Instead of coming up with function names such as Add, it is better if our types have operators such as + or +=


Currency c1, c2, c3;


c3 = c1 + c2;


This can be achieved by overloading the operator +;


class Currency


{


	private:


		long amount;


	public:


		Currency();


		~Currency(){}


		Currency operator +(const Currency& x);


};


c3 = c1.operator+(c2);


c3 = c1 + c2;


Currency Currency::operator+(const Currency& x) const


{


	Currency y;


	y.amount = amount + x.amount;


	return y;


};


The word const after the function prototype means that the function will not make any changes to the variable whose member function it is. In our case because of the const at the end c1 is now not allowed to change in the operator+. Note c2 is not allowed to change because it is being passed by const reference.


Another commonly used member function is output.


We can write a member function called output and say c1.output(cout);


It will be nice if you could output the variable using traditional output operator <<;


cout << c1;


One way is to define an additional member function for ostream to output Currency. We are not allowed to change an existing type called ostream.


Instead we should define a function that takes two parameters, first one is of ostream and the second one is of the type Currency


operator<<(ostream& out, const Currency& x)


{


	x.output(out);


}


cout << c1;


The above ostream operator is not a member function of any class. It is just an overloaded function that accepts two parameters, one is of the type ostream and the other is of the type Currency.


Here we did the output in two stages, first defined a member function called output and called it from the overloaded operator<<


We could eliminate the intermediate member function output.


osteram& operator<<(ostream& out, const Currency& x)


{


	long a = x.amount;


	if(a < 0) {out << ‘-’; a = -a;}


		// and so on see the code for output


		// on page 33


}


This will be a problem because our function operator<< is not allowed to access the private member of x called amount


We need to make the operator<< a friend of Currency


class Currency


{


	friend operator<<(ostream&,const Currency&);


	// rest of the defintion is the same


};


