
A METHOD OF LINES PACKAGE,

BASED ON MONOMIAL SPLINE COLLOCATION,

FOR SYSTEMS OF

ONE DIMENSIONAL PARABOLIC DIFFERENTIAL EQUATIONS

THEODORE B. NOKONECHNY, AND PATRICK KEAST
Department of Mathematics, Statistics and Computing Science, Dalhousie University

Halifax, Nova Scotia, B3H 4J5, Canada
E-mail: nokon@cs.dal.ca, keast@cs.dal.ca

and

PAUL H. MUIR
Department of Mathematics and Computing Science, Saint Mary’s University

Halifax, Nova Scotia, Canada
E-mail: muir@cs.dal.ca

ABSTRACT

We consider systems of parabolic partial differential equations in one space vari-
able, for which we describe a method of lines algorithm based on monomial
spline collocation for the discretization of the spatial domain. While the usual
application of this technique transforms the system of partial differential equa-
tions into a system of time dependent ordinary differential equations which can
be integrated by standard initial value solvers, our approach leads to coupled
systems of differential-algebraic equations. These equations are solved using a
well known package, DASSL, which we have modified to take advantage of the
special structure of the Jacobians which arise.

1. The Problem Class

In this paper we consider systems of NPDE parabolic partial differential equa-
tions (PDEs). The systems considered are of the form

∂u

∂t
(t, x) = f(t, x, u(t, x), ux(t, x), uxx(t, x)), (1)

for xa < x < xb, t0 < t ≤ tout, with initial conditions at t = t0 given by

u(t0, x) = u0(x), xa ≤ x ≤ xb, (2)

subject to the separated boundary conditions at x = xa and x = xb given by

bxa(t, u(t, xa), ux(t, xa)) = 0, t0 ≤ t ≤ tout, (3)

bxb
(t, u(t, xb), ux(t, xb)) = 0, t0 ≤ t ≤ tout, (4)

where

u(t, x) = [u1(t, x), u2(t, x), . . . , uNPDE(t, x)]
T
, (5)



ux(t, x) =

[
∂u1

∂x
(t, x),

∂u2

∂x
(t, x), . . . ,

∂uNPDE
∂x

(t, x)

]T
, (6)

uxx(t, x) =

[
∂2u1

∂x2
(t, x),

∂2u2

∂x2
(t, x), . . . ,

∂2uNPDE
∂x2

(t, x)

]T
, (7)

f(t, x, u, ux, uxx) = [f1(t, x, u, ux, uxx), . . . , fNPDE(t, x, u, ux, uxx)]
T , (8)

u0(x) = [u0,1(x), u0,2(x), . . . , u0,NPDE(x)]
T
, (9)

bxa(t, u, ux) = [bxa,1(t, u, ux), . . . , bxa,NPDE(t, u, ux)]
T , (10)

bxb
(t, u, ux) = [bxb,1(t, u, ux), . . . , bxb,NPDE(t, u, ux)]

T . (11)

In (8), (10), and (11), for brevity, we suppress the dependance on t, x of u = u(t, x),
ux = ux(t, x), and uxx(t, x). The domain and range of the individual elements of
(5)-(11) are

ui(t, x),
∂ui
∂x

(t, x),
∂2ui
∂x2

(t, x) : [t0,∞)×[xa, xb]→ R, (12)

fi(t, x, u, ux, uxx) : [t0,∞)×[xa, xb]×RNPDE×RNPDE×RNPDE→ R, (13)

u0,i(x) : [xa, xb]→ R, (14)

bxa,i(t, u, ux), bxb,i(t, u, ux) : [t0,∞)×RNPDE×RNPDE→ R, (15)

for i = 1, . . . , NPDE. Each ui(t, x) is assumed to have sufficient differentiability

appropriate for (1). All components of f in (8) and of bxa and bxb
in (10)-(11) are

assumed to be differentiable with respect to their arguments. The problem class
includes all systems of parabolic PDEs in one space variable which have (fixed) sepa-
rated boundary conditions. For a treatment of PDE systems which include a moving

boundary and/or coupled ODEs, the reader is referred to Berzins and Dew5. It is
assumed that the system (1)-(4) is such that the existence of a unique solution is
assured.

Our code is not intended to solve problems which have rapidly changing boundary

layers, since it uses a currentlycurrently fixed spatial mesh which is not suited to such
problems. However, if this method is combined with a mesh refinement scheme, then
boundary layers may be dealt with. Much recent work has been done on adaptive
MOL algorithms which attempt to adjust the spatial discretization. Based on some

estimate of the spatial and/or temporal errors, these methods attempt to adapt to
the problem by changes in one or more of the time steps, the spatial mesh, and the
order of approximation. Verwer et al20,21 discuss a process called ‘static-regridding’, in

which the grid is adapted at discrete times. Lawson et al12 and Berzins et al6 describe
a combined spatial and temporal approach. In Huang and Russell10 a moving mesh
procedure is used to control spatial errors, with the number of mesh points being
kept fixed, while their location is adapted to the solution behaviour. Flaherty and

Moore9,16 use a combined order and spatial adaptivity. The above references, and the



references therein, provide a good background to the literature of adaptive methods

for parabolic differential equations.

