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Abst rac t - -An  alternative to control of the global error of a numerical solution to a boundary 
value problem (BVP) for ordinary differential equations (ODEs) is control of its residual, the amount  
by which it fails to satisfy the  ODEs and boundary conditions. Among the  methods used by codes 
tha t  control residuals are collocation, Runge-Kut ta  methods with continuous extensions, and shoot- 
ing. Specific codes tha t  concern us are bvp4c  of the MATLAB problem solving environment and the 
FORTRAN code MIRKDC for general scientific computation. The residual of a numerical solution 
is related to its global error by a conditioning constant. In this paper, we investigate a conditioning 
constant  appropriate for BVP solvers tha t  control residuals and show how to est imate it numerically 
at a modest cost. 

Codes tha t  control residuals can compute pseudosolutions, numerical solutions to BVPs tha t  do 
not have solutions. Tha t  is, a "well-behaved" approximate solution is computed for an ill-posed 
mathematical  problem. The estimate of conditioning is used to improve the robustness of bvp4c  and 
MIRKDC and in particular, help users identify when a pseudosolution may have been computed. 
(~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

This investigation began with a striking example. To illustrate its error messages, the MATLAB 

function bvp4c [1] was given a two-point boundary value problem (BVP) for a system of first- 
order ordinary differential equations (ODEs) that was known not to have a solution. The solver 
promptly computed and returned a plausible numerical solution with no messages of any kind! 
This solver computes a piecewise-polynomial solution S(x) using collocation. It controls the 
residual of this solution, the amount by which S(x) fails to satisfy the ODEs and boundary 
conditions. Evidently, the code has found a numerical solution S(x)  that satisfies well the ODEs 
and boundary conditions of a BVP that does not have a solution. We call such a numerical 
solution a pseudosolution. The FORTRAN code MIRKDC [2] is based on Runge-Kutta methods 
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with continuous extensions and it also solves BVPs by controlling residuals. Experimentation 
showed that  it can also produce pseudosolutions, suggesting that  they can arise in any method 
that  employs residual control. 

For a BVP with solution y(x), the size of the residual of a numerical solution S(x) is related 
to the size of the error y(z) - S(x) by a conditioning constant for the BVP. After some pre- 

liminaries, we begin with a discussion of residual control and pseudosolutions from the point of 
view of backward error analysis. We then investigate a conditioning constant that  is appropriate 

to understanding codes that  control residuals. Next, we show" how to estimate this conditioning 
constant using quantities formed whilst solving the BVP. Finally, we show how to make this 

estimate practical in bvp4c and MIRKDC by carefully using software for estimating a matrix 

condition number developed by Higham and Tisseur [3,4]. An inexpensive estimate of this con- 
ditioning constant improves the robustness of these BVP solvers and, in particular, helps users 

recognize the possibility of a pseudosolution. Some numerical examples illustrate the theoretical 
developments. 

2. P R E L I M I N A R I E S  

We make heavy use in this paper of results from Ascher, Mattheij and Russell [5] and, in 

particular, all results tha t  we describe as "standard" are found in this text.  Our attention is 
sharply focused on the methods implemented in bvp4c and MIRKDC, namely implicit Runge- 
Ku t t a  methods with continuous extensions. (bvp4c implements a collocation method, but  for 
first-order ODEs, collocation methods are equivalent to a class of implicit Runge-Kutta  methods 
with continuous extension [6].) When approximating the solution of a two-point BVP 

y'(x) = f (x ,  y(z)), (1) 

o = g(y(a),  y(b)), (2) 

on a mesh a = xl  < -..  < XN+I = b, such methods generally involve approximations at interme- 

diate points in addition to the accurate approximations at mesh points Yn ~ y(xn). By analytical 
condensation in the case of bvp4c and by the special form of the Runge-Kut ta  methods in the 
ease of MIRKDC, these intermediate approximations are eliminated and a numerical solution 
Y = [Yl,.-. ,YN+I] of approximations at mesh points only is computed. The discrete problem 
then has the form of a set of algebraic equations 

• ( z )  = 0. (3) 

After solving this set of nonlinear algebraic equations to obtain approximations at the mesh 
points, continuous extensions are used to obtain an approximate solution S(x) E Cl[a, b]. 

