Templates


Many times when you are writing a program code, you are not sure about a variety of things. For example, size of an array or even the type of a variable


Consider an example, we have one program that reads two different databases of users. One is for tbird and the other is for eagle.


tbird has about a 100 users, eagle has 1000 users


If you had a sort function, you don’t want to be tied down to the type variables in your array.


You should be able to use the same function code for int, double, char, String, dstring, user_type, etc.


templates allow you to do that


templates are not valid translatable code. They are used to create translatable code.





void sort(int a[], int size)


{


	for(int j = 0; j < size; j++)


		for(int k = 0; k < j; k++)


		{


			blah.. blah...


		}


}





Instead provide a template





template <class type>


void sort(type a[], int size)


{


	for(int j = 0; j < size; j++)


		for(int k = 0; k < j; k++)


		{


			blah.. blah...


		}


}


The above is not a translatable C++ code. Compiler cannot translate it because type is not a valid type in C++.


The template tells the compiler how to create code if necessary


The template has one parameter called type. This is similar to variable in the senese that it can take different values


type can be int, double, char, string, dstring, user_type and so on


Compiler appropriately substitutes the value for type before generating different instances of sort function





void main(void)


{


	int x[200];


	double y[100];


	String z[300];


	// we get values for these elements somehow


	sort(x,200);


	sort(y,100);


	sort(z,300);


}


sort() is called three times for three different types. Compiler looks at the type of the first parameter and generates sort for that type. So compiler will create three different sort functions one for x (type = int), another for y (type = double), and one more for z (type = String)


For first part of the third assignment we want template of a class called database.


The template will have one parameter for the size of the database.


We already have the class called database


We will change it to a template.


See the file template.hpp/cpp and testtemp.cpp


These files took the old type called database and changed it to a template


The parameter for the template is an int called max_size


So we can declare databases of various sizes


database<20> is a type database with max_size = 20


database<40> is a type database with max_size = 40


All the member functions are now templates. Look at the change in syntax. Instead of database:: we say database<max_size>::


In addition to this we need to create input and output operators for the database. Input operator is given in the programs mentioned above. Also see testtem2.cpp


Note that for templates you #include the CPP instead of HPP. Templates are not translated directly. That’s why we cannot compile them on the command line. They have to be #included.


Another situation where you may want to use templates, is when you are not sure of the type. We have already seen an example of sort function


Let us say we wanted to create a dat type called stack. Which stacks objects of a given type on top of each other.


Let us say we have stack of int


Four member functions:


default constructor


push(int item);


pop();


int get_top();


Write the type definition. Don’t worry about data members.








