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Abstract

Among the numerical techniques commonly considered for the efficient solution of stiff initial value ordinary differen-
tial equations are the implicit Runge—Kutta (IRK) schemes. The calculation of the stages of the IRK method involves
the solution of a nonlinear system of equations usually employing some variant of Newton’s method. Since the costs
of the linear algebra associated with the implementation of Newton’s method generally dominate the overall cost of
the computation, many subclasses of IRK schemes, such as diagonally implicit Runge—Kutta schemes, singly implicit
Runge—Kutta schemes, and mono-implicit (MIRK) schemes, have been developed to attempt to reduce these costs. In this
paper we are concerned with the design of MIRK schemes that are inherently parallel in that smaller systems of equations
are apportioned to concurrent processors. This work builds on that of an earlier investigation in which a special subclass
of the MIRK formulas were implemented in parallel. While suitable parallelism was achieved, the formulas were limited
to some extent because they all had only stage order 1. This is of some concern since in the application of a Runge—-Kutta
method to a system of stiff ODEs the phenomenon of order reduction can arise; the IRK method can behave as if its order
were only its stage order (or its stage order plus one), regardless of its classical order. The formulas derived in the current
paper represent an improvement over the previous investigation in that the full class of MIRK formulas is considered and
therefore it is possible to derive efficient, parallel formulas of orders 2, 3, and 4, having stage orders 2 or 3. (© 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we will be concerned with the numerical solution of systems of initial value ordinary
differential equations, i.e. initial value problems (IVPs), of the form

Y ()= f(¥()), ()= yo, (1)

where y€ R™ and f:R™ — R™. When the IVP is stiff, implicit Runge—Kutta (IRK) schemes (see,
for example [6] and references therein) are commonly used to provide a numerical solution. For the
nth step, using a stepsize 4, an s-stage IRK scheme has the form

Vo1 =Ya+h ) b f(Y), )
r=1
with
If’:y"_'—hzar,/‘f(Yj), r=1,...,s. (3)
=1

Note that each unknown, 7,, is defined implicitly in terms of itself and the other unknowns. These
schemes are normally given in terms of the compact tableau

c A
bT

where ¢ = de, c = (c¢|,¢3,...,¢)", b= (b1, by,...,b)T and A is the s by s matrix whose (i, j)th
component is a; ;, and e is the vector of 1’s of length s.

Newton’s method is usually employed to solve the system of s x m nonlinear equations given
in (3) in order to determine the intermediate values, Y,. This leads to an iteration matrix (/,, —
hA®J), where J is an approximation to the Jacobian df/0y. Since the costs of the linear algebra
associated with the solution of these linear systems generally dominate the overall cost of the
computation, many subclasses of IRK schemes, such as diagonally implicit (DIRK) schemes [11, 1],
singly implicit (SIRK) schemes [3], and mono-implicit (MIRK) schemes [7], have been developed
to attempt to reduce these costs, usually by decoupling this large system of s x m equations into s
systems each of dimension m. In this paper we are concerned with the design of IRK schemes that
are inherently parallel in that the s systems of equations are apportioned to s concurrent processors.
To achieve this brand of parallelism across the method we focus on MIRK schemes which, when
applied to (1), have the form (for the nth step)

Yeri = vu+h S b F(T), 4)
r=1|

where

r—1

Y, =(1 =0y + 0 Yur + 8 > X, f(Y), r=1,.,s (5)

J=1
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Thus the stages of a mono-implicit Runge—Kutta scheme are implicit only in y,,;. MIRK schemes
are usually represented by the modified tableau

c v X
bT

where v = (v, 0y,...,0,)T, c = v + Xe, and X, the s by s matrix whose (7, j)th component is Xi js
is strictly lower triangular. The MIRK scheme (4), (5) is equivalent to the IRK scheme (2) with
A =X+ vb" (see [9]). The stability function, R(z), of a MIRK satisfies (see [9])

P(z,e —v)

R(z) = Pz )’

where
Pz,w)=1+2zb"(J —zX)'w, weR.

Desirable stability properties for a MIRK scheme are given in terms of this stability function.
A-stability requires |R(z)|<1,Vze€C~; L-stability requires A-stability and the requirement that
|R(z)| — 0 as Re(z) — —o0; see e.g. [6].

Parallel MIRK formulas consisting of s implicit stages and s — 1 explicit stages were investigated
by Voss [14]. While achieving order s utilizing s processors, all formulas considered had stage
order one. This can be a difficulty because in the presence of order reduction (see, e.g., [10]), the
observed order of accuracy of a Runge—Kutta scheme having stage order g can be reduced to order
q or g + 1, regardless of the classical order of the scheme. The main goal of this paper is to de-
rive new MIRK schemes which have the advantage of higher stage order, while retaining desirable
stability properties and the property of allowing an efficient parallel implementation. It is shown
in [5] that the maximum stage order of a pth-order MIRK scheme is min( P,3). In this paper, for
p=2,3,4, we shall derive MIRK schemes having stage order equal to the maximum or within one
of the maximum,

There is a considerable amount of literature on parallel Runge—Kutta methods. Examples of recent
work include papers on parallel multiply implicit Runge—Kutta (PMIRK) schemes [12], and singly
diagonally implicit Runge—Kutta (SDIRK) schemes [8]. See [4] and references within.