It is usual to discuss first BVPs with linear ODEs and linear boundary conditions and then to 
apply the results to nonlinear problems by linearizing about a solution of interest. The second 

part  is s tandard and the first exposes the issues, so we give our at tention to BVPs of the form 

y'(x) = A(x)y(x) + q(x), (4) 

/3 = Bay(a) + Bby(b), (5) 

with smooth coefficients A(x) E R ~×n, q(x) E R n, y(x) E R ~, and/3  E R "~, Ba,Bb E R ~×n. 
Standard results state that  if Y(x)  is the fundamental solution of the ODEs, then the BVP has 
a unique solution y(x) if, and only if, the matrix Q = BaY(a) + BbY(b) is nonsingular. When 
there is a solution, it can be expressed in terms of the Green's function G(x, t) as 

.b  

y(x) = Y ( x ) Q - ' 3  + / G(x,t)q(t)dt.  (6) 
Ja 
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3.  B A C K W A R D  E R R O R  A N A L Y S I S  

Codes like MIRKDC and bvp4c that  control the residual adopt the view of backward error 

analysis. In this view, a good numerical solution of a problem is one that  is the exact solution 
of a problem with data  close to the data  of the given problem. Whether  this solution is close 
to the exact solution of the given problem is then a mat ter  of the conditioning of the problem. 
In principle, it is clear that  there is a possibility of computing a numerical solution with a small 
residual to a problem that  has no solution. As mentioned earlier, we call such numerical solutions 
pseudosolutions and show by example in Section 7 that  they can occur in practice. 

Though not usually described in this way, codes for solving numerically initial value problems 

(IVPs) for ODEs can be regarded as controlling residuals. In the first instance, the methods 
produce a numerical solution at mesh points only. The codes control local errors and it is 
fundamental tha t  this controls the true (global) error only indirectly. More specifically, how 

accurate such a solution is depends on the stability (conditioning) of the IVP. Some methods have 
continuous extensions that  provide a piecewise-polynomial solution S(x) for the whole interval 
[a, b]. For theoretical purposes it is always possible to augment standard methods for IVPs 
with a piecewise-smooth continuous extension [7]. Moreover, the residual of S(x) can have a size 
comparable to the local error controlled by the code. With this in mind, we can say that  standard 
methods for solving IVPs control the size of the residual of a piecewise-smooth function S(x). 
Whether  S(x) is close to y(x) depends then on the conditioning of the IVP. 

We can use the observation of the preceding paragraph to understand that  shooting codes 
for BVPs can be interpreted as controlling residuals. A simple shooting code proceeds as fol- 
lows. Some components of y(a) are not known. With approximations for these components, the 
ODEs (1) are integrated from a to b with local error control that  produces a numerical solution 
S(x) with a small residual. The approximations at the two end points are substituted into the 
boundary conditions (2), and a residual 5 = g(S(a), S(b)) is found. A Newton iteration is used to 
find values of the unknown components that  make 5 = 0. From this we see that  the code controls 
the residual of S(x) in the ODEs and its residual 5 in the boundary conditions. A multiple 
shooting code partitions [a, b] and solves a local IVP with approximate initial conditions over 
each subinterval. Matching conditions at the ends of subintervals and boundary conditions are 

then applied, yielding a large nonlinear algebraic system whose unknowns are the mesh point 
solution approximations which provide the initial conditions. This nonlinear system is solved 

by a Newton iteration and upon convergence this scheme produces a piecewise-smooth function 
S(x) that  satisfies the ODEs and boundary conditions with small residuals. We do not claim 
that  residual control is a good description of what is done in practice when solving IVPs, hence 

when solving BVPs with a shooting method. Rather we claim that  the residual control seen in 
MIRKDC and bvp4c is not so very different from what is done in the more familiar situation of 
a shooting code. 

