
ELSEVIER

Available online at www.sciencedirect.com MATHEMATICAL
AND

801ENCIE @ D I R E C T e COMPUTER
MODELLING

Mathematical and Computer Modelling 40 (2004) 1309-1321
www. elsevier .com/locate/mcm

Estimating Conditioning of
BVPs for ODEs

L. F. SHAMPINE
M a t h e m a t i c s D e p a r t m e n t , S o u t h e r n M e t h o d i s t Un ive r s i ty

Dallas, T X 75275, U.S.A.
ishampin©mail, smu. edu

P. H. MUIR*
D e p a r t m e n t of M a t h e m a t i c s and C o m p u t i n g Science, Sa in t M a r y ' s Un ive r s i ty

Halifax, Nova Scot ia B3H 3C3, C a n a d a
Paul. Muir©StMarys. ca

Abst rac t - -An alternative to control of the global error of a numerical solution to a boundary
value problem (BVP) for ordinary differential equations (ODEs) is control of its residual, the amount
by which it fails to satisfy the ODEs and boundary conditions. Among the methods used by codes
tha t control residuals are collocation, Runge-Kut ta methods with continuous extensions, and shoot-
ing. Specific codes tha t concern us are bvp4c of the MATLAB problem solving environment and the
FORTRAN code MIRKDC for general scientific computation. The residual of a numerical solution
is related to its global error by a conditioning constant. In this paper, we investigate a conditioning
constant appropriate for BVP solvers tha t control residuals and show how to est imate it numerically
at a modest cost.

Codes tha t control residuals can compute pseudosolutions, numerical solutions to BVPs tha t do
not have solutions. Tha t is, a "well-behaved" approximate solution is computed for an ill-posed
mathematical problem. The estimate of conditioning is used to improve the robustness of bvp4c and
MIRKDC and in particular, help users identify when a pseudosolution may have been computed.
(~) 2005 Elsevier Ltd. All rights reserved.

K e y w o r d s - - C o n d i t i o n , BVP, ODE, Residual, Pseudosolution.

1. I N T R O D U C T I O N

This investigation began with a striking example. To illustrate its error messages, the MATLAB

function bvp4c [1] was given a two-point boundary value problem (BVP) for a system of first-
order ordinary differential equations (ODEs) that was known not to have a solution. The solver
promptly computed and returned a plausible numerical solution with no messages of any kind!
This solver computes a piecewise-polynomial solution S(x) using collocation. It controls the
residual of this solution, the amount by which S(x) fails to satisfy the ODEs and boundary
conditions. Evidently, the code has found a numerical solution S(x) that satisfies well the ODEs
and boundary conditions of a BVP that does not have a solution. We call such a numerical
solution a pseudosolution. The FORTRAN code MIRKDC [2] is based on Runge-Kutta methods

*Supported by the Natural Sciences and Engineering Research Council of Canada.
The authors would like to acknowledge the many helpful suggestions provided by the referees.

0895-7177/05/$ - see front mat ter (~) 2005 Elsevier Ltd. All rights reserved. Typeset by A.~4S-TEX
doi: l O. l O16 / j .mcm.2005. 01. 021

1310 L.F. SHAMPINE AND P. H. MUIR

with continuous extensions and it also solves BVPs by controlling residuals. Experimentation
showed that it can also produce pseudosolutions, suggesting that they can arise in any method
that employs residual control.

For a BVP with solution y(x), the size of the residual of a numerical solution S(x) is related
to the size of the error y(z) - S(x) by a conditioning constant for the BVP. After some pre-

liminaries, we begin with a discussion of residual control and pseudosolutions from the point of
view of backward error analysis. We then investigate a conditioning constant that is appropriate

to understanding codes that control residuals. Next, we show" how to estimate this conditioning
constant using quantities formed whilst solving the BVP. Finally, we show how to make this

estimate practical in bvp4c and MIRKDC by carefully using software for estimating a matrix

condition number developed by Higham and Tisseur [3,4]. An inexpensive estimate of this con-
ditioning constant improves the robustness of these BVP solvers and, in particular, helps users

recognize the possibility of a pseudosolution. Some numerical examples illustrate the theoretical
developments.