Section 2 provides further background details associated with the parallel implementation of the
MIRK schemes and with the design of these schemes. In Sections 3, 4, and 5 we present derivations
of a number of MIRK schemes of orders 2, 3, and 4 that are suitable for use in parallel methods
for IVPs. Section 6 provides a summary of the schemes derived in previous sections and reviews
the application of certain optimization criteria in the specification of selected schemes. In Section 7,
we present numerical results, based on some of the schemes derived earlier, which confirm the
expected efficiency advantages of the new schemes.

2. Background

Within the next three sections of this paper, we will present derivations of MIRK schemes which
we will characterize on the basis of several quantities. The notation MIRKspg will be used to
indicate a MIRK scheme having s stages, of order p, and having stage order g, A MIRK scheme
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has order p if it local error is O(h#*'); for Runge—Kutta schemes this is imposed by requiring the
coefficients of the scheme to satisfy a set of equations called order conditions (see [6]). We shall
identify specific order conditions, in their MIRK forms, as required, in later sections of this paper.
A MIRK scheme has stage order ¢ if it has coefficients which satisfy the conditions,

X+ 2=5 r=1,....q (6)
¥ ¥
(see [5]).
We next briefly review the parallel implementation for MIRK schemes, as described in [14].
Rewriting (4), we define

F(yn+l)5yn+l = Vn h Z brf(Yr) (7)

Setting F(v,.1)=0 gives a system of m nonlinear equations implicitly defining y,,,. The Newton
iteration for the solution of this system is

JrINAy = -FOR D, W =00 A, 1=0,1, (8)

Although the expression for Jr(y, +1) involves the evaluation of df/dy at several points the usual

modification of Newton’s method approximates all these partial derivatives with an evaluation at a
single point — we will refer to this evaluation as J(»'),). It is then possible to express Jx( yn )
as a polynomial in J(y, +1) whose coefficients depend on the coefficients of the MIRK scheme. It

is the goal of our work to design MIRK schemes for which we have
() = H I = BhI(3]), )
=1

, the polynomial expression for Jg(y, +1) is factorable into linear factors. It is then possible,
assummg the B,’s are distinct, to write J; '(y) +1) in a partial fraction expansion form as

T O —Z C(I ~ BRIy )™, (10)
i=1
where
Bs—l
C = (11)
H] 1,j5#i (B B)

Upon rewriting of (8) and substitution of (10), it can be seen that the task of computing A !’ Y, can
be subdivided into the following s independent tasks which can be computed on s processors,

- B (W) NAY) =-FOU), i=1,...s, (12)

and then

ay\), = ZCA,y;’L (13)
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Note that if for some i, B; =0, then the degree of Jg( yf,lll) is reduced by one and one less processor
is needed in the computation associated with (12).

Throughout this paper we will express the stability function, R(z), of a scheme in the form
P(z)/Q(z), with the numerator P(z) and denominator (X(z), polynomials in z. As noted in [14],
the problem of trying to find MIRK schemes that are suitable for the parallel solution of IVPs as
described above can be reduced to finding MIRK schemes for which Q(z) can be factored into
linear factors, i.c.,

Q(z)=(zB1 — 1) -+ (zB; - 1), (14)

where the B;’s are real, distinct, and positive. It can be shown (see [9]), that O(z) for an s-stage
MIRK scheme can be expressed in the form

G'X o)zt 4 -+ (BT X)Z + (BTo)z — L. (15)
Expanding (14) gives
(B, ... -B)z*—--+(=1Y"%B,-B,+B,-B;+--- B,_,-B,)z*
+(=1y"'(Bi + -+ B)z +(—1)’, (16)

from which a comparison of coefficients of like powers of z in (15) shows that the requirements
for the existence of a scheme with a stability function with a Q(z) factorable as in (14) are

B+ +B,=b"1,

BB, +B,-By+ -+ BB, =—b'Xv, (17)

ey

By-...- B, = (_1)S_leXS-IU,

The derivation process to be employed in the next three sections of this paper will begin by
selecting or determining families of MIRK schemes with a given number of stages, a given order,
and a given stage order. These families usually have several free parameters. We will then apply
the factorization conditions (17), and solve them to obtain expressions for the free parameters of
the MIRK scheme in terms of the B; parameters, if possible. A particular MIRK scheme will be
obtained by choosing specific values for the free parameters.