We discuss a Method of Lines (MOL) approach to (1), in which the spatial variable
is discretized, resulting in a system of Initial Value Ordinary Differential Algebraic

Equations (ODE/DAEs). The spatial discretization technique we will employ will
be collocation at Gaussian points in each subinterval of the given mesh. There are
several MOL codes available, some based on finite differences for the spatial discretiza-

tion, and others based on C0 collocation, or collocation using B-Splines. Commer-
cial packages which provide MOL codes include for example, the NAG library and
IMSL. Among public domain codes available from netlib are, for example, PDECOL14

and EPDCOL11 (both using B-Splines), PDEONE13 (which uses finite differences),

and PDECHEB5 (C0 collocation), all of which are available through netlib from the
Transactions on Mathematical Software collection. The paper by Carroll7 includes a
comparison of several one dimensional MOL codes. In this paper our code will be
compared to EPDCOL, a modified form of PDECOL.

There are three principal components in the MOL approach to the solution of a
system of parabolic equations, namely:

(a) The spatial discretization.

(b) The solver used for the resulting ODE/DAE system.

(c) The techniques used to solve the linear systems which arise.

For (a) and (c) we will use techniques not used in any other MOL code which is

generally available. In Section 2 we describe the discretization which we use, and
show that a system of DAEs is produced. In Section 3, we discuss the DAE system,
and the Jacobian which arises in the solution of the nonlinear systems occurring in

the time step. In Section 4 we look at the linear algebraic problems which arise.
These have a special form and our package takes full advantage of this, using the
package ABDPACK15. For (b) we use the program DASSL19, in a modified form to
allow interaction with ABDPACK. In Section 5, the user interface for the software is

explained, and we show the results of applying the new software to a problem taken
from the paper in which PDECOL14 appeared.

2. The Spatial Discretization

The spatial discretization will be carried out by collocating at the Gauss-Legendre
points. This is, in itself, nothing new; Gauss-Legendre collocation is used in both
PDECOL and EPDCOL. However, both of these codes use B-Splines as the basis
functions, whereas we will use a monomial basis. Our choice of monomial splines

rather than B-splines8 is motivated by earlier developments in software for boundary



value ordinary differential equations. The widely used code COLSYS1, developed

about 20 years ago, makes use of B-splines. However, later investigation by Ascher
et al4 indicated that monomial splines were a preferred choice, and this led to the
development of a modified versoin of COLSYS called COLNEW. This code uses
monomials and is reported to give improved performance both in execution time and

storage requirements.

2.1. The Basis Functions

First we describe the monomial spline basis used for the spatial discretization.
The notation used is essentially that used in Ascher, Mattheij and Russell2. The

spatial mesh X = {xi}NINT+1
i=1 is a partition of the interval [xa, xb], defined by

xa = x1 < x2 < . . . < xNINT < xNINT+1 = xb. (16)

We will use Mκ,m
X to denote the set of Cm−1[xa, xb] monomial splines of order κ

(degree (κ− 1)) defined on the mesh X. Thus

Mκ,m
X = {v ∈ Cm−1[xa, xb] : v|[xi,xi+1] ∈ Pκ, i = 1, . . . , NINT}, (17)

where Pκ is the set of all polynomials of order κ or less, and κ > m ≥ 0. The
dimension of the space Mκ,m

X is κ · NINT −m(NINT − 1) = (κ −m)NINT + m.
In our code we assume that m = 2, but for generality we keep m as a variable here.

In order to define the collocation points we require two additional pieces of nota-

tion. First, define the mesh step size sequence H = {hi}NINTi=1 by

hi = xi+1 − xi. (18)

Second, let {ρr}kr=1 be the k Gauss-Legendre points (the zeros of the degree k Legendre
polynomial) on the interval [0, 1] where

0 < ρ1 < ρ2 < . . . < ρk < 1, (19)

where k = κ−m. We now define the collocation point sequence Ξ = {ξj}NCPTSj=1 by

ξ1 = x1, (20)

ξl+r = xi + hiρr, where l = (i− 1)k + 1,

for i = 1, . . . , NINT, r = 1, . . . , k, (21)

ξNCPTS = xNINT+1. (22)

Note that, Ξ is an increasing partition of [xa, xb] and the inclusion of x1 and xNINT+1

with the collocation points is done for notational convenience as in Madsen et al14.
The number of collocation points is NCPTS = k ·NINT+m, which is the dimension

of the space Mκ,m
X .



