Our hash function takes a number from 0 - 9999999 and reduces to a number between 0 to 45

We will use hash(student_number) % HashTableSize;

More than one student number may map to the same hash value

We need collision resolution mechanism: chaining

The hashtable is an array of linked lists

We will use the chash.h from chapter7 as the guide for creating our hashtable

template <class T>

class HashTable�{

	int D;

	Double<T> *ht;

	public:

	HashTable(int divisor = 11)

	{....}

	~HashTable(){delete [] ht;}

	bool Search(T& rec);

	Hashtable<T>& Insert(const T& rec);

	HashTable<T>& Delete(T& rec);

};

Algorithms:

Constructor: see chash.h

Search:

index = rec.hash()%D;

int loc = ht[index].Search(rec);

if(loc) {ht[index].Find(loc, rec); return true;}

return false;

Insert:

index = rec.hash()%D;

int loc = ht[index].Search(rec);

if(loc == 0) ht[index].Insert(0,rec)

Write Delete yourself:

Preparing for using the HashTable.

The type T now needs two functions:

Comparison operator that only compares the key field.

It needs a function called hash as a member.

If every key collides with every other key, all the records will be in one linked list. Time Requirement for every operation will be O(n).

Typically, the m = maximum number of records that will collide with each other is expected to be smaller than n.

What will be the general time requirement O(m), if m<<<n, we have an improved searching mechanism.

The cost of this improvement is the additional linked lists that will be used. Every linked lists stores three variables, LeftEnd, RightEnd, length.