There is an obvious distinction between the error controls of codes for IVPs and BVPs. It is 
considered too expensive to control the global (true) error when solving IVPs, so there are very 

few codes that  do. On the other hand, solving BVPs is more difficult and for popular methods it 

is possible to control an estimate of the global error at little additional expense. For this reason, 
BVP codes like MIRKDC and bvp4c that  control residuals instead of estimates of the global error 
are unusual. On the other hand, residual control is a reasonable way to proceed according to 
backward error analysis, it has been very successful with IVPs, and it has important  advantages 
with respect to robustness. 

Experience with IVPs helps us appreciate the distinction between control of residuals and the 
true error, but the IVPs that  arise in practice invariably have a solution, at least locally, and this 
is not true for BVPs. The solution of a system of linear algebraic equations 

A x  = b, (7) 
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provides a bet ter  analogy in this respect. The backward error analysis point of view is funda- 
mental to understanding numerical linear algebra. In particular, we expect Gaussian elimination 
to produce a solution z tha t  satisfies (7) with a small residual r 

A z  = b + r. (8) 

It is generally appreciated that  this does not imply that  z is close to x, that  being a mat ter  of 
the conditioning of the problem. Suppose now that  A is singular and (7) is inconsistent but z is 
such that  (8) is consistent for some r with ilrit small. We would call such a z a pseudosolution 
of (7). The given problem (7) has no solution, but  z is a solution in the sense of backward error 

analysis--i t  is the exact solution of a problem with data  close to that  of the given problem. An 
important  difference between solving systems of linear algebraic equations and BVPs is that  (7) 
is usually solved as accurately as possible while BVPs are often solved to modest  accuracy using 
crude meshes. Furthermore, one is more likely to compute a pseudosolution when the requested 
tolerance is coarse. For this reason, while pseudosolutions might arise in the more familiar context 

of solving a system of linear algebraic equations, they are much more likely to arise when solving 

BVPs with methods that  control residuals. 

From the point of view of backward error analysis, any numerical solution S(x )  of a BVP 
that  has small residuals in the ODEs and boundary conditions is a good solution. Whether  the 
global error y(x)  - S (x )  is small depends on the conditioning of the BVP, so we investigate now 

a conditioning constant appropriate for BVP solvers tha t  control residuals. 

4 .  T H E  C O N D I T I O N I N G  C O N S T A N T  

In this section, we investigate a conditioning constant for linear BVPs (4),(5). The analysis 
is closely related to that  of [5, pp. 111-112], but  the conditioning constant itself is tailored for 
methods that  control the residual. Furthermore, we consider the role of weighted norms carefully 
because they are essential for application of the theory to the codes. Because we are interested in 

residual control, we consider only numerical methods that  produce a piecewise-smooth solution 
S(x )  E C ~ [a, b]. An approximate solution with this much smoothness satisfies the ODEs with a 

residual r(x) ,  
S ' (x )  = A ( x ) S ( x )  + q(x) + r(x) ,  

and the boundary conditions with a residual 5, 

9 + 5 = BaS(a) + SbS(b). 

With these definitions and representation (6), it is then immediate that 

b 

s ( x )  - = Y( )Q-15 + G(x ,  dr. (9) 

In defining a realistic conditioning constant, we have to account for the fact that the codes 

measure residuals in a relative sense. For instance, the codes measure the residual in the ODEs 

relative to f(x, S(x)). Accordingly, for the conditioning constant we assume that the residual r(x) 
in the ODEs is measured relative to a weight function w1(x) given as a diagonal matrix with 

positive entries 

m a x  _ 
-- o< <b II_ 

Similarly, the residual ~ in the boundary conditions is measured relative to a constant diagonal 

matrix w2 with positive entries 
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It is natural  to measure the size of the error y(x)-S(x) relative to a quanti ty that  depends on S(x), 
hence with a weight function different from that  used to measure the residual in the ODEs. To 
account for this, we assume that  the error is measured relative to a weight function wa(x) given 
as a diagonal matr ix with positive entries 

I lS(x)  - y ( x ) N ~  = m a x  [ [ w ; l ( x ) ( S ( x )  - y ( x ) ) [ [ o o .  
a < : x < b  

Using the various weights, a little manipulation of (9) results in 

b 
w;i(x)(S(x)-y(x))  = (w;i(x)Y(x)Q-iw2) (w;15)+ ff~ (w;l(x)G(x,t)wl(t)) (w~i(t)r(t)) dt. 

