An example similar to the assignment


A type called Cartesian to represent Cartesian co-ordinates


A Cartesian co-ordinate has two parts:


x and y


In addition to the constructor and destructor, we will have two more public member functions


distance to find distance between two points


print to print the co-ordinates of the point as (n1, n2)


We are going to separate the definition or interface of the class from its implementation


The interface portion generally uses .h or .hpp extension. The accepted practice these days is to use .h extension


Look at the file cartesian.hpp to see what goes in a header file


The class cartesian has two data members in the private portion and four function members in the public portion.


The constructor can take two parameters that enable us to initialize the values of x and y. If the values of parameters are not specified, default values of 0.0 are used. 


The function distance will take only one parameter. A sample call may look as follows:


cartesian a(1.8,3.5),b;


a.distance(b);


In the above code, we have declared two variables of the type cartesian, a and b. x  and y co-ordinates of a are initialized to 1.8 and 3.5, respectively. Since we don’t specify any parameters while declaring b, x and y members of b are initialized to 0.0.


call a.distance(b) finds the distance of b from a. That’s why distance function only needs one parameter.


The file cartesian.cpp contains details of the implementation.


The file main.cpp contains the main program.


When you compile you compile both the cpp files as:


c++ main.cpp cartesian.cpp -o main -lm


the above command compiles main.cpp and cartesian.cpp separately and links them together to produce the executable file called main


the option -lm is used to link the math library on UNIX


For your assignment:


you will create complex.hpp, complex.cpp and a1_p2.cpp


complex.hpp will be similar to cartesian.hpp


complex.cpp will be similar to cartesian.cpp


a1_p2.cpp will be similar to main.cpp


In complex.hpp you are going to define the class complex. Essentially similar to cartesian. Instead of x and y you may use r and i.


constructor, destructor and print will be the same in both hpp and cpp with appropriate replacements:


cartesian/complex, x/r and y/i


a1_p2.cpp will again be the same with appropriate replacements mentioned above.


The only major change is: instead of the function distance we will have two functions:


add


subtract


both of these functions will have similar prototypes as distance


the code in complex.cpp for add and subtract will be different


add will look like


complex add(complex right);


the code will consist of a temporary variable of the type complex


complex temp;


temp.r = r + right.r;


temp.i = ?


return temp





