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Abstract

In this paper we describe BACOL, a high-order, spatially and temporally adaptive software package for
solving systems of one-dimensional parabolic partial di7erential equations and then compare it with several
related software packages. BACOL employs collocation at Gaussian points with a B-spline basis for the spatial
discretization. A modi;cation of DASSL is used for the time integration of the resulting di7erential-algebraic
equations. An equidistribution principle is implemented for the spatial mesh adaptation based on a high-quality
a posteriori error estimate, and the spatial error tolerance is coupled with the temporal error tolerance to provide
a balanced spatial–temporal error control. We compare BACOL with a related software package, EPDCOL,
which uses a ;xed-spatial-mesh approach, with several other packages which provide spatial and temporal
adaptivity, namely D03PPF, TOMS731, MOVCOL, and with one package, HPNEW, which provides spatial
and temporal error control. Numerical results demonstrate that BACOL is robust and that it is generally
signi;cantly more eBcient than existing solvers for problems having solutions with rapid spatial variation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the conventional method of lines (MOL) approach, one solves a system of parabolic partial dif-
ferential equations (PDEs) by reducing the PDE system to a system of ordinary di7erential equations
(ODEs) or di7erential algebraic equations (DAEs). Temporal error control is obtained through the
adaptive time stepsize selection (and possibly order selection) algorithm employed by the ODE/DAE

� Partially supported by the Natural Sciences and Engineering Research Council of Canada.
∗ Corresponding author. Tel.: +1-19024310718; fax: +1-19024945130.
E-mail addresses: wang@mathstat.dal.ca (R. Wang), keast@mathstat.dal.ca (P. Keast), muir@stmarys.ca (P. Muir).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2003.12.016

mailto:wang@mathstat.dal.ca
mailto:keast@mathstat.dal.ca
mailto:muir@stmarys.ca


128 R. Wang et al. / Journal of Computational and Applied Mathematics 169 (2004) 127–150

software. In the past 20 years, adaptive methods for the discretization of the spatial domain of a
system of PDEs have drawn considerable attention. The use of adaptive mesh re;nement techniques
provides a far more eBcient way to treat problems with solutions exhibiting rapid spatial variation.
Three basic spatial mesh adaptation strategies are mesh re;nement or coarsening (h-re;nement) [2],

moving mesh (r-re;nement) [20], and order variation in the spatial discretization method
(p-re;nement) [9,10]. Combining two or three di7erent strategies, we can generate more sophis-
ticated techniques, e.g., hp-re;nement [2,3]. (In case of time-dependent PDEs (e.g., parabolic or
hyperbolic PDEs), p-re;nement, to our knowledge, is never applied alone as this would imply a
;xed spatial mesh.) Although the adaptive method of lines (AMOL) for solving parabolic PDE
systems has been studied for some time, there are relatively few robust, general purpose software
packages using these techniques for the solution of systems of one-dimensional (1D) parabolic PDEs.
Even fewer of these packages employ high-order spatial and temporal discretization schemes. To our
knowledge, only the HPSIRK [25], HPDASSL [25] and HPNEW [26] packages provide spatial and
temporal error control (and they are experimental codes). Furthermore, little comparison has been
made between these software packages (e.g., [25]).
In Section 2, we brieKy describe the new software we have developed, the B-spline Adaptive

COLlocation (BACOL) package, for 1D parabolic PDE systems. A major feature of BACOL is that it
uses high-order, adaptive approximations to control the error in both space and time. An approximate
solution is computed in a degree p piecewise polynomial subspace represented by a B-spline basis
[17]. The spatial discretization is performed using collocation at Gaussian points. A modi;cation
of DASSL [27], a well-known DAE solver which uses backward di7erentiation formulas (BDF),
is employed for solving the resultant DAE system (providing temporal adaptivity and temporal
error control). A high-quality spatial error estimate is obtained using a second approximate solution
computed in a degree p+1 piecewise polynomial subspace. A remeshing strategy is developed based
on an error equidistribution principle; this algorithm can vary the number of subintervals as well as
the location of the mesh points, in order to eBciently control the spatial error.
The main goal of this paper is to present a comparison of BACOL with several other related

software packages which we will describe in Section 3. This will include most of the currently ex-
isting spatially and temporally adaptive software packages for 1D parabolic PDE systems, including
D03PPF from the NAG library, TOMS731 [12], MOVCOL [20] and HPNEW [26]. We will also
include a comparison with the collocation solver, PDECOL [23]/EPDCOL [21], even though it does
not have a spatial mesh adaptation capability, because it is closely related to BACOL in terms of
its spatial discretization algorithm. In Section 4, we present a number of numerical experiments, in
which we compare BACOL with above solvers on a challenging set of test problems. Section 5
provides our conclusions.
The numerical results presented in this paper clearly show that BACOL is robust and generally

considerably more eBcient than any other available software package for 1D parabolic PDEs for
diBcult problems having solutions with rapid spatial variation, especially when a highly accurate
approximate solution is required.

