Applications of stacks


Implementation of function calls


Evaluation of expressions


The book has:


Parenthesis matching *


Tower of Hanoi (skip for now)


Rearranging of railroad cars*


Circuit switching


Maze*


Paranthesis matching


Keep it simple as simple as possible but no simpler


Simplest solution: Count all the left parentheses and righ parentheses. If there are same number of left and right parentheses, they match (?)


())((). The simple solution will accept this.


We need something more complicated


Use stack:


Keep reading the tokens


If there is a left parenthesis add it to the stack


If there is a right parenthesis and stack is empty then mismatch, else delete the left parenthesis from the stack


If stack is not empty, mismatch


see paren.cpp


Rearranging railroad cars.


Railroad cars come in random order - rearrange them so that they are in increasing (from right to left) order by their number


Fig. 5.5 in the book:


5,8,1,7,4,2,9,6,3


9,8,7,6,5,4,3,2,1


Normal sorting will not work, because the railroad cars cannot be swapped


We use several holding tracks (Fig. 5.5)


The program rail1.cpp shows the algorithm


Maze:


This can be implmented recursively


We have either walls or doors in four directions


We want to find a path from orig to destination


Since we don’t know the entire maze, we only go one move at a time. We mark a location to make sure that we don’t go there more than once (unless we are backtracking).


If there is a door to I from orig, we make I to be our neworigin and try to find path from neworig to destination.


If there is a path, at some point our neworigin is going to be the destination.


We will not worry about this recursive algorithm, this semester.