Sections 3, 4, and 5, will consider families of MIRK schemes of orders 2, 3, and 4, and, overall,
will present nine specific schemes. Sample numerical results will be presented for a selected subset
of these schemes in Section 7; similar results could be obtained for the remaining schemes. For
the selected schemes, the free parameters are chosen to yield optimal schemes according to the
following criteria. Subject to the restrictions that the B;’s be real, distinct, and positive, we will
attempt to, firstly, minimize ||Z,.,||, the norm of the vector of weighted unsatisfied order conditions
for order p + 1, associated with the local truncation error coefficient of order p + 1 of a pth-
order MIRK scheme (see [6]), subject to the constraint that the ratio ||Z,.2||/||Z,-]| is not too large,
and, secondly, minimize ||C||, the norm of the vector of C; coefficients arising in (13). Smaller
truncation error coefficients will generally lead to more accurate schemes, while bounding the values
for the C; coefficients will tend to contribute to the avoidance of overflow in (13), and will force
the B, values to be distinct as assumed for (11). The details of the optimization process for these
schemes are provided in Section 6.
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3. Second-order MIRK schemes
3.1. Overview

The maximum stage order of a second-order scheme is stage order two. It is easily shown that
such a MIRK scheme must employ at least two stages. We derive the primary scheme of this section,
MIRK?222, in the next subsection; it is a two-stage, second-order, stage order two MIRK scheme,
which turns out to be necessarily L-stable. In the last subsection, we consider two other second-order
MIRK schemes. The first, (MIRK221A), is relevant if L-stability, which implies strong damping at
infinity, is considered to be undesirable. (For example, in the boundary value ODE context symmetric,
A-stable methods, rather than L-stable methods are needed — see [9].) The resultant scheme then
necessarily has only stage order one. The second scheme of the last subsection, (MIRK221L), is an
L-stable scheme for which the stage order requirement is relaxed to stage order one. This allows us
to consider the possibility of deriving a scheme with a smaller ||7,.,|| value; such a scheme would
generally be more accurate than MIRK222, in the absence of order reduction.

3.2. Stage order 2

3.2.1. MIRK222 (L-stable)
The order conditions that the coefficient of a MIRK scheme must satisfy for second-order are

ble=1, blc=1, (18)

and the stage order two conditions are given by (6) with ¢ = 2. Solution of these conditions leads to
a family which includes A-stable schemes. This family, with free parameter ¢, # 1, has the tableau
and stability function

1 1 0 0
oy } (2 — ) c(ca—1) 0 . R@=— zZ(l —c)+2 . (19)
I ! (02_%) 1 22— (L +c)z+2
(z=1) 2(1-c)
Solving the factorization conditions (17), for ¢, and B, yields
cy = ELZBLI_) B, B~ % (20)

B—1 > TB-U

In order for B, to be positive, we must choose B, € (0,%) U (1,00); B; and B, will be distinct if

B, # 1++/2/2. With B, and B, positive and real, there are no additional requirements for A-stability.
Choosing B, = - gives B, = § and ¢, = ;. The tableau and the stability function become

1 1 0 0
A 344 _ 164 0 R(Z) %IZ + % (21)
45 2025 2025 s VTS
— 9z -10
‘ ’ - s (z 4)(2 )

82 82
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This scheme is L-stable since it is A-stable (|Q(iy)|* — |P(iy)|* = 16y*) and clearly |R(z)| — 0
as Re(z) — —oco. (For Q(z) as in (14), with B,,B, > 0, the A-stability requirement reduces to
the requirement that |Q(iy)|* — |P(iy)]* > 0, Vy€R with y#0. See e.g. [6] for details.) It has
| T5]| = 0.086, ||C| = 1.3, and ||74|| = 0.14, which gives ||T4||/|| T3] = 1.6.

3.3. Stage order 1

3.3.1. MIRK221A4 (A-stable)

The application of the order conditions for order 2, (18), plus the stage order 1 conditions, (6)
with g=1, to the general family of two stage MIRK schemes leads to a family with three parameters
¢, ¢2, and v, with the restriction that ¢ # ¢,. The tableau for this scheme is

c Cy 0 0
C ‘ vy l Cy — Uy 0 22)
| Goe) d-e
cr—¢  C—c
and the stability function has
R(z)= v+ 2zcy + z%cy ——zzzvz — 32%¢yc; + 3Z%v,0, — zcy ’ 23)
v — 22¢9¢1 + 22050, + 2oy
where
y= —2¢, — zv, — 22¢3¢, + 2205¢) + 205 + 227 Cr0t — 227 0Ct.
Solving the factorization equations (17), for ¢, and v, in terms of ¢;, By, and B, gives
¢ = ﬁ%gj_—%, (24)
and
by = (BB, + B\B} — 1B\B;) — c2(Bf + B\B, + B — (B + Bz))-

(2B, — 1)(2B, - 1)

An example of a specific A-stable, scheme from this family is obtained by choosing B, =1, B, =2,
and ¢; = %, which gives a scheme with tableau and stability function
\ 0 2

-5 0 _ oty
l 0 TE e

Q| ]
[
LR wie

(25)
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It is A-stable since |Q(iy)| — |P(iy)]* = 15"
3.3.2. MIRK221L (L-stable)