2. P R E L I M I N A R I E S

We make heavy use in this paper of results from Ascher, Mattheij and Russell [5] and, in

particular, all results tha t we describe as "standard" are found in this text. Our attention is
sharply focused on the methods implemented in bvp4c and MIRKDC, namely implicit Runge-
Ku t t a methods with continuous extensions. (bvp4c implements a collocation method, but for
first-order ODEs, collocation methods are equivalent to a class of implicit Runge-Kutta methods
with continuous extension [6].) When approximating the solution of a two-point BVP

y'(x) = f (x , y(z)), (1)

o = g(y(a), y(b)), (2)

on a mesh a = xl < -.. < XN+I = b, such methods generally involve approximations at interme-

diate points in addition to the accurate approximations at mesh points Yn ~ y(xn). By analytical
condensation in the case of bvp4c and by the special form of the Runge-Kut ta methods in the
ease of MIRKDC, these intermediate approximations are eliminated and a numerical solution
Y = [Yl,.-. ,YN+I] of approximations at mesh points only is computed. The discrete problem
then has the form of a set of algebraic equations

• (z) = 0. (3)

After solving this set of nonlinear algebraic equations to obtain approximations at the mesh
points, continuous extensions are used to obtain an approximate solution S(x) E Cl[a, b].

It is usual to discuss first BVPs with linear ODEs and linear boundary conditions and then to
apply the results to nonlinear problems by linearizing about a solution of interest. The second

part is s tandard and the first exposes the issues, so we give our at tention to BVPs of the form

y'(x) = A(x)y(x) + q(x), (4)

/3 = Bay(a) + Bby(b), (5)

with smooth coefficients A(x) E R ~×n, q(x) E R n, y(x) E R ~, and/3 E R "~, Ba,Bb E R ~×n.
Standard results state that if Y(x) is the fundamental solution of the ODEs, then the BVP has
a unique solution y(x) if, and only if, the matrix Q = BaY(a) + BbY(b) is nonsingular. When
there is a solution, it can be expressed in terms of the Green's function G(x, t) as

.b

y(x) = Y (x) Q - ' 3 + / G(x,t)q(t)dt. (6)
Ja

Estimating Conditioning of BVPs 1311

3. B A C K W A R D E R R O R A N A L Y S I S

Codes like MIRKDC and bvp4c that control the residual adopt the view of backward error

analysis. In this view, a good numerical solution of a problem is one that is the exact solution
of a problem with data close to the data of the given problem. Whether this solution is close
to the exact solution of the given problem is then a mat ter of the conditioning of the problem.
In principle, it is clear that there is a possibility of computing a numerical solution with a small
residual to a problem that has no solution. As mentioned earlier, we call such numerical solutions
pseudosolutions and show by example in Section 7 that they can occur in practice.

Though not usually described in this way, codes for solving numerically initial value problems

(IVPs) for ODEs can be regarded as controlling residuals. In the first instance, the methods
produce a numerical solution at mesh points only. The codes control local errors and it is
fundamental tha t this controls the true (global) error only indirectly. More specifically, how

accurate such a solution is depends on the stability (conditioning) of the IVP. Some methods have
continuous extensions that provide a piecewise-polynomial solution S(x) for the whole interval
[a, b]. For theoretical purposes it is always possible to augment standard methods for IVPs
with a piecewise-smooth continuous extension [7]. Moreover, the residual of S(x) can have a size
comparable to the local error controlled by the code. With this in mind, we can say that standard
methods for solving IVPs control the size of the residual of a piecewise-smooth function S(x).
Whether S(x) is close to y(x) depends then on the conditioning of the IVP.

We can use the observation of the preceding paragraph to understand that shooting codes
for BVPs can be interpreted as controlling residuals. A simple shooting code proceeds as fol-
lows. Some components of y(a) are not known. With approximations for these components, the
ODEs (1) are integrated from a to b with local error control that produces a numerical solution
S(x) with a small residual. The approximations at the two end points are substituted into the
boundary conditions (2), and a residual 5 = g(S(a), S(b)) is found. A Newton iteration is used to
find values of the unknown components that make 5 = 0. From this we see that the code controls
the residual of S(x) in the ODEs and its residual 5 in the boundary conditions. A multiple
shooting code partitions [a, b] and solves a local IVP with approximate initial conditions over
each subinterval. Matching conditions at the ends of subintervals and boundary conditions are

then applied, yielding a large nonlinear algebraic system whose unknowns are the mesh point
solution approximations which provide the initial conditions. This nonlinear system is solved

by a Newton iteration and upon convergence this scheme produces a piecewise-smooth function
S(x) that satisfies the ODEs and boundary conditions with small residuals. We do not claim
that residual control is a good description of what is done in practice when solving IVPs, hence

when solving BVPs with a shooting method. Rather we claim that the residual control seen in
MIRKDC and bvp4c is not so very different from what is done in the more familiar situation of
a shooting code.