From this equation it is then easy to deduce the bound 

(io) 

In this 

= max IlwEl(z)G(x,t)wl(t)ll~ dt + [Iwal(x)Y(x)Q-lwell (11) 
a e ( x ~ b  cx~ 

is a conditioning constant for the BVP because it relates the size of the error to the sizes of the 
residuals in the ODEs and boundary conditions. 

Deuflhard [8] discusses the solution of BVPs by multiple shooting. In this he develops a 
measure of the sensitivity of a BVP and applies it to an interesting example that  we examine 
in Section 7. In his approach to the solution of linear BVPs (4),(5), it is assumed that  the 
fundamental solution Y(x) satisfies Y(a) = I. A solution of the BVP is sought in the form 

y(x)=v(x)s 

involving a particular solution yv(x) of (4). Then, y(z) is a solution of (4) for any s and it 
satisfies (5) if, and only if, 

Qs = [Ba + BbY(b)ls = ~ - [Bayp(a) + BbYp(b)]. 

Deuflhard describes Q as a sensitivity matrix and computes it numerically. He advocates using 
a QR decomposition of the matrix for solving linear systems. With such a decomposition, he 
obtains a lower bound on the condition of Q in the two norm from the maximum ratio of the 
elements on the diagonal of _R. 

The Jacobian of y(x) with respect to ~ satisfies 

OYo~) - Y(x)-~ = Y(x)Q -1. (12) 

Recalling that  Y(a) = I, we see that  the sensitivity of the solution at x = a to perturbations 
in the boundary values ~ can be measured by IIQ -1 II, an interpretation of Deuflhard's measure 
of sensitivity that  is more closely related to our approach. However, it is clear from (12) that  it 
would be bet ter  to assess the sensitivity of the solution throughout  [a, b] with 

max (llY(~)Q-~ll) 
a < x < : b  

(which is at least as big as [IQ-1]] because Y(a) = I). Comparing this quantity to (II) in this 
case of no weights, we see that  if Deuflhard's measure of sensitivity indicates ill-conditioning, 
then so will our conditioning constant ~. 
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5. E S T I M A T I N G  

Generally, we cannot guarantee mathematically that  a BVP has a solution, so we solve problems 
numerically with the expectation on physical grounds that  there is a solution. If the BVP does 
not have a solution or the matter  is computationally unclear, we would like a BVP solver to 
provide some kind of warning. We have seen that  the conditioning of the BVP is fundamental. 
In this section we investigate an estimate for the conditioning constant (11). 

It is standard result that  diseretization of the ODEs with a one-step method and the boundary 
conditions result in a system of linear algebraic equations with matrix 

S1 R1 / 
$2 R2 

A = ".. . (13) 

SN RN 
Ba Bb 

To state a standard resu!t about A, we define hi = zi+l - xi, h = maxhi ,  D = diag{Ri-1, . . . ,  
RTv 1, I}, and 

/ a ( x l , x 2 )  . . .  a ( x l , z u + ~ )  Y ( x l ) Q  -1 
M - 1 - -  ~ " . . 

\ O(XN+I, 322 ) . . -  O(ZN+I, XN+I) Y(XN+I)Q -1 

The quantities G, Y, and Q here were defined in Section 4 and Ix ~N+I t i j i=l  are the meshpoints 
partitioning [a, b], defined in Section 2. Theorem 5.as of [5] states that  

A -1 = M - ! D  + O(h). (14) 

This implies that  for a sufficiently fine mesh, 

IIA-111 ]]M- DJl . (15) 

The way that  we estimate the conditioning constant is clearer if we begin with the case of the 
unweighted maximum norm treated in [5], where it is shown in Theorem 5.38 that  

" M - i D " ~ = m a x ( ~ - ~ h j ] l G ( x ~ ' x j + l ) " ~ + O ( h ) + " Y ( x i ) Q - l " ~ )  ' i  j=l (16) 

Interpreting the sums as approximations to integrals and using (15), we find that  

(/: ) llA-1iI  max IIC(x, t) l l~dt  + IIY(x)Q-111o¢ • (17) 
' a < ~ : < b  

The right-hand side of this expression is the conditioning constant (11) for this case. The BVP 
solvers actually form the matrix A, so if we can estimate the norm of A -1, we can estimate g. 
We remark that  this is not the same as estimating the condition number of the matrix A, which 
involves HAll too, a point emphasized by Ascher, Mattheij and Russell in their discussion of 
conditioning constants for BVPs. 