1.1. Problem class

We will consider systems of 1D time-dependent parabolic PDEs of the form

ut(x; t) = f(t; x; u(x; t); ux(x; t); uxx(x; t)); xa6 x6 xb; t¿ t0; (1)
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where initial conditions are given by u(x; t0)=u0(x), xa6 x6 xb, and separated boundary conditions
(BCs) are given by

bL(t; u(xa; t); ux(xa; t)) = 0; t¿ t0; bR(t; u(xb; t); ux(xb; t)) = 0; t¿ t0; (2)

where u(x; t) is a vector of dimension NPDE, and NPDE is the number of PDEs. It is assumed that
f(t; x; u(x; t); ux(x; t); uxx(x; t)) is such that the system is parabolic.
The spatial domain for our problem class is [xa; xb], and the time domain is (t0;∞). However,

without loss of generality (see [29] for explanation), in order to simplify the discussion in this paper,
we assume xa = 0, xb = 1, and t0 = 0, although we do wish to emphasize that BACOL is able to
handle the general domain [xa; xb]× (t0;∞).

2. Description of BACOL software package

2.1. Spatial discretization

To solve (1)–(2) numerically, we consider a mesh consisting of an increasing sequence of N +1
points (N ¿ 1) in [0; 1] such that

0 = x0¡x1¡ · · ·¡xN = 1: (3)

We associate with the mesh piecewise polynomials of degree p, i.e., we introduce a polynomial of
degree p for each subinterval, [xi−1; xi], i = 1; : : : ; N ; C1-continuity at the internal mesh points is
imposed. Thus, the dimension of this piecewise polynomial subspace is NC = N (p − 1) + 2.
The spatial discretization is closely related to that of the PDECOL [23]/EPDCOL [21] packages.

We employ B-splines of degree p, where p (36p6 11) is speci;ed by the user, implemented
via the De Boor B-spline package [16]. Let {Bi(x)}NCi=1 be the B-spline basis associated with mesh
(3) and having C1-continuity (see [17] for details). The sth component of the solution, us(x; t), of
(1)–(2) is then approximated by a piecewise polynomial, Us(x; t), of degree p in x, which is of the
form

Us(x; t) =
NC∑
i=1

Bi(x)yi; s(t); (4)

where yi; s(t) represents the (unknown) time-dependent coeBcient of the ith B-spline basis function
for the sth component of the solution. We then collocate at p−1 Gaussian points in each subinterval;
that is, we require the piecewise polynomial (4) to satisfy the PDE at these points. We thus have
(see [29] for more details), for i = 1; : : : ; N and j = 1; : : : ; p − 1,

i(p−1)+2∑
m=(i−1)(p−1)+1

Bm(�l)y′
m;s(t) = fs(t; �l; U (�l; t); Ux(�l; t); Uxx(�l; t)); (5)

where s= 1; : : : ;NPDE, l= (i − 1)(p − 1) + j, �l is the jth collocation point in the ith subinterval,
U (x; t)=[U1(x; t); U2(x; t); : : : ; UNPDE(x; t)], and we have used the fact that, at each internal collocation
point, at most p + 1 of the basis functions are nonzero. Thus, we obtain a large ODE system in
which the unknowns are the B-spline coeBcients for the approximate collocation solution, (4).
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A signi;cant di7erence between the spatial discretization scheme of PDECOL and EPDCOL and
that of BACOL is that BACOL treats the boundary conditions (BCs) directly, while PDECOL/
EPDCOL treats the BCs in a di7erentiated form. That is, BACOL treats the BCs in their original
form; i.e.,

bL(t; U (0; t); Ux(0; t)) = 0; bR(t; U (1; t); Ux(1; t)) = 0: (6)

The spatial discretization gives the ODE system, (5), which is coupled with the algebraic constraints,
(6), to give a system of DAEs which we solve using the DAE software package, DASSL, which
we have modi;ed to improve its eBciency in our context. (We will refer the interested reader to
[28] for further details.)

2.2. Adaptive mesh re;nement

In our spatial mesh re;nement strategy, an a posteriori spatial error estimate is obtained by com-
puting a second piecewise polynomial solution approximation having a higher degree (p + 1) than
that used for the representation of the solution. After each time step, a normalized spatial error
estimate, Es, associated with the sth PDE component over [0; 1], is computed and has the form

Es =

√∫ 1

0

(
Us(x; t)− MUs(x; t)

ATOLs + RTOLs|Us(x; t)|
)2
dx; s= 1; : : : ;NPDE; (7)

where t is the current time, ATOLs and RTOLs denote the absolute and relative tolerances for the
sth component of the PDE system, respectively, Us(x; t) is the degree p solution approximation, and
MUs(x; t) is the degree p+ 1 solution approximation for the sth PDE component.
A remeshing is performed when the error estimate is larger than the tolerance, i.e.,

max16s6NPDE Es¿ 1, or when the mesh is not well distributed, i.e., when the error estimates asso-
ciated with each subinterval are not roughly the same size. In order to assess the error distribution
over the mesh subintervals, we compute two parameters

r1 = max
16i6N

(Êi)1=(p+1) and r2 =
∑N

i=1(Êi)1=(p+1)

N
;

where Êi, the normalized error estimate for the ith subinterval over all NPDE components, is

Êi =

√√√√NPDE∑
s=1

∫ xi

xi−1

(
Us(x; t)− MUs(x; t)

ATOLs + RTOLs|Us(x; t)|
)2
dx; i = 1; : : : ; N: (8)

We note that r1 represents a measure of the maximum error estimate on each subinterval while r2
represents the corresponding average. We consider the mesh to be not well distributed if r1=r2¿ 2.
Our mesh re;nement process is similar to the one in COLSYS [4, p. 370]. As in [4], we employ
the (p+ 1)th root in the de;nition of r1 and r2 and choose 2 as the threshold for r1=r2.
Priori to the remeshing, BACOL also estimates the number of subintervals needed for the new

mesh, N ∗. (See [29] for details.) Then instead of using a local re;nement as considered, for example,
by Adjerid et al. [2], BACOL employs a global mesh re;nement strategy based on an equidistribution
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principle. That is, the new mesh points, {x∗
i }N∗

i=1, are chosen so that√√√√NPDE∑
s=1

∫ x∗
i

x∗
i−1

(
Us(x; t)− MUs(x; t)

ATOLs + RTOLs|Us(x; t)|
)2
dx = constant:

Further detail on the spatial error estimation technique and the adaptive mesh re;nement algorithm
employed in BACOL is available in [29].