There is an obvious distinction between the error controls of codes for IVPs and BVPs. It is
considered too expensive to control the global (true) error when solving IVPs, so there are very

few codes that do. On the other hand, solving BVPs is more difficult and for popular methods it

is possible to control an estimate of the global error at little additional expense. For this reason,
BVP codes like MIRKDC and bvp4c that control residuals instead of estimates of the global error
are unusual. On the other hand, residual control is a reasonable way to proceed according to
backward error analysis, it has been very successful with IVPs, and it has important advantages
with respect to robustness.

Experience with IVPs helps us appreciate the distinction between control of residuals and the
true error, but the IVPs that arise in practice invariably have a solution, at least locally, and this
is not true for BVPs. The solution of a system of linear algebraic equations

A x = b, (7)

1312 L.F. SHAMPINE AND P. H. MUIR

provides a bet ter analogy in this respect. The backward error analysis point of view is funda-
mental to understanding numerical linear algebra. In particular, we expect Gaussian elimination
to produce a solution z tha t satisfies (7) with a small residual r

A z = b + r. (8)

It is generally appreciated that this does not imply that z is close to x, that being a mat ter of
the conditioning of the problem. Suppose now that A is singular and (7) is inconsistent but z is
such that (8) is consistent for some r with ilrit small. We would call such a z a pseudosolution
of (7). The given problem (7) has no solution, but z is a solution in the sense of backward error

analysis--i t is the exact solution of a problem with data close to that of the given problem. An
important difference between solving systems of linear algebraic equations and BVPs is that (7)
is usually solved as accurately as possible while BVPs are often solved to modest accuracy using
crude meshes. Furthermore, one is more likely to compute a pseudosolution when the requested
tolerance is coarse. For this reason, while pseudosolutions might arise in the more familiar context

of solving a system of linear algebraic equations, they are much more likely to arise when solving

BVPs with methods that control residuals.

From the point of view of backward error analysis, any numerical solution S(x) of a BVP
that has small residuals in the ODEs and boundary conditions is a good solution. Whether the
global error y(x) - S (x) is small depends on the conditioning of the BVP, so we investigate now

a conditioning constant appropriate for BVP solvers tha t control residuals.

4 . T H E C O N D I T I O N I N G C O N S T A N T

In this section, we investigate a conditioning constant for linear BVPs (4),(5). The analysis
is closely related to that of [5, pp. 111-112], but the conditioning constant itself is tailored for
methods that control the residual. Furthermore, we consider the role of weighted norms carefully
because they are essential for application of the theory to the codes. Because we are interested in

residual control, we consider only numerical methods that produce a piecewise-smooth solution
S(x) E C ~ [a, b]. An approximate solution with this much smoothness satisfies the ODEs with a

residual r(x) ,
S ' (x) = A (x) S (x) + q(x) + r(x) ,

and the boundary conditions with a residual 5,

9 + 5 = BaS(a) + SbS(b).

With these definitions and representation (6), it is then immediate that

b

s (x) - = Y()Q-15 + G(x , dr. (9)

In defining a realistic conditioning constant, we have to account for the fact that the codes

measure residuals in a relative sense. For instance, the codes measure the residual in the ODEs

relative to f(x, S(x)). Accordingly, for the conditioning constant we assume that the residual r(x)
in the ODEs is measured relative to a weight function w1(x) given as a diagonal matrix with

positive entries

m a x _
-- o< <b II_

Similarly, the residual ~ in the boundary conditions is measured relative to a constant diagonal

matrix w2 with positive entries

Estimating Conditioning of BVPs 1313

It is natural to measure the size of the error y(x)-S(x) relative to a quanti ty that depends on S(x),
hence with a weight function different from that used to measure the residual in the ODEs. To
account for this, we assume that the error is measured relative to a weight function wa(x) given
as a diagonal matr ix with positive entries

I lS(x) - y (x) N ~ = m a x [[w ; l (x) (S (x) - y (x)) [[o o .
a < : x < b

Using the various weights, a little manipulation of (9) results in

b
w;i(x)(S(x)-y(x)) = (w;i(x)Y(x)Q-iw2) (w;15)+ ff~ (w;l(x)G(x,t)wl(t)) (w~i(t)r(t)) dt.

From this equation it is then easy to deduce the bound

(io)

In this

= max IlwEl(z)G(x,t)wl(t)ll~ dt + [Iwal(x)Y(x)Q-lwell (11)
a e (x ~ b cx~

is a conditioning constant for the BVP because it relates the size of the error to the sizes of the
residuals in the ODEs and boundary conditions.

