Queues (continued)

Circular array implementation in Chapter 6.

Atleast one empty space is left in the array, between first and the last item.

This helps in distinguishing between queue full and queue empty situation.

The code is simplified at the expense of a wasted space.

Another implementation could keep front at the first element and rear at the last element. The isfull and isempty are taken care of by another variable called size.

The code for this implementation will not be as symmetric as the one in the book, but it would take less memory and will be easier to read.

The following code will make our Double link faster by a factor of two in the worst case.

It will also help with the bonus portion in the lab assignment on DoubleQueue.

DoubleNode<T>* Double<T>::Pointer(int k) const

{ // returns pointer to the kth node

 DoubleNode<T> *current;

 if (k <= Length()/2) { //it is in first part of list

 current = LeftEnd;

 for (int index=1; index<k; index++)

 current = current->right;

 } else { //it is in last part of list

 current = RightEnd;

 for (int index=Length(); index>k; index--)

 current = current->left;

 }

 return current;

}