2.3. Time integration

A modi;cation of DASSL, a well-known DAE solver based on BDF methods, is employed for
the time integration in BACOL. Owing to the type of spatial discretization and the properties of
B-splines, the DAE system (5), (6), which is solved by DASSL, leads to a Newton iteration matrix
having an almost block diagonal (ABD) form [18]. The linear system solver COLROW [18], takes
full advantage of this special structure, and thus is more eBcient in treating the ABD systems than
the banded solver which is available in DASSL. We therefore introduced a new linear system solver
option within DASSL to allow it to employ COLROW for the eBcient treatment of the Newton
systems.
After each spatial remeshing, BACOL will repeat the current time step using a warm start as

suggested in [5]. That is, BACOL interpolates all the history vectors, which are required by the DAE
solver, from the old mesh to the new mesh, and the same stepsize and order as in the last time step
are then tried for the next step. The use of a warm start can signi;cantly improve eBciency [5].
The interpolation must be done carefully. Let U (x; t) denote the approximate solution over the

old mesh, and U ∗(x; t) denote the approximate solution over the new mesh. We determine U ∗(x; t)
by requiring it to interpolate U (x; t) at the new collocation points over the new mesh.
As mentioned earlier, we employ a degree p piecewise polynomial for the spatial discretization,

which yields the solution approximation, U (x; t), and in order to obtain the spatial error estimate we
also do a second computation with a degree p + 1 piecewise polynomial, which yields a second,
higher-order, solution approximation MU (x; t). Thus, we need interpolants for both approximations
over the new mesh, U ∗(x; t) and MU ∗(x; t). In order to be sure that error associated with the degree
p solution does not a7ect the spatial error estimate, both interpolations are performed by evaluating
MU (x; t), the p+ 1 solution approximation associated with the old mesh. That is,

U ∗(�∗
l ; tn−i) = MU (�∗

l ; tn−i); l= 1; : : : ;NC∗;

MU ∗( M�∗
l ; tn−i) = MU ( M�∗

l ; tn−i); l= 1; : : : ;NC∗;

where i=0; : : : ; k, k is the order of the BDF method, NC∗ is the number of new collocation points,
and �∗

l , l= 1; : : : ;NC
∗, are the collocation points over the new mesh. See [29] for further details.

It would be natural to treat the two DAE systems (for the computation of U (x; t) and MU (x; t))
separately. However, this would require running two copies of DASSL, and it would mean that
di7erent time steps would likely be employed for the computation of the two solutions. Thus, in
order to obtain evaluations of the two solutions at the same time (in order to compute error estimates
(7), (8)), interpolation of one of the solutions would be unavoidable. This would considerably
increase the complexity of the algorithm and also contribute to the error. A more serious diBculty
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is that this would make it diBcult to perform a warm start after a remeshing, because the values
of the two solutions at the previous steps would have to be interpolated from di7erent sources
signi;cantly contributing to the error. For these reasons, we have chosen to treat the systems arising
from the degree p and p + 1 spatial discretizations as a single DAE system. This results in a
combined Newton iteration matrix consisting of two decoupled ABD linear systems. We can solve
the decoupled systems separately and COLROW is therefore called twice for each full Newton
iteration.
Since BACOL controls both the spatial and temporal error, the most eBcient approach is to solve

the DAE system with an accuracy requirement, i.e., a time tolerance, which is roughly the same size
as the spatial tolerance. On the other hand, it is usual to employ a somewhat tighter tolerance on the
temporal error in order to ensure that the spatial error estimate is not contaminated by the temporal
error. As discussed in [13], DASSL controls the temporal error by requiring the temporal error
estimate to be less than 1

3 of the temporal tolerance submitted to the code. Therefore, in BACOL
we set the absolute and relative tolerance for the spatial error control to be equal to the temporal
tolerance given to DASSL. This ensures that the temporal error will be slightly less than the spatial
error. We refer the interested reader to [28] for further details.

3. A brief survey of related software

We will now give brief descriptions of the other codes we use in our comparisons. These codes
are written in Fortran 77 except for HPNEW which is written in Fortran 90:

• EPDCOL by Keast and Muir [21] is a modi;cation of PDECOL [22,23]. A collocation method
is applied using B-splines as the piecewise polynomial basis. The collocation points in each
subinterval are chosen to be Gaussian points. The boundary conditions are di7erentiated and
coupled with the ODE system from the spatial discretization. GEARIB [19] is employed to solve
the resulting ODE system, on which only a relative tolerance can be imposed. EPDCOL uses a
;xed but possibly nonuniform user-provided mesh and thus does not provide spatial error control.

