Inheritance

Second important principle in object oriented programming

You can derive new data types from existing (base) data types

Derived data types are also known as the children of the base (parent) type

We are going to limit the programming portion to the use of derived types

Children inherit everything from their parents. Children can add more to their inheritance.

Let us say we have a type called basis with two data members of the type int. And one function member called donothing()

class basis

{

	public:

	int j,k;

	void donothing(){}

};

We want to create a descendant (child) of basis called derivation

class derivation : public basis

{

};

The inheritance is indicated by putting a colon after the class name. So derivation is a child of basis

The word public after colon, says that all the public members of basis are also public members of derivation

How many members does derivation have?

derivation has the same members as basis

both private and public members of basis are inherited by derivation. But derivation cannot access private members inherited from basis.

See the modified base and derivation in base.hpp and derive.hpp

The Strings or array of characters cannot be interpreted as numbers.

For example, if we have String(“29.5”), to the computer it is just a sequence of characters. It is not translated to the number 29.5 automatically

stdlib.h provides a function called atof to convert an array of characters to double

But it doesn’t work with variables of String type

We can modify the String type by editing the string2.h/cpp

This solution is not desirable because we may introduce bugs in a working program file

We can derive a class from String called dstring which provides a member function called dvalue that returns value of dstring as a double.

See dstring.hpp/cpp

What we did was we created a new type which has all the attributes of the old String plus an additional member function called dvalue

We are reusing the existing code without modifying it through inheritance

One note in passing about dstring.cpp

we use code such as (*this)[i]

this is a keyword in C++. It is used only in member functions to refer to itself (object)

this gives the address of the object

*this is dereferencing the pointer, i.e. it is the object itself

Stream I/O (deferred until third assignment)

So far we have been reading from the keyboard and writing to the screen

keyboard can be looked as a special file stream represented in our programs by cin

Similarly, screen is represented by cout.

cin and cout are automatically opened for you

cin is a variable of type istream and cout is a variable of the type ostream

There is a type called fstream for managing files

If you want to use any other files, you have to open them yourself

Let us start with an input file

An input file is opened using a variable of the type ifstream

ifstream is a child of istream and fstream

ofstream is a child of ostream and fstream

ifstream infile;

There are two ways of associating the variable of the type ifstream with a disk file

Either through a constructor:

ifstream another_name(“a2p3.dat”);

Or an existing variable can use a member function called open

If we have the variable infile declared already

infile.open(“a2p3.dat”);

The variable infile or another_name can be used excatly like cin

infile >> s1;

