Test#2 Answers

Q1-a

Modular approach includes providing functions for certain frequently used tasks

Other languages expect different function names for eac task

Function overloading reduces the number of different functions. If a function is doing the same job, there is no need to have different name

Operator overloading goes one step further typical operations such as +, -, ==, >>, << can be overloaded for user-defined types. This makes use of user-defined types same as built-in types. Improving the readability

Q1-b

== is a friend which has access to private portion of cartesian. It needs two parameters. In this case both are passed by constant reference

!= is a member function, therefore it needs only the right hand parameter. The calling object is implicit left hand parameter. The parameter was passed by value

Q1-c

int operator==(const cartesian&l, const cartesian&r)

{

	return((r.x==l.x) && (r.y==l.y));

}

int cartesian::operator!=(cartesian r)

{

	return((x != r.x) || (y!=r.y));

}

Q1-d

#include “cartesian.h”

void main(void)

{

	cartesian i,j;

	cin >> i >> j;

	if(i != j)

	{

		cout << “Distance between “ << i << “ and “ << j;

		cout << “ is “ << i.distance(j) << endl;

	}

}

There were two errors in the cartesian.hpp/cpp. Next question will clarify them

Q2

#include “cartesian.hpp”

class line

{

	cartesian one,two;

	public:

	double length();

	friend istream& operator>>(istream& in, line& l);

	friend ostream& operator<<(ostream& out, line l);

};

istream& operator>>(istream& in, line& l)

{

	return in >> l.one >> l.two;

}

ostream& operator<<(ostream& out, line l)

{

	return out << l.one << “---------” << l.two << endl;

}

Note the operators and fix errors on second page of the program

double line::length()

{

	return one.distance(two);

}

Q3-a

#include “line.hpp”

void main(void)

{

	line k;

	cout << “Please input two end point of a line” << endl;

	cin >> k;

	cout << “The length of line “ << k << “is “ <<k.length() << endl;

}

Q3-b

c++ testline.cpp line.cpp cartesian.cpp -o testline -lm