If we now return to the MIRK family (22) and require the degree of P(z) to be less than the degree
of O(z) by setting the coefficient of the z? term in P(z) to be zero, we get the requirement that B, =
(B — %)/(Bl ~1). (This is the same expression for B, as obtained in a previous subsection; see (20).
The two cases are related; this value for B, coupled with the factorization condition (24), on ¢,
forces ¢, = 1, which is the same value required of ¢, from the application of the stage order two
conditions, as in the derivation of the MIRK222 scheme, (21).) The requirement that B, be positive
implies B, € (0, %) U (1,00). The requirement that B, and B, be distinct implies B, # 1 — v/2/2.
Then for ¢, and v, we have

(23% — 23%02 — B] + 231C2 — Cz)
(B — 1) |
with ¢, # 1 still free. Provided B, and B, are positive and real, there are no additional restrictions

for A-stability.
With B, = 2, we get B, = 12 and the tableau and stability function are

ci=1 and v, =

25° 44
1 1 0 0
1 o ICI 493z + 1100
R(z)= .
3 I 825 ‘ 275 s (z) (192_44)(32__25) (26)
1 3
4 3

This scheme is L-stable since it is A-stable (|Q(iy)|*—|P(iy)|* =3249y*) and clearly |R(z)|—0
as Re(z)— —oo. It has ||T5]| = 0.057, ||C||~ 14, and ||Ts|| ~0.069, which gives ||T4||/||T5||~1.2.
Comparing these values with those for MIRK222, as discussed in introductory subsection, we see
that the ||73| value is about 25% smaller, the ||T4|| value is about 50% smaller, and the ||C|| value
is about the same.

4. Third-order MIRK schemes
4.1. Overview

The next subsection considers schemes with stage order 3. Since there are only two 2-stage, third-
order schemes [2], and neither of them have stage order 3, 3-stage schemes are considered first.
It is found that it is possible to obtain an A-stable scheme only if one of the abscissa is allowed
to be outside the current step, and that even under this relaxed condition, no L-stable schemes are
possible. Schemes having 4-stages are then considered and it is found that it is possible to obtain an
A-stable scheme with all abscissa within the current step but still no L-stable schemes are possible.
It may be possible to employ S5-stages to obtain an L-stable scheme with all abscissa within the
current step; this is left for a future study.

In the last subsection of this section, schemes with stage order 2 are considered. Since neither
of the two 2-stage, third order, stage order 2 schemes cited above are suitable, 3-stage schemes are
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considered. It is found that it is possible to obtain a third order, A-stable scheme, with all abscissa
within the current step, as well as a third order, L-stable scheme, with all abscissa within the current
step.

4.2. Stage order 3

4.2.1. MIRK333 (A-stable)

In [5] the tableau for a two-parameter family of 3-stage, third-order, stage order 2 MIRK schemes
is given. Applying the stage order 3 conditions (6) with g =3, to this family leads to a family of
schemes with the tableau,

0 0 0 0 0
1 1 0 0 0
C3 c§(3-—2c3) ci(es—1) c§(03—1) o
(Bes—1) (3c3—2) 1
6 6(c3—1) bc3(t—c3)

and the stability function is

z2(c3—1)+z(2¢c;—4)—6
22C3-‘22(C3+1)+6 '

R(z)=— (27)

In this case, the factorization conditions (17), require us to choose one of B, B,, or B; equal to
zero (since for the above X matrix, X* =0, the coefficient of z* in (15), namely, b"X?v is zero,
requiring the product, B,-B,-B; to be zero as well). We choose B; =0 and then solve for c¢; and B,
in terms of B;,

. 6B(Bs—1) )
TUO@2B-1) 7 T (2B-1)

(Recall that B, =0 implies that only 2 processors can be used.) We see from the above expression
for B, that we must have

(28)

B;€(0,1)U(4,00) so that B,>0. (29)
Also an inspection of the expression for ¢; shows that we must have
B3 €(0,1) so that c; €(0,1). (30)

Unfortunately, for this case, |Q(iy)|*—|P(iy)|? <0 VB €(0,1) and this scheme cannot be A-stable.
However, choosing B; = %, we get B, =§ and ¢; = % (outside the current step), and a scheme with
tableau and stability function,

0 0 0 0 0
1 1 o 0 0 R(s) = L= 14z424 61)
R | w0 15=$-9)

1 37 8

1 ' 90 66 495
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For this scheme, |Q(iy)]*—|P(iy)|* =104)* and we get an A-stable method. It is not possible to
obtain an L-stable scheme within this family.

Since this family of schemes does not have enough freedom to allow us to derive an L-stable
scheme, and an A-stable scheme can be obtained only by choosing ¢; outside [0,1], we will turn to
four-stage MIRK schemes in an attempt to derive more satisfactory schemes.