The function u(t, x) is approximated by U(t, x), which is a linear combination of

functions from the space Mk+m,m
X with coefficients which are functions of t. The basis

functions we use for Mk+m,m
X are monomials locally, each with support over only one

subinterval. If we consider the restriction of U(t, x) to the subinterval [xi, xi+1], for
i = 1, . . . , NINT , we have Ui(t, x) = U(t, x)|[xi,xi+1] where

Ui(t, x) =
m∑
j=1

φj(x− xi)yi,j(t) + hmi

k∑
j=1

ψj

(
x− xi
hi

)
zi,j(t). (23)

Further, Ui(t, x) : [t0,∞)×[xi, xi+1] → RNPDE, and yi,j(t), zi,j(t) : [t0,∞) → RNPDE,
are unknown functions of time. The set of m functions,

{φj(x)}mj=1 =

{
xj−1

(j − 1)!

}m
j=1

, (24)

gives the local representation of the first m (canonical) monomial basis functions.

The k functions, {ψj(x)}kj=1 are chosen to satisfy the following conditions:

1. ψj(x) : [0, 1] → R is of order k +m, for j = 1, . . . , k.

2.
dl−1ψj

dxl−1 (0) = 0 for j = 1, . . . , k, and l = 1, . . . , m.

These requirements do not completely define {ψj(x)}kj=1, and consequently this set is
not unique. In order to specify the set uniquely, one choice is to have

dl−1ψj
dxl−1

(1) = δj−k+m,l, j, l = 1, . . . , k, (25)

where δi,j is the Kronecker delta. This would imply that {ψj(x)}kj=1 = { xm+j−1

(m+j−1)!
}kj=1,

so that the basis functions ψj are defined in the same way as the functions φj . A
second choice is given by

dmψj
dxm

(ρr) = δj,r, j, r = 1, . . . , k. (26)

The choice of (26), known as a Runge-Kutta representation4 is used in the monomial

spline package employed by our PDE code, and has been shown to have benefits over
(25), see Ascher et al2.

2.2. The Collocation Equations

We require the approximate function U(t, x) to satisfy the PDE at the NCPTS
collocation points Ξ = {ξj}NCPTSj=1 . Special treatment is required for the boundary
conditions, and therefore the collocation points ξ1 and ξNCPTS will be considered in



detail later. For the collocation points on the i-th subinterval we require U(t, x) to

satisfy the PDE (1). For i = 1, . . . , NINT , this gives

∂Ui
∂t

(t, ξl+r) = f

(
t, Ui(t, ξl+r),

∂Ui
∂x

(t, ξl+r),
∂2Ui
∂x2

(t, ξl+r)

)
, (27)

where l = (i− 1)k + 1 and r = 1, . . . , k. The left hand side of (27) expands to

m∑
j=1

φj(ξl+r − xi)
dyi,j
dt

(t) + hmi

k∑
j=1

ψj

(
ξl+r − xi

hi

)
dzi,j
dt

(t). (28)

Thus, the collocation equations of (27) simplify to

m∑
j=1

φj(hiρr)
dyi,j
dt

(t) + hmi

k∑
j=1

ψj(ρr)
dzi,j
dt

(t) = fi,r(t), (29)

for r = 1, . . . , k and i = 1, . . . , NINT , where

fi,r(t) = f

(
t, Ui(t, ξl+r),

∂Ui
∂x

(t, ξl+r),
∂2Ui
∂x2

(t, ξl+r)

)
, (30)

and l = (i− 1)k + 1. These lead to the initial value ODE system

Vi
d	yi
dt

(t) +Wi
d	zi
dt

(t) = 	fi(t), i = 1, . . . , NINT, (31)

where, using the symbol ⊗ for Kronecker Product,

Vi = [φj(hiρr); j = 1, . . . , m; r = 1, . . . , n] ⊗ INPDE ∈ Rk×m ⊗ RNPDE×NPDE , (32)

Wi = [hmi ψj(ρr); j, r = 1, . . . , k] ⊗ INPDE ∈ Rk×k ⊗ RNPDE×NPDE , (33)

	yi(t) =
[
yTi,1(t), . . . , y

T
i,m(t)

]T ∈ Rm ⊗ RNPDE, (34)

	zi(t) =
[
zTi,1(t), . . . , z

T
i,k(t)

]T ∈ Rk ⊗ RNPDE, (35)

	fi(t) =
[
fTi,1(t), . . . , f

T
i,k(t)

]T ∈ Rk ⊗ RNPDE, (36)

and INPDE is the identity matrix in RNPDE×NPDE.
The initial value ODEs which result from the collocation process can then be

summarized by the system:

Ac
dY

dt
(t) = Fc(t, Y (t)), (37)



where , with N = κ ·NINT +m = (k +m)NINT +m,

Y (t) =
[
	y1
T , 	z1

T , 	y2
T , 	z2

T , . . . , 	yTNINT , 	z
T
NINT , 	y

T
NINT+1

]T ∈ RN ⊗RNPDE , (38)