Now, we modify (17) to account for the weights appearing in the definition (11) of ~. In view of 
the form (13) of the matrix A, we use the diagonal weight matrices w~(x), w2, wa(x) of Section 4 
to define two block diagonal matrices 

W12 = diag{wl(x~) , . . . ,  wl(xN+l), w2}, 

W3 = diag{w3(xl) , . . . ,  ~J]3(XN-t-1)}. 
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Introducing these matrices into (16) results in 

IIW;1M-1DW12[[c,o :miax ( ~  hj [[~o31(xi)G(xi, xj+l)U31(xjT1)No¢ 
\ j----1 

\ 

o(h) + + 

Approximating sums by integrals and using (14) leads to 

IIw -lA-1W1211  m a x  dt + . a<x<b 

Comparing this expression to (11), we see that  for a sufficiently fine mesh, we have an approxi- 
mation to the conditioning constant 

(18) 

6. C O M P U T I N G  A N  E S T I M A T E  F O R  

The question we must answer now is whether we can estimate n using (18) without significant 
additional computational expense. Higham and Tisseur [3,4] have developed an iterative proce- 
dure for estimating the one norm of a matrix C and implemented it in MATLAB as normes t l  
and in FORTRAN as DLACON [9]. It provides a good estimate in just a few iterations, each 
requiring the evaluation of C X  and c T x  for certain matrices X. The Mgorithm does not need 
access to the matrix C itself, just the result of multiplying X on the left by C or C T. Within 
each iteration the algorithm provides X together with an indication of which product it requires; 
we compute this product in an auxiliary computation and return the result. 

We now consider how to use this algorithm to estimate inexpensively the conditioning con- 
stant ~. We first observe that  for any matrix C, IICII~ = IICTI]I, so to estimate conditioning 
constant by (18), we can apply the algorithm of Higham and Tisseur to 

(W~1A-1W12)  T 

This requires us to compute the matrix products 

v = (W lA-1W12) X and V -=- ( W 3 1 A - 1 W 1 2 )  T X .  

The first kind of product is computed by solving 

A U  = W12X, and then solving W 3 V  = U. 

The second kind is computed by first solving 

W 3 Z  = X ,  then solving A T u  = Z, and finally forming V = W12U. 

The weights are diagonal matrices so the computations involving them are easy and inexpensive. 
The question, then, is how to solve efficiently linear systems involving A and its transpose. Here 
is where we must recognize that  A is a large, sparse, highly-structured matrix. Because bvp4c 
and MIRKDC deal with this in different ways, the rest of the discussion is particular to the solver. 

Sparse matrix technology is fully integrated into MATLAB, SO bvp4c forms the matrix A of (13) 
and holds it as a general sparse matrix. An unusual aspect of this solver is that  it does explicit 
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row scaling by choosing a diagonal scaling matr ix  S and then forming A = SA.  A sparse LU 
decomposition results in P A  = LU. The solver forms the permuted diagonal mat r ix  S = P S  for 

other purposes, so we have available the decomposition SA = LU. With this decomposition of A 

and the transpose and backslash operators of MATLAB, it is then both  easy and efficient to solve 
the linear systems arising in the evaluation of the matr ix  products.  