4.2.2. MIRK433 (A-stable)
When the order conditions for third order,

ble=1, ble=1i, b'=L b(Xetiv)=1, (32)

1
39

rf—

and the stage order conditions up to order 3, (6) with g =3, are applied to the general four-stage
MIRK family, the resultant four-parameter family has the tableau

0 0 0 0 0 0
1 1 0 0 0 0
¢ ci(3-2c3) (=17 ces—1) 0 0 , (33)
Cy4 U4 Xay Xa2 xi3 0
bl b2 b3 b4
where
—6c403+3c304+3c305— 03 —203+3¢3
X4y = — 6, s
=3 +uy4+2c] —2u4+2¢;430403—3¢5c;
Xgp = —————————, Xg3=— )
6C3(C3—1) 6(6‘3—1)
b= — 6b4c§—6b4c4+1 b, — —6C3b4C4+3C3+6b4Ci—2
T bes(es=1) T 6(c;—1)
and
by = —6C3b4C4 +6b403 ——3C3+6b46‘§—6b4C4+ 1
3= — .

66'3

The four free parameters are c;,c4,04, and by with the restrictions that ¢; #0,1. Also, ¢4 must be
chosen so that the fourth stage is distinct from the first three.

Application of the factorization conditions (17), leads to the requirement that one of B,, B;, Bs,
and B, must be zero (since for the above X matrix, X* =0, the coefficient of z* in (15), namely,
b'X?v, is zero, requiring the product, B,-B;-B;-B, to be zero as well). We set B, =0 and then obtain
¢s, Uy, and b, in terms of B,, B;, By, and ¢4. (Recall that B; =0 implies that only 3 processors can be
used.) After some analysis, we found that we were able to get an A-stable scheme with ¢; €(0,1)

by choosing B, =1, By=1, and B,=, giving c; = 1. The choice of ¢, =3, which completes the

1
2? 4
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definition of the scheme, leads to the tableau and stability function,

0 0 0 0 0 0
1 1 0 0 0 0
3,82

1 1 L=t o9 ¢ R(z)— z°+5z°+2z-24
2 2 8 8 , (@)= . 34)
O e e (z=2)(z=3)(z—4) (
3 12 4 & B

5 % 0 3

Since |Q(iy)|*—|P(iy)|* = 8y*, we have an A-stable method. It is not possible to obtain an L-stable
scheme from within this family.

4.3. Stage order 2

4.3.1. MIRK332A4 (A-stable)

In [5] the tableau and stability function for a three-parameter family of 3-stage, third-order, stage
order 2, MIRK schemes are given. For general ¢;, P(z) is of degree 2 and Q(z) is of degree 3. We
choose ¢, =0 which causes the degree of Q(z) to become 2 as well. The factorization conditions (17)
force one of By, B,, or By to be zero, as in previous sections. We choose B, =0 and solve for B,
and v; in terms of B; and cs:

3B3—l _ C3(12(C3—1)Bg—(6C3—4)B3+C3)

By=-—2
2T 302B,-1) 128,

After some analysis, we found that choosing B; = % and ¢; = % gives a suitable scheme. The tableau
and stability function are

1 1 0 0 0
0 | 0 000 Rz _ L1 14224 3%)
s | F | W om0 T (5634
| Y
2 10 5

Since |Q(iy)]>—|P(iy)|* = 104" it is an A-stable method.

4.3.2. MIRK332L (L-stable)
We begin with the 3-stage, third-order, stage order 2, MIRK family given in [5]. Applying the
factorization conditions (17) and solving for v;, ¢; and B; gives
BI+BQ—2B,BZ~§
2B\B,—2B,—-2B,+1’
and expressions for ¢, and v, are too complicated to be given here. The parameter, c;, is left free,

with the requirement that it be distinct from 1 and c¢,. Recall also that we must ensure that ¢, #0
so that the degree of Q(z) is greater than the degree of P(z), since we are looking for an L-stable

B3=

(36)



246 D.A. Voss, P.H. Muir!Journal of Computational and Applied Mathematics 102 (1999) 235-252

scheme. We also have B; and B, free. For this family of MIRK schemes, the fact that B, B,, and B;
are real and positive is not sufficient to ensure A-stability; in addition we must have (3¢c,—1)f/x < %,
where ¢ =(c;—1)c3—¢,) and = %(v3+c3(c3—2))(3c2—1) [5].

Choosing B, =1, B, =1, and c; = gives B; == and the corresponding tableau and stability
) 4 9 12
function are
1 1 0 0 0
5 215 95
50| —56 0 0 Re)- ] 19z2+322-48 -
, z)=— )
5| | e —® 0 5(-1)z—4)z—2)
| L m ow
76 779 164

This method is L-stable since it is A-stable (|Q(iy)|>—|P(iy)|* =208y*+25)°) and clearly |R(z)| — 0
as Re(z) — —oc. It has || 74| = 0.064, ||C||~2.9, and ||T;|| = 0.16, which gives ||7s]||/||T4]| = 2.5.