Deuflhard [8] discusses the solution of BVPs by multiple shooting. In this he develops a
measure of the sensitivity of a BVP and applies it to an interesting example that we examine
in Section 7. In his approach to the solution of linear BVPs (4),(5), it is assumed that the
fundamental solution Y(x) satisfies Y(a) = I. A solution of the BVP is sought in the form

y(x)=v(x)s

involving a particular solution yv(x) of (4). Then, y(z) is a solution of (4) for any s and it
satisfies (5) if, and only if,

Qs = [Ba + BbY(b)ls = ~ - [Bayp(a) + BbYp(b)].

Deuflhard describes Q as a sensitivity matrix and computes it numerically. He advocates using
a QR decomposition of the matrix for solving linear systems. With such a decomposition, he
obtains a lower bound on the condition of Q in the two norm from the maximum ratio of the
elements on the diagonal of _R.

The Jacobian of y(x) with respect to ~ satisfies

OYo~) - Y(x)-~ = Y(x)Q -1. (12)

Recalling that Y(a) = I, we see that the sensitivity of the solution at x = a to perturbations
in the boundary values ~ can be measured by IIQ -1 II, an interpretation of Deuflhard's measure
of sensitivity that is more closely related to our approach. However, it is clear from (12) that it
would be bet ter to assess the sensitivity of the solution throughout [a, b] with

max (llY(~)Q-~ll)
a < x < : b

(which is at least as big as [IQ-1]] because Y(a) = I). Comparing this quantity to (II) in this
case of no weights, we see that if Deuflhard's measure of sensitivity indicates ill-conditioning,
then so will our conditioning constant ~.

1314 L.F. SHAMPINE AND P. H. MUIR

5. E S T I M A T I N G

Generally, we cannot guarantee mathematically that a BVP has a solution, so we solve problems
numerically with the expectation on physical grounds that there is a solution. If the BVP does
not have a solution or the matter is computationally unclear, we would like a BVP solver to
provide some kind of warning. We have seen that the conditioning of the BVP is fundamental.
In this section we investigate an estimate for the conditioning constant (11).

It is standard result that diseretization of the ODEs with a one-step method and the boundary
conditions result in a system of linear algebraic equations with matrix

S1 R1 /
$2 R2

A = ".. . (13)

SN RN
Ba Bb

To state a standard resu!t about A, we define hi = zi+l - xi, h = maxhi , D = diag{Ri-1, . . . ,
RTv 1, I}, and

/ a (x l , x 2) . . . a (x l , z u + ~) Y (x l) Q -1
M - 1 - - ~ " . .

\ O(XN+I, 322) . . - O(ZN+I, XN+I) Y(XN+I)Q -1

The quantities G, Y, and Q here were defined in Section 4 and Ix ~N+I t i j i=l are the meshpoints
partitioning [a, b], defined in Section 2. Theorem 5.as of [5] states that

A -1 = M - ! D + O(h). (14)

This implies that for a sufficiently fine mesh,

IIA-111]]M- DJl . (15)

The way that we estimate the conditioning constant is clearer if we begin with the case of the
unweighted maximum norm treated in [5], where it is shown in Theorem 5.38 that

" M - i D " ~ = m a x (~ - ~ h j] l G (x ~ ' x j + l) " ~ + O (h) + " Y (x i) Q - l " ~) ' i j=l (16)

Interpreting the sums as approximations to integrals and using (15), we find that

(/:) llA-1iI max IIC(x, t) l l~dt + IIY(x)Q-111o¢ • (17)
' a < ~ : < b

The right-hand side of this expression is the conditioning constant (11) for this case. The BVP
solvers actually form the matrix A, so if we can estimate the norm of A -1, we can estimate g.
We remark that this is not the same as estimating the condition number of the matrix A, which
involves HAll too, a point emphasized by Ascher, Mattheij and Russell in their discussion of
conditioning constants for BVPs.

Now, we modify (17) to account for the weights appearing in the definition (11) of ~. In view of
the form (13) of the matrix A, we use the diagonal weight matrices w~(x), w2, wa(x) of Section 4
to define two block diagonal matrices

W12 = diag{wl(x~) , . . . , wl(xN+l), w2},

W3 = diag{w3(xl) , . . . , ~J]3(XN-t-1)}.