• D03PPF, which is based on SPRINT [7], is in the NAG library [15]. It is able to solve a system
of 1D PDEs coupled with ordinary di7erential equations. The spatial discretization is based on
second-order ;nite di7erence methods. The boundary conditions are treated in their original form.
The resulting DAE system is integrated using a BDF method [13] or a Theta method [8] with the
associated nonlinear systems solved by an algorithm which switches between Newton’s method
and functional iteration. This software package employs an h-re;nement approach using a ;xed
number of mesh points, i.e., it is only able to redistribute the given number of mesh points, and
therefore no spatial error control is available. The user needs to supply a subroutine MONITF
which is used as a monitor function by the code in order to choose a mesh which equally
distributes the integral of the monitor function over the spatial domain. The user also needs to
specify how often the code will check a remeshing criterion to decide whether a remeshing is
necessary; e.g., after a ;xed number of time steps, or after a speci;ed ;xed time interval.

• TOMS731 is an r-re;nement package written by Blom and Zegeling [12]. A ;nite-element method
of second-order accuracy is used for the spatial discretization. It treats the boundary conditions
directly. The time integration is performed using DASSL. The user is required to provide a monitor
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function which will be used by the code to control mesh movement. As with all r-re;nement codes,
the number of mesh points is ;xed and spatial error control is therefore not available.

• MOVCOL is an experimental code developed by Huang and Russell [20]. It employs the
r-re;nement approach. A cubic Hermite collocation approach is used for spatial discretization
of the PDE, and a standard second-order central ;nite di7erence discretization is used for the
mesh equations. The boundary conditions are treated directly. DASSL is employed to solve the
resulting DAE system. No spatial error control is available.

• HPNEW [26], also an experimental code, is a modi;cation of HPDASSL [25] developed by
Moore. It applies hp-re;nement using a local re;nement strategy. The boundary conditions are
treated in their original form. A remeshing is performed after every 5 time steps taken by DASSL.
The inclusion of an h-re;nement capability allows this code to control the spatial error. In [25]
HPSIRK is generally shown to be less eBcient compared with HPDASSL. Thus, in this paper we
will only consider HPNEW since it is a modi;cation of HPDASSL.

All of the packages provide temporal adaptivity and error control through the time-stepping algo-
rithm tolerance associated with the ODE or DAE integrator. The code, EPDCOL, employs only a
;xed spatial mesh. The other codes, except for HPNEW, are able to redistribute or move a given
;xed number of spatial mesh points to adapt to the solution behavior but cannot control spatial
error. Only the code HPNEW is able to both redistribute and re;ne the spatial mesh, giving it the
capability to control a spatial error estimate.

4. Numerical comparisons

BACOL has been extensively tested; some results are reported in [29]. In this section, we will
provide comparisons of BACOL with the other packages.
A major decision when one is assessing software against others is what performance criteria to

use. There are many important criteria, such as accuracy, robustness, storage requirements, Kexibility,
eBciency, ease of use, etc. Some of these design criteria may conKict with each other. For instance,
providing users with many options may a7ect the ease of use although it may improve the Kexibility;
requiring users to provide a subroutine for calculating an analytical Jacobian matrix, which is a
common source of programming errors especially when the system of PDEs is large and complex,
improves the eBciency but also a7ects the ease of use. Thus, it is clear that the task of comparison
of di7erent codes is nontrivial, and a comparison is obviously biased by the class of test problems
and comparison criteria. However, this is not to say that attempting a comparison is impossible. As
well, one can sometimes specify the types of problems for which a given code is more suitable.
Often a primary concern is to obtain an approximate solution to a desired accuracy as quickly as
possible. Therefore, e=ciency will be the major criterion in our code comparison. For each test
problem, we will measure how much time each code requires to achieve a certain accuracy.
In this section, we will consider ;ve di7erent time-dependent 1D parabolic PDE problems, one of

which is a system. All the numerical experiments are done on an SUN SPARC station, with a CPU
clock rate of 480:0 MHz and a main memory clock rate of 96:0 MHz. SUNWspro/bin/f 77 is the
FORTRAN compiler for all the software packages except HPNEW, for which SUNWspro/bin/f90 is
used. Compilation is done using the -O switch, which provides a basic level of optimization.
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The notation used and the statistics collected include:

N the number of subintervals
p the degree of the piecewise polynomial, 36p6 11, for the primary solution approximation
Tout the time at which the numerical solution is requested
TOL the user supplied tolerance (we set ATOL=RTOL=TOL, where ATOL is the scalar absolute

tolerance and RTOL is the scalar relative tolerance)
CPU the execution time in seconds
Error the L2-norm of the absolute error (see (9) below), measured at time t = Tout.

At the output time, Tout, we calculate the L2-norm error; i.e., the di7erence between the approximate
solution and the exact solution:

‖Us(x; t)− us(x; t)‖2 =
√∫ 1

0
(Us(x; t)− us(x; t))2 dx; (9)

where s=1; : : : ;NPDE and us(x; t) represents the exact solution for the sth component of the system
of PDEs, and Us(x; t) represents the approximate solution for the sth component of the system of
PDEs. BACOL controls a blended absolute and relative spatial error estimate, (7), instead of the pure
absolute error. A di7erent normalized spatial error estimate is used by HPNEW, which controls the
H 1-norm error. (Recall that the other codes do not control the spatial error and thus do not compute
spatial error estimates.) However, we note that the values of the solution components in all of our
experiments are O(1), and the (absolute) L2-norm error is therefore reasonable for our comparisons.
In our testing, for each code and each problem, we ran the code over a range of tolerances, and
plotted CPU time versus actual error, in the L2-norm.
From the descriptions in Section 3, we see that, apart from BACOL, HPNEW is the only other

package in this comparison which is able to add or remove mesh points during the computation and
thus attempt to compute a solution to a given spatial error tolerance. Therefore, to obtain “almost
optimal” results using EPDCOL, D03PPF, TOMS731, and MOVCOL, for a given TOL, we assume
the initial mesh to be uniform and ;nd a suitable value for N , for a given code, as follows. For a
given tolerance, we gradually increase N and compute solutions and L2-norm errors until the latter is
close to 2 or 3 times the tolerance (in which case the packages generally work most eBciently), or
until the L2-norm of the error appears to no longer be dependent on N (which implies that the time
error is dominating). We then consider this value of N to be “almost optimal” for the given TOL
and code. It should be noted that this process provides a substantial advantage to the codes which
are not able to estimate and control the spatial error as there is certainly a nontrivial amount of
e?ort expanded by HPNEW and BACOL to perform these tasks.
We now describe the details for the initial settings and user supplied parameters for all the software

packages employed in our numerical experiments:

• BACOL requires the degree of the piecewise polynomial, p, to satisfy 36p6 11, and we use
BACOL with p = 3 and 6 in our numerical experiments. The initial mesh is chosen to be a
uniform mesh with N = 10.

• EPDCOL requires the user to supply the initial stepsize for the ODE solver, which is chosen to
be 10−9 in our experiments.
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• D03PPF has an option to employ a BDF method or a Theta method in the time integration. Since
all the other software packages use BDF methods, we will choose the BDF option for D03PPF.
We also choose the banded linear system solver option which is more suitable than using a dense
linear system solver for systems arising from the method of lines. In our experiments, the monitor
function for D03PPF is based on the second derivative (curvature), |u(x; t)xx|, for a single equation,
and on 1 + (1=NPDE)

∑NPDE
s=1 |us(x; t)xx|, for a system of NPDE equations. We also ask D03PPF

to check the remeshing criterion after every three time steps.
• For TOMS731, the monitor function we choose is given by the formula√√√√0:01 +

1
NPDE

NPDE∑
s=1

(us(x; t)x)2;

which is recommended by the authors. To our knowledge, there is no subroutine provided by
TOMS731 which allows one to compute solution values for nonmesh points. Therefore, after
TOMS731 reaches Tout, our driver program will call a subroutine from the NAG library, D03PZF,
which uses a cubic interpolant to generate solution values. (Since the TOMS731 spatial discretiza-
tion is second-order, a cubic interpolant is of more than suBcient accuracy.)

• HPNEW has an option to allow the user to specify an initial mesh, or employ a default initial
mesh, which is a uniform mesh with N =250. We use HPNEW with the default initial mesh. We
also use the default initial order, p= 3, provided by HPNEW.

The following problems have been used by many authors for the evaluation of software for the
numerical solution of 1D parabolic PDE systems. Some problems include one or more parameters
which can be varied to adjust the diBculty of the problem. We now present our test problems and
computational results. We plot the exact L2-norm error, (9), at Tout against the CPU time for all the
codes. There are some problems for which the exact solutions are unknown. We will solve those
problems with a very sharp tolerance (TOL=10−13) with BACOL to obtain an suBciently accurate
approximation which serves as the “exact” solution. During our numerical experiments, some codes
are unable to compute an approximate solution in a reasonable amount of time for a desired high
accuracy. As well, some of the codes stop with an error message before they reach Tout for some of
the sharper tolerance values. We thus stop reporting the numerical results for those codes if either
case happens. Additional details will be provided for the latter case within the comments for each
experiment.

4.1. Problem 1

This is Burgers’ equation

ut =−uux + �uxx; 0¡x¡ 1; t ¿ 0 (10)

with initial condition

u(x; 0) =
0:1e−A0 + 0:5e−B0 + e−C0

e−A0 + e−B0 + e−C0
; 06 x6 1
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and boundary conditions

u(0; t) =
0:1e−AL + 0:5e−BL + e−CL

e−AL + e−BL + e−CL
; t¿ 0;

u(1; t) =
0:1e−AR + 0:5e−BR + e−CR

e−AR + e−BR + e−CR
; t¿ 0;

where

A0 =
0:05
�
(x − 0:5); B0 =

0:25
�
(x − 0:5); C0 =

0:5
�
(x − 0:375);

AL =
0:05
�
(−0:5 + 4:95t); BL =

0:25
�
(−0:5 + 0:75t); CL =

0:5
�
(−0:375);

AR =
0:05
�
(0:5 + 4:95t); BR =

0:25
�
(0:5 + 0:75t); CR =

0:5
�
(0:625);

where, for the viscosity parameter, �, we will consider two values, �= 10−3 and �= 10−4.
This problem is taken from [1,11], and has the exact solution

u(x; t) =
0:1e−A + 0:5e−B + e−C

e−A + e−B + e−C ;

where

A=
0:05
�
(x − 0:5 + 4:95t); B=

0:25
�
(x − 0:5 + 0:75t); C =

0:5
�
(x − 0:375):

(In our numerical experiments, when we compute the error in the numerical solution by comparing
it with the exact solution, we scale the denominator and the numerator of the exact solution to avoid
overKow. That is, if D=min(A; B; C), then we will multiply both the denominator and the numerator
by eD and the exact solution becomes

u(x; t) =
0:1eD−A + 0:5eD−B + eD−C

eD−A + eD−B + eD−C :

