Function/Operator overloading


Before we start discussing operator overloading we will talk about the following concepts from chapter 7:


const member functions


friends


If a prototype of a member function is followed by the word const, you are telling the compiler that the function doesn’t make changes to the object.


There are two reasons why we may want to declare a function as const:


So it can be safely used on const objects


Compiler will watch for inadvertant changes to the object in const functions.


A good documentation tool


Please refer to the date.hpp and date.cpp for the syntax of const member functions


Friends:


Sometimes some functions which are not member function are allowed to access private data members


This concept is also extended to objects (more later)


The friend functions have to be declared as part of the class definition.


The programmer identifies certain functions as friendly and trust worthy.


In the definition of class date we declared buddy as a friend of the class date. So buddy can access the private members of date.


Function overloading:


We used this in date to overload the constructor.


If for some reason, you don’t want to or cannot change the name of the function, we use function overloading.


Two functions have same name, but they are doing different things.


The functions have to differ from each other in terms of the parameters that are passed.


There are some subtle restrictions but we will not worry about them at this time.


Operators are just functions


Let us assume that our class date needed an assignment operator


We can write a member function called compare as shown in moddate.hpp/cpp


the member function compare can now be called


if(d.compare(e)) cout << “Both dates are the same\n”;


I want to change the name from compare to operator==


if(d.operator==(e)) cout << “Both dates are the same\n”;


But operator== is a special and can also be used as:


if(d ==e) cout << “Both dates are the same\n”;


See moddate.cpp for complete code.


We will start by using a class called String from chapter 8


Class String has several overloaded operators. We will get acquainted with using overloaded operators before writing them (assign#2 part 1)