Estimating Conditioning of BVPs 1315

Introducing these matrices into (16) results in

IIW;1M-1DW12[[c,o :miax (~ hj [[~o31(xi)G(xi, xj+l)U31(xjT1)No¢
\ j----1

\

o(h) + +

Approximating sums by integrals and using (14) leads to

IIw -lA-1W1211 m a x dt + . a<x<b

Comparing this expression to (11), we see that for a sufficiently fine mesh, we have an approxi-
mation to the conditioning constant

(18)

6. C O M P U T I N G A N E S T I M A T E F O R

The question we must answer now is whether we can estimate n using (18) without significant
additional computational expense. Higham and Tisseur [3,4] have developed an iterative proce-
dure for estimating the one norm of a matrix C and implemented it in MATLAB as normes t l
and in FORTRAN as DLACON [9]. It provides a good estimate in just a few iterations, each
requiring the evaluation of C X and c T x for certain matrices X. The Mgorithm does not need
access to the matrix C itself, just the result of multiplying X on the left by C or C T. Within
each iteration the algorithm provides X together with an indication of which product it requires;
we compute this product in an auxiliary computation and return the result.

We now consider how to use this algorithm to estimate inexpensively the conditioning con-
stant ~. We first observe that for any matrix C, IICII~ = IICTI]I, so to estimate conditioning
constant by (18), we can apply the algorithm of Higham and Tisseur to

(W~1A-1W12) T

This requires us to compute the matrix products

v = (W lA-1W12) X and V -=- (W 3 1 A - 1 W 1 2) T X .

The first kind of product is computed by solving

A U = W12X, and then solving W 3 V = U.

The second kind is computed by first solving

W 3 Z = X , then solving A T u = Z, and finally forming V = W12U.

The weights are diagonal matrices so the computations involving them are easy and inexpensive.
The question, then, is how to solve efficiently linear systems involving A and its transpose. Here
is where we must recognize that A is a large, sparse, highly-structured matrix. Because bvp4c
and MIRKDC deal with this in different ways, the rest of the discussion is particular to the solver.

Sparse matrix technology is fully integrated into MATLAB, SO bvp4c forms the matrix A of (13)
and holds it as a general sparse matrix. An unusual aspect of this solver is that it does explicit

1316 L . F . SHAMPINE AND P. H. MUiR

row scaling by choosing a diagonal scaling matr ix S and then forming A = SA. A sparse LU
decomposition results in P A = LU. The solver forms the permuted diagonal mat r ix S = P S for

other purposes, so we have available the decomposition SA = LU. With this decomposition of A

and the transpose and backslash operators of MATLAB, it is then both easy and efficient to solve
the linear systems arising in the evaluation of the matr ix products.

In M I R K D C the matr ix A has a form different from (13) because this solver accepts only

BVPs with separated boundary conditions. For this class of problems it is natural to order the

equations differently so tha t A is an "almost block diagonal" matr ix, cf. [10]. Taking advantage

of this s t ructure so as to store only the entries tha t might be nonzero makes it practical to work

with large matrices. Equally important , linear systems involving such matrices can be solved
efficiently and stably with no fill-in by elimination using both row and column operations. The

matr ix decomposition is different from the sparse LU decomposition of bvp4c, but it is used

in the same way. To be specific, linear systems are solved in M I R K D C with the COLROW

package [11,12]. The subroutine BSPCNDMAX [13,14] uses DLACON [9] and a modification

of C O L R O W [15] to compute the condition number of an almost block diagonal matr ix in the
maximum norm. We have modified BSPCNDMAX and employed it within MIRKDC in order
to est imate IIW~A-1W~2li~.

As part of approximating the solution of the BVP, the matr ix A (or a row-scaled version of it)
is formed and decomposed. We see now tha t by solving a few more systems of linear equations

using this matr ix decomposition, we can est imate the conditioning constant a. In this, we can
take full advantage of the special s tructure of A. Indeed, it does not mat te r tha t bvp4c and

M I R K D C handle storage and the efficient solution of linear systems in very different ways. To

minimize the overhead, -are est imate ~ only when a discrete approximate solution tha t satisfies
the error criterion has been computed.

7. N U M E R I C A L E X P E R I M E N T S

In this section, we solve three BVPs with bvp4c and M I R K D C to illustrate our theoretical

developments. M I R K D C implements formulae of orders 2, 4, and 6, whereas bvp4c implements

only a formula of order 4. To make the numerical results for the two codes more comparable, we

present results here only for formulae of order 4. Results obtained with the other two formulae
of MIRKDC were qualitatively the same. Though broadly similar from a user's point of view,

the two codes differ notably in detail. In particular, the residual controls are different, bvp4c
has a relative residual tolerance RelTol and an absolute residual tolerance AbsTol. The default

values are RelTol = 10 -3 and AbsTol = 10 -6. This solver controls the residual in the ODEs in

a relative sense, i.e., it controls

Es (x) - fj(, s (x)) l

:nax(Ifj(,S())l,AbsTol/aelTol)' j = 1 , 2 , . . .

and similarly, the residual in the boundary conditions. MIRKDC has one tolerance tol and
controls

- fj(, S (x)) l

1 + tfj(~, s(~))l ' j = l , 2 , . . . , n .