To avoid underKow, we check D − A, D − B, and D − C. If any of them is less than −35, we will
let the corresponding exponential function be zero (since we use double precision).
The exact solution is plotted in Fig. 1 for �= 10−4, 06 t6 1, 06 x6 1.
The solution begins with two wavefronts. They move from left to right and merge to form one

wavefront. As mentioned in [24], the thickness of the wavefronts is O(�).
Figs. 2 and 3 show the performance of all the codes for Problem 1 with � = 10−3 and 10−4,

respectively. The L2-norm error, (9), at Tout =1, is plotted against the CPU time, both in logarithmic
scales.
We make the following observations:

• For both test problems (with � = 10−3 or 10−4), BACOL is comparable in performance to most
of the other codes at coarse tolerances, and it is signi;cantly more eBcient when higher accuracy
solutions are required. Furthermore, for �=10−4, for accuracy requirements sharper than 10−7, it
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Fig. 1. u(x; t) for Problem 1, for � = 10−4.
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Fig. 2. The CPU time and the L2-norm error for Problem 1 with � = 10−3.

is the only package that is able to compute a solution in a reasonable amount of time, other than
EPDCOL (which has been provided with the advantage of having a predetermined mesh).

• For the test with � = 10−3, HPNEW is less eBcient than any of the other codes for coarse
tolerances. The code has a tendency to use many more mesh points than necessary. For example,
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Fig. 3. The CPU time and the L2-norm error for Problem 1 with � = 10−4.

with �=10−3 and TOL= 10−2, HPNEW uses N =250, compared with N =13 for BACOL with
p = 3. We use HPNEW with a default initial mesh of 250 elements. It is likely that HPNEW
could perform better with a coarser initial mesh. However HPNEW has the ability to coarsen the
mesh as well as re;ne it. For the �=10−4 case, for coarse tolerances HPNEW is relatively more
eBcient but it becomes less eBcient for smaller tolerances. When we request an approximate
solution with an error smaller than 10−7, HPNEW outputs an error message and terminates.

• When the problem becomes more diBcult (i.e., as � changes from 10−3 to 10−4), the ;xed-mesh
package, EPDCOL, is relatively less eBcient compared to most of the other packages. How-
ever, it is able to compute approximate solutions with high accuracy in a reasonable amount
of time.

Results for D03PPF, TOMS731 and MOVCOL are provided for errors only as small as about 10−6,
because these codes could not compute a solution in a reasonable amount of time, for smaller error
requests:

• D03PPF is the least eBcient software package for a given accuracy, and in fact cannot, in a
reasonable amount of time, provide as much accuracy as the other packages.

• When the requested accuracy is relatively modest, TOMS731 is the most eBcient package (with
the assumption that an optimal number of mesh points is found a priori). However, it is unable to
provide an approximate solution with an error smaller than 10−4 or 10−5. Furthermore, for some
TOL values greater than 10−4, we found some N values for which TOMS731 fails with an error
message.
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• MOVCOL performs well for coarse or moderate tolerances. But when we require an error smaller
than 10−6, MOVCOL becomes less eBcient.

4.2. Problem 2

Our second problem is also Burgers’ equation, but with a di7erent set of initial and boundary
conditions leading to a relatively more diBcult solution in terms of its spatial behavior. The PDE
is again (10) with initial condition

u(x; 0) = 0:5− 0:5 tanh
(
1
4�
(x − 0:25)

)
; 06 x6 1

and boundary conditions

u(0; t) = 0:5− 0:5 tanh
(
1
4�
(−0:5t − 0:25)

)
; t¿ 0;

u(1; t) = 0:5− 0:5 tanh
(
1
4�
(0:75− 0:5t)

)
; t¿ 0:

The exact solution is

u(x; t) = 0:5− 0:5 tanh
(
1
4�
(x − 0:5t − 0:25)

)
:

It is plotted in Fig. 4 for �= 10−4, 06 t6 1, 06 x6 1.
We note that this solution has a wavefront whose thickness is O(�), moving from left to right

with a constant speed.

Fig. 4. u(x; t) for Problem 2, for � = 10−4.
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Fig. 5. The CPU time and the L2-norm error for Problem 2 with � = 10−3.

Figs. 5 and 6 show the performance of all the codes for Problem 2 with �= 10−3 and �= 10−4,
respectively. The L2-norm error is computed at Tout = 1.

• From Figs. 5 and 6, we see that, except for EPDCOL, BACOL is the only code that is able to
obtain, in a reasonable amount of time, approximate solutions with an error that is less than about
10−6. Even though EPDCOL is given the signi;cant advantage of a preselected mesh, BACOL is
still more eBcient than EPDCOL, particularly in the �= 10−4 case.

• HPNEW is relatively less eBcient than several of the other codes for coarse tolerances and is
unable to produce a solution with an error smaller than about 10−6 or 10−7. For error requests
smaller than this, the code fails with an internal error message. BACOL is more eBcient than
HPNEW for this problem, even at coarse tolerances.

• EPDCOL is the only code, except BACOL, that is able to produce solutions with errors smaller
than about 10−6 or 10−7. It is less eBcient than BACOL over all tolerances.

• We see that D03PPF, TOMS731, and MOVCOL are only able to compute solutions in a reasonable
amount of time when low accuracy is suBcient.

