328125 46875 78125 
3 3 0 -37292 204368 -3856 -88514 -550682 8756 0 
5 5 815625 1359375 271875 815625 3171875 45675 

b1 (0) b2(6) b3(0) b4(0) b5(0) b6(0) b7(0) b8(0) 
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where 

bi(0) =216(-216+ 11346 - 29686 +4113 - 28806 + 8006), 
262 

b2(0) 02 6(108 - 6840 + 171302 _ 192003 + 80004), b3(0) = 0, 
216 ~ ~ 66 

b4() = 0, b5(0) = 6180 (54 - 2340 + 41102 - 33003 + 10004), 

b6(0) 189 (18 - 1100 + 2612 - 27063+ 10064), 

b7(0) 1 15 02 (270 - 14400 + 286502 - 249603 + 80004), 1512 

b8(0) - 1256(180 - 10600 + 23852 - 230463 + 80064). 1512 

5. CONCLUSIONS 

In this paper we have derived families of CMIRK schemes which use a min- 
imal number of stages, for orders 1 through 6. The underlying theoretical in- 
vestigation has explored the relationship between the stage order and minimal 
number of stages required to obtain schemes of a desired order of accuracy, in 
the more general setting of CRK schemes. Applications of these general results 
to the particular family of CMIRK schemes lead to the order barriers upon 
which the characterizations of the families were based. 

For orders 1 through 4 complete characterizations of the CMIRK families are 
presented. For order 5 a complete characterization is available but in the interest 
of shortening the presentation, a somewhat restricted subfamily is presented. 
For the 6th-order case, a particular strategy is used to obtain a family of schemes. 
The particular families presented in this paper for the 4th-, 5th-, and 6th-order 
cases are interesting because they can be viewed as instances of continuous 
schemes derived from the more traditional interpolation-based approach for 
the construction of continuous extensions to Runge-Kutta schemes (Enright et 
al. [17]). In each of these cases, the stages which do not satisfy C(p - 1), for 
the pth-order family, have zero weight polynomials. 

The schemes developed in this paper are complementary to those discussed 
by Pruess [28], since they require neither higher derivative evaluations nor func- 
tion evaluations outside the current subinterval. As is the case for all one-step 
schemes, the MIRK schemes have the advantage of allowing the calculations for 
each subinterval to be done independently of those on the other subintervals. 
This is important when we consider applying these schemes in a parallel com- 
puting environment where it is preferable to be able to perform the work on 
each subinterval independently. An application of the characterizations of these 
continuous families is in the determination of particular CMIRK schemes for 
use in a defect-controlled boundary value ODE solver (Enright and Muir [18]). 
After establishing suitable criteria for the selection of optimal schemes for this 
application, the next step will be to explore the parameter spaces of these fam- 
ilies in order to compare various schemes, and ultimately select good schemes 
for implementation. 
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