The residual controls of the two codes differ considerably when AbsTol is ra ther smaller than

RelTol (as it is for the default values) and IS'(x)I (,~ If(x, S(x))l) is ra ther smaller than 1. The
residual controls are roughly equivalent when tol = RelTol = AbsTol, but they still differ so much
tha t direct comparisons are somewhat misleading.

The residual controls of the codes are a given, but in our s tudy of conditioning constants, we
must choose how to measure the error y(x) - S(x). In b~p4c we measure

i y j (x) - sj()l j = 1 , 2 , . . .
max(IS / (x)], AbsTol /Re lTol) '

Estimating Conditioning of BVPs 1317

and in M I R K D C we measure

IYJ (x) -S j (x) I j = 1 , 2 , . . . , n .
1 + {Sj(x)l '

Again, these measures differ considerably when AbsTol is ra ther smaller than RelTol and IS[is

rather smaller than 1.
In either code, if the product of the est imated conditioning constant n and the tolerance on

the residual is so large that inequality (10) does not guarantee any correct digits in the numerical

solution, it would be prudent to solve the problem again with a much more stringent tolerance

(and a much finer mesh). In our limited experiments, when there is no solution or more than

one, this has usually resulted in some kind of error message. If the solver did not actually fail,
it returned a larger than expected estimate for n, indicating tha t the computed solution should

not be trusted.

EXAMPLE 1. Bra tu ' s problem,

y"+ eY=0, y (0) = 0 = y (1) ,

arises in a model of spontaneous combustion. Davis [16] shows tha t for 0 < A < A* = 3 .51383. . . ,

there are two solutions. Both have a parabolic shape and are concave down. They approach each

other as), --+)~* and merge when A =)¢. There is no solution for A > ~*.

Using bvp4c (with default tolerances), we solved the BVP with A = 3.45 and plotted one

of the solutions as the lower curve in Figure 1. This was done without any difficulty using

default tolerances, an initial mesh of l i n s p a c e (0 , 1 , t 0) , initial guesses of zero for all mesh

point solution values, and default finite difference approximations to partial derivatives. Indeed,

solving the BVP was so easy tha t only the initial mesh was used. The conditioning constant was

est imated with the scheme of Section 6 to be 3.4 x 103. The code had to work much harder to
"solve" the BVP with A = 3.55, but it produced a pseudosolution on a mesh of 179 points. The

pseudosolution for A = 3.55 plotted in Figure 1 looks much like the true solution for A = 3.45,

so it is not obvious that there is no true solution for this value of A. The solver itself provided

no warning message, but the conditioning constant was es t imated to be 1.0 x 106. Considering

inequality (10), this is so big tha t it raises the question as to whether a numerical solution
computed with these tolerances has any correct digits.

To illustrate the effect of the accuracy requirement on the conditioning constant, we re-

peated these computat ions with the absolute residual tolerance increased so tha t AbsTol =

RelTol = 10 -3. The solution and pseudosolution looked the same as those of Figure 1 and the

numbers of mesh points were the same, but the conditioning constants were considerably smaller

with the new set of weights. The estimated conditioning constant was 1.2 x 101 for the solution
of A = 3.45 and 8.0 × 10 3 for the pseudosolution of A = 3.55. Though the constants were smaller

in this experiment, the conditioning constant for the pseudosolution was again much larger than

tha t for the solution and again it was so big tha t it is questionable whether the numerical so-

lution has any correct digits. In our experiments, we also observed tha t when sufficiently sharp

tolerances are employed, bvp4c will not compute a pseudosolution; rather the code will return
with an indication tha t it was not able to compute a solution.