In M I R K D C  the matr ix  A has a form different from (13) because this solver accepts only 

BVPs with separated boundary  conditions. For this class of problems it is natural  to order the 

equations differently so tha t  A is an "almost block diagonal" matr ix,  cf. [10]. Taking advantage 

of this s t ructure so as to store only the entries tha t  might be nonzero makes it practical to work 

with large matrices. Equally important ,  linear systems involving such matrices can be solved 
efficiently and stably with no fill-in by elimination using both row and column operations. The 

matr ix  decomposition is different from the sparse LU decomposition of bvp4c, but it is used 

in the same way. To be specific, linear systems are solved in M I R K D C  with the COLROW 

package [11,12]. The subroutine BSPCNDMAX [13,14] uses DLACON [9] and a modification 

of C O L R O W  [15] to compute the condition number of an almost block diagonal matr ix  in the 
maximum norm. We have modified BSPCNDMAX and employed it within MIRKDC in order 
to est imate IIW~A-1W~2li~. 

As part  of approximating the solution of the BVP, the matr ix  A (or a row-scaled version of it) 
is formed and decomposed. We see now tha t  by solving a few more systems of linear equations 

using this matr ix  decomposition, we can est imate the conditioning constant a. In this, we can 
take full advantage of the special s tructure of A. Indeed, it does not mat te r  tha t  bvp4c and 

M I R K D C  handle storage and the efficient solution of linear systems in very different ways. To 

minimize the overhead, -are est imate ~ only when a discrete approximate  solution tha t  satisfies 
the error criterion has been computed. 

7. N U M E R I C A L  E X P E R I M E N T S  

In this section, we solve three BVPs with bvp4c and M I R K D C  to illustrate our theoretical 

developments. M I R K D C  implements formulae of orders 2, 4, and 6, whereas bvp4c implements 

only a formula of order 4. To make the numerical results for the two codes more comparable,  we 

present results here only for formulae of order 4. Results obtained with the other two formulae 
of MIRKDC were qualitatively the same. Though broadly similar from a user's point of view, 

the two codes differ notably in detail. In particular, the residual controls are different, bvp4c 
has a relative residual tolerance RelTol and an absolute residual tolerance AbsTol. The default 

values are RelTol = 10 -3 and AbsTol = 10 -6. This solver controls the residual in the ODEs in 

a relative sense, i.e., it controls 

Es (x) - fj( , s ( x ) ) l  

:nax(Ifj( ,S( ))l,AbsTol/aelTol)' j = 1 , 2 , . . .  

and similarly, the residual in the boundary  conditions. MIRKDC has one tolerance tol and 
controls 

- fj( , S ( x ) ) l  

1 + tfj(~, s(~))l  ' j = l , 2 , . . . , n .  

The residual controls of the two codes differ considerably when AbsTol is ra ther  smaller than 

RelTol (as it is for the default values) and IS'(x)I (,~ If(x,  S(x))l) is ra ther  smaller than  1. The 
residual controls are roughly equivalent when tol = RelTol = AbsTol, but  they still differ so much 
tha t  direct comparisons are somewhat  misleading. 

The residual controls of the codes are a given, but  in our s tudy of conditioning constants, we 
must choose how to measure the error y(x) - S(x). In b~p4c we measure 

i y j (x )  - sj( )l j = 1 , 2 , . . .  
max(IS  / (x)], AbsTol /Re lTol )  ' 
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and in M I R K D C  we measure 

IYJ (x ) -S j ( x ) I  j = 1 , 2 , . . . , n .  
1 +  {Sj(x)l  ' 

Again, these measures differ considerably when AbsTol is ra ther  smaller than RelTol and IS[ is 

rather  smaller than 1. 
In either code, if the product  of the est imated conditioning constant n and the tolerance on 

the residual is so large that  inequality (10) does not guarantee any correct digits in the numerical 

solution, it would be prudent  to solve the problem again with a much more stringent tolerance 

(and a much finer mesh). In our limited experiments, when there is no solution or more than 

one, this has usually resulted in some kind of error message. If  the solver did not actually fail, 
it returned a larger than  expected estimate for n, indicating tha t  the computed solution should 

not be trusted. 

EXAMPLE 1. Bra tu ' s  problem, 

y"+ eY=0, y ( 0 ) = 0 = y ( 1 ) ,  

arises in a model of spontaneous combustion. Davis [16] shows tha t  for 0 < A < A* = 3 .51383. . . ,  

there are two solutions. Both have a parabolic shape and are concave down. They  approach each 

other as ), --+ )~* and merge when A = )¢. There is no solution for A > ~*. 