Fc(t, Y (t)) =
[
	0T1 ,

	f1

T
, 	02

T
, 	f2

T
, 	02

T
, . . . , 	fTNINT , 	02

T
, 	01

T
]T

∈ RN ⊗ RNPDE . (39)

Further, 	01 ∈ RNPDE, 	02 ∈ RNPDE·m, are vectors of zeros, and Ac ∈ RN×N ⊗
RNPDE×NPDE. In the components of the two vectors Y (t) and Fc(t, Y (t)) we have
suppressed the dependence on t. The blocks of zeros in the vector Fc are matched by
sets of rows of zeros in Ac. The first and last blocks of zeros correspond to the (as

yet not imposed) boundary conditions; the other blocks of zeros correspond to the
continuity conditions as described in the next section. Consequently, the structure of
Ac can be inferred from (31) and is described later, in conjunction with the Jacobian
matrix defined in Sections 3 and 4.

2.3. The Continuity Equations

The continuity conditions satisfied by U(t, x) must be explicitly imposed, since
they are not built into the basis functions, as is the case with the B-splines. In our

case, (m = 2), this means applying continuity and first derivative conditions at each
of the mesh points xi, i = 2, . . . , NINT + 1, but we will, as before, express these in
terms of a variable m. These conditions result in algebraic constraints on the initial
value ODE system (37). One way to deal with these constraints is to differentiate

them with respect to time and combine them with the initial value ODEs arising from
the collocation equations (37) as is done with the boundary equations in PDECOL.
However, we have chosen to leave the continuity conditions as algebraic constraints
resulting in a DAE system.

The m conditions to be satisfied by U(t, x) at each internal mesh point and at the
right hand end point are:

Ui(t, xi+1) = Ui+1(t, xi+1), (40)

∂Ui
∂x

(t, xi+1) =
∂Ui+1

∂x
(t, xi+1), (41)

...
∂m−1Ui
∂xm−1

(t, xi+1) =
∂m−1Ui+1

∂xm−1
(t, xi+1), (42)

for i = 1, . . . , NINT . Recalling the definition of Ui(t, x) in (23) and the properties

of the local monomial spline basis elements, we can write this system as:

−Ci	yi(t) −Di	zi(t) + I	yi+1 = 	0NPDE , i = 1, . . . , NINT, (43)



where

Ci =

[
dr−1φj
dxr−1

(hi)

]
⊗ INPDE ∈ Rm×m ⊗ RNPDE×NPDE , (44)

Di =

[
hm+1−r
i

dr−1ψj
dxr−1

(1)

]
⊗ INPDE ∈ Rm×k ⊗RNPDE×NPDE , (45)

I = Im ⊗ INPDE ∈ Rm×m ⊗ RNPDE×NPDE . (46)

The algebraic constraints resulting from the continuity equations can be summa-
rized by the system

BcY (t) = 	0N ⊗	0NPDE, (47)

where 	0N is the zero vector of RN , and Bc ∈ RN×N ⊗ RNPDE×NPDE . Once again,

the structure of Bc can be inferred from (43) and is described later in Sections 3 and
4.

2.4. The Boundary Conditions

For the collocation method, the final requirement is that U(t, x) satisfies the
boundary conditions. The boundary conditions give:

bxa(t, U(t, ξ1), Ux(t, ξ1)) = 	0NPDE , (48)

bxb
(t, U(t, ξNCPTS), Ux(t, ξNCPTS)) = 	0NPDE . (49)

These equations represent a set of non-linear algebraic constraints on the vector Y (t)
which we denote as

FB(t, Y (t)) = 	0N ⊗	0NPDE . (50)

Once again, there is the option of differentiating the boundary conditions, (48)-(49),
with respect to t, or of applying them directly. In our code we choose to differentiate
them, and this gives:

∂bxa

∂U
(t, U, Ux)

∂U

∂t
+
∂bxa

∂Ux
(t, U, Ux)

∂Ux
∂t

+
∂bxa

∂t
(t, U, Ux) = 	0NPDE , (51)

∂bxb

∂U
(t, U, Ux)

∂U

∂t
+
∂bxb

∂Ux
(t, U, Ux)

∂Ux
∂t

+
∂bxb

∂t
(t, U, Ux) = 	0NPDE . (52)

In (51) U and Ux are evaluated at (t, ξ1), and in (52) they are evaluated at (t, ξNCPTS).
Simplification of (51)-(52), using the definition of Ui(t, x) in (23), yields the following
linear initial value ODEs[

∂bxa

∂U
(t, U, Ux)

∂bxa

∂Ux
(t, U, Ux)

] d	y1

dt
(t) = −∂bxa

∂t
(t, U, Ux) (53)[

∂bxb

∂U
(t, U, Ux)

∂bxb

∂Ux
(t, U, Ux)

] d	yNINT+1

dt
(t) = −∂bxb

∂t
(t, U, Ux) (54)



where 	y1(t) and 	yNINT+1(t) are defined by (34) with m = 2. For future convenience,

we define

TOP =
[
∂bxa

∂U
(t, U, Ux)