EXAMPLE 2. I t is shown in [17] that the BVP

y " + {yl = 0, y(0) = 0, = B,

has a unique solution for B < 0, infinitely many solutions for B = 0, and no solution for B > 0.
We applied MIR KDC to this problem using tolerances of 10 -3, 10 -5, 10 -7, and a range of B

values. In each case we used a uniform initial mesh of five subintervals and initial guesses of
y(x) = Bx/zr and y'(x) = B/Tr. Specifically, we a t t empted to solve the BVP for B = 0 and

1318

1.4

L. F. SIIAMPINE AND P. H. IVImR

- - r L i i I I I

1.2

1

0.8~

{
0.6

0.4

0.2

0 i I I } { I { { {

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure !. Numerical solutions of Example 1 computed with bvp4c. The lower curve
is a genuine solution corresponding to the problem parameter A = 3.45; the upper
curve is a pseudosolution corresponding to ,~ = 3.55.

B = ±10-q for q = 1 , . . . , 4. For each value of B the solver returned a numerical solution, even

in the cases for which the BVP has no solution or more than one. Figure 2 shows the estimated

conditioning constants plotted on a logarithmic scale. (The data points are connected by straight

lines to make them more visible.) For all three tolerances ~(B) is small for the subcritical values

B < 0. At the critical value B = 0 where multiple solutions exist, there is a dramatic increase

in the estimated conditioning constant. The estimated conditioning constants remain large for

B > 0 where there is no solution and the code returns pseudosolutions. The product of ~ and

the tolerance on the residual is so large when B _> 0 that according to inequality (10), we cannot

be sure that the solution has any correct digits. For this example a large conditioning constant

provides a warning that there might be more than one solution or no solution at all.

EXAMPLE 3. Deuflhard [8] considers the BVP

3ey +0.1
Y" + (e + x~) 2 -- 0, y(±0.1) -- ~ ,

and notes its "sensitivity" when c = 0.01. Indeed, his shooting code finds a number of solutions of

the BVP then, and he describes this as "a significant failure" of the code. We would not describe

it that way because, with this value of e, the BVP has a family of solutions. The shooting code

has succeeded in producing a numerical solution with small residuals. On the other hand, we

would like for a code to report that it suspects there are other solutions when e = 0.01.

We solved this problem with MIRKDC for a range of e values and tolerances 10 -3, 10 -s , 10 -7.

In each case, we used a uniform initial mesh of five subintervals and initial guesses of zero. The

estimated conditioning constants are plotted on a logarithmic scale in Figure 3. (The data points

are connected by straight lines to make them more visible.) There is indeed a "spike" in ~(e)

Estimating Conditioning of BVPs 1319

10 9

108

10 7

10 s

10 5

104

103

10 z

101:

0 tOl=l 0 .3
x< t01=10 .5

-.x.. tol=lO "7

I I I I I

)~. . . .X ...

:I " " .]¢,-

~t

10
-0.1

109

108

107

108

10 s

104

103

102
0

I I I I I I I I I

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
B

Figure 2. Estimated conditioning constant ~ vs. problem parameter B of Example 2
computed with MIRKDC.

I I I I I I I

- ~ - t o l = l O "3

-¢-- tol=lO "5
• . x . . t o l = l O "7

0.1

× X
' ' ' ' - . .X"

"~ ~ * ' ' ' ' ' . , , X ' "
... " ' " x x x'" ~ ~/)

I (I I I

0,002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
E

Figure 3. Estimated conditioning constant ~ vs. problem parameter e of Example 3
computed with MIRKDC.

'<

' x ,

k " ' X . .
" * ~ . .

. $ ' ' X . . , . . .

f I I I
0.02

1320 L . F . SHAMPINE AND P. H. MuIa

at the value c = 0.01 co r re spond ing to the exis tence of mu l t ip l e solut ions. (M I R K D C did not

c o m p u t e a so lu t ion for c = 0.0t when the to le rance was 10 - 7 because N e w t o n ' s m e t h o d failed

to converge. T h e i t e r a t i o n ma t r i ce s were so i l l -condi t ioned t h a t no correc t d ig i ts were be ing

compu ted .)

The e s t ima te s for ~ a s soc ia t ed wi th the th ree to le rances are in r easonab le ag reemen t when we

cons ider t h a t t h e y are o b t a i n e d f rom ma t r i ce s based on different and r e l a t ive ly coarse meshes; our

c o m p u t a t i o n s are based on e s t ima te s ~ t h a t are on ly O(h) a p p r o x i m a t i o n s - - s e e (14) and (1 6) -

and thus for coarse meshes wi th large mesh spac ing h we expec t on ly c rude e s t ima te s of ~.

F u r t h e r m o r e , we only approximate a m a t r i x no rm wi th the a lgo r i t hm of H i g h a m and Tisseur .