5. Fourth-order MIRK schemes
5.1. Overview

The next subsection considers stage order 3 schemes. Since the only 3-stage, fourth-order, stage
order 3, MIRK scheme [2], does not have a stability function with a factorable denominator, we
consider MIRK schemes having 4-stages, and derive a family of suitable fourth-order, stage order 3,
MIRK schemes. A specific A-stable scheme from this family is presented; however it is found that
one of the abscissa must be outside the current step. It is also found that there are no L-stable
schemes in this family. It may be possible to obtain L-stable, fourth-order, stage order 3 schemes
with all abscissa within the current step by using 5 stages; this is left for a future study.

The last subsection considers stage order 2 schemes and begins by examining the 3-stage family
from [5]. However, it is shown that there are no suitable schemes within this family and the
investigation thus turns to 4-stage schemes. The subsection concludes with the derivation of a
family of such schemes and a specific A-stable scheme is exhibited. This family does not contain
any L-stable schemes.

5.2. Stage order 3

5.2.1. MIRK443 (A-stable)

The family is considered in [5]; it has free parameters c;, c4, and v4. Application of the factorization
conditions (17) forces us to choose one of B, B, B;, or By equal to zero; we choose B; =0 and
solve for vy, ci, and By, (leaving ¢, free). We get

_ 12B,By — 4B, — 4B; + 1
~ 4(6B,B; — 3B, — 3B, + 1)’

B 6B,By(12B,B; — 4B, — 4B + 1)
" 6(By + B3 )(4B,By — 2B, — 2By + 1) — 24B,B; — 1’

By (38)

c3 (39)
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and a more complicated expression for v;. After some analysis it was found that it was not possible
to obtain an A-stable scheme with B, >0 and ¢; within the current step. An example of an A-stable
scheme from this family is obtained by choosing B, =2 and B; = % Then c; = % (outside the
current step) and B, = i—i The stability function for this scheme is

R(zy= e s 5 (40)
34 1 2y ?
(z— 5Nz —3)z—3%)

for all values of ¢,. Since |Q(iy)|* — |P(iy)|* =87875y°, this scheme is A-stable. For the choice of
¢4 =13, the tableau is

0 0 0 0 0 0
1 1 0 0 0 0
414 77642388 34577694 49533444 0 0
125 1953125 1953125 1953125 (41)
3 881901 57970637  _ 5076616551  _833984375 0
4 191216 35183744 221045696 10168102016
1945 69 1953125 11248
7452 289 919599156 11529

It is not possible to derive an L-stable scheme within this class of methods.

5.3. Stage order 2

5.3.1. MIRK342
In [5] a family of schemes of this type are presented; it has free parameters ¢, and c;. Beginning

with this family and applying the factorization requirements (17) allows us to solve for ¢, B,
and B; and we get

B,(12B% — 6B, + 1)

= 42
= 368 2487 + 7B, — 1 42)
3 __7ZB§—S7B%+2131+3B1\/5—3—2\/5 (43)
2T 3(=72B} + 72B —29B, + 5+ VD)
— 2 —
By—— 24B +}SBI 3+ \@, (44)
12(6B3 — 4B, + 1)
where
D= —288B% + 288B; — 135B; + 308, — 3. (45)

Unfortunately, for all positive B, D is negative, and thus B, and B; are complex. Hence, no suitable
factorizations are possible for this family. We will thus consider schemes with one extra stage.
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5.3.2. MIRK442 (A-stable)
The coeflicients of this family are required to satisfy the eight-order conditions,
ble=1, ble=i, b'd=1i b(Xc+iv)= b=

| )
6° 3°

ble(Xc+ fv)=1, b(X(Xc+jv)+iv)=3, bX+1iv)=4, (46)

plus the stage order conditions (6) with g =2. Solution of these conditions leads to a family of
schemes which includes some A-stable schemes. It has ¢, =1 and free parameters c;,, ¢, ¢4, va,
and v,. The tableau of this family is somewhat complicated and is not included here. In order
to simplify subsequent calculations we choose ¢, =0. The application of the factorization condi-
tions (17) forces us to choose one of By, B,, B;, or By equal to zero, we choose B, =0 and then
solve us for vy, v, and B;; we get

_ 12BB,~ 4B, — 4B, + 1
" 4(6B\B, — 3B, — 3B, + 1)’

B, (47)
and expressions for the v; and v, that are too complicated to present here. If we choose B, :% and
B, =1, then B; =3 with ¢3,c4 as free parameters; we get the stability function,

3,3 __T,2 8 4
~57 ~— 52"tz — 5
R(Z): 54 9 3 9

(z—Dz— -3

for which [Q(iy)|* — |P(iy)|* = 1547)°, so this scheme is A-stable. Its tableau, for the choices c; =1
and ¢; =%, is

(48)

3

1 1 0 0 0 0
0 0 0 0 0 0
% %2—; —}% —115‘13— 0 0. (49)
2 1654 _19 12 1o
3 153 306 17 2
1 1 3 3
8 8 8 8

It is not possible to derive an L-stable method within this family.