∂bxa

∂Ux
(t, U, Ux)

]
, (55)

BOT =
[
∂bxb

∂U
(t, U, Ux)

∂bxb

∂Ux
(t, U, Ux)

]
. (56)

Recalling the definition of Y (t) in (38), we can define a matrix AdBdt ∈ RN×N ⊗
RNPDE×NPDE so that (53) and (54) are described by the system

AdBdt
dY

dt
(t) = FdBdt(t, Y (t)), (57)

where

FdBdt(t, Y (t)) =

[
−∂b

T
xa

∂t
(t, U, Ux), 0, . . . , 0,−∂b

T
xb

∂t
(t, U, Ux)

]T
∈ RN ⊗ RNPDE. (58)

The matrix AdBdt will be very sparse with only the top and bottom blocks having

non-zero entries as shown later in the following sections.

3. The DAE System

There are four options for constructing the initial value ODE or DAE system

depending on how we treat the boundary and continuity conditions. We may decide
to include the two sets of conditions as algebraic conditions, or we may choose to
differentiate with respect to time one or the other, or both, of the sets, and form an
ODE system. It seems more natural to include the continuity conditions as algebraic

constraints, and we have done so for t > t0. Similarly it seems reasonable to impose
the boundary conditions as algebraic constraints, thus producing a system of DAE
initial value problems. The code DASSL19 is designed to handle such systems. But a

problem arises when the code starts at t0.
Consider the generic initial value DAE system

AY ′(t) +BY (t) − F (t, Y (t)) = 	0N ⊗	0NPDE , (59)

where Y (t0) and Y ′(t0) are known, and Y (tout) is desired. In order to start DASSL
it is necessary to give accurate values for Y (t0) and Y ′(t0). The values of Y (t0) can
be obtained by interpolating u0(x) on the set Ξ. In the case of an explicit ODE,
Y ′(t0) can be obtained directly from the ODE by solving a linear system (implicitly

inverting A). But if the boundary and continuity conditions are imposed as algebraic
constraints thenA = Ac and B = Bc, so that A is singular, having large blocks of zeros
corresponding to non-zeros in Bc, and having TOP and BOT all zeros. If, however,
we differentiate with respect to t both the continuity and boundary conditions and



apply (59) at t = t0, then A = Ac + AdBdt + Bc is non-singular, and Y ′(t0) can be

obtained.

For t > t0 we keep the continuity conditions as algebraic constraints, and differen-
tiate the boundary conditions, adding them to the system of ODEs in (59), therefore,
giving

A = Ac + AdBdt, B = Bc, F (t, Y (t)) = Fc(t, Y (t)) + FdBdt(t, Y (t)). (60)

DASSL also requires the Jacobian or iteration matrix J given by

J = α
∂G

∂Y ′ +
∂G

∂Y
∈ RN×N ⊗ RNPDE×NPDE , (61)

where α is chosen by DASSL to accelerate convergence, and where G is the residual
given by

G(t, Y (t), Y ′(t)) ≡ AY ′(t) +BY (t)− F (t, Y (t)) = 	0N ⊗	0NPDE , (62)

It is clear from the definition of G in (62) that

J = αA+B − ∂F

∂Y
. (63)

The structure of J is determined by the support of the basis functions. To aid in
describing the iteration matrix J we will make the following definitions:

̂TOP = α TOP −
[
∂F1
∂Y1

∂F1
∂Y2

]
, (64)

B̂OT = α BOT −
[

∂FN

∂YN−1

∂FN

∂YN

]
, (65)

V̂i = αVi −
[
∂FI+r
∂YJ+j

]
, (66)

for r = 1, . . . , k, j = 1, . . . , m, (67)

Ŵi = αWi −
[
∂FI+r
∂YJ+j

]
, (68)

for r = 1, . . . , k, j = m, . . . , k +m, (69)

where I = (i− 1)(k +m) + 1 and J = (i− 1)(k +m).
A special note regarding ̂TOP and B̂OT is appropriate. Since it is unrealistic

to expect the user to provide
∂

∂bxa
∂t

∂U
,
∂

∂bxa
∂t

∂Ux
,
∂

∂bxb
∂t

∂U
, and

∂
∂bxb

∂t

∂Ux
, we assume that these

functions are identically zero. This results in an iteration matrix J which is not

exact if this assumption is false. However, the dependence of J on the boundary
information is assumed to be weak, so that the only affect of our assumption is



possibly to slow convergence of the Newton iterations. This assumption has also

been used in PDECOL 14 and EPDCOL11.

