Classes

Arrays are collections of homogeneous variables

all of the variables in an array are of the same type

If you need a variable which is a collection of variables of heterogeneous types, we need to use classes

Situations where we need a heterogeneous collection

student record

Name

Address

Phone number

Number of classes she has taken

Grade point average

First example from the book is Figure 6.1

We are defining a new type:

So far we only used built in types from C++

The concept of class/struct allows you to create your own types, user defined types

In figure 6.1, we have a userdefined type called Time

When you create your own type, it can only be collection of previously defined types

The type Time is a collection of three variables all of them are of the type int. First variable is called hour, second is called minute and the third is called second.

These variables are also called members of the type

General format of a user defined type is

struct <type-name>{

	<members>

};

or

class <type-name>{

<members>

};

struct Time { // structure definition

 int hour; // 0-23

 int minute; // 0-59

 int second; // 0-59

};

A variable of the type can be declared just like any other type

Time dinnerTime;

A variable called dinnerTime of the type Time

We can access the members of a user-defined type using . notation

name of the variable is followed by a period followed by the member name

 dinnerTime.hour = 18;

 dinnerTime.minute = 30;

 dinnerTime.second = 0;

Any variable of the type Time is going to have three members

dinnerTime has three slots

hour�
18�
�
minute�
30�
�
second�
0�
�
The assignment statement dinnerTime.hour puts the value 18 in the hour slot, and so on as shown above.

Another method of passing parameters (digression)

The function printMilitary accepts a paramter by constant reference (const Time &)

When we pass it by reference we don’t make a copy which can be time consuming for large struct’s

But at the same time const protects the variable from being changed

We have the efficiency of passing by reference but protection of passing by value

Another digression - conditional expression

<boolean-expression> ? <value-1> : <value-2>

if <boolean-expression> is true then the value of the expression is <value-1> otherwise the value of the expression is <value-2>

if (a > b) max = a; else max = b;

max = a > b ? a : b;

printMilitary function accepts a variable of the type Time and prints it out using Military conventions

This approach is procedural programming

A user-defined type is just a collection of data members

If we want to manipulate those data members we pass these variables to a function

The function is not part of the userdefined type

Object oriented programming changes this view

Most of the user-defined types cannot be completely defined without specifying typical operations

printMilitary should really be the part of the definition or part of the package. It is not a separate function but integral part of the type Time

The first principle of Object Oriented programming is called encapsulation

An object is defined in terms of data and function members

In fact, data abstraction principle says that an object should be defined only in terms of operations. Data members are irrelevant. That’s the topic for COSC2006.