6. Summary of derived schemes

In this section we summarize the schemes derived in this paper. In Table 1, the number of stages
is s, the order is p, the stage order is g, the stability is A, for A-stability, or L, for L-stability, and
for convenient reference, the equation number for the tableau of the scheme is given in the final
column,

All derived schemes are either A-stable or L-stable and all but two, MIRK333 and MIRK443,
have all abscissa within the current step. Recalling that the maximum stage order of a pth-order
MIRK scheme is min( p,3), we observe that all the derived schemes have stage order equal to the
maximum or within one of the maximum.
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Table 1

Summary of derived schemes

Method s p q stability Equation
MIRK222 2 2 2 L 21
MIRK221A 2 2 1 A 25
MIRK221L 2 2 1 L (26)
MIRK333 3 3 3 A an
MIRK433 4 3 3 A (34)
MIRK332A 3 3 2 A (35
MIRK332L 3 3 2 L (37)
MIRK443 4 4 3 A (41)
MIRK442 4 4 2 A (49)

In the next section, we provide the results of some numerical testing based on a selected subset
of the above schemes. Similar numerical testing could be done for other schemes. We select three
L-stable schemes for testing, MIRK222, MIRK221L, and MIRK332L. For each of these schemes,
the following subsection provides the details of the optimization process used in the selection of
free parameters. Similar optimization analyses could be applied to any of the schemes.

6.1. Optimization of selected schemes

All analyses are performed subject to the constraint that the B; values be distinct and positive.

6.1.1. Optimization of MIRK222

From the factorization conditions, we have B, >0=B, € (0, %)U(l, ). IfB=8B,=1— \/5/2 then
|| 7| reaches the minimum value of approximately 0.057; however this violates the requirement that
B, # B,. If we choose B, =0 or B, = 1=B, =0 (or B, =1=B;, — c0) then ||C|| reaches the minimum
value of 1.0, but there is no opportunity for parallelism. Since minimization according to either of
these criteria leads to values for B, and B, that are problematic, we will choose B, so that ||Ts]|
and ||C|| are simultaneously close to their respective minimum values. We found that we were able
to choose B, so that the resultant values were within a ratio of 1.5 of their respective minimums.
1

This optimal value for B; is near |;.

6.1.2. Optimization of MIRK221L

Again, B,>0= B, €(0,1)U(1,00). Optimization with respect to || 73| gives the minimum value
of 0.040 but requires B; = B, = 1 —/2/2. Optimization with respect to [|C|| gives the minimum value
of 1.0 but requires B, =0 or B, = % =B, =0 (or B,=1=B, —00) and there is no opportunity
for parallelism. Since either minimum taken independently leads to difficulty, we will attempt to
simultaneously optimize [|T3]| and ||C|| with respect to their minimum values. Since only ||7:||
depends on c,, we first optimize || 73|| with respect to c; which gives ¢; = 1. We then simultaneously
optimize ||73]| and ||C|| with respect to B, and find that if we choose B, near = we get values
for || T3 and ||C|| within a ratio of 1.4 of their respective minimums.
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6.1.3. Optimization of MIRK332L

We begin the optimization process for this family by observing that of the quantities we are
interested in optimizing only ||T4|| is a function of c;. We thus first minimize ||74|| with respect
to c¢3;, which gives ¢; in terms of B, and B,. Since the expression for ¢; is somewhat complicated
we do not include it here. As mentioned previously, A-stability here requires (3¢, —1)f/a< %, where
a=(c3—1)cs—c)and f= %(03 +ci(es —2))3¢; — 1) [5]. An examination of this condition shows
that both B, and B, cannot both be less than approximately 0.4. A subsequent examination of ||C||
then shows that the minimum is obtained only if one of B| or B, is approximately equal to 1.0. We
choose B) =1 and proceed to attempt to simultaneously minimize ||C|| and ||7,|| with respect to B,.
We note that, in order for B; to be positive, we must choose B, €(0,%). We find that [|C|| is then
minimized with respect to B, when B, ~0.198 or B, ~0.469, in which case we have ||C| ~2.81.
[|74|| is minimized when B,=1; for its minimum value we have ||7;|| ~ 0.0589. However, this choice
for B, gives B; also equal to ;. Thus, we will determine the value to be used for B, by requiring
both ||C|| and ||74|| to be simultaneously minimized with respect to their respective minimums. This
calculation leads to the choices B, ~0.25717 or B, =~ 0.40949 (either choice leads to the same MIRK
scheme), which give ||74|| and ||C|| values within 10% of their respective minimums. We conclude
by choosing B, = 1 (close to the first of these two values). This gives ¢; = %