4. The Linear Algebra component

The iteration matrix J can be shown to have the structure, (called almost block

diagonal), illustrated in Figure 1, for the case when NINT = 4, m = 2 and k = 3, i.e.
using splines of degree 4, or order 5. Generally, each element in this matrix is a full
matrix in RNPDE×NPDE. A detailed description of this is given in Nokonechny18. The
package ABDPACK15 is designed to perform a decomposition of this type, without

additional storage being required. The code DASSL, has two options for the linear
algebra component, namely full matrices and band matrices. If the band option is
used on the matrix J considerable fill-in occurs (see Majaess et al15), as shown in
Figure 1. It is therefore important to treat such systems using linear algebra software

adapted to the particular structure shown in the figure. We have modified DASSL
to include a third linear algebra option allowing us to use ABDPACK. It should be
noted that the changes required to DASSL are greatly simplified as a result of careful

structuring of the original code.

Figure 1: The iteration matrix J .



5. The Software

In this section we describe a package called MSCPDE (Monomial Spline Collocation
for Parabolic Partial Differential Equations) implementing the algorithm described

earlier.

5.1. The Components of Package

There are four principal components of the package:

(i) The control program, MSCPDE. This subroutine provides the interface between

the user’s calling program and the underlying packages required to solve the
PDE. Additionally, the subroutine MSCPDE manages the allocation of storage
to the various arrays required, from a block of workspace provided by the user.

(ii) The monomial spline package, which implements the low level details of the
basis functions (see Muir et al17).

(iii) DASSL, the DAE solver.

(iv) ABDPACK, the linear algebra package.

MSCPDE requires the user to provide information about the system of PDEs
(1), F and DERIVF, the initial conditions (2), UINIT, and the boundary conditions
(3)-(4), DIFBXA and DIFBXB, in differentiated form, as indicated in (51)-(52). We
have retained the same user interface as PDECOL14 and EPDCOL11, with the ex-

ception of the routine for the boundary conditions. In PDECOL and EPDCOL both
differentiated boundary conditions are defined in the one routine BNDRY. We have
replaced BNDRY by two routines DIFBXA and DIFBXB so that the left and right

differentiated boundary conditions are specified by two separate routines DIFBXA
and DIFBXB for the left and right hand boundaries, respectively. The detailed de-
scriptions of these components are omitted. For these we refer to Nokonechny18.
The code itself, with sample driver programs, is available through anonymous ftp at

ftp.cs.dal.ca.

As an example we consider the system of partial differential equations given by:

∂u

∂t
= v2∂

2u

∂x2
+ 2u

∂u

∂x

∂v

∂x
− uv − u2 + 10, (70)

∂v

∂t
= u2 ∂

2v

∂x2
+ 2v

∂u

∂x

∂v

∂x
+ uv − v2, (71)



with initial conditions given by

u(0, x) = 0.5(x+ 1), (72)

v(0, x) = π, (73)

and subject to the boundary conditions

u(t, 0) = 0.5 (74)

v(t, 0) = π (75)

∂u

∂x
(t, 1) + sin(u(t, 1)v(t, 1)) = 0.5 (76)

∂v

∂x
(t, 1) − cos(u(t, 1)v(t, 1)) = 1 (77)

This problem is example 1 in Madsen and Sincovec14. The results in Table 1, below,
essentially reproduce the results of that paper. The number of collocation points

per subinterval, K, is 2, and the number of subintervals used, NINT , is 20. The
requested abolute and relative tolerances, ATOL and RTOL are 0.01 and 0.0001
respectively.

T = 0.001 Steps = 26
PDE Component 1

0.50000E+00 0.51924E+00 0.53776E+00 0.55569E+00 0.57318E+00
0.59035E+00 0.60729E+00 0.62409E+00 0.64080E+00 0.65746E+00
0.67408E+00 0.69069E+00 0.70729E+00 0.72389E+00 0.74048E+00
0.75707E+00 0.77366E+00 0.79025E+00 0.80683E+00 0.82342E+00
0.84001E+00 0.85660E+00 0.87319E+00 0.88979E+00 0.90640E+00
0.92302E+00 0.93968E+00 0.95639E+00 0.97318E+00 0.99009E+00
0.10072E+01

PDE Component 2
0.31416E+01 0.31333E+01 0.31331E+01 0.31332E+01 0.31334E+01
0.31335E+01 0.31336E+01 0.31337E+01 0.31337E+01 0.31338E+01
0.31338E+01 0.31339E+01 0.31340E+01 0.31340E+01 0.31341E+01
0.31341E+01 0.31342E+01 0.31342E+01 0.31343E+01 0.31343E+01
0.31344E+01 0.31344E+01 0.31345E+01 0.31345E+01 0.31346E+01
0.31346E+01 0.31347E+01 0.31348E+01 0.31348E+01 0.31349E+01
0.31350E+01

Table 1: K = 2; NINT = 30; ATOL = 0.01; RTOL = 0.0001



T = 0.01 Steps = 44
PDE Component 1

0.50000E+00 0.52477E+00 0.54917E+00 0.57295E+00 0.59603E+00
0.61840E+00 0.64011E+00 0.66122E+00 0.68178E+00 0.70185E+00
0.72152E+00 0.74082E+00 0.75983E+00 0.77860E+00 0.79720E+00
0.81569E+00 0.83413E+00 0.85258E+00 0.87112E+00 0.88982E+00
0.90876E+00 0.92801E+00 0.94767E+00 0.96784E+00 0.98863E+00
0.10102E+01 0.10325E+01 0.10559E+01 0.10805E+01 0.11065E+01
0.11340E+01

PDE Component 2
0.31416E+01 0.30943E+01 0.30722E+01 0.30633E+01 0.30606E+01
0.30603E+01 0.30610E+01 0.30620E+01 0.30630E+01 0.30640E+01
0.30649E+01 0.30658E+01 0.30667E+01 0.30675E+01 0.30683E+01
0.30691E+01 0.30699E+01 0.30707E+01 0.30716E+01 0.30724E+01
0.30733E+01 0.30742E+01 0.30752E+01 0.30762E+01 0.30773E+01
0.30784E+01 0.30796E+01 0.30810E+01 0.30824E+01 0.30839E+01
0.30858E+01

T = 0.1 Steps = 77
PDE Component 1

0.50000E+00 0.54716E+00 0.59704E+00 0.64874E+00 0.70148E+00
0.75459E+00 0.80753E+00 0.85987E+00 0.91129E+00 0.96155E+00
0.10105E+01 0.10579E+01 0.11038E+01 0.11481E+01 0.11908E+01
0.12319E+01 0.12714E+01 0.13093E+01 0.13457E+01 0.13805E+01
0.14140E+01 0.14460E+01 0.14766E+01 0.15060E+01 0.15341E+01
0.15610E+01 0.15868E+01 0.16114E+01 0.16351E+01 0.16577E+01
0.16794E+01

PDE Component 2
0.31416E+01 0.30064E+01 0.29093E+01 0.28408E+01 0.27940E+01
0.27641E+01 0.27471E+01 0.27406E+01 0.27424E+01 0.27510E+01
0.27653E+01 0.27844E+01 0.28076E+01 0.28344E+01 0.28645E+01
0.28975E+01 0.29332E+01 0.29713E+01 0.30118E+01 0.30546E+01
0.30994E+01 0.31464E+01 0.31954E+01 0.32464E+01 0.32995E+01
0.33545E+01 0.34115E+01 0.34705E+01 0.35315E+01 0.35947E+01
0.36598E+01

Table 1(continued): K = 2; NINT = 30; ATOL = 0.01; RTOL = 0.0001



T = 1.0 Steps = 95
PDE Component 1

0.50000E+00 0.54703E+00 0.59686E+00 0.64856E+00 0.70130E+00
0.75436E+00 0.80713E+00 0.85915E+00 0.91007E+00 0.95963E+00
0.10077E+01 0.10540E+01 0.10987E+01 0.11417E+01 0.11829E+01
0.12224E+01 0.12602E+01 0.12964E+01 0.13311E+01 0.13643E+01
0.13960E+01 0.14264E+01 0.14554E+01 0.14833E+01 0.15099E+01
0.15354E+01 0.15599E+01 0.15834E+01 0.16059E+01 0.16275E+01
0.16482E+01

PDE Component 2
0.31416E+01 0.30031E+01 0.29038E+01 0.28345E+01 0.27884E+01
0.27604E+01 0.27467E+01 0.27443E+01 0.27509E+01 0.27649E+01
0.27848E+01 0.28096E+01 0.28387E+01 0.28712E+01 0.29068E+01
0.29451E+01 0.29858E+01 0.30286E+01 0.30735E+01 0.31202E+01
0.31687E+01 0.32189E+01 0.32708E+01 0.33243E+01 0.33795E+01
0.34363E+01 0.34947E+01 0.35548E+01 0.36167E+01 0.36803E+01
0.37457E+01

T = 10.0 Steps = 100
PDE Component 1

0.50000E+00 0.54703E+00 0.59686E+00 0.64856E+00 0.70130E+00
0.75435E+00 0.80712E+00 0.85914E+00 0.91006E+00 0.95962E+00
0.10076E+01 0.10540E+01 0.10987E+01 0.11416E+01 0.11828E+01
0.12224E+01 0.12602E+01 0.12964E+01 0.13311E+01 0.13643E+01
0.13960E+01 0.14264E+01 0.14554E+01 0.14832E+01 0.15099E+01
0.15354E+01 0.15599E+01 0.15833E+01 0.16058E+01 0.16274E+01
0.16482E+01

PDE Component 2
0.31416E+01 0.30032E+01 0.29038E+01 0.28345E+01 0.27884E+01
0.27605E+01 0.27468E+01 0.27443E+01 0.27510E+01 0.27649E+01
0.27848E+01 0.28097E+01 0.28387E+01 0.28713E+01 0.29069E+01
0.29452E+01 0.29858E+01 0.30287E+01 0.30735E+01 0.31203E+01
0.31688E+01 0.32190E+01 0.32709E+01 0.33244E+01 0.33796E+01
0.34363E+01 0.34948E+01 0.35549E+01 0.36168E+01 0.36804E+01
0.37458E+01