Using bvp4c (with default tolerances), we solved the BVP with A = 3.45 and plotted one 

of the solutions as the lower curve in Figure 1. This was done without  any difficulty using 

default tolerances, an initial mesh of l i n s p a c e ( 0 , 1 , t 0 ) ,  initial guesses of zero for all mesh 

point solution values, and default finite difference approximations to partial  derivatives. Indeed, 

solving the BVP was so easy tha t  only the initial mesh was used. The conditioning constant was 

est imated with the scheme of Section 6 to be 3.4 x 103. The code had to work much harder to 
"solve" the BVP with A = 3.55, but  it produced a pseudosolution on a mesh of 179 points. The 

pseudosolution for A = 3.55 plotted in Figure 1 looks much like the true solution for A = 3.45, 

so it is not obvious that  there is no true solution for this value of A. The solver itself provided 

no warning message, but  the conditioning constant was es t imated to be 1.0 x 106. Considering 

inequality (10), this is so big tha t  it raises the question as to whether a numerical solution 
computed with these tolerances has any correct digits. 

To illustrate the effect of the accuracy requirement on the conditioning constant, we re- 

peated these computat ions with the absolute residual tolerance increased so tha t  AbsTol = 

RelTol = 10 -3. The solution and pseudosolution looked the same as those of Figure 1 and the 

numbers of mesh points were the same, but the conditioning constants were considerably smaller 

with the new set of weights. The estimated conditioning constant was 1.2 x 101 for the solution 
of A = 3.45 and 8.0 × 10 3 for the pseudosolution of A = 3.55. Though the constants were smaller 

in this experiment,  the conditioning constant for the pseudosolution was again much larger than 

tha t  for the solution and again it was so big tha t  it is questionable whether the numerical so- 

lution has any correct digits. In our experiments, we also observed tha t  when sufficiently sharp 

tolerances are employed, bvp4c will not compute a pseudosolution; rather  the code will return 
with an indication tha t  it was not able to compute a solution. 

EXAMPLE 2. I t  is shown in [17] that  the BVP 

y " +  {yl = 0, y(0) = 0, = B,  

has a unique solution for B < 0, infinitely many solutions for B = 0, and no solution for B > 0. 
We applied MIR KDC  to this problem using tolerances of 10 -3,  10 -5,  10 -7,  and a range of B 

values. In each case we used a uniform initial mesh of five subintervals and initial guesses of 
y(x) = Bx/zr and y'(x) = B/Tr. Specifically, we a t t empted  to solve the BVP for B = 0 and 
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Figure !. Numerical solutions of Example 1 computed with bvp4c. The lower curve 
is a genuine solution corresponding to the problem parameter A = 3.45; the upper 
curve is a pseudosolution corresponding to ,~ = 3.55. 

B = ±10-q  for q = 1 , . . . ,  4. For each value of B the solver returned a numerical solution, even 

in the cases for which the BVP has no solution or more than one. Figure 2 shows the estimated 

conditioning constants plotted on a logarithmic scale. (The data points are connected by straight 

lines to make them more visible.) For all three tolerances ~(B) is small for the subcritical values 

B < 0. At the critical value B = 0 where multiple solutions exist, there is a dramatic increase 

in the estimated conditioning constant. The estimated conditioning constants remain large for 

B > 0 where there is no solution and the code returns pseudosolutions. The product of ~ and 

the tolerance on the residual is so large when B _> 0 that  according to inequality (10), we cannot 

be sure that  the solution has any correct digits. For this example a large conditioning constant 

provides a warning that  there might be more than one solution or no solution at all. 

EXAMPLE 3. Deuflhard [8] considers the BVP 

3ey +0.1 
Y" + (e + x~) 2 -- 0, y(±0.1) -- ~ ,  

and notes its "sensitivity" when c = 0.01. Indeed, his shooting code finds a number of solutions of 

the BVP then, and he describes this as "a significant failure" of the code. We would not describe 

it that  way because, with this value of e, the BVP has a family of solutions. The shooting code 

has succeeded in producing a numerical solution with small residuals. On the other hand, we 

would like for a code to report that  it suspects there are other solutions when e = 0.01. 