7. Numerical results

In this section we will report the numerical results obtained by three L-stable MIRK schemes,
namely, MIRK222, MIRK221L, and MIRK332L, given, respectively, in tableaus (21), (26), and (37),
when implemented on the linear ODE system of Prothero—Robinson-type equations [13] and the non-
linear ODE system arising from a semidiscretized nonlinear convection—diffusion problem discussed
by Cong [8]. Cong developed a second order, L-stable, parallel singly diagonally implicit Runge—
Kutta (PDIRK,) method, having stage order 2 and showed its efficient behavior when compared to
several higher order sequential DIRK methods, when applied to these two problems. As in [8], all
computations were performed using fifteen digit (double precision) arithmetic and the accuracy is
given by the number of correct digits, NCD, obtained by writing the maximum norm of the error
at the end of the interval of integration in the form E = 10~N°P_ The sequential computational effort
is measured by the number of sequential stages, i.e., the number of stages that cannot be computed
in parallel, per unit interval and the stepsize # is chosen such that the number of sequential stages
per unit interval equals a prescribed number M. Thus a method that uses fewer sequential stages
per step can employ more steps, i.e., smaller steps, per unit subinterval, leading to more accuracy.
Using adjacent entries in the tables, we estimate the order as p = log(E|/E;)/ log(hi/h;), where the
error E;, defined above, arises using stepsize 4;

PDIRK,; is a six-stage SDIRK method which, when implemented on a two-processor computer,
effectively requires only two implicit stages per step. Similarly, a MIRKspg implemented on a
s-processor computer effectively requires only one implicit stage per step, i.e., all stages can be
computed independently, in parallel. In Tables 2 and 3, s* denotes the effective number of implicit
stages per step required by the various methods. For completeness, the tables also include the results
by PDIRK; in [8] as well as the four DIRK methods considered in [8]:

e Norsett;, Norsett,: third and fourth-order A-stable methods of Nersett,
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Table 2
Values of NCD and p for problem (50)

M

120 240 480 960
Method Order s* NCD ? NCD P NCD )4 NCD ?
Nersetts 3 2 33 — 39 2.0 4.5 2.0 5.1 2.0
Neorsetty 4 3 31 — 37 2.0 43 2.0 4.9 2.0
HW, 4 5 45 — 5.5 33 6.0 1.7 6.3 1.0
CS;s 5 5 22 — 2.6 1.3 2.9 1.0 33 1.3
PDIRK, 2 2 5.1 — 5.7 2.0 63 2.0 6.9 20
MIRK221L 2 1 49 — 5.5 2.0 6.1 20 6.7 20
MIRK222 2 1 5.6 — 6.2 2.0 6.8 2.0 7.4 2.0
MIRK332L 3 1 7.1 — 7.9 2.7 8.7 2.7 9.6 3.0

e HW,: fourth-order L-stable method of Hairer and Wanner,
e CS;: fifth-order A-stable method of Cooper and Sayfy.

7.1. Prothero—Robinson-type problem

gyE(zQ =J[¥() — g1+ g'(®), ¥(0)=g(0), 0

J = diag(—10°U™1),
g()=(1 +sin(jt)), j=1,...,6, 0<t<20.

Prothero and Robinson [13] used a problem of this type to show the order reduction phenomenon of
Runge—-Kutta methods. The exact solution of (50) is y(¢) = g(¢) which has both slowly and rapidly
varying components. For this problem, all methods for which results are presented in Table 2 exhibit
at most second-order behavior, except MIRK332L which shows third-order. As noted by Cong [8],
order reduction really does occur for the DIRK methods on this problem. However, order reduction
did not occur for the parallel MIRK schemes due to their higher stage order and, in particular,
MIRK222 gives a superior performance among the second-order schemes.

7.2. Nonlinear partial differential equation

We next consider the convection—diffusion problem [8]

ou(t,x) 0*u(t,x)
& Mg -

with 0 <x <1, 0 <t <1, in order to show the performance of the L-stable MIRK methods on
problems to be solved with low accuracy demand. The initial and Dirichlet boundary conditions are

such that the exact solution is given by u(t,x) = x* cos(¢). Central finite-difference discretization of

the spatial derivatives on a uniform grid with mesh size 4i0 yields a system of 39 ODEs with exact

ou(t,x)

Py
ox

x cos(t) — x* sin(t), (51)
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Table 3
Values of NCD and p for problem (51)

M

30 60 120 240
Method Order s NCD p NCD p NCD p NCD p
Norsetts 3 2 38 — 4.4 2.0 5.1 2.0 57 2.0
Norsetts 4 3 35 — 4.1 2.0 4.8 2.0 54 2.0
HW, 4 S 3.8 — 4.5 2.0 51 2.0 5.8 23
CSs 5 5 26 — 32 2.0 4.0 2.7 5.0 33
PDIRK: 2 2 47 — 53 2.0 5.9 2.0 6.6 23
MIRK221L 2 1 44 — 5.0 2.0 5.6 2.0 6.2 2.0
MIRK222 2 1 52 — 58 2.0 6.4 2.0 7.0 2.0
MIRK332L 3 1 63 — 7.1 2.7 7.9 2.7 8.7 2.7
solution (55 /)* cos(?), j=1,...,39. An examination of Table 3 again reveals order reduction for the

DIRK methods with the parallel methods performing similar to that for (50).
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