We can use Figs. 2, 3, 5, and 6 to make an additional comment about the relationship between
eBciency and the order of the collocation method. Generally, when the solution of the PDE is
smooth and one is using a ;xed mesh, it is more eBcient to use a high-order discretization for the
spatial domain, (see numerical results in [6,22]) when a sharp tolerance is requested. For coarser
tolerances, in the ;xed mesh context, lower-order methods can be more eBcient. In Figs. 2, 3, and
5, EPDCOL with p= 3 is more eBcient than EPDCOL with p= 6. However, in Fig. 6, where the
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Fig. 6. The CPU time and the L2-norm error for Problem 2 with � = 10−4.

corresponding solution is less smooth, we see that the high-order discretization (p=6) for EPDCOL
is substantially less eBcient than the low-order discretization, for all tolerances. We further note
that for BACOL, where adaptive spatial meshes are employed, the performances of the code with
p = 3 and 6 are comparable, with the high-order method being slightly more eBcient for sharper
tolerances.

4.3. Problem 3

The third problem is the Cahn–Allen equation [25], which has the form

ut = �uxx − u3 + u; 0¡x¡ 1; t ¿ 0 (11)

with initial condition

u(x; 0) = 0:01 cos(10#x); 06 x6 1

and boundary conditions

ux(0; t) = 0; ux(1; t) = 0; t¿ 0:

We include this problem because it allows us to investigate a PDE with Neumann boundary condi-
tions.
No exact solution is available; a high-precision numerical solution obtained using BACOL is

shown in Fig. 7. The solution is plotted for 06 x6 1 and 06 t6 8.
There are two phases of solution behavior. During the ;rst phase, a transition phase, the solu-

tion begins relatively Kat and close to zero and then quickly develops sharp interfaces, leading to
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Fig. 7. u(x; t) for Problem 3 with � = 10−6.
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Fig. 8. u(x; t) at t = 8.

step function behavior. During the second phase, the solution exhibits this consistent step function
behavior. See Figs. 7 and 8.
Fig. 9 shows the performance of all the codes for Problem 3 with � = 10−6. The L2-norm error

is computed at Tout = 36, which is the Tout value used in [25].
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Fig. 9. The CPU time and the L2-norm error for Problem 3.

We note that EPDCOL, BACOL, and HPNEW work very well for this problem. When the toler-
ance is sharp, HPNEW is comparable in eBciency to BACOL and EPDCOL although it needs rela-
tively more CPU time when a coarser tolerance is requested. We also see that MOVCOL, D03PPF,
and TOMS731 are generally less eBcient compared with HPNEW, EPDCOL, and BACOL.

4.4. Problem 4

The fourth problem is taken from [14]. We include this problem because the PDE contains an
exponential nonlinear coeBcient for the term uxx; as well, we will see that some of the codes fail
on this problem. It has the form

ut = (eauux)x; 0¡x¡ 1; t ¿ 0 (12)

with initial condition

u(x; 0) = bx; 06 x6 1

and boundary conditions

u(0; t) = 0; u(1; t) = b; t¿ 0:

We consider the case when a= 5 and b= 2. The steady-state solution is given (in [14]) by

u(x; t → ∞) =
1
a
log[1 + (eab − 1)x]:

The solution begins with a straight line, and the steady-state solution is obtained in a short period
of time. The exact solution is not available; however, a high-precision numerical solution obtained
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Fig. 10. u(x; t) for Problem 4.

using BACOL is shown in Fig. 10. The solution is plotted for 06 x6 1 and 06 t6 0:5. This is
a relatively simple problem in terms of its spatial diBculty.
In our experiments, we found that, for all tolerances, when we attempted to solve this problem

using EPDCOL, the Newton iteration repeatedly failed to converge before it reached the output time,
Tout =0:5. When we attempted to solve this problem using HPNEW for any tolerance, the code gave
an error message indicating that, after a remeshing, two adjacent mesh points of the new mesh were
so close as to appear coincident. Therefore, in Fig. 11 we do not include results for EPDCOL and
HPNEW. The L2-norm error is computed at Tout = 0:5.
We note that MOVCOL is able to compute an approximate solution of the L2-norm error within

10−8 in a reasonable CPU time, which it is unable to do for the other problems. Once again
TOMS731 is the most eBcient when a coarse tolerance is used, and D03PPF is the least eBcient
of all the codes. As before, BACOL exhibits comparable performance for coarse tolerances and is
the most eBcient when a small tolerance is requested.

4.5. Problem 5

The ;fth problem is also taken from [25], where the author considers the reaction–di7usion–
convection system for modeling a catalytic surface reaction. We include this problem because it
allows us to investigate code performance on a system of PDEs exhibiting challenging solution
behavior. It has the form

(u1)t =−(u1)x + n(D1u3 − A1u1(1− u3 − u4)) +
1

Pe1
(u1)xx;

(u2)t =−(u2)x + n(D2u4 − A2u2(1− u3 − u4)) +
1

Pe1
(u2)xx;
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Fig. 11. The CPU time and the L2-norm error for Problem 4.