We solved this problem with MIRKDC for a range of e values and tolerances 10 -3, 10 -s ,  10 -7. 

In each case, we used a uniform initial mesh of five subintervals and initial guesses of zero. The 

estimated conditioning constants are plotted on a logarithmic scale in Figure 3. (The data points 

are connected by straight lines to make them more visible.) There is indeed a "spike" in ~(e) 
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Figure 2. Estimated conditioning constant ~ vs. problem parameter B of Example 2 
computed with MIRKDC. 
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at  the  value c = 0.01 co r re spond ing  to  the  exis tence  of mu l t ip l e  solut ions.  ( M I R K D C  did  not  

c o m p u t e  a so lu t ion  for c = 0.0t  when  the  to le rance  was 10 - 7  because  N e w t o n ' s  m e t h o d  failed 

to  converge.  T h e  i t e r a t i o n  ma t r i ce s  were so i l l -condi t ioned  t h a t  no correc t  d ig i ts  were be ing  

compu ted . )  

The  e s t ima te s  for ~ a s soc ia t ed  wi th  the  th ree  to le rances  are  in r easonab le  ag reemen t  when  we 

cons ider  t h a t  t h e y  are  o b t a i n e d  f rom ma t r i ce s  based  on different  and  r e l a t ive ly  coarse  meshes;  our  

c o m p u t a t i o n s  are  based  on e s t ima te s  ~ t h a t  are  on ly  O(h) a p p r o x i m a t i o n s - - s e e  (14) and  ( 1 6 ) -  

and  thus  for coarse  meshes  wi th  large mesh spac ing  h we expec t  on ly  c rude  e s t ima te s  of ~. 

F u r t h e r m o r e ,  we only  approximate a m a t r i x  no rm wi th  the  a lgo r i t hm of  H i g h a m  and  Tisseur .  

8. C O N C L U S I O N S  

I t  is p laus ib le  t h a t  pseudoso lu t ions  are  more  l ikely when the  to le rances  are  c rude  (and the  mesh  

is coarse) ,  and  t h a t  is w h a t  we found in our  exper imen t s .  W i t h  i ts  e m p h a s i s  on g raph ica l  in ter -  

p r e t a t i o n  of solut ions ,  such to le rances  are  much more  c o m m o n  when  solving p r o b l e m s  in MATLAB 

t h a n  in genera l  scientif ic  c o m p u t a t i o n .  By  defau l t  b v p 4 c  a p p r o x i m a t e s  p a r t i a l  der iva t ives  inter-  

na l ly  w i th  f inite differences,  t h o u g h  it  has  an op t ion  for ana ly t i ca l  p a r t i a l  der ivat ives .  M I R K D C  

requires  ana ly t i ca l  p a r t i a l  der ivat ives ,  b u t  numer ica l  pa r t i a l  der iva t ives  are  so convenient  t h a t  

t h e y  are  to  be an  op t i on  in the  nex t  release of t he  solver. I t  is also p laus ib le  t h a t  pseudoso lu t ions  

are more  l ikely to  be c o m p u t e d  when  p a r t i a l  der iva t ives  are  a p p r o x i m a t e d  numerica l ly ,  and  t h a t  

has  been  our  exper ience .  

In  th is  pape r ,  we have inves t iga ted  a cond i t ion ing  cons t an t  a p p r o p r i a t e  to  B V P  solvers t h a t  

cont ro l  res iduals  and  an inexpens ive  way  to e s t i m a t e  th is  cons tan t .  In  our  expe r imen t s ,  th is  esti-  

m a t e d  cond i t ion ing  cons t an t  ~ has been  qui te  helpful  in recogniz ing t h a t  a B V P  has  no so lu t ion  

or more  t h a n  one. In  pa r t i cu l a r ,  i t  has  been  qui te  helpful  in d i s t ingu i sh ing  pseudoso lu t ions  from 

t rue  solut ions .  
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