Final Exam Review

We started with arrays, arrays of characters (strings) and a brief look at the pointers

For the exam, you may be expected to either write or interpret a program that involves array manipulation

Look at the program from first test where we tried to fix the cases of characters in a string of characters

The program doesn’t have to use an array of characters

There are a few descriptive questions. Some of them may be asking questions related to a program and compiler errors. See the first test for an example

Class/struct

How do they differe from each other?

Encapsulation. A data type is defined using operations and data members. Many times data members are less relevant than the operations.

has data members and function members

provides information hiding feature using public: and private:. There is also protected: useful in inheritance. But we will not worry about it in this course.

Data members are usually put in the private: part of the class

Access to the data members are provided by access function members from the public part

In addition, there are utility functions in the private part to make programming more modular. They take care of some of the house-keeping duties.

Header is put in a header file with extension .h or .hpp

Implementation is put in a .cpp file

header file is #included, implementation file is used in the compiler command. See last question in test 2.

All the files listed on c++ command line are translated separately and then linked together to makeup the executable.

Multiple inclusion of the header file should be avoided using #ifndef, #define, #endif sequence

Function/Operator overloading

Functions or operators performing similar activities, should have the same name

C++ provides overloading mechanism. So two or more functions or operators can have the same name but they work with different types

For example, >> can be used to read int, double, char, user-defined types (such as String, user_type, database)

Friends versus member functions

Friends are normal functions that are authorized to access private members of a variable of a given class

Member functions are part of a variable of the class and as such have access to all the other members of the variable

Inheritance

We can derive new types (derived types/childern) from existing types (base types/parents)

Derived types inherit all the member functions from the base types. Look at the examples given in the class

Exam may give you a c++ program and ask you to comment on the program within the context of inheritance

Any function that expects a variable of a base type, can also accept a variable of its derived type

File I/O

ifstream variables are used for file input

ifstream is a descendant of istream. So any istream operator will happily accept ifstream variables

Similar observations can be made for ofsream and ostream pair

Templates

Templates are another way of providing third important principle of OOP called polymorphism

Polymorphism is usually provided by virtual functions. We didn’t cover that

Templates are templates for translatable C++ code.

Templates take parameters. Commonly used parameters are those of the type int and class

See all the examples from the notes

sort, database, stack

You will be expected to use templates in writing a c++ program

If you can reproduce some of the template code, you are better off.