(u3)t = A1u1(1− u3 − u4)− D1u3 − Ru3u4(1− u3 − u4)2 +
1

Pe2
(u3)xx;

(u4)t = A2u2(1− u3 − u4)− D2u4 − Ru3u4(1− u3 − u4)2 +
1

Pe2
(u4)xx; (13)

where 0¡x¡ 1 and t ¿ 0, with initial conditions

u1(x; 0) = 2− r; u2(x; 0) = r; u3(x; 0) = u4(x; 0) = 0; 0¡x¡ 1

and boundary conditions

1
Pe1

(u1)x(0; t) =−(2− r − u1);
1

Pe1
(u2)x(0; t) =−(r − u2); t ¿ 0;

(u3)x(0; t) = (u4)x(0; t) = 0; t ¿ 0;

(u1)x(1; t) = (u2)x(1; t) = (u3)x(1; t) = (u4)x(1; t) = 0; t ¿ 0;

where u1(x; t) and u2(x; t) are nondimensionalized concentrations, u3(x; t) and u4(x; t) are coverage
of adsorbed reactants on the catalytic wall, Pe1 and Pe2 are Peclet numbers, and D1, D2, R, A1 and
A2 are Damkohler numbers. This problem includes di7usion, reaction and convection. We choose
A1 = A2 = 30, D1 = 1:5, D2 = 1:2, R= 1000, r = 0:96, n= 1 and Pe1 = Pe2 = 100.
The problem does not have an exact solution; high-precision numerical approximations for the

solution components are shown in Figs. 12–15, obtained using BACOL. The solution is plotted for
06 x6 1 and 06 t6 18.
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Fig. 12. u1(x; t) for Problem 5.

Fig. 13. u2(x; t) for Problem 5.

We note that some of the boundary conditions for this problem are mixed, i.e., they involve
conditions on both solution and ;rst derivative components. Fig. 16 shows the performance of all
the codes for this problem. The L2-norm error is computed at Tout=18. We ;rst calculate the L2-norm
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Fig. 14. u3(x; t) for Problem 5.

Fig. 15. u4(x; t) for Problem 5.

error for each PDE component, and then the maximum L2-norm error over all PDE components is
plotted in Fig. 16.
This problem has a smooth solution for most of the temporal domain. However, there is a wave-

front moving from left to right between t = 9 and 10. This solution behavior can be eBciently
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Fig. 16. The CPU time and the maximum L2-norm error for Problem 5.

treated by BACOL and HPNEW since these codes have the ability to adjust the number of mesh
points while the other codes have to use a ;xed number of mesh points throughout the computation.
Fig. 16 shows that BACOL is again the most eBcient, and is comparable with TOMS731 even
when a small tolerance is requested. Furthermore only BACOL, EPDCOL, and HPNEW are able
to compute a solution for sharper tolerances. D03PPF, TOMS731, and MOVCOL are only able to
compute solutions with an error greater than about 10−4. HPNEW performs about as well as the
other codes for coarse tolerances, and is less eBcient than EPDCOL or BACOL for sharper tol-
erances. EPDCOL exhibits performance that is better than HPNEW but worse than BACOL. For
coarse tolerances TOMS731 has very good performance, while that of MOVCOL is comparable to
that of the other codes. D03PPF has the best eBciency for very low accuracy but quickly becomes
less eBcient as the accuracy request is sharpened.

5. Conclusions

In this paper, BACOL, a spatially and temporally adaptive MOL software package for solving
1D parabolic PDEs is described and compared with a number of other MOL software packages on
several test problems. While software for the treatment of one-dimensional, time-dependent PDEs
using a method-of-lines approach has been available, in some form, for approximately 30 years, this
software was only able to control the temporal error (via the error control of the initial value ODE
or DAE solver). Thus, no control of the spatial error was available. To our knowledge, the only
software packages which can adapt to the spatial behavior of the solution and eBciently control
the spatial error in a way that approximately balances it with the temporal error are HPNEW and
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BACOL. (The moving mesh codes, such as MOVCOL, can for a given number of mesh points,
adapt the location of these points based on solution behavior but they cannot adjust the number of
points to control a spatial error estimate.)
The signi;cance of this paper is that it provides a comparison of the only two packages, HPNEW

and BACOL, that can provide both spatial and temporal error control, as well as comparing these
packages with most of the other currently available packages for the numerical treatment of 1D
parabolic PDEs.
The results presented in Section 4 illustrate that when high accuracy is required, BACOL is clearly

the most eBcient among all the packages. For a coarse tolerance, BACOL is still one of the fastest
codes for most test problems. We note that except for BACOL and HPNEW, none of the other codes
has the ability to change the number of mesh points and thus control the spatial error. Therefore, in
general, for all the codes except BACOL and HPNEW, it would be diBcult to achieve the optimal
performances for these codes shown in Section 4. Comparing BACOL and HPNEW, BACOL is
clearly more eBcient than HPNEW for almost all test problems and tolerance ranges.
The amount of storage used by a code is, in some cases, of some concern. Comparing BACOL

with EPDCOL, the storage for BACOL is roughly twice that of EPDCOL if the same number of
subintervals and the same degree of polynomial is employed. However, in order to achieve the
same accuracy for problems having solutions with rapid variation, EPDCOL would need many more
subintervals. That is, in order to obtain the same accuracy, EPDCOL actually needs more storage
than BACOL. This is also true for other codes which cannot adapt the number of subintervals to the
computation. We have done some preliminary analysis of storage using the codes considered in this
paper. The storage usage for HPNEW appears to be higher (more than 10 times higher) than that
of other codes. We are not able to explain this behavior. Overall, if the same accuracy is required,
BACOL tends to use the least amount of storage.
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