Table 1(continued): K = 2; NINT = 30; ATOL = 0.01; RTOL = 0.0001



It may be observed that the results in Table 1 are similar to those in Sinvocec and

Madsen14 with the number of steps taken by MSCPDE being comparable to or fewer
than the number taken by PDECOL. However, the choice of tolerances is somewhat
different since PDECOL only requires the user to specify a relative tolerance, whereas
DASSL (and hence MSCPDE) also allows an absolute tolerance to be set. Some care

must be taken in the choice of RTOL for MSCPDE, since too small a value results
in a larger number of time steps being taken, without any appreciable difference in
accuracy. Since the two codes are being asked to satisfy different requests, it is up to

the user of MSCPDE to select ATOL and RTOL wisely.

References

1. U. M. Ascher, J. Christiansen and R. D. Russell Algorithm 569: COLSYS:

Collocation Software for boundary value ODEs, ACM TOMS (1981) p. 223.
2. U. M. Ascher, R.M.M. Mattheij and R. D. Russell in Numerical Solution of

Boundary Value Problems for Ordinary Differential Equations, SIAM Classics

in Applied Mathematics, Philadelphia, 1995.
3. G. Bader and U. Ascher, A New Basis Implementation for a Mixed Order

Boundary Value ODE Solver, SIAM J. Sci. Stat. Anal. (1987) p. 483.
4. U. Ascher, S. Pruess and R. D. Russell, On Spline Basis Selection for Solving

Differential Equations, SIAM J. Numer. Anal. (1983) p. 121.
5. M. Berzins and P. M. Dew, Algorithm 690: Chebyshev Polynomial Software

for Elliptic-Parabolic Systems of PDEs, ACM TOMS (1991) p. 178.
6. M. Berzins, J. Lawson and J. Ware, Spatial and Temporal Error Control in the

Adaptive Solution of Systems of Conservation Laws, in Advances in Computer
Methods for Partial Differential Equations, VII, edited by R. Vichnevetskym
D. Knight and G. Richter, IMACS (1992) p. 60.

7. J. Carroll, A composite integration scheme for the numerical solution of sys-

tems of parabolic PDEs in one space dimension, J. Comp. and Appl. Math.
(1993) p. 327.

8. C. de Boor, Package for Calculating with B-Splines, SIAM J. Numer. Anal.

(1977) p. 441.
9. J. E. Flaherty and P. K. Moore, Integrated Space-time Adaptive hp-Refinement

Methods for Parabolic Systems, App. Num. Math. (1995) p. 317.
10. W. Huang, Y. Ren and R. D. Russell, Moving Mesh Methods Based on Moving

Mesh Partial Differential Equations, J. Comp. Phys. (1994) p. 279.
11. P. Keast and P. H. Muir, Algorithm 688: EPDCOL: A More Efficient

PDECOL Code, ACM TOMS (1991) p. 153.
12. J. Lawson, M. Berzins and P.M. Dew Balancing Space and Time Errors in

the Method of Lines, SIAM J. Sci. Statist. Comput. (1991) p. 573.
13. N. K. Madsen and R. F. Sincovec, Algorithm 494: PDEONE, Solutions of

Systems of Partial Differential Equations, ACM TOMS (1975) p. 261.



14. N. K. Madsen and R. F. Sincovec, Algorithm 540 PDECOL, General Col-

location Software for Partial Differential Equations, ACM TOMS (1979) p.
326.

15. F. Majaess, P. Keast, Graeme Fairweather, and Karin R. Bennett, Algorithm
704: ABDPACK and ABBPACK-FORTRAN Programs for the Solution of Al-

most Block Diagonal Linear Systems Arising in Spline Collocation at Gaussian
Points with Monomial Basis Functions, ACM TOMS (1992) p. 205.

16. P. K. Moore and J. E. Flaherty, Adaptive Local Overlapping Grid Methods

for Parabolic Systems in Two Space Dimension, J. Comp. Phys. (1992) p. 54.
17. P.H. Muir and K. Remington, Software for Manipulating Monomial Spline

Bases, unpublished software.
18. T. B. Nokonechny, The Method of Lines Using Monomial Spline Collocation

for Parabolic Partial Differential Equations, MSC thesis, Dalhousie University,
Halifax, Canada, 1995.

19. L. Petzold, DASSL, electronically available through netlib, at netlib.att.com.
20. R. A. Trompert and J. G. Verwer, Analysis of the Implicit Euler Local Uni-

form Refinement, SIAM J. Sci. Comput. (1993) p. 259.
21. J. G. Werver and R. A. Trompert, Methods of Lines and Local Uniform

Grid Refinement, in Advances in Computer Methods for Partial Differential
Equations, VII, edited by R. Vichnevetskym D. Knight and G. Richter, IMACS

(1992) p. 60.