8. C O N C L U S I O N S

I t is p laus ib le t h a t pseudoso lu t ions are more l ikely when the to le rances are c rude (and the mesh

is coarse) , and t h a t is w h a t we found in our exper imen t s . W i t h i ts e m p h a s i s on g raph ica l in ter -

p r e t a t i o n of solut ions , such to le rances are much more c o m m o n when solving p r o b l e m s in MATLAB

t h a n in genera l scientif ic c o m p u t a t i o n . By defau l t b v p 4 c a p p r o x i m a t e s p a r t i a l der iva t ives inter-

na l ly w i th f inite differences, t h o u g h it has an op t ion for ana ly t i ca l p a r t i a l der ivat ives . M I R K D C

requires ana ly t i ca l p a r t i a l der ivat ives , b u t numer ica l pa r t i a l der iva t ives are so convenient t h a t

t h e y are to be an op t i on in the nex t release of t he solver. I t is also p laus ib le t h a t pseudoso lu t ions

are more l ikely to be c o m p u t e d when p a r t i a l der iva t ives are a p p r o x i m a t e d numerica l ly , and t h a t

has been our exper ience .

In th is pape r , we have inves t iga ted a cond i t ion ing cons t an t a p p r o p r i a t e to B V P solvers t h a t

cont ro l res iduals and an inexpens ive way to e s t i m a t e th is cons tan t . In our expe r imen t s , th is esti-

m a t e d cond i t ion ing cons t an t ~ has been qui te helpful in recogniz ing t h a t a B V P has no so lu t ion

or more t h a n one. In pa r t i cu l a r , i t has been qui te helpful in d i s t ingu i sh ing pseudoso lu t ions from

t rue solut ions .

R E F E R E N C E S

1. J. Kierzenka and L.F. Shampine, A BVP solver based on residual control and the MATLAB PSE, ACM Trans.
Math. Softw. (to appear).

2. W.H. Enright and P.H. Muir, Runge-Kutta software with defect control for boundary value ODEs, SIAM].
Sei. Comput. 17, 479-497, (1996).

3. N.J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications
to condition estimation (Algorithm 674), ACM Trans. Math. Softw. 14, 381-396, (1988).

4. N.J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application to 1-norm
pseudospectra, SIAM J. Matrix. Anal. Appl. 21, 1185-1201, (2000).

5. U.M. Ascher, It.M.M. Mattheij and R.D. Russell, Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations, SIAM, Philadelphia, (1995).

6. It. Weiss, The application of implicit Runge-Kutta and collocation methods to boundary value problems,
Math. Comp. 28, 449-464, (1974).

7. L.F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New York,
(1994).

8. P. Deuflhard, Nonlinear equation solvers in boundary value problems, In Codes for Boundary-Value Problems
in Ordinary Differential Equations, (Edited by B. Childs et al.), pp. 40-66, Springer, New York, (1979).

9. E. Anderson, Z. Bai, C.H. Bischof, S. Blackford, J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A. Greenbaum,
S.J. Hammarling, A. McKenney and D. Sorensen, LAPACK Users' Guide, Third edition, SIAM, Philadelphia,
(1999).

10. P. Amodia et al., Almost block diagonal linear systems: Sequential and parallel solution techniques, and
applications, Numer. Linear Algebra Appl. 7, 275-317, (2000).

11. J.C. Diaz, C. Fairweather and P. Keast, FORTRAN packages for solving certain almost block diagonal linear
systems by modified alternate row and column elimination, ACM Trans. Math. Softw. 9, 358-375, (1983).

12. J.C. Diaz, G. Fairweather and P. Keast, Algorithm 603. COLROW and AItCECO: FORTRAN packages for
solving certain almost block diagonal linear systems by modified Mternate row and column elimination, ACM
Trans. Math. Softw. 9, 376-380, (1983).

13. J. Patterson, P.H. Muir and P. Keast, BSPCNDMAX, software for estimation of the max norm condition
number of an almost block diagonal matrix, h t tp : / /www.mscs , d a l . c a / ~ k e a s t / , (2001).

14. P. Keast and It. Affieck, BSPCND, software for estimation of the 1-norm condition number of an almost
block diagonal matrix, h t t p : / / ~ . roses, d a l . ca /~kea-~t / , (1997).

Estimating Conditioning of BVPs 1321

15. P. Keast, COLROW, h t t p : [/www.mscs.dal . c a / ~ k e a s t / , (1992).
16. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, (1962).
17. P.B. Bailey, L.F. Shampine and P.E. Waltman~ Nonlinear Two Point Boundary Value Problems, Academic

Press, New York, (1